1
|
Fileto JB, Nepomuceno RC, Gomes TR, Silva VS, Santos EOD, Souza OFDE, Watanabe GCA, Lima PJDDEO, Freitas ER. Nutritional evaluation of shrimp waste and its inclusion in laying diet for meat-type quails. AN ACAD BRAS CIENC 2024; 96:e20230934. [PMID: 39699506 DOI: 10.1590/0001-3765202420230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/12/2024] [Indexed: 12/20/2024] Open
Abstract
The research aimed to evaluate the shrimp waste meal (SWM1) in the diet of European quails in the production phase. A metabolism trial was performed with 96 quails of 28 days of age distributed in a completely randomized design with three treatments (reference diet and two test diets in which SWM replaced 20% and 40% of the reference diet) and four replications of eight birds. There was no difference in metabolizable energy values. In the performance trial 200 quails of 28 weeks of age were distributed in a completely randomized design with four treatments (0, 50 100 and 150 g/kg of inclusion of SWM) and five replications of ten birds. There was reduction in the nitrogen metabolization coefficient with the inclusion of 150 g/kg SWM. The feed intake, production and egg mass worsened with 150 g/kg inclusion. The inclusion of SWM at all levels reduced the values of specific gravity and Hugh units, and the level 150 g/kg promoted reduction in shell percentage and shell thickness. It was concluded that the metabolizable energy of SWM is 2,377 MJ/kg and that the inclusion of SWM in the diet of quails in production can be up to 100 g/kg.
Collapse
Affiliation(s)
- Juliana Braga Fileto
- Universidade Federal do Ceará, Departamento de Zootecnia, Av. Mister Hull, 2977, Bloco 808, Campus do Pici, 60356-000 Fortaleza, CE, Brazil
| | - Rafael Carlos Nepomuceno
- Universidade Federal do Ceará, Departamento de Zootecnia, Av. Mister Hull, 2977, Bloco 808, Campus do Pici, 60356-000 Fortaleza, CE, Brazil
| | - Thalles Ribeiro Gomes
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural, Rua José Franco de Oliveira, s/n, Campus Auroras, 62790-970 Redenção, CE, Brazil
| | - Valquíria Sousa Silva
- Universidade Federal do Ceará, Departamento de Zootecnia, Av. Mister Hull, 2977, Bloco 808, Campus do Pici, 60356-000 Fortaleza, CE, Brazil
| | - Edibergue Oliveira Dos Santos
- Universidade Federal do Ceará, Departamento de Zootecnia, Av. Mister Hull, 2977, Bloco 808, Campus do Pici, 60356-000 Fortaleza, CE, Brazil
| | - Otoniel Félix DE Souza
- Universidade Federal do Ceará, Departamento de Zootecnia, Av. Mister Hull, 2977, Bloco 808, Campus do Pici, 60356-000 Fortaleza, CE, Brazil
| | - Germana Costa Aguiar Watanabe
- Universidade Federal do Ceará, Departamento de Zootecnia, Av. Mister Hull, 2977, Bloco 808, Campus do Pici, 60356-000 Fortaleza, CE, Brazil
| | | | - Ednardo Rodrigues Freitas
- Universidade Federal do Ceará, Departamento de Zootecnia, Av. Mister Hull, 2977, Bloco 808, Campus do Pici, 60356-000 Fortaleza, CE, Brazil
| |
Collapse
|
2
|
Shi J, Deng C, Zhang C, Quan S, Fan L, Zhao L. Combinatorial metabolic engineering of Escherichia coli for de novo production of structurally defined and homogeneous Amino oligosaccharides. Synth Syst Biotechnol 2024; 9:713-722. [PMID: 38868610 PMCID: PMC11167392 DOI: 10.1016/j.synbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Amino oligosaccharides (AOs) possess various biological activities and are valuable in the pharmaceutical, food industries, and agriculture. However, the industrial manufacturing of AOs has not been realized yet, despite reports on physical, chemical, and biological approaches. In this study, the de novo production of chitin oligosaccharides (CHOS), a type of structurally defined AOs, was achieved in Escherichia coli through combinatorial pathway engineering. The most suitable glycosyltransferase for CHOS production was found to be NodCL from Mesorhizobium Loti. Then, by knocking out the nagB gene to block the flow of N-acetyl-d-glucosamine (NAG) to the glycolytic pathway in E. coli and adjusting the copy number of NodCL-coding gene, the CHOS yield was increased by 6.56 times. Subsequently, by introducing of UDP-N-acetylglucosamine (UDP-GlcNAc) salvage pathway for and optimizing fermentation conditions, the yield of CHOS reached 207.1 and 468.6 mg/L in shake-flask cultivation and a 5-L fed-batch bioreactor, respectively. Meanwhile, the concentration of UDP-GlcNAc was 91.0 mg/L, the highest level reported in E. coli so far. This study demonstrated, for the first time, the production of CHOS with distinct structures in plasmid-free E. coli, laying the groundwork for the biosynthesis of CHOS and providing a starting point for further engineering and commercial production.
Collapse
Affiliation(s)
- Jinqi Shi
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| |
Collapse
|
3
|
Ait Hamdan Y, El-Mansoury B, Elouali S, Rachmoune K, Belbachir A, Oudadesse H, Rhazi M. A review of chitosan polysaccharides: Neuropharmacological implications and tissue regeneration. Int J Biol Macromol 2024; 279:135356. [PMID: 39244136 DOI: 10.1016/j.ijbiomac.2024.135356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
One of the current challenges in targeting neurological disorders is that many therapeutic molecules cannot cross the blood-brain barrier (BBB), which limits the use of natural molecules in nervous tissue regeneration. Thus, the development of new drugs to effectively treat neurological disorders would be a challenge. Natural resources are well known as a source of several therapeutic agents for the treatment of neurologic disorders. Recently, chitosan (CTS) and its derivatives from arthropod exoskeletons, have attracted much attention as a drug delivery system to transport therapeutic substances across the BBB and thanks to other neuroprotective effects including the participation to the CNS regenerations scaffolds to replicate the extracellular matrix and microenvironment of the body. This review will discuss the place of natural resource therapy in targeting neurological disorders. In particular, it will highlight recent understanding and progress in the applications of CTS as drug delivery systems and their therapeutic effects on these disorders through tissue regeneration, as well as the molecular mechanisms by which they exert these effects.
Collapse
Affiliation(s)
- Youssef Ait Hamdan
- Interdisciplinary Laboratory of Research in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Bilal El-Mansoury
- Laboratory of Anthropogenic, Biotechnology and Health, Team physiopathology Nutritional, Neurosciences and Toxicology, Faculty of Sciences, Chouaib Doukkali University, Av. Des facultés, 24000 El Jadida, Morocco
| | - Samia Elouali
- Interdisciplinary Laboratory of Research in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium
| | - Khawla Rachmoune
- Interdisciplinary Laboratory of Research in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; Biotechnology and Biomolecule Engineering Unit, CNESTEN, Rabat, Morocco
| | - Anass Belbachir
- Center for Regenerative Medicine, CHU MOHAMMED VI, Marrakech, Morocco; Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | | | - Mohammed Rhazi
- Interdisciplinary Laboratory of Research in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco
| |
Collapse
|
4
|
Pyo SH, Moon CR, Park SW, Choi JY, Park JD, Sung JM, Choi EJ, Son YJ. Quality and staling characteristics of white bread fortified with lysozyme-hydrolyzed mealworm powder ( Tenebrio molitor L.). Curr Res Food Sci 2024; 8:100685. [PMID: 38318313 PMCID: PMC10839563 DOI: 10.1016/j.crfs.2024.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Edible insects have a low environmental impact but are rich in nutrients and have been promoted as alternative protein sources. However, adding insect flour to bread negatively affects the overall quality, especially loaf volume and textural properties. Furthermore, relevant studies on chitin are limited. Therefore, this study examined chitin hydrolysis using lysozymes to enhance the quality characteristics in defatted mealworm (Tenebrio molitor L.) powder (DF-M)-supplemented bread. The chitin hydrolysis degree by lysozymes was evaluated using the 3,5-dinitrosalicylic acid assay and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The amount of chitin oligomers increased with time, and no significant difference in the hydrolysis efficiency between water and 400 mM acetate buffer was observed. Enzymatic hydrolysis improved the DF-M water- and oil-binding and antioxidant capacities. In addition, chitin hydrolysis increased the volume and softened the texture of white bread. In particular, bread supplemented with DF-M hydrolyzed for 4 h at 10 % had the highest moisture content among the mealworm-added bread groups during storage for 5 days. Moreover, sensory evaluation showed a positive effect of chitin hydrolysis on acceptability. Our findings indicate that chitin hydrolysis can improve the quality of bread containing insect additives. In conclusion, this study provides novel insights into producing high-quality and functional bakery products from edible insects by the enzymatic hydrolysis of edible insect powders and could expand the applications of edible insects as food ingredients.
Collapse
Affiliation(s)
- Su-Hyeon Pyo
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chae-Ryun Moon
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - So-Won Park
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ji-yu Choi
- Department of Food and Nutrition, Pai Chai University, Daejeon, 35345, Republic of Korea
| | - Jong-Dae Park
- Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Jung Min Sung
- Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Eun-Ji Choi
- Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
5
|
Li J, Guan S, Cai B, Li Q, Rong S. Low molecular weight chitosan oligosaccharides form stable complexes with human lactoferrin. FEBS Open Bio 2023; 13:2215-2223. [PMID: 37872003 PMCID: PMC10699096 DOI: 10.1002/2211-5463.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/09/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023] Open
Abstract
Proteins in tears, including human lactoferrin (HLF), can be deposited and denatured on contact lenses, increasing the risk of microbial cell attachment to the lens and ocular complications. The surfactants currently used in commercial contact lens care solutions have low clearance ability for tear proteins. Chitosan oligosaccharide (COS) binds to a variety of proteins and has potential for use in protein removal, especially in contact lens care solutions. Here, we analyzed the interaction mechanism of COSs hydrolyzed from chitosan from different resources with HLF. The molecular weights (MWs) and concentrations of COSs were key factors for the formation of COS-HLF complexes. Lower MWs of COSs could form more stable COS-HLF complexes. COS from Aspergillus ochraceus had a superior effect on HLF compared with COS from shrimp and crab shell with the same MWs. In conclusion, COSs could bind to and cause a conformational change in HLF. Therefore, COSs, especially those with low MWs, have potential as deproteinizing agents in contact lens care solution.
Collapse
Affiliation(s)
- Juan Li
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Shimin Guan
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Baoguo Cai
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Qianqian Li
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Shaofeng Rong
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| |
Collapse
|
6
|
Wei X, Sui Z, Guo M, Chen S, Zhang Z, Geng J, Xiao J, Huang D. The potential of degrading natural chitinous wastes to oligosaccharides by chitinolytic enzymes from two Talaromyces sp. isolated from rotten insects (Hermetia illucens) under solid state fermentation. Braz J Microbiol 2023; 54:223-238. [PMID: 36547866 PMCID: PMC9944152 DOI: 10.1007/s42770-022-00882-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
It is difficult to produce chitin oligosaccharides by hydrolyzing untreated natural chitinous waste directly. In this study, two fungi Talaromyces allahabadensis Hi-4 and Talaromyces funiculosus Hi-5 from rotten black soldier fly were isolated and identified through multigene phylogenetic and morphological analyses. The chitinolytic enzymes were produced by solid state fermentation, and the growth conditions were optimized by combining single-factor and central composite design. The best carbon sources were powder of molting of mealworms (MMP) and there was no need for additional nitrogen sources in two fungi, then the maximum chitinolytic enzyme production of 46.80 ± 3.30 (Hi-4) and 55.07 ± 2.48 (Hi-5) U/gds were achieved after analyzing the 3D response surface plots. Pure chitin (colloidal chitin) and natural chitinous substrates (represented by MMP) were used to optimize degradation abilities by crude enzymes obtained from the two fungi. The optimum temperature for hydrolyzing MMP (40 °C both in two fungi) were lower and closer to room temperature than colloidal chitin (55 °C for Hi-4 and 45 °C for Hi-5). Then colloidal chitin, MMP and the powder of shrimp shells (SSP) were used for analyzing the products after 5-day degradation. The amounts of chitin oligosaccharides from SSP and MMP were about 1/6 (Hi-4), 1/17 (Hi-5) and 1/8 (Hi-4), 1/10 (Hi-5), respectively, in comparison to colloidal chitin. The main components of the products were GlcNAc for colloidal chitin, (GlcNAc)2 for MMP, and oligosaccharides with higher degree of polymerization (4-6) were obtained when hydrolyzing SSP, which is significant for applications in medicine and health products.
Collapse
Affiliation(s)
- Xunfan Wei
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuoxiao Sui
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengyuan Guo
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sicong Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zongqi Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin Geng
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Influence of chitosan and chitosan oligosaccharide on dual antibiotic-loaded bone cement: In vitro evaluations. PLoS One 2022; 17:e0276604. [PMID: 36449553 PMCID: PMC9710798 DOI: 10.1371/journal.pone.0276604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to investigate the effect of incorporating chitosan (Ch) and chitosan oligosaccharides (ChO) into the commercially premixed antibiotic-loaded bone cement (ALBC). We compare antibiotic release profiles, antibacterial activity, and mechanical properties among different ALBC formulations. The hypothesis was that increasing the amount of Ch and ChO in the cement mixture would increase the antibiotics released and bacterial control. ALBC mixed with Ch or ChO may create a greater effect due to its superior dissolving property. MATERIALS AND METHODS The bone cement samples used in this project were made from Copal® G+V composed of vancomycin and gentamicin. To prepare the Ch and the ChO mixed bone cement samples, different amounts of Ch and ChO were added to the polymethylmethacrylate matrix with three concentrations (1%, 5%, and 10%). Drug elution assay, antimicrobial assay, in vitro cytotoxicity, and mechanical properties were conducted. RESULTS Bone cement samples made from Copal® G+V alone or combined with Ch or ChO can release vancomycin and gentamicin into the phosphate-buffered saline. Mixing ChO into the bone cements can increase the amount of drug released more than Ch. ChO 10% gave the highest amount of antibiotics released. All samples showed good antibacterial properties with good biocompatibility in vitro. The microhardness values of the Ch and ChO groups increased significantly compared to the control group. In all groups tested, the microhardness of bone cements was reduced after the drug eluted out. However, this reduction of the Ch and ChO groups was in line with the control. INTERPRETATION Various attempts have been made to improve the ALBC efficacy. In our study, the best bone cement formulation was bone cement mixed with ChO (10%), which had the highest drug release profiles, was biocompatible, and contained antibacterial properties with acceptable mechanical properties. This phenomenon could result from the superior water solubility of the ChO. When ChO leaves the bone cement specimens, it generates pores that could act as a path that exposes the bone cement matrix to the surrounding medium, increasing antibiotic elution. From all above, ChO is a promising substance that could be added to ALBC in order to increase the drug elution rate. However, more in vitro and in vivo experiments are needed before being used in the clinic.
Collapse
|
8
|
Kumar S, Gogoi AS, Shukla S, Trivedi M, Gulati S. Conclusion and Future Prospects of Chitosan-Based Nanocomposites. CHITOSAN-BASED NANOCOMPOSITE MATERIALS 2022:305-341. [DOI: 10.1007/978-981-19-5338-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Translation of pulmonary protein therapy from bench to bedside: Addressing the bioavailability challenges. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Azmana M, Mahmood S, Hilles AR, Rahman A, Arifin MAB, Ahmed S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. Int J Biol Macromol 2021; 185:832-848. [PMID: 34237361 DOI: 10.1016/j.ijbiomac.2021.07.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Over the last few years, several attempts have been made to replace petrochemical products with renewable and biodegradable components. The most challenging part of this approach is to obtain bio-based materials with properties and functions equivalent to those of synthetic products. Various naturally occurring polymers such as starch, collagen, alginate, cellulose, and chitin represent attractive candidates as they could reduce dependence on synthetic products and consequently positively impact the environment. Chitosan is also a unique bio-based polymer with excellent intrinsic properties. It is known for its anti-bacterial and film-forming properties, has high mechanical strength and good thermal stability. Nanotechnology has also applied chitosan-based materials in its most recent achievements. Therefore, numerous chitosan-based bionanocomposites with improved physical and chemical characteristics have been developed in an eco-friendly and cost-effective approach. This review discusses various sources of chitosan, its properties and methods of modification. Also, this work focuses on diverse preparation techniques of chitosan-based bionanocomposites and their emerging application in various sectors. Additionally, this review sheds light on future research scope with some drawbacks and challenges to motivate the researchers for future outstanding research works.
Collapse
Affiliation(s)
- Motia Azmana
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ayah Rebhi Hilles
- Faculty of Health Sciences, Department of Medical Science and Technology, PICOMS International University College of Medical Sciences, 68100 Kuala Lumpur, Malaysia
| | - Azizur Rahman
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Mohd Azmir Bin Arifin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Shakeeb Ahmed
- Faculty of Pharmacy, Jamia Hamdard, 110062 New Delhi, India
| |
Collapse
|
11
|
Chapelle C, David G, Caillol S, Negrell C, Desroches Le Foll M. Advances in chitooligosaccharides chemical modifications. Biopolymers 2021; 112:e23461. [PMID: 34115397 DOI: 10.1002/bip.23461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/25/2023]
Abstract
Chitooligosaccharides (COS) differ from chitosan by their molar mass: those of COS are defined to be lower than 20 kg mol-1 . Their functionalization is widely described in the literature and leads to the introduction of new properties that broaden their application fields. Like chitosan, COS modification sites are mainly primary amine and hydroxyl groups. Among their chemical modification, one can find amidation or esterification, epoxy-amine/hydroxyl coupling, Schiff base formation, and Michael addition. When depolymerized through nitrous deamination, COS bear an aldehyde at the chain end that can open the way to other chemical reactions and lead to the synthesis of new interesting amphiphilic structures. This article details the recent developments in COS functionalization, primarily focusing on amine and hydroxyl groups and aldehyde-chain end reactions, as well as paying considerable attention to other types of modification. We also describe and compare the different functionalization protocols found in the literature while highlighting potential mistakes made in the chemical structures accompanied with suggestions. Such chemical modification can lead to new materials that are generally nontoxic, biobased, biodegradable, and usable in various applications.
Collapse
Affiliation(s)
| | - Ghislain David
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Claire Negrell
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
12
|
Tabassum N, Ahmed S, Ali MA. Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydr Polym 2021; 261:117882. [DOI: 10.1016/j.carbpol.2021.117882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
|
13
|
Li J, Wang D, Chang SC, Liang PH, Srivastava V, Guu SY, Shie JJ, Khoo KH, Bulone V, Hsieh YSY. Production of Structurally Defined Chito-Oligosaccharides with a Single N-Acetylation at Their Reducing End Using a Newly Discovered Chitinase from Paenibacillus pabuli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3371-3379. [PMID: 33688734 PMCID: PMC8041281 DOI: 10.1021/acs.jafc.0c06804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 06/06/2023]
Abstract
Partially acetylated chito-oligosaccharides (paCOSs) are bioactive compounds with potential medical applications. Their biological activities are largely dependent on their structural properties, in particular their degree of polymerization (DP) and the position of the acetyl groups along the glycan chain. The production of structurally defined paCOSs in a purified form is highly desirable to better understand the structure/bioactivity relationship of these oligosaccharides. Here, we describe a newly discovered chitinase from Paenibacillus pabuli (PpChi) and demonstrate by mass spectrometry that it essentially produces paCOSs with a DP of three and four that carry a single N-acetylation at their reducing end. We propose that this specific composition of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) residues, as in GlcN(n)GlcNAc1, is due to a subsite specificity toward GlcN residues at the -2, -3, and -4 positions of the partially acetylated chitosan substrates. In addition, the enzyme is stable, as evidenced by its long shelf life, and active over a large temperature range, which is of high interest for potential use in industrial processes. It exhibits a kcat of 67.2 s-1 on partially acetylated chitosan substrates. When PpChi was used in combination with a recently discovered fungal auxilary activity (AA11) oxidase, a sixfold increase in the release of oligosaccharides from the lobster shell was measured. PpChi represents an attractive biocatalyst for the green production of highly valuable paCOSs with a well-defined structure and the expansion of the relatively small library of chito-oligosaccharides currently available.
Collapse
Affiliation(s)
- Jing Li
- College
of Life Sciences, Shanghai Normal University, Shanghai 220234, PR China
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250
Wuxing Street, Taipei 110, Taiwan
| | - Damao Wang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
- College
of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shu-Chieh Chang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
| | - Pi-Hui Liang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Vaibhav Srivastava
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
| | - Shih-Yun Guu
- Institute
of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jiun-Jie Shie
- Institute
of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute
of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Vincent Bulone
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
- School
of Agriculture, Food and Wine, The University
of Adelaide, Urrbrae 5064, Australia
| | - Yves S. Y. Hsieh
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250
Wuxing Street, Taipei 110, Taiwan
- Genomics
Research Center, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| |
Collapse
|
14
|
Novel and emerging prebiotics: Advances and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:41-95. [PMID: 33745516 DOI: 10.1016/bs.afnr.2020.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumers are conscientiously changing their eating preferences toward healthier options, such as functional foods enriched with pre- and probiotics. Prebiotics are attractive bioactive compounds with multidimensional beneficial action on both human and animal health, namely on the gastrointestinal tract, cardiometabolism, bones or mental health. Conventionally, prebiotics are non-digestible carbohydrates which generally present favorable organoleptic properties, temperature and acidic stability, and are considered interesting food ingredients. However, according to the current definition of prebiotics, application categories other than food are accepted, as well as non-carbohydrate substrates and bioactivity at extra-intestinal sites. Regulatory issues are considered a major concern for prebiotics since a clear understanding and application of these compounds among the consumers, regulators, scientists, suppliers or manufacturers, health-care providers and standards or recommendation-setting organizations are of utmost importance. Prebiotics can be divided in several categories according to their development and regulatory status. Inulin, galactooligosaccharides, fructooligosaccharides and lactulose are generally classified as well established prebiotics. Xylooligosaccharides, isomaltooligosaccharides, chitooligosaccharides and lactosucrose are classified as "emerging" prebiotics, while raffinose, neoagaro-oligosaccharides and epilactose are "under development." Other substances, such as human milk oligosaccharides, polyphenols, polyunsaturated fatty acids, proteins, protein hydrolysates and peptides are considered "new candidates." This chapter will encompass actual information about the non-established prebiotics, mainly their physicochemical properties, market, legislation, biological activity and possible applications. Generally, there is a lack of clear demonstrations about the effective health benefits associated with all the non-established prebiotics. Overcoming this limitation will undoubtedly increase the demand for these compounds and their market size will follow the consumer's trend.
Collapse
|
15
|
Chapelle C, David G, Caillol S, Negrell C, Durand G, le Foll MD. Functionalization of Chitosan Oligomers: From Aliphatic Epoxide to Cardanol-Grafted Oligomers for Oil-in-Water Emulsions. Biomacromolecules 2021; 22:846-854. [PMID: 33470101 DOI: 10.1021/acs.biomac.0c01576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hydrophobically modified chitooligosaccharides (COSs) were tested for suitability as an emulsifier in cationic bituminous emulsions. COSs with polymerization degrees (DPs) of 5, 10, 15, and 20 were obtained by nitrous acid deamination. A complete study on depolymerization and precise product and side product characterization was undergone. Chemical modification of COSs was performed to achieve amphiphilic structures using three fatty epoxides with a growing chain length butyl (C4), octadecyl (C9), and hexadecyl glycidyl ether (C16)). The grafting efficiency according to reaction conditions was established. Different substitution degrees (DSs) were obtained by modulating the ratio of fatty epoxy to NH2. It was shown that after a certain DS, the oligomers thus formed were not water-soluble anymore. At the end, cardanol glycidyl ether was grafted on DP 5, 10, and 15 COSs, cardanol being a biobased compound extracted from cashew nut shell; this reaction led to a potentially fully biobased structure. Water-soluble candidates with a higher DS were used as surfactants to emulsify motor oil as a simulation of bitumen. Cardanol-chitosan-based surfactants led to direct oil-in-water emulsion (60/40 w/w) composed of particles of 15 μm average size that were stable at least for 24 h.
Collapse
Affiliation(s)
| | - Ghislain David
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 3090, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 3090, France
| | - Claire Negrell
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 3090, France
| | - Graziella Durand
- CST COLAS 4, Rue Jean Mermoz CS 30504, Magny-les-Hameaux Cedex 78771, France
| | | |
Collapse
|
16
|
Bi R, Yue L, Niazi S, Khan IM, Sun D, Wang B, Wang Z, Jiang Q, Xia W. Facile synthesis and antibacterial activity of geraniol conjugated chitosan oligosaccharide derivatives. Carbohydr Polym 2021; 251:117099. [DOI: 10.1016/j.carbpol.2020.117099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
|
17
|
Al Shanqiti EM, Alfooty KO, Abdelaal MY. Synthesis of chitosan nanocomposites for controlled release applications. Int J Biol Macromol 2020; 168:769-774. [PMID: 33227334 DOI: 10.1016/j.ijbiomac.2020.11.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022]
Abstract
Chitosan (CS) was modified using hydroxyapatite (HA) and multiwalled carbon nanotubes (MWCNT) followed by crosslinking with glutaraldehyde (GA). The obtained products were characterized and investigated with thermal analysis. The modified CS suffered a slight weight loss % up to 240 °C then extensive weight loss (EWL)% up to 420 °C and a slight weight loss again until the end of measurement at 700 °C. The treatment showed more thermal stability of modified CS over the blank CS. The 20% HA modified CS showed the highest thermal stability among CS/HA composites while adding CNT to the matrix in CS/HA/CNT composites enhances their thermal stability. Ability of the modified CS to uptake metal ions was investigated by using Cu(NO3)2 where CS/HA/CNT/GA showed higher metal ion uptake than CS/HA/GA. Modified CS was preliminary checked for controlled release of 5-fluorouracil (FU), as an antitumor model drug, in aqueous media where the maximum release of FU was obtained after 48 h. This is concluding the ease of release of FU from the investigated matrices which can be arranged in the order of P111F > P121F > P211F > P311F > P221F > P321F.
Collapse
Affiliation(s)
- Ebtesam M Al Shanqiti
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Khalid O Alfooty
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdy Y Abdelaal
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
18
|
Xu Q, Azzam MMM, Zou X, Dong X. Effects of chitooligosaccharide supplementation on laying performance, egg quality, blood biochemistry, antioxidant capacity and immunity of laying hens during the late laying period. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1827991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Qianqian Xu
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mahmoud Mostafa Mohammed Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Xiaoting Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinyang Dong
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Ogata M. Chemoenzymatic Synthesis and Function of Chitin Derivatives. Curr Pharm Des 2020; 26:3522-3529. [DOI: 10.2174/1381612826666200515132623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Chitin, abundant biomass found in crab shells and other marine life, has wide applications in the production of food, pharmaceuticals, and cosmetics. Our recent studies have focused on the development of new functional materials by derivatizing chitin oligosaccharides and monosaccharides. For example, we have prepared various derivatives by chemoenzymatic synthesis using N-acetylglucosamine (GlcNAc) or chitin oligosaccharide prepared from chitin as starting materials. First, we have achieved the total synthesis of two secondary metabolites (furanodictine A and B) with neuronal differentiation-inducing activity on PC12 cells by using a simple heatinduced structural transformation of GlcNAc and esterification reaction. Second, we synthesized both a novel inhibitor that has facilitated a re-examination of the reaction mechanism of hen egg-white lysozyme, and a new substrate for assaying lysozyme activity by using chitin oligosaccharides as raw materials. Thus, the development of new materials by simple derivatization of chitin mono- or oligo-saccharides is paving the way for effective use of chitin.
Collapse
Affiliation(s)
- Makoto Ogata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima 970-8034, Japan
| |
Collapse
|
20
|
Preparation and characterization of diatomite and hydroxyapatite reinforced porous polyurethane foam biocomposites. Sci Rep 2020; 10:13308. [PMID: 32764640 PMCID: PMC7413266 DOI: 10.1038/s41598-020-70421-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022] Open
Abstract
Porous three-dimensional (3D) polyurethane-based biocomposites were produced utilizing diatomite and hydroxyapatite as fillers. Diatomite and Hydroxyapatite (HA) were utilized to reinforce the morphological, chemical, mechanical, and thermal properties of polyurethane foam (PUF). Diatomite and Hydroxyapatite were added into polyurethane at variable percentages 0, 1, 2, and 5. The mechanical properties of PUF were analyzed by the compression test. According to the compression test results, the compressive strength of the polyurethane foam is highest in the reinforced foam at 1% by weight hydroxyapatite compared to other reinforced PUFs. Scanning electron microscopy (SEM) images presented structural differences on foam by adding fillers. Functional groups of PUF were defined by Fourier Transform Infrared Spectroscopy (FTIR) and the thermal behavior of PUF was studied with Thermogravimetric Analysis (TGA). The obtained results revealed that PUF/HA biocomposites indicated higher thermal degradation than PUF/Diatomite biocomposites.
Collapse
|
21
|
Zainol Abidin NA, Kormin F, Zainol Abidin NA, Mohamed Anuar NAF, Abu Bakar MF. The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources. Int J Mol Sci 2020; 21:ijms21144978. [PMID: 32679639 PMCID: PMC7404258 DOI: 10.3390/ijms21144978] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 01/29/2023] Open
Abstract
Chitin, being the second most abundant biopolymer after cellulose, has been gaining popularity since its initial discovery by Braconot in 1811. However, fundamental knowledge and literature on chitin and its derivatives from insects are difficult to obtain. The most common and sought-after sources of chitin are shellfish (especially crustaceans) and other aquatic invertebrates. The amount of shellfish available is obviously restricted by the amount of food waste that is allowed; hence, it is a limited resource. Therefore, insects are the best choices since, out of 1.3 million species in the world, 900,000 are insects, making them the most abundant species in the world. In this review, a total of 82 samples from shellfish—crustaceans and mollusks (n = 46), insects (n = 23), and others (n = 13)—have been collected and studied for their chemical extraction of chitin and its derivatives. The aim of this paper is to review the extraction method of chitin and chitosan for a comparison of the optimal demineralization and deproteinization processes, with a consideration of insects as alternative sources of chitin. The methods employed in this review are based on comprehensive bibliographic research. Based on previous data, the chitin and chitosan contents of insects in past studies favorably compare and compete with those of commercial chitin and chitosan—for example, 45% in Bombyx eri, 36.6% in Periostracum cicadae (cicada sloughs), and 26.2% in Chyrysomya megacephala. Therefore, according to the data reported by previous researchers, demonstrating comparable yield values to those of crustacean chitin and the great interest in insects as alternative sources, efforts towards comprehensive knowledge in this field are relevant.
Collapse
Affiliation(s)
- Nurul Alyani Zainol Abidin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
| | - Faridah Kormin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
- Centre of Research on Sustainable Uses of Natural Resources, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia
- Correspondence:
| | - Nurul Akhma Zainol Abidin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
| | - Nor Aini Fatihah Mohamed Anuar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
| | - Mohd Fadzelly Abu Bakar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
- Centre of Research on Sustainable Uses of Natural Resources, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia
| |
Collapse
|
22
|
Recent Advancement of Molecular Structure and Biomaterial Function of Chitosan from Marine Organisms for Pharmaceutical and Nutraceutical Application. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144719] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chitosan is an innate cationic biological polysaccharide polymer, naturally obtained from chitin deacetylation, that possesses broad-spectrum properties such as antibacterial, biodegradability, biocompatibility, non-toxic, non-immunogenicity, and so on. Chitosan can be easily modified owing to its molecular chain that contains abundant active amino and hydroxyl groups, through various modifications. Not only does it possess excellent properties but it also greatly accelerates its solubility and endows it with additional special properties. It can be developed into bioactive materials with innovative properties, functions, and multiple uses, especially in the biomedical fields. In this paper, the unique properties and the relationship between the molecular structure of chitosan and its derivatives are emphasized, an overview of various excellent biomedical properties of chitosan and its current progress in the pharmaceutical and nutraceutical field have prospected, to provide the theoretical basis for better development and utilization of new biomedical materials of chitosan and its derivatives.
Collapse
|
23
|
Boonviset P, Pirak T. Physicochemical and sensory characteristics of reduced fat-low sugar Chinese pork sausage as produced by chitooligosaccharide using commercial pectinase hydrolysis. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2019.1702998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Phunicha Boonviset
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Tantawan Pirak
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, Thailand
| |
Collapse
|
24
|
Baptista RC, Horita CN, Sant'Ana AS. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res Int 2019; 127:108762. [PMID: 31882098 DOI: 10.1016/j.foodres.2019.108762] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Seafood is highly perishable, presenting a rapid loss of its quality soon after capture. Temperature is the critical parameter that impacts on seafood shelf-life reduction, allowing the growth of foodborne pathogens and spoilage microorganisms. In recent years, the search by additional methods of preserving seafood has increased, able to ensure quality and safety. Several natural preservatives have highlighted and gained considerable attention from the scientific community, consumers, industry, and health sectors as a method with broad action antimicrobial and generally economical. Natural preservatives, from different sources, have been widely studied, such as chitosan from animal sources, essential oils, and plant extracts from a plant source, lactic acid bacteria, and bacteriocins from microbiological sources and organic acid from different sources, all with great potential for use in seafood systems. This review focuses on the natural preservatives studied in seafood matrices, their forms of application, concentrations usually employed, their mechanisms of action, factors that interfere in their use and the synergistic effect of the interactions among the natural preservatives, with a focus for maintenance of quality and ensure of food safety.
Collapse
Affiliation(s)
- Rafaela C Baptista
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Claudia N Horita
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
25
|
Cai Y, Lapitsky Y. Pitfalls in analyzing release from chitosan/tripolyphosphate micro- and nanoparticles. Eur J Pharm Biopharm 2019; 142:204-215. [DOI: 10.1016/j.ejpb.2019.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/26/2022]
|
26
|
Jiang Z, Liu G, Yang Y, Shao K, Wang Y, Liu W, Han B. N-Acetyl chitooligosaccharides attenuate amyloid β-induced damage in animal and cell models of Alzheimer’s disease. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Schmitz C, Auza LG, Koberidze D, Rasche S, Fischer R, Bortesi L. Conversion of Chitin to Defined Chitosan Oligomers: Current Status and Future Prospects. Mar Drugs 2019; 17:E452. [PMID: 31374920 PMCID: PMC6723438 DOI: 10.3390/md17080452] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Chitin is an abundant polysaccharide primarily produced as an industrial waste stream during the processing of crustaceans. Despite the limited applications of chitin, there is interest from the medical, agrochemical, food and cosmetic industries because it can be converted into chitosan and partially acetylated chitosan oligomers (COS). These molecules have various useful properties, including antimicrobial and anti-inflammatory activities. The chemical production of COS is environmentally hazardous and it is difficult to control the degree of polymerization and acetylation. These issues can be addressed by using specific enzymes, particularly chitinases, chitosanases and chitin deacetylases, which yield better-defined chitosan and COS mixtures. In this review, we summarize recent chemical and enzymatic approaches for the production of chitosan and COS. We also discuss a design-of-experiments approach for process optimization that could help to enhance enzymatic processes in terms of product yield and product characteristics. This may allow the production of novel COS structures with unique functional properties to further expand the applications of these diverse bioactive molecules.
Collapse
Affiliation(s)
- Christian Schmitz
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Lilian González Auza
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - David Koberidze
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Stefan Rasche
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Rainer Fischer
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Indiana Bioscience Research Institute, 1345 W 16th St #300, Indianapolis, IN 46202, USA
| | - Luisa Bortesi
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
28
|
Ghadiri M, Young PM, Traini D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics 2019; 11:pharmaceutics11030113. [PMID: 30861990 PMCID: PMC6470976 DOI: 10.3390/pharmaceutics11030113] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
New therapeutic agents such as proteins, peptides, and nucleic acid-based agents are being developed every year, making it vital to find a non-invasive route such as nasal or pulmonary for their administration. However, a major concern for some of these newly developed therapeutic agents is their poor absorption. Therefore, absorption enhancers have been investigated to address this major administration problem. This paper describes the basic concepts of transmucosal administration of drugs, and in particular the use of the pulmonary or nasal routes for administration of drugs with poor absorption. Strategies for the exploitation of absorption enhancers for the improvement of pulmonary or nasal administration are discussed, including use of surfactants, cyclodextrins, protease inhibitors, and tight junction modulators, as well as application of carriers such as liposomes and nanoparticles.
Collapse
Affiliation(s)
- Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
29
|
Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2. J Microbiol 2019; 57:372-380. [PMID: 30806979 DOI: 10.1007/s12275-019-8469-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Chitin is the most abundant biopolymer in marine environments. To facilitate its utilization, our laboratory screened marine-derived fungal strains for chitinolytic activity. One chitinolytic strain isolated from seawater, designated YS2-2, was identified as Acremonium species based on morphological and phylogenetic analyses. Acremonium species are cosmopolitan fungi commonly isolated from both terrestrial and marine environments, but their chitinolytic activity is largely unknown. The extracellular crude enzyme of YS2-2 exhibited optimum chitinolytic activity at pH 6.0-7.6, 23-45°C, and 1.5% (w/v) NaCl. Degenerate PCR revealed the partial cDNA sequence of a putative chitinase gene, chiA, in YS2-2. The expression of chiA was dramatically induced in response to 1% (w/v) colloidal chitin compared to levels under starvation, chitin powder, and glucose conditions. Moreover, the chiA transcript levels were positively correlated with chitinolytic activities under various colloidal chitin concentrations, suggesting that ChiA mediates chitinolytic activity in this strain. Our results provide a basis for additional studies of marinederived chitinolytic fungi aimed at improving industrial applications.
Collapse
|
30
|
Kumari S, Singh RP, Chavan NN, Annamalai PK. Chitosan-based bionanocomposites for biomedical application. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.15.00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sangeeta Kumari
- Division of Polymer Science and Engineering, Council of Scientific and Industrial Research–National Chemical Laboratory, Pune, India; Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Raj Pal Singh
- Research and Development Centre in Pharmaceutical Sciences and Applied Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Nayaku N Chavan
- Division of Polymer Science and Engineering, Council of Scientific and Industrial Research–National Chemical Laboratory, Pune, India
| | - Pratheep K Annamalai
- Division of Polymer Science and Engineering, Council of Scientific and Industrial Research–National Chemical Laboratory, Pune, India; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Metabolic engineering for the production of chitooligosaccharides: advances and perspectives. Emerg Top Life Sci 2018; 2:377-388. [DOI: 10.1042/etls20180009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022]
Abstract
Chitin oligosaccharides (CTOs) and its related compounds chitosan oligosaccharides (CSOs), collectively known as chitooligosaccharides (COs), exhibit numerous biological activities in applications in the nutraceutical, cosmetics, agriculture, and pharmaceutical industries. COs are currently produced by acid hydrolysis of chitin or chitosan, or enzymatic techniques with uncontrollable polymerization. Microbial fermentation by recombinant Escherichia coli, as an alternative method for the production of COs, shows new potential because it can produce a well-defined COs mixture and is an environmentally friendly process. In addition, Bacillus subtilis, a nonpathogenic, endotoxin-free, GRAS status bacterium, presents a new opportunity as a platform to produce COs. Here, we review the applications of COs and differences between CTOs and CSOs, summarize the current preparation approaches of COs, and discuss the future research potentials and challenges in the production of well-defined COs in B. subtilis by metabolic engineering.
Collapse
|
32
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|
33
|
Elkholy S, Yahia S, Awad M, Elmessiery M. In vivo evaluation of β-CS/n-HA with different physical properties as a new bone graft material. Clin Implant Dent Relat Res 2018; 20:416-423. [DOI: 10.1111/cid.12599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/29/2017] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Sahar Elkholy
- Department of Removable Prosthodontics; Pharos University In Alexandria; Alexandria Egypt
| | - Sarah Yahia
- Center for Material Science (CMS), Zewail City for Science and Technology; Giza Egypt
| | - Manal Awad
- Department of engineering physics; Cairo university; Giza Egypt
| | | |
Collapse
|
34
|
Rakkhumkaew N, Pengsuk C. Chitosan and chitooligosaccharides from shrimp shell waste: characterization, antimicrobial and shelf life extension in bread. Food Sci Biotechnol 2018; 27:1201-1208. [PMID: 30263851 DOI: 10.1007/s10068-018-0332-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022] Open
Abstract
Chitosan and chitooligosaccharides were extracted from white-leg shrimp shells by chemical treatment. Low molecular weight (13 kDa) and a high degree of deacetylation (54.83%) in chitooligosaccharides led to high water solubility compared to chitosan. Antimicrobial assays indicated that chitosan and chitooligosaccharides exhibited marked inhibitory activity against food-borne pathogenics, spoilage bacterial, and fungal strains tested. However, chitooligosaccharides revealed greater inhibitory effects than chitosan on tested microorganisms. The substitution of flour by chitosan or chitooligosaccharides in bread formulation (1 g/100 g total weight basis) showed antimicrobial effects against Bacillus cereus and Rhizopus sp. growth. Also, the fruity odor in bread containing chitosan or chitooligosaccharides was delayed. Interestingly, the bread containing chitooligosaccharides showed a stronger inhibitory effect against B. cereus and Rhizopus sp. compared to bread containing chitosan and control, where B. cereus and Rhizopus sp. were observed growing on the surface of bread after 4 days of incubation at 30 °C.
Collapse
Affiliation(s)
- Numfon Rakkhumkaew
- 1Center for Research and Development of Agricultural Industry, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, 63 M.7, Rangsit-Nakhonnayok Rd., Klong 16, Ongkharak, Nakhonnayok 26120 Thailand
| | - Chalinan Pengsuk
- 2Biotechnology and Agricultural Products, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, 63 M.7, Rangsit-Nakhonnayok Rd., Klong 16, Ongkharak, Nakhonnayok 26120 Thailand
| |
Collapse
|
35
|
Kaya M, Mujtaba M, Ehrlich H, Salaberria AM, Baran T, Amemiya CT, Galli R, Akyuz L, Sargin I, Labidi J. On chemistry of γ-chitin. Carbohydr Polym 2017; 176:177-186. [PMID: 28927596 DOI: 10.1016/j.carbpol.2017.08.076] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022]
Abstract
The biological material, chitin, is present in nature in three allomorphic forms: α, β and γ. Whereas most studies have dealt with α- and β-chitin, only few investigations have focused on γ-chitin, whose structural and physicochemical properties have not been well delineated. In this study, chitin obtained for the first time from the cocoon of the moth (Orgyia dubia) was subjected to extensive physicochemical analyses and examined, in parallel, with α-chitin from exoskeleton of a freshwater crab and β-chitin from cuttlebone of the common cuttlefish. Our results, which are supported by13C CP-MAS NMR, XRD, FT-IR, Raman spectroscopy, TGA, DSC, SEM, AFM, chitinase digestive test and elemental analysis, verify the authenticity of γ-chitin. Further, quantum chemical calculations were conducted on all three allomorphic forms, and, together with our physicochemical analyses, demonstrate that γ-chitin is distinct, yet closer in structure to α-chitin than β-chitin.
Collapse
Affiliation(s)
- Murat Kaya
- Aksaray University, Faculty of Science and Letters, Department of Biotechnology and Molecular Biology, 68100 Aksaray, Turkey.
| | - Muhammad Mujtaba
- Aksaray University, Faculty of Science and Letters, Department of Biotechnology and Molecular Biology, 68100 Aksaray, Turkey
| | - Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09599 Freiberg, Germany
| | - Asier M Salaberria
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - Chris T Amemiya
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA; School of Natural Sciences, University of California, Merced, CA 95338, USA
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Fetscher str. 74, D-01307 Dresden, Germany
| | - Lalehan Akyuz
- Aksaray University, Technical Vocational School, Department of Chemistry Technology, 68100, Aksaray, Turkey
| | - Idris Sargin
- Aksaray University, Faculty of Science and Letters, Department of Biotechnology and Molecular Biology, 68100 Aksaray, Turkey
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
36
|
Tamer TM, Hassan MA, Omer AM, Valachová K, Eldin MSM, Collins MN, Šoltés L. Antibacterial and antioxidative activity of O-amine functionalized chitosan. Carbohydr Polym 2017; 169:441-450. [PMID: 28504167 DOI: 10.1016/j.carbpol.2017.04.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023]
Abstract
Cinnamaldehyde was immobilized to O-amine functionalized chitosan via a coupling reaction. Fourier transform infrared spectroscopy confirmed N-cinnamyl substitution. Wetting analyses demonstrate more hydrophobicity in the N-cinnamyl substituted O-amine functionalized chitosan compared to chitosan or unsubstituted O-amine functionalized chitosan. Thermal gravimetric analysis and differential scanning calorimetry demonstrates that the prepared N-cinnamyl substituted O-amine functionalized chitosan exhibits higher thermostability than unmodified chitosan at temperatures in which polysaccharides are commonly stored and utilised. The N-cinnamyl substituted O-amine functionalized chitosan, against four different bacteria strains [two gram-positive (Staphylococcus aureus and Bacillus cereus) and two gram-negative (Escherichia coli and Pseudomonas aeruginosa)], displays promotion of inhibition activity against these bacterial strains. Finally, the antioxidative activity of the N-cinnamyl substituted O-amine functionalized chitosan was compared with those activities of chitosan and O-amine functionalized chitosan. This was evaluated by uninhibited and inhibited hyaluronan degradation and ABTS assay. The N-cinnamyl substituted O-amine functionalized chitosan shows a lower activity towards donating a hydrogen radical compared to chitosan or O-amine functionalized chitosan. On the other hand, the N-cinnamyl substituted O-amine functionalized chitosan exhibited a higher ability to scavenge the ABTS+ cation radical compared to chitosan and O-amine functionalized chitosan.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City Alexandria, Egypt; Laboratory of Bioorganic Chemistry of Drugs, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City Alexandria, Egypt
| | - Katarína Valachová
- Laboratory of Bioorganic Chemistry of Drugs, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Mohamed S Mohy Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City Alexandria, Egypt; Chemistry Department, Faculty of Science, University of Jeddah, Osfan, Saudi Arabia
| | - Maurice N Collins
- Stokes Laboratories, Bernal Institute, University of Limerick, Ireland.
| | - Ladislav Šoltés
- Laboratory of Bioorganic Chemistry of Drugs, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| |
Collapse
|
37
|
Sun T, Qin Y, Xu H, Xie J, Hu D, Xue B, Hua X. Antibacterial activities and preservative effect of chitosan oligosaccharide Maillard reaction products on Penaeus vannamei. Int J Biol Macromol 2017; 105:764-768. [PMID: 28732733 DOI: 10.1016/j.ijbiomac.2017.07.100] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/07/2017] [Accepted: 07/15/2017] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to understand the influence of Maillard reaction (MR) on bioactivity of chitosan oligosaccharide (COS). The antibacterial activity against Pseudomonas aeruginosa and Vibrio parahaemolyticus and preservative effect of two kinds of COS MR products (MRPs) on Penaeus vannamei were evaluated. The structures of CG (MRPs of COS and glucose) and CM (MRPs of COS and maltose) were characterized by FT-IR and their molecular weights were measured by gel permeation chromatography (GPC). The results showed that CG has enhanced antibacterial activity and preservative effect compared to COS by evaluating total volatile base-nitrogen (TVB-N), trimethylamine (TMA), pH, total bacterial count (TBC) and sensory evaluation. Meanwhile, CM showed decreased antibacterial activity and preservative effect compared to COS by evaluating TMA, pH and TBC. The results indicated that antibacterial activity and preservative effect of COS increased or decreased after MR. In other words, the type of reducing sugar involved in MR had a great impact on the functional properties of COS-saccharide MRPs and their application to be used as a food preservative.
Collapse
Affiliation(s)
- Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Yingying Qin
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Honglei Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Dongmei Hu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Xinyi Hua
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, PR China
| |
Collapse
|
38
|
Vázquez JA, Ramos P, Mirón J, Valcarcel J, Sotelo CG, Pérez-Martín RI. Production of Chitin from Penaeus vannamei By-Products to Pilot Plant Scale Using a Combination of Enzymatic and Chemical Processes and Subsequent Optimization of the Chemical Production of Chitosan by Response Surface Methodology. Mar Drugs 2017; 15:E180. [PMID: 28621761 PMCID: PMC5484130 DOI: 10.3390/md15060180] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 11/25/2022] Open
Abstract
The waste generated from shrimp processing contains valuable materials such as protein, carotenoids, and chitin. The present study describes a process at pilot plant scale to recover chitin from the cephalothorax of Penaeus vannamei using mild conditions. The application of a sequential enzymatic-acid-alkaline treatment yields 30% chitin of comparable purity to commercial sources. Effluents from the process are rich in protein and astaxanthin, and represent inputs for further by-product recovery. As a last step, chitin is deacetylated to produce chitosan; the optimal conditions are established by applying a response surface methodology (RSM). Under these conditions, deacetylation reaches 92% as determined by Proton Nuclear Magnetic Resonance (¹H-NMR), and the molecular weight (Mw) of chitosan is estimated at 82 KDa by gel permeation chromatography (GPC). Chitin and chitosan microstructures are characterized by Scanning Electron Microscopy (SEM).
Collapse
Affiliation(s)
- José A Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC) r/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain.
| | - Patrícia Ramos
- Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC) r/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain.
| | - Jesús Mirón
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC) r/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain.
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC) r/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain.
- Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC) r/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain.
| | - Carmen G Sotelo
- Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC) r/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain.
| | - Ricardo I Pérez-Martín
- Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC) r/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain.
| |
Collapse
|
39
|
Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol 2017; 101:3513-3536. [DOI: 10.1007/s00253-017-8229-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 02/03/2023]
|
40
|
da Cruz-Filho AM, Bordin ARDV, Souza-Flamini LE, Guedes DFDC, Saquy PC, Silva RG, Pécora JD. Analysis of the shelf life of chitosan stored in different types of packaging, using colorimetry and dentin microhardness. Restor Dent Endod 2017; 42:87-94. [PMID: 28503473 PMCID: PMC5426216 DOI: 10.5395/rde.2017.42.2.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/19/2016] [Indexed: 11/11/2022] Open
Abstract
Objectives Chitosan has been widely investigated and used. However, the literature does not refer to the shelf life of this solution. This study evaluated, through the colorimetric titration technique and an analysis of dentin micro-hardness, the shelf life of 0.2% chitosan solution. Materials and Methods Thirty human canines were sectioned, and specimens were obtained from the second and third slices, from cemento-enamel junction to the apex. A 0.2% chitosan solution was prepared and distributed in 3 identical glass bottles (v1, v2, and v3) and 3 plastic bottles (p1, p2, and p3). At 0, 7, 15, 30, 45, 60, 90, 120, 150, and 180 days, the specimens were immersed in each solution for 5 minutes (n = 3 each). The chelating effect of the solution was assessed by micro-hardness and colorimetric analysis of the dentin specimens. 17% EDTA and distilled water were used as controls. Data were analyzed statistically by two-way and Tukey-Kramer multiple comparison (α = 0.05). Results There was no statistically significant difference among the solutions with respect to the study time (p = 0.113) and micro-hardness/time interaction (p = 0.329). Chitosan solutions and EDTA reduced the micro-hardness in a similar manner and differed significantly from the control group (p < 0.001). Chitosan solutions chelated calcium ions throughout the entire experiment. Conclusions Regardless of the storage form, chitosan demonstrates a chelating property for a minimum period of 6 months.
Collapse
Affiliation(s)
- Antonio Miranda da Cruz-Filho
- Department of Restorative Dentistry, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angelo Rafael de Vito Bordin
- Department of Restorative Dentistry, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Eduardo Souza-Flamini
- Department of Restorative Dentistry, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Paulo César Saquy
- Department of Restorative Dentistry, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Gariba Silva
- Department of Restorative Dentistry, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jesus Djalma Pécora
- Department of Restorative Dentistry, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
41
|
Zou P, Yang X, Zhang Y, Du P, Yuan S, Yang D, Wang J. Antitumor Effects of Orally and Intraperitoneally Administered Chitosan Oligosaccharides (COSs) on S180-Bearing/Residual Mouse. J Food Sci 2016; 81:H3035-H3042. [DOI: 10.1111/1750-3841.13538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Pan Zou
- Dept. of Food Science and Engineering, School of Chemical Engineering & Technology; Harbin Inst. of Technology; Harbin 150090 China
- Key Laboratory of Agro-product Quality and Safety, Inst. of Quality Standard & Testing Technology for Agro-Product; Chinese Academy of Agricultural Sciences; Beijing 100081 China
- Dept. of Pharmacology and Toxicology; Beijing Inst. of Radiation Medicine; No. 27 Taiping Rd., Haidian District Beijing 100850 China
| | - Xin Yang
- Dept. of Food Science and Engineering, School of Chemical Engineering & Technology; Harbin Inst. of Technology; Harbin 150090 China
- Key Laboratory of Agro-product Quality and Safety, Inst. of Quality Standard & Testing Technology for Agro-Product; Chinese Academy of Agricultural Sciences; Beijing 100081 China
| | - Yanxin Zhang
- Dept. of Food Science and Engineering, School of Chemical Engineering & Technology; Harbin Inst. of Technology; Harbin 150090 China
- Key Laboratory of Agro-product Quality and Safety, Inst. of Quality Standard & Testing Technology for Agro-Product; Chinese Academy of Agricultural Sciences; Beijing 100081 China
| | - Pengfei Du
- Key Laboratory of Agro-product Quality and Safety, Inst. of Quality Standard & Testing Technology for Agro-Product; Chinese Academy of Agricultural Sciences; Beijing 100081 China
- Key Laboratory of Agrifood Safety and Quality; Ministry of Agriculture; No. 12 Zhongguancun South St., Haidian District Beijing 100081 China
| | - Shoujun Yuan
- Dept. of Pharmacology and Toxicology; Beijing Inst. of Radiation Medicine; No. 27 Taiping Rd., Haidian District Beijing 100850 China
| | - Dexuan Yang
- Dept. of Pharmacology and Toxicology; Beijing Inst. of Radiation Medicine; No. 27 Taiping Rd., Haidian District Beijing 100850 China
| | - Jing Wang
- Dept. of Food Science and Engineering, School of Chemical Engineering & Technology; Harbin Inst. of Technology; Harbin 150090 China
- Key Laboratory of Agro-product Quality and Safety, Inst. of Quality Standard & Testing Technology for Agro-Product; Chinese Academy of Agricultural Sciences; Beijing 100081 China
- Key Laboratory of Agrifood Safety and Quality; Ministry of Agriculture; No. 12 Zhongguancun South St., Haidian District Beijing 100081 China
| |
Collapse
|
42
|
A high throughput method for rapid screening of chitosanase-producing fungal strain under acidic conditions. World J Microbiol Biotechnol 2016; 32:174. [DOI: 10.1007/s11274-016-2134-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
|
43
|
Tayel AA. Microbial chitosan as a biopreservative for fish sausages. Int J Biol Macromol 2016; 93:41-46. [PMID: 27565293 DOI: 10.1016/j.ijbiomac.2016.08.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
Abstract
Processed fish products are worthy sources to supply man with his main nutritional needs, but they are extremely susceptible to quality loss during storage. Microbial (fungal) chitosan is a bioactive polymer that has numerous applications in health promoting fields. Fungal chitosan was extracted from the grown mycelia of Aspergillus brasiliensis (niger) to investigate its potential role as antimicrobial, preservative and quality improvement agent, in processed fish sausages from Nile tilapia (Oreochromis niloticus). The produced chitosan had a molecular weight of 29kDa, deacetylation degree of 91% and solubility of 99% in acetic acid solution. Fish sausages supplementation with 1.5% chitosan resulted in sharp reductions of microbial load (Total aerobic microorganisms, coliforms, yeast & molds, E. coli, Enterobacteriaceae and Staphylococcus aureus) during cold storage, at 4°C for 28days. Sensory attributes were notably enhanced in stored chitosan-supplemented sausages, especially the odor and taste characteristics. Captured micrographs, of exposed S. aureus to chitosan, exhibited vigorous morphological alterations after 4h, and complete cell lysis after 8h of exposure period. A. brasiliensis chitosan, however, could be strongly recommended, as a supplement for Nile tilapia fish sausages, to maintain microbiological quality and enhance sensory attributes of the product during storage.
Collapse
Affiliation(s)
- Ahmed A Tayel
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, El-Geish St., 33516, Kafrelsheikh City, Egypt.
| |
Collapse
|
44
|
Tegl G, Öhlknecht C, Vielnascher R, Rollett A, Hofinger-Horvath A, Kosma P, Guebitz GM. Cellobiohydrolases Produce Different Oligosaccharides from Chitosan. Biomacromolecules 2016; 17:2284-92. [DOI: 10.1021/acs.biomac.6b00547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregor Tegl
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Christoph Öhlknecht
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Robert Vielnascher
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Alexandra Rollett
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Andreas Hofinger-Horvath
- Department
of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
| | - Georg M. Guebitz
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
- ACIB − Austrian Centre of Industrial Biotechnology, Konrad Lorenz Straße 20, 3430 Tulln, Austria
| |
Collapse
|
45
|
Zhang X, Li K, Liu S, Xing R, Yu H, Chen X, Li P. Size effects of chitooligomers on the growth and photosynthetic characteristics of wheat seedlings. Carbohydr Polym 2016; 138:27-33. [DOI: 10.1016/j.carbpol.2015.11.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/25/2023]
|
46
|
|
47
|
Valachová K, Tamer TM, Eldin MM, Šoltés L. Radical-scavenging activity of glutathione, chitin derivatives and their combination‡. CHEMICAL PAPERS 2016. [DOI: 10.1515/chempap-2016-0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractSince chitosan and its amino-, cinnamo- or cinnamo-amino- derivatives are acid-soluble, the effect of acetic acid on hyaluronan (HA) macromolecules degraded by Cu(II) ions and ascorbate was examined to produce reactive oxygen species (ROS). Further, the effects of glutathione (GSH), chitosan and its derivatives, added individually or in combination, on the quenching of ROS and ABTS
Collapse
|
48
|
Naqvi S, Moerschbacher BM. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 2015; 37:11-25. [DOI: 10.3109/07388551.2015.1104289] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Tufan T, Arslan C, Durna Ö, Önk K, Sari M, Erman H. Effects of chito-oligosaccharides and L-carnitine supplementation in diets for Japanese quails on performance, carcass traits and some blood parameters. ARQ BRAS MED VET ZOO 2015. [DOI: 10.1590/1678-7507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine effects of dietary supplementation with chitosanoligosaccharides (COS) and L-carnitine, individually or dually, on growth performance, carcass traits and some blood serum parameters in quails. A total of 192, four days old, Japanese quail chicks were allotted four groups, each of which included four replicates (12 birds per replicate). The groups received the same basal diet supplemented with 0 (Control), 150mg/kg chitosanoligosaccharides (COS), 150mg/kg L-carnitine (Carnitine), and 150 mg/kg chitosanoligosaccharides+150 mg/kg L-carnitine (COS+Car.) during the starter (1 to 21 days) and a grower (22 to 42 days) period. The feeding trial shoved that COS, L-carnitine and COS+L-carnitine had no significant effect on live weight, live weight gain, feed consumption and feed conversion. Supplementation with COS+L-carnitine induced higher leg ratio from than that of the Control. There were no differences on serum albumin, total protein, glucose and total cholesterol concentrations. It is concluded that due to the obtained higher leg ratio from COS+Car. group, after analysis of the profit and loss, if is economically profitable, chitosanoligosaccharides+L-carnitine could be added quail diets.
Collapse
Affiliation(s)
| | | | | | - K. Önk
- University of Kafka s, Turkey
| | - M. Sari
- University of Kafkas, Turkey
| | | |
Collapse
|
50
|
Zhou Z, Zhao S, Wang S, Li X, Su L, Ma Y, Li J, Song J. Extracellular overexpression of chitosanase from Bacillus sp. TS in Escherichia coli. Appl Biochem Biotechnol 2015; 175:3271-86. [PMID: 25637506 DOI: 10.1007/s12010-015-1494-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/13/2015] [Indexed: 01/19/2023]
Abstract
The chitosanase gene from a Bacillus sp. strain isolated from soil in East China was cloned and expressed in Escherichia coli. The gene had 1224 nucleotides and encoded a mature protein of 407 amino acid residues. The optimum pH and temperature of the purified recombinant chitosanase were 5.0 and 60 °C, respectively, and the enzyme was stable below 40 °C. The K m, V max, and specific activity of the enzyme were 1.19 mg mL(-1), 674.71 μmol min(-1) at 50 °C, and 555.3 U mg(-1), respectively. Mn(2+) was an activator of the recombinant chitosanase, while Co(2+) was an inhibitor. Hg(2+) and Cu(2+) inhibited the enzyme at 1 mM. The highest level of enzyme activity (186 U mL(-1)) was achieved in culture medium using high cell-density cultivation in a 7-L fermenter. The main products of chitosan hydrolyzed by recombinant chitosanase were (GlcN)3-6. The chitosanases was successfully secreted to the culture media through the widely used SecB-dependent type II pathway in E. coli. The high yield of the extracellular overexpression, relevant thermostability, and effective hydrolysis of commercial grade chitosan showed that this recombinant enzyme had a great potential for industrial applications.
Collapse
Affiliation(s)
- Zhanping Zhou
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, Tianjin, 300308, China,
| | | | | | | | | | | | | | | |
Collapse
|