1
|
Sohsah EA, El-Beltagy AEFBM, El-Sayyad HI, Saleh TR, El-Badry DA, Sabry DA. Comparative evaluation of the testicular development between Japanese quail and albino rats. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2025; 12:1-23. [DOI: 10.1080/2314808x.2024.2442248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Enas Ae Sohsah
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | | | - Tasneem R. Saleh
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Dina A. El-Badry
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Dalia A. Sabry
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Zago AM, Carvalho FB, Rahmeier FL, Santin M, Guimarães GR, Gutierres JM, da C Fernandes M. Exendin-4 Prevents Memory Loss and Neuronal Death in Rats with Sporadic Alzheimer-Like Disease. Mol Neurobiol 2024; 61:2631-2652. [PMID: 37919602 DOI: 10.1007/s12035-023-03698-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
This study investigated the neuroprotective effects of exendin-4 (EXE-4), an analog of the glucagon-like peptide 1 receptor (GLP-1R) on memory and on the neuronal populations that constitute the hippocampus of rats submitted to a sporadic dementia of Alzheimer's type (SDAT). Male Wistar rats received streptozotocin (STZ icv, 3 mg/kg diluted in aCFS, 5 µl/ventricle) and were treated for 21 days with EXE-4 (10 µg/kg, ip; saline as the vehicle). Four groups were formed: vehicle, EXE-4, STZ, and STZ + EXE-4. The groups were submitted to Y-Maze (YM), object recognition (ORT), and object displacement tasks (ODT) to assess learning and memory. The brains were used for immunohistochemical and immunofluorescent techniques with antibodies to NeuN, cleaved caspase-3 (CC3), PCNA, doublecortin (DCX), synaptophysin (SYP), and insulin receptor (IR). STZ worsened spatial memory in the YMT, as well as short-term (STM) and long-term (LTM) memories in the ORT and ODT, respectively. EXE-4 protected against memory impairment in STZ animals. STZ reduced mature neuron density (NeuN) and increased cell apoptosis (CC3) in the DG, CA1, and CA3. EXE-4 protected against neuronal death in all regions. EXE-4 increased PCNA+ cells in all regions of the hippocampus, and STZ attenuated this effect. STZ reduced neurogenesis in DG per se as well as synaptogenesis induced by EXE-4. EXE-4 increased immunoreactivity to IR in the CA1. From these findings, EXE-4 showed a beneficial effect on hippocampal pyramidal and granular neurons in the SDAT showing anti-apoptotic properties and promoting cell proliferation. In parallel, EXE-4 preserved the memory of SDAT rats. EXE-4 appears to enhance synapses at CA3 and DG. In conclusion, these data indicate that agonists to GLP-1R have a beneficial effect on hippocampal neurons in AD.
Collapse
Affiliation(s)
- Adriana M Zago
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Fabiano B Carvalho
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| | - Francine L Rahmeier
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marta Santin
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Giuliano R Guimarães
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Jessié M Gutierres
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marilda da C Fernandes
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. J Fungi (Basel) 2022; 8:jof8060621. [PMID: 35736104 PMCID: PMC9225081 DOI: 10.3390/jof8060621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication. During this process, cells must ensure an accurate and complete genome replication when constantly challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS) or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway. Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared PCNA sequences from various fungal pathogens, considering recent advances in structural features. Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal drug development.
Collapse
|
4
|
Wang YL, Lee CC, Shen YC, Lin PL, Wu WR, Lin YZ, Cheng WC, Chang H, Hung Y, Cho YC, Liu LC, Xia WY, Ji JH, Liang JA, Chiang SF, Liu CG, Yao J, Hung MC, Wang SC. Evading immune surveillance via tyrosine phosphorylation of nuclear PCNA. Cell Rep 2021; 36:109537. [PMID: 34433039 DOI: 10.1016/j.celrep.2021.109537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/26/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Increased DNA replication and metastasis are hallmarks of cancer progression, while deregulated proliferation often triggers sustained replication stresses in cancer cells. How cancer cells overcome the growth stress and proceed to metastasis remains largely elusive. Proliferating cell nuclear antigen (PCNA) is an indispensable component of the DNA replication machinery. Here, we show that phosphorylation of PCNA on tyrosine 211 (pY211-PCNA) regulates DNA metabolism and tumor microenvironment. Abrogation of pY211-PCNA blocks fork processivity, resulting in biogenesis of single-stranded DNA (ssDNA) through a MRE11-dependent mechanism. The cytosolic ssDNA subsequently induces inflammatory cytokines through a cyclic GMP-AMP synthetase (cGAS)-dependent cascade, triggering an anti-tumor immunity by natural killer (NK) cells to suppress distant metastasis. Expression of pY211-PCNA is inversely correlated with cytosolic ssDNA and associated with poor survival in patients with cancer. Our results pave the way to biomarkers and therapies exploiting immune responsiveness to target metastatic cancer.
Collapse
Affiliation(s)
- Yuan-Liang Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chuan-Chun Lee
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yi-Chun Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Pei-Le Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Wan-Rong Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - You-Zhe Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan
| | - Han Chang
- Division of Molecular Pathology, Department of Pathology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yi-Chun Cho
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wei-Ya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin-Huei Ji
- Department of Radiation Oncology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ji-An Liang
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan; Department of Radiation Oncology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan; Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan; Drug Development Center, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan; Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan; Drug Development Center, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 2021; 477:2655-2677. [PMID: 32726436 DOI: 10.1042/bcj20190579] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.
Collapse
|
6
|
Ticli G, Prosperi E. In Situ Analysis of DNA-Protein Complex Formation upon Radiation-Induced DNA Damage. Int J Mol Sci 2019; 20:ijms20225736. [PMID: 31731696 PMCID: PMC6888283 DOI: 10.3390/ijms20225736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023] Open
Abstract
The importance of determining at the cellular level the formation of DNA–protein complexes after radiation-induced lesions to DNA is outlined by the evidence that such interactions represent one of the first steps of the cellular response to DNA damage. These complexes are formed through recruitment at the sites of the lesion, of proteins deputed to signal the presence of DNA damage, and of DNA repair factors necessary to remove it. Investigating the formation of such complexes has provided, and will probably continue to, relevant information about molecular mechanisms and spatiotemporal dynamics of the processes that constitute the first barrier of cell defense against genome instability and related diseases. In this review, we will summarize and discuss the use of in situ procedures to detect the formation of DNA-protein complexes after radiation-induced DNA damage. This type of analysis provides important information on the spatial localization and temporal resolution of the formation of such complexes, at the single-cell level, allowing the study of heterogeneous cell populations.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luca Cavalli Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luca Cavalli Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|
7
|
Role of estrogen receptors, P450 aromatase, PCNA and p53 in high-fat-induced impairment of spermatogenesis in rats. C R Biol 2018; 341:371-379. [PMID: 30150094 DOI: 10.1016/j.crvi.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022]
Abstract
Obesity and overweight are frequently associated with male subfertility. To address new findings on the players involved in the obesity-induced impairment of spermatogenesis, we used a high-fat diet-induced overweight-rat model. Following four weeks of high-fat diet, the organization of seminiferous epithelium was affected, and tubules lumen showed immature/degenerated cells, typical signs of hormonal imbalance and testicular damage. Real-time PCR analysis allowed us to detect increased levels of ERα and decreased levels of aromatase CYP19 transcripts in testis, suggesting an increase in circulating estrogens derived from the accumulating adipose tissue rather than the induction of testicular estrogen synthesis. Moreover, in situ hybridization analysis showed an increased susceptibility towards estrogens in testis from high-fat fed rats, being ERs expressed not only in spermatogonia, as in control testis, but also in spermatids. Western blot and immunohistochemical analyses revealed an increase in the amount of p53 and PCNA, together with a change in their immunodetection, being the proteins localised on germ cells at different stages of maturation. Differences in p53 and PCNA expression may give evidence and be part of a cellular response to stress conditions and damage caused by the excessive intake of saturated fatty acids.
Collapse
|
8
|
Sibin Melo KC, Correia MH, Svidzinski TIE, Hernandes L. Exocellular extract of Fusarium oxysporum, fungus free, is able to permeate and act selectively in skin. APMIS 2018; 126:418-427. [PMID: 29696718 DOI: 10.1111/apm.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 02/21/2018] [Indexed: 11/26/2022]
Abstract
The skin is an important gateway for Fusarium infection in humans. Our hypothesis is that metabolites produced by Fusarium oxysporum should change the barrier structure to permeate the skin. Male Wistar rats received a topical application of a solution (0.05 mg/mL) of Fusarium metabolites. The animals were euthanized 3, 6, 12, 24 h after and the skin was processed for immunostaining by laminin and E-cadherin to investigate whether the Fusarium metabolites can break the barrier of healthy skin. Other techniques were employed: H&E to study the morphology; metalloproteinase-9 (MMP-9), TUNEL, and PCNA immunostaining to evaluate the inflammation, cell death, and proliferation, respectively. There was an inflammatory response mainly centered in the dermis. Qualitatively, the skin of the experimental group showed reduced E-cadherin and laminin immunostaining at 3, 12, and 24 h. Higher intensity staining by TUNEL at 3 h, and PCNA at 6, 12, and 24 h. There was intense MMP-9 activity at 6, 12, and 24 h. None of analyses revealed any changes in the epidermis. It was concluded that the fraction was able to permeate the skin and act selectively in dermis, inducing inflammatory response, increasing MMP-9 immunostaining, inducing apoptosis, and reducing E-cadherin and laminin immunostaining.
Collapse
Affiliation(s)
- Katia C Sibin Melo
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Marcelo H Correia
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Terezinha I E Svidzinski
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
9
|
Damiani D, Della Manna T, Aquino LG, Dichtchekenian V, Avancini V, Alves F, Longatto Filho A, Kanamura CT, Setian N. Proliferating Cell Nuclear Antigen Immunoreaction in Adrenal Tumors. TUMORI JOURNAL 2018; 81:273-7. [PMID: 8540126 DOI: 10.1177/030089169508100412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and background We studied, retrospectively, 33 cases of adrenal tumors of children at the Pediatric Endocrinology Unit, Children's Institute, São Paulo State University Medical School, from 1975 to 1993. All patients had at least 2 years of follow-up with a few exceptions. Methods Clinical follow-up data were correlated with histopathologic review, laboratory data and cell kinetic evaluation (based on detection of proliferating cell nuclear antigens). Results With one exception, all the patients had presented signs of androgen production and had high levels of dehydro-epiandrosterone-sulfate. Tumor weight evaluation represented a good parameter of neoplasm evolution: of 19 cases weighing less than 250 g, 17 had no evidence of disease after surgery, and 2 had an unfavorable prognosis. Of 14 cases weighing more than 250 g, only 1 had no evidence of disease and 13 had an unfavorable evolution. Conclusions Proliferating cell nuclear antigen (PCNA) was not helpful to evaluate adrenal neoplasm evolution: our study did not show any correlation between PCNA score and prognosis.
Collapse
Affiliation(s)
- D Damiani
- Pediatric Endocrinology Unit, Children's Institute São Paulo State University Medical School, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bártová E, Suchánková J, Legartová S, Malyšková B, Hornáček M, Skalníková M, Mašata M, Raška I, Kozubek S. PCNA is recruited to irradiated chromatin in late S-phase and is most pronounced in G2 phase of the cell cycle. PROTOPLASMA 2017; 254:2035-2043. [PMID: 28168519 DOI: 10.1007/s00709-017-1076-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
DNA repair is a complex process that prevents genomic instability. Many proteins play fundamental roles in regulating the optimal repair of DNA lesions. Proliferating cell nuclear antigen (PCNA) is a key factor that initiates recombination-associated DNA synthesis after injury. Here, in very early S-phase, we show that the fluorescence intensity of mCherry-tagged PCNA after local micro-irradiation was less than the fluorescence intensity of non-irradiated mCherry-PCNA-positive replication foci. However, PCNA protein accumulated at locally irradiated chromatin in very late S-phase of the cell cycle, and this effect was more pronounced in the following G2 phase. In comparison to the dispersed form of PCNA, a reduced mobile fraction appeared in PCNA-positive replication foci during S-phase, and we observed similar recovery time after photobleaching at locally induced DNA lesions. This diffusion of mCherry-PCNA in micro-irradiated regions was not affected by cell cycle phases. We also studied the link between function of PCNA and A-type lamins in late S-phase. We found that the accumulation of PCNA at micro-irradiated chromatin is identical in wild-type and A-type lamin-deficient cells. Only micro-irradiation of the nuclear interior, and thus the irradiation of internal A-type lamins, caused the fluorescence intensity of mCherry-tagged PCNA to increase. In summary, we showed that PCNA begins to play a role in DNA repair in late S-phase and that PCNA function in repair is maintained during the G2 phase of the cell cycle. However, PCNA mobility is reduced after local micro-irradiation regardless of the cell cycle phase.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic.
| | - Jana Suchánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Barbora Malyšková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Matúš Hornáček
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Magdalena Skalníková
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Martin Mašata
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
11
|
Application of Immunohistochemistry in Toxicologic Pathology of the Hematolymphoid System. IMMUNOPATHOLOGY IN TOXICOLOGY AND DRUG DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-47377-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Liu Z, Yang Z, Jiang S, Zou Q, Yuan Y, Li J, Li D, Liang L, Chen M, Chen S. MCM2 and TIP30 are prognostic markers in squamous cell/adenosquamous carcinoma and adenocarcinoma of the gallbladder. Mol Med Rep 2016; 14:4581-4592. [PMID: 27748889 PMCID: PMC5102005 DOI: 10.3892/mmr.2016.5851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/30/2016] [Indexed: 12/29/2022] Open
Abstract
The clinicopathological and biological characteristics of squamous cell/adenosquamous carcinoma (SC/ASC) of the gallbladder remain to be fully elucidated, due to the fact that it is a rare gallbladder cancer subtype. In the current study, the expression of minichromosome maintenance complex component 2 (MCM2) and HIV‑1 tat interactive protein 2 (TIP30) was measured in 46 cases of SC/ASC and 80 adenocarcinomas (AC) using immunohistochemistry. Positive MCM2 and negative TIP30 expression were significantly associated with large tumor size, high TNM stage, invasion, lymph node metastasis and lack of surgical curability in SC/ASC and AC. Positive MCM2 and negative TIP30 expression were significantly associated with poor differentiation in AC, whereas only MCM2 was correlated with differentiation in SC/ASC. Univariate Kaplan‑Meier analysis demonstrated that positive MCM2 and negative TIP30 expression, the degree of differentiation, tumor size, TNM stage, invasion, lymph node metastasis and surgical curability were significantly associated with post‑operative survival in patients with SC/ASC and AC. Multivariate Cox regression analysis demonstrated that positive MCM2 and negative TIP30 expression, the degree of differentiation, tumor size, TNM stage, invasion, lymph node metastasis and lack of surgical curability were also independent predictors of poor prognosis in patients with SC/ASC and AC. These data suggest that positive MCM2 and negative TIP30 expression are closely correlated with the clinical, pathological and biological parameters, in addition to poor prognosis in patients with gallbladder cancer.
Collapse
Affiliation(s)
- Ziru Liu
- Department of Minimal Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhulin Yang
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Song Jiang
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yuan Yuan
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinghe Li
- Department of Pathology, Basic School of Medicine, Changsha, Hunan 410078, P.R. China
| | - Daiqiang Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lufeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410007, P.R. China
| | - Meigui Chen
- Department of Pathology, Loudi Central Hospital, Loudi, Hunan 417011, P.R. China
| | - Senlin Chen
- Department of Pathology, Hunan Provincial Tumor Hospital, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
13
|
Proliferation of Perivascular Macrophages Contributes to the Development of Encephalitic Lesions in HIV-Infected Humans and in SIV-Infected Macaques. Sci Rep 2016; 6:32900. [PMID: 27610547 PMCID: PMC5017189 DOI: 10.1038/srep32900] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/17/2016] [Indexed: 11/09/2022] Open
Abstract
The aim of the present study was to investigate if macrophage proliferation occurs in the brain during simian immunodeficiency virus (SIV) infection of adult macaques. We examined the expression of the Ki-67 proliferation marker in the brains of uninfected and SIV-infected macaques with or without encephalitis. Double-label immunohistochemistry using antibodies against the pan-macrophage marker CD68 and Ki-67 showed that there was a significant increase in CD68+Ki-67+ cells in macaques with SIV encephalitis (SIVE) compared to uninfected and SIV-infected animals without encephalitis, a trend that was also confirmed in brain samples from patients with HIV encephalitis. Multi-label immunofluorescence for CD163 and Ki-67 confirmed that the vast majority of Ki-67+ nuclei were localized to CD163+ macrophages in perivascular cuffs and lesions. The proliferative capacity of Ki-67+ perivascular macrophages (PVM) was confirmed by their nuclear incorporation of bromodeoxyuridine. Examining SIVE lesions, using double-label immunofluorescence with antibodies against SIV-Gag-p28 and Ki-67, showed that the population of Ki-67+ cells were productively infected and expanded proportionally with lesions. Altogether, this study shows that there are subpopulations of resident PVM that express Ki-67 and are SIV-infected, suggesting a mechanism of macrophage accumulation in the brain via PVM proliferation.
Collapse
|
14
|
Imazawa T, Nishikawa A, Toyoda K, Furukawa F, Mitsui M, Hirose M. Sequential Alteration of Apoptosis, p53 Expression, and Cell Proliferation in the Rat Pancreas Treated with 4-Hydroxyaminoquinoline 1-Oxide. Toxicol Pathol 2016; 31:625-31. [PMID: 14585730 DOI: 10.1080/01926230390241855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Changes in p53 expression, apoptosis and cell proliferation after treatment with 4-hydroxyaminoquinoline 1-oxide (4HAQO) were investigated in the rat pancreas and liver, target and nontarget organs for tumorigenesis, respectively. Male rats were given a single intravenous injection of 4HAQO at a dose of 20 mg/kg body weight and control rats received vehicle alone and were euthanized after 2—72 hours. Pancreata and livers were removed for histopathological examination, immunohistochemistry for p53 protein, PCNA and Ki-67, and TUNEL labeling and electron microscopic observation for detecting apoptosis. In the pancreas, p53 expression and apoptosis were significantly increased first at 4 and 6 hours, respectively, while no change was evident in the liver. The rates peaked at 24 hours, consistent with the peak for PCNA-labeling, while Ki-67-labeling rates peaked at 72 hours. Electron microscopically, apoptotic changes in pancreatic acinar cells were observed after 2 hours. No significant apoptosis, p53 expression or cell proliferation were noted in the pancreatic tissues of the control rats nor in liver cells regardless of 4HAQO treatment. Taken together with our previous data, the results suggest that apoptosis, p53 expression, and enhanced cell replication are closely related phenomena involved in the carcinogenesis of 4HAQO following DNA adduct formation.
Collapse
Affiliation(s)
- Takayoshi Imazawa
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Muskhelishvili L, Wingard SK, Latendresse JR. Proliferating Cell Nuclear Antigen—A Marker for Ovarian Follicle Counts. Toxicol Pathol 2016; 33:365-8. [PMID: 15805074 DOI: 10.1080/01926230590930164] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Enumerating ovarian follicles is an effective way to estimate the extent of ovarian toxicity in female rodents exposed to xenobiotics. Differential follicle counts are useful in safety assessment bioassays and in interspecies extrapolation of ovarian toxicity. Counting the follicles in H&E-stained sections is labor intensive, tedious, and costly. In the present study we demonstrated that in rat formalin-fixed, paraffin-embedded ovary sections follicles of all degrees of maturity can be visualized by the use of antibody directed against proliferating cell nuclear antigen (PCNA). Follicles are easily distinguished from ovarian background with the ability to detect and identify primordial follicles being enhanced. This translates into a significant decrease in variability of follicle counts, labor, and cost. Specifically, variability dropped from 11% to 0.2%, the counting time was reduced by 46%, and the cost by 48%.
Collapse
Affiliation(s)
- Levan Muskhelishvili
- Toxicologic Pathology Associates at National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | |
Collapse
|
16
|
Poosarla C, Ramesh M, Ramesh K, Gudiseva S, Bala S, Sundar M. Proliferating Cell Nuclear Antigen in Premalignancy and Oral Squamous Cell Carcinoma. J Clin Diagn Res 2015; 9:ZC39-41. [PMID: 26266215 DOI: 10.7860/jcdr/2015/12645.6094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/17/2015] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Cancer has multifactorial aetiology and is a multistep process involving initiation, promotion and tumour progression. Cellular proliferation is one of the important indicators for the biologic aggressiveness of a malignant lesion. The dysregulated proliferation may be a significant change to determine the potential prognosis of various malignant tumours. AIM The aim of this study was to evaluate the expression of proliferating cell nuclear antigen (PCNA) as an indicator for clinical aggressiveness in oral premalignancy and squamous cell carcinoma. MATERIALS AND METHODS A total of 50 blocks were taken from the Department of Oral Pathology which was diagnosed previously histopathologically. It comprised of normal oral mucosa (10), dysplasia (10) and grades of oral squamous cell carcinoma (30) of patients between the age group of 40-60 years. From each block, sections of 4 micro metre thicknesses were prepared and placed on poly- L lysine coated slides. These sections were immunohistochemically stained with monoclonal proliferating cell antibody (PC10). The stained slides were evaluated by a single examiner for cell count. RESULTS A comparison between study groups and controls showed a probability value (p-value) < 0.05. Significant increase in the proliferative index from the normal to oral squamous cell carcinoma was noticed. Poorly differentiated squamous cell carcinoma showed maximum proliferative index followed by moderately differentiated, well differentiated squamous cell carcinoma, dysplasia and normal mucosa. CONCLUSION Present study concluded that PCNA index can be used to assess the proliferation and aggressiveness in dysplasia and different grades oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Chandrashekar Poosarla
- Reader, Department of Oral Pathology, SIBAR Institute of Dental Sciences , Guntur, Andhra Pradesh, India
| | - Maya Ramesh
- Reader, Department of Oral Pathology, Vinayaka Missions Sankarachariyar Dental College , Salem, Tamil Nadu, India
| | - K Ramesh
- Professor, Department of Pedodontics, Vinayaka Missions Sankarachariyar Dental college , Salem, Tamil Nadu, India
| | | | - Sekar Bala
- Professor, Department of Oral Pathology, Vinayaka Missions Sankarachariyar Dental college , Salem, Tamil Nadu, India
| | - Murali Sundar
- Professor, Department of Oral Pathology, Vinayaka Missions Sankarachariyar Dental college , Salem, Tamil Nadu, India
| |
Collapse
|
17
|
Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression. BIOMED RESEARCH INTERNATIONAL 2015; 2015:159015. [PMID: 26114099 PMCID: PMC4465655 DOI: 10.1155/2015/159015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/05/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.
Collapse
|
18
|
Hua C, Zhao G, Li Y, Bie L. Minichromosome Maintenance (MCM) Family as potential diagnostic and prognostic tumor markers for human gliomas. BMC Cancer 2014; 14:526. [PMID: 25046975 PMCID: PMC4223428 DOI: 10.1186/1471-2407-14-526] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/15/2014] [Indexed: 12/15/2022] Open
Abstract
Background Gliomas are the most common type of all central nervous system tumors. Almost all patients diagnosed with these tumors have a poor prognostic outcome. We aimed to identify novel glioma prognosis-associated candidate genes. Methods We applied WebArrayDB software to span platform integrate and analyze the microarray datasets. We focused on a subset of the significantly up-regulated genes, the minichromosome maintenance (MCM) family. We used frozen glioma samples to predict the relationship between the expression of MCMs and patients outcome by qPCR and western blot. Results We found that MCMs expression was significantly up-regulated in glioma samples. MCM2-7 and MCM10 expressions were associated with WHO tumor grade. High MCM2 mRNA expression appeared to be strongly associated with poor overall survival in patients with high grade glioma. Furthermore, we report that MCM7 is strongly correlated with patient outcome in patients with WHO grade II-IV tumor. MCM3 expression was found to be up-regulated in glioma and correlated with overall survival in patients with WHO grade III tumor. MCM2, MCM3 and MCM7 expression levels were of greater prognostic relevance than histological diagnosis according to the current WHO classification system. Conclusions High expression of MCM 2, MCM3 and MCM7 mRNA correlated with poor outcome and may be clinically useful molecular prognostic markers in glioma.
Collapse
Affiliation(s)
| | | | | | - Li Bie
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, 71 Xinmin St, Changchun, Jilin 130021, China.
| |
Collapse
|
19
|
Segiet OA, Deska M, Michalski M, Gawrychowski J, Wojnicz R. Molecular profiling in primary hyperparathyroidism. Head Neck 2014; 37:299-307. [DOI: 10.1002/hed.23656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliwia Anna Segiet
- Department of Histology and Embryology, Zabrze; Medical University of Silesia; Katowice Poland
| | - Mariusz Deska
- Chair and Clinical Department of General Surgery, Bytom; Medical University of Silesia; Katowice Poland
| | - Marek Michalski
- Department of Histology and Embryology, Zabrze; Medical University of Silesia; Katowice Poland
| | - Jacek Gawrychowski
- Chair and Clinical Department of General Surgery, Bytom; Medical University of Silesia; Katowice Poland
| | - Romuald Wojnicz
- Department of Histology and Embryology, Zabrze; Medical University of Silesia; Katowice Poland
| |
Collapse
|
20
|
Alcohol exposure inhibits adult neural stem cell proliferation. Exp Brain Res 2014; 232:2775-84. [PMID: 24770860 DOI: 10.1007/s00221-014-3958-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/08/2014] [Indexed: 01/03/2023]
Abstract
Alcohol exposure can reduce adult proliferation and/or neurogenesis, but its impact on the ultimate neurogenic precursors, neural stem cells (NSCs), has been poorly addressed. Accordingly, the impact of voluntary consumption of alcohol on NSCs in the subventricular zone (SVZ) of the lateral ventricle was examined in this study. The NSC population in adult male C57BL/6J mice was measured after voluntary alcohol exposure in a two-bottle choice task using the neurosphere assay, while the number of NSCs that had proliferated 2 weeks prior to tissue collection was indexed using bromodeoxyuridine (BrdU) retention. There was a significant decrease in the number of BrdU-retaining cells in alcohol-consuming mice compared with controls, but no difference in the number of neurosphere-forming cells that could be derived from the SVZ of alcohol-consuming mice compared with controls. Additionally, PCNA-labeled cells in the SVZ tended to be lower, but there was no difference in BrdU labeling in the dentate gyrus following alcohol exposure. To determine alcohol's direct impact on NSCs and their progeny, neurospheres derived from naïve mice were treated with alcohol in vitro. Neurosphere formation was reduced by 100 mM alcohol without reducing cell viability. These findings are the first to assess the impact of moderate voluntary alcohol consumption on selective measures of adult NSCs and indicate that such exposure alters NSC proliferation dynamics in vivo and alcohol has direct but dissociable effects on the expansion and viability on NSCs and their progeny in vitro.
Collapse
|
21
|
Wondergem MJ, Herrmann K, Syrbu S, Zijlstra JM, Hoetjes N, Hoekstra OS, Cillessen SA, Moesbergen LM, Buck AK, Vose JM, Juweid ME. 18 F-fluorothymidine uptake in follicular lymphoma and error-prone DNA repair. EJNMMI Res 2014; 4:3. [PMID: 24397937 PMCID: PMC3895783 DOI: 10.1186/2191-219x-4-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/18/2013] [Indexed: 11/23/2022] Open
Abstract
Background We observed a disproportional 18 F-fluorothymidine (F-FLT) uptake in follicular lymphoma (FL) relative to its low cell proliferation. We tested the hypothesis that the ‘excess’ uptake of 18 F-FLT in FL is related to error-prone DNA repair and investigated whether this also contributes to 18 F-FLT uptake in diffuse large B cell lymphoma (DLBCL). Methods We performed immunohistochemical stainings to assess the pure DNA replication marker MIB-1 as well as markers of both DNA replication and repair like PCNA, TK-1 and RPA1 on lymph node biopsies of 27 FLs and 35 DLBCLs. In 7 FL and 15 DLBCL patients, 18 F-FLT-PET had been performed. Results 18 F-FLT uptake was lower in FL than in DLBCL (median SUVmax 5.7 vs. 8.9, p = 0,004), but the ratio of 18 F-FLT-SUVmax to percentage of MIB-1 positive cells was significantly higher in FL compared with DLBCL (p = 0.001). The median percentage of MIB-1 positive cells was 10% (range, 10% to 20%) in FL and 70% (40% to 80%) in DLBCL. In contrast, the median percentages of PCNA, TK-1 and RPA1 positive cells were 90% (range, 80 to 100), 90% (80 to 100) and 100% (80 to 100) in FL versus 90% (60 to 100), 90% (60 to 100) and 100% (80 to 100) in DLBCL, respectively. Conclusions This is the first demonstration of a striking discordance between 18 F-FLT uptake in FL and tumour cell proliferation. High expression of DNA replication and repair markers compared with the pure proliferation marker MIB-1 in FL suggests that this discordance might be due to error-prone DNA repair. While DNA repair-related 18 F-FLT uptake considerably contributes to 18 F-FLT uptake in FL, its contribution to 18 F-FLT uptake in highly proliferative DLBCL is small. This apparently high contribution of DNA repair to the 18 F-FLT signal in FL may hamper studies where 18 F-FLT is used to assess response to cytostatic therapy or to distinguish between FL and transformed lymphoma.
Collapse
Affiliation(s)
- Marielle J Wondergem
- Department of Haematology, VU University Medical Center (VUMC), De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jackson AP, Laskey RA, Coleman N. Replication proteins and human disease. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a013060. [PMID: 23881941 DOI: 10.1101/cshperspect.a013060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this article, we discuss the significance of DNA replication proteins in human disease. There is a broad range of mutations in genes encoding replication proteins, which result in several distinct clinical disorders that share common themes. One group of replication proteins, the MCMs, has emerged as effective biomarkers for early detection of a range of common cancers. They offer practical and theoretical advantages over other replication proteins and have been developed for widespread clinical use.
Collapse
Affiliation(s)
- Andrew P Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
23
|
Liu DC, Yang ZL. Clinicopathologic significance of minichromosome maintenance protein 2 and Tat-interacting protein 30 expression in benign and malignant lesions of the gallbladder. Hum Pathol 2011; 42:1676-83. [DOI: 10.1016/j.humpath.2010.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/29/2010] [Accepted: 12/03/2010] [Indexed: 12/29/2022]
|
24
|
Jascur T, Fotedar R, Greene S, Hotchkiss E, Boland CR. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) triggers MSH2 and Cdt2 protein-dependent degradation of the cell cycle and mismatch repair (MMR) inhibitor protein p21Waf1/Cip1. J Biol Chem 2011; 286:29531-9. [PMID: 21725088 DOI: 10.1074/jbc.m111.221341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
p21(Waf1/Cip1) protein levels respond to DNA damage; p21 is induced after ionizing radiation, but degraded after UV. p21 degradation after UV is necessary for optimal DNA repair, presumably because p21 inhibits nucleotide excision repair by blocking proliferating cell nuclear antigen (PCNA). Because p21 also inhibits DNA mismatch repair (MMR), we investigated how p21 levels respond to DNA alkylation by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which triggers the MMR system. We show that MNNG caused rapid degradation of p21, and this involved the ubiquitin ligase Cdt2 and the proteasome. p21 degradation further required MSH2 but not MLH1. p21 mutants that cannot bind PCNA or cannot be ubiquitinated were resistant to MNNG. MNNG induced the formation of PCNA complexes with MSH6 and Cdt2. Finally, when p21 degradation was blocked, MNNG treatment resulted in reduced recruitment of MMR proteins to chromatin. This study describes a novel pathway that removes p21 to allow cells to efficiently activate the MMR system.
Collapse
Affiliation(s)
- Thomas Jascur
- Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas 75246, USA
| | | | | | | | | |
Collapse
|
25
|
Huang B, Hu B, Su M, Tian D, Guo Y, Lian S, Liu Z, Wu X, Li Q, Zheng R, Gao Y. Potential role of minichromosome maintenance protein 2 as a screening biomarker in esophageal cancer high-risk population in China. Hum Pathol 2011; 42:808-16. [PMID: 21237484 DOI: 10.1016/j.humpath.2010.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/18/2010] [Accepted: 04/02/2010] [Indexed: 02/05/2023]
Abstract
Minichromosome maintenance proteins are novel proliferative markers that have been proposed as diagnostic markers in many cancers. We evaluated the potential role of minichromosome maintenance protein 2 as a screening biomarker and compared it with proliferating cell nuclear antigen and Ki67 in a population survey of esophageal squamous cell carcinoma. A total of 299 esophageal samples from a high-risk region in China, including 171 from an endoscopy population survey, 30 from brushing cytology, and 98 from surgery and autopsy, underwent immunostaining with minichromosome maintenance protein 2, proliferating cell nuclear antigen, and Ki67 antibodies. Minichromosome maintenance protein 2 expression was confined to the proliferative compartment of normal and abnormal esophageal epithelium and particularly manifested in the surface layer of dysplasia and carcinoma in situ. The expression of proliferating cell nuclear antigen and Ki67 was positively correlated with that of minichromosome maintenance protein 2 (r(s) >0.39, P < .01); but their positive nuclei seldom reached the surface layer, and the labeling indices were significantly lower than those for minichromosome maintenance protein 2 in dysplasia (P < .05) and carcinoma in situ (P < .001). The sensitivity and specificity of minichromosome maintenance protein 2 in diagnosing dysplasia were 91.3% and 61.8%, respectively, higher than those for proliferating cell nuclear antigen (88.4% and 47.1%) and Ki67 (78.3% and 57.8%). Nine of 10 cancer and paracancerous surface-brushing samples expressed minichromosome maintenance protein 2, and the detection was higher than that for proliferating cell nuclear antigen (8/10 and 7/10) and Ki67 (7/10 and 7/10). However, none of 10 normal surface-brushing samples expressed the 3 markers. Minichromosome maintenance protein 2 is more sensitive and specific than proliferating cell nuclear antigen and Ki67 in indicating esophageal dysplasia. Minichromosome maintenance protein 2 immunostaining combined with surface brushing could be valuable in screening patients at high risk of cancer in mass surveys.
Collapse
Affiliation(s)
- Bo Huang
- Department of Pathology & Institute for Clinical Pathology, Shantou University Medical College, Shantou 515031, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Giaginis C, Giagini A, Tsourouflis G, Gatzidou E, Agapitos E, Kouraklis G, Theocharis S. MCM-2 and MCM-5 expression in gastric adenocarcinoma: clinical significance and comparison with Ki-67 proliferative marker. Dig Dis Sci 2011; 56:777-85. [PMID: 20694513 DOI: 10.1007/s10620-010-1348-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/12/2010] [Indexed: 12/09/2022]
Abstract
BACKGROUND Minichromosome maintenance (MCM) proteins are essential components of DNA replication, being related to cell proliferation, and serve as useful biomarkers for cancer screening, surveillance and prognosis. The aim of the present study was to evaluate the clinical significance of MCM-2 and MCM-5 expression in gastric adenocarcinoma in comparison with Ki-67 proliferative marker. METHODS MCM-2, MCM-5 and Ki-67 expression was assessed immunohistochemically in 66 tumoral samples of gastric adenocarcinoma patients and was statistically analyzed in relation to clinicopathological characteristics and patient survival. RESULTS MCM-2 expression did not show significant associations with any clinicopathological parameters, while Ki-67 expression was merely significantly associated with tumor size (P = 0.0150). MCM-2 and Ki-67 expression were more frequently in intestinal (median values: 67.5 and 60%) compared to diffuse-type (median values: 60 and 45%) gastric adenocarcinoma cases without though reaching statistical significance (P > 0.05). MCM-5 expression was significantly associated with tumor size (P = 0.0295), presence of lymph node metastases (P = 0.0216) and tumor histopathological stage (P = 0.0098). Patients presenting high MCM-5 expression had significantly shorter survival times (log-rank test, P = 0.0042), whereas neither MCM-2 nor Ki-67 expression showed significant prognostic value (log-rank test, P = 0.9618 and P = 0.7174, respectively). In multivariate analysis, patient age, histopathological stage and grade of differentiation, but not MCM-5 expression, were identified as independent prognostic factors (Cox regression analysis, P = 0.0097, P = 0.0195, P = 0.0035 and P = 0.3245, respectively). CONCLUSIONS The present study showed that MCM-5 expression was associated with clinicopathological parameters in gastric adenocarcinoma. However, further studies highlighting the distinct impact of the two histopathological types, intestinal and diffuse, are warranted to delineate whether MCMs could be used as diagnostic and prognostic markers in gastric neoplasia.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
27
|
Minichromosome maintenance protein expression according to the grade of atypism in actinic keratosis. Am J Dermatopathol 2010; 32:794-8. [PMID: 20847638 DOI: 10.1097/dad.0b013e3181de4e93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The minichromosome maintenance (MCM) family is a group of proteins that are key initiation factors for DNA replication and are expressed only in cycling cells. Recent studies on various cancerous conditions have shown that MCM proteins are better markers for malignant cells compared to other proliferative markers. It has been also proven that MCM proteins are independent prognostic factors. The aim of this study was to characterize the pattern and frequency of MCM 2 protein expression in actinic keratosis (AK) and determine whether the expression is correlated with the degree of histological atypism. Biopsy samples of 34 patients who had been diagnosed as AK were used in this study. Samples were divided into three groups (grade I, grade II, and grade III) according to the degree of atypism. Immunohistochemical staining for MCM 2 protein, Ki-67, and proliferating cell nuclear antigen was performed, and the number of positively staining cells per unit area (10⁻⁴ μm²) was calculated for evaluation of immunoreactivity. MCM 2 protein was expressed in atypical keratinocytes in AK. Mean numbers of immunoreactive cells positive for MCM 2 were 165.1 in grade I, 304.5 in grade II, and 513.3 in grade III. Moreover, the correlation between the immunoreactivity for MCM 2 protein and AK grade was significantly more positive than that for other markers. Thus, we suggest that MCM 2 protein is a reliable marker for diagnosing and grading AK and further could be hypothesized as an important prognostic factor.
Collapse
|
28
|
|
29
|
Li DQ, Pakala SB, Reddy SDN, Ohshiro K, Peng SH, Lian Y, Fu SW, Kumar R. Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. J Biol Chem 2010; 285:10044-10052. [PMID: 20071335 PMCID: PMC2843167 DOI: 10.1074/jbc.m109.079095] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/24/2009] [Indexed: 12/11/2022] Open
Abstract
Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and deacetylase (NuRD) complex, is a DNA-damage response protein and regulates p53-dependent DNA repair, it remains unknown whether MTA1 also participates in p53-independent DNA damage response. Here, we provide evidence that MTA1 is a p53-independent transcriptional corepressor of p21(WAF1), and the underlying mechanism involves recruitment of MTA1-histone deacetylase 2 (HDAC2) complexes onto two selective regions of the p21(WAF1) promoter. Accordingly, MTA1 depletion, despite its effect on p53 down-regulation, superinduces p21(WAF1), increases p21(WAF1) binding to proliferating cell nuclear antigen (PCNA), and decreases the nuclear accumulation of PCNA in response to ionizing radiation. In support of a p53-independent role of MTA1 in DNA damage response, we further demonstrate that induced expression of MTA1 in p53-null cells inhibits p21(WAF1) promoter activity and p21(WAF1) binding to PCNA. Consequently, MTA1 expression in p53-null cells results in increased induction of gamma H2AX foci and DNA double strand break repair, and decreased DNA damage sensitivity following ionizing radiation treatment. These findings uncover a new target of MTA1 and the existence of an additional p53-independent role of MTA1 in DNA damage response, at least in part, by modulating the p21(WAF1)-PCNA pathway, and thus, linking two previously unconnected NuRD complex and DNA-damage response pathways.
Collapse
Affiliation(s)
- Da-Qiang Li
- Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Suresh B Pakala
- Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Sirigiri Divijendra Natha Reddy
- Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Kazufumi Ohshiro
- Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Shao-Hua Peng
- Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Yi Lian
- Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Sidney W Fu
- Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037.
| |
Collapse
|
30
|
Leman AR, Noguchi C, Lee CY, Noguchi E. Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 2010; 123:660-70. [PMID: 20124417 PMCID: PMC2823575 DOI: 10.1242/jcs.057984] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2009] [Indexed: 11/20/2022] Open
Abstract
The Timeless-Tipin protein complex has been reported to be important for replication checkpoint and normal DNA replication processes. However, the precise mechanisms by which Timeless-Tipin preserves genomic integrity are largely unclear. Here, we describe the roles of Timeless-Tipin in replication fork stabilization and sister chromatid cohesion. We show in human cells that Timeless is recruited to replication origin regions and dissociate from them as replication proceeds. Cdc45, which is known to be required for replication fork progression, shows similar patterns of origin association to those of Timeless. Depletion of Timeless-Tipin causes chromosome fragmentation and defects in damage repair in response to fork collapse, suggesting that it is required for replication fork maintenance under stress. We also demonstrate that depletion of Timeless-Tipin impairs sister chromatid cohesion and causes a defect in mitotic progression. Consistently, Timeless-Tipin co-purifies with cohesin subunits and is required for their stable association with chromatin during S phase. Timeless associates with the cohesion-promoting DNA helicase ChlR1, which, when overexpressed, partially alleviates the cohesion defect of cells depleted of Timeless-Tipin. These results suggest that Timeless-Tipin functions as a replication fork stabilizer that couples DNA replication with sister chromatid cohesion established at replication forks.
Collapse
Affiliation(s)
- Adam R. Leman
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Candice Y. Lee
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
31
|
Abstract
Cancer is caused by genetic changes that often arise following failure to accurately replicate the DNA. PCNA (proliferating-cell nuclear antigen) forms a ring around the DNA to facilitate and control DNA replication. Emerging evidence suggests that PCNA is at the very heart of many essential cellular processes, such as DNA replication, repair of DNA damage, chromatin structure maintenance, chromosome segregation and cell-cycle progression. Progression of the DNA replication forks can be blocked by DNA lesions, formed either by endogenous damage or by exogenous agents, for instance anticancer drugs. Cellular response often results in change of PCNA function triggered either by specific post-translational modification of PCNA (i.e. ubiquitylation) or by exchange of its interaction partners. This puts PCNA in a central position in determining the fate of the replication fork. In the present article, we review PCNA modifications and interaction partners, and how those influence the course of events at replication forks, which ultimately determines both tumour progression as well as the outcome of anticancer treatment.
Collapse
|
32
|
Yuan F, El Hokayem J, Zhou W, Zhang Y. FANCI protein binds to DNA and interacts with FANCD2 to recognize branched structures. J Biol Chem 2009; 284:24443-52. [PMID: 19561358 PMCID: PMC2782037 DOI: 10.1074/jbc.m109.016006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study, we report that the purified wild-type FANCI (Fanconi anemia complementation group I) protein directly binds to a variety of DNA substrates. The DNA binding domain roughly encompasses residues 200–1000, as suggested by the truncation study. When co-expressed in insect cells, a small fraction of FANCI forms a stable complex with FANCD2 (Fanconi anemia complementation group D2). Intriguingly, the purified FANCI-FANCD2 complex preferentially binds to the branched DNA structures when compared with either FANCI or FANCD2 alone. Co-immunoprecipitation with purified proteins indicates that FANCI interacts with FANCD2 through its C-terminal amino acid 1001–1328 fragment. Although the C terminus of FANCI is dispensable for direct DNA binding, it seems to be involved in the regulation of DNA binding activity. This notion is further enhanced by two C-terminal point mutations, R1285Q and D1301A, which showed differentiated DNA binding activity. We also demonstrate that FANCI forms discrete nuclear foci in HeLa cells in the absence or presence of exogenous DNA damage. The FANCI foci are colocalized perfectly with FANCD2 and partially with proliferating cell nuclear antigen irrespective of mitomycin C treatment. An increased number of FANCI foci form and become resistant to Triton X extraction in response to mitomycin C treatment. Our data suggest that the FANCI-FANCD2 complex may participate in repair of damaged replication forks through its preferential recognition of branched structures.
Collapse
Affiliation(s)
- Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
33
|
Toyooka T, Ibuki Y. Histone deacetylase inhibitor sodium butyrate enhances the cell killing effect of psoralen plus UVA by attenuating nucleotide excision repair. Cancer Res 2009; 69:3492-500. [PMID: 19351858 DOI: 10.1158/0008-5472.can-08-2546] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of histone deacetylase inhibitors (HDACI), a promising new class of antineoplastic agents, in combination with cytotoxic agents, such as ionizing radiation and anticancer drugs, has been attracting attention. In this study, we found that sodium butyrate (SB), a widely studied HDACI, remarkably enhanced the cell killing effect of psoralen plus UVA (PUVA) in several cancer cell lines, including skin melanoma. Although a single treatment with PUVA or SB did not greatly affect cell survival, combined treatment with SB and PUVA induced marked apoptosis within 24 hours. The SB-induced augmentation of the cell killing effect was more dramatic in combination with PUVA than with anticancer drugs. The number of double-strand breaks that formed during the repair of PUVA-induced interstrand cross-links (ICL) in chromosomal DNA was significantly reduced in SB-pretreated cells, suggesting that the ability to repair ICL was attenuated by SB. In addition, the incorporation of bromodeoxyuridine and the formation of repair foci of proliferating cell nuclear antigen after PUVA treatment, associated with nucleotide excision repair (NER) in the removal of ICL, were not observed in SB-pretreated cells. Furthermore, the repair kinetics of UV-induced cyclobutane pyrimidine dimers (well-known photolesions repaired by NER) were much slower in SB-pretreated cells than in untreated cells. These results indicated that the enhanced cell killing effect of PUVA by SB was attributable to an attenuated ability to repair DNA and, especially, dysfunctional NER.
Collapse
Affiliation(s)
- Tatsushi Toyooka
- Laboratory of Radiation Biology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | | |
Collapse
|
34
|
Giaginis C, Georgiadou M, Dimakopoulou K, Tsourouflis G, Gatzidou E, Kouraklis G, Theocharis S. Clinical significance of MCM-2 and MCM-5 expression in colon cancer: association with clinicopathological parameters and tumor proliferative capacity. Dig Dis Sci 2009; 54:282-91. [PMID: 18465232 DOI: 10.1007/s10620-008-0305-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 04/10/2008] [Indexed: 12/12/2022]
Abstract
Minichromosome maintenance (MCM) proteins are essential components of DNA replication, being related to cell proliferation, and serve as useful markers for cancer screening, surveillance, and prognosis. Our aim was to examine the clinical significance of MCM-2 and MCM-5 protein expression in colon cancer and to evaluate the association with various clinicopathological characteristics and tumor proliferative capacity. Immunohistochemical expression of MCM-2 and MCM-5 was performed on paraffin-embedded malignant tissue sections obtained from 96 patients with colon cancer. MCM-2 and MCM-5 expression was correlated with different clinicopathological characteristics, proliferative capacity (Ki-67 labeling index), and p53 cell-cycle regulator expression. MCM-2 and Ki-67 expression was significantly associated with the tumors' histological grade (P = 0.003), existence of nodular metastases (N) (P = 0.003 and P = 0.030, respectively), malignancy on adenoma (P = 0.029 and P = 0.024, respectively), and vascular invasion (P = 0.010 and P = 0.011, respectively). MCM-2 expression was additionally associated with Dukes' stage (P = 0.005). Significant positive relationships were found between the expression of MCM-2 or MCM-5 proteins and that of Ki-67 protein (r = 0.963, P-value < 0.001, and r = 0.738, P-value < 0.001, respectively), as well as between MCM-2 and MCM-5 proteins (r = 0.745, P-value < 0.001). Significant positive relationships were also observed between the expression of MCM-2 or MCM-5 proteins and that of p53 protein; however, they were consistently lower than the corresponding with Ki-67 protein. No significant association was observed between MCM-5 protein expression and the clinicopathological characteristics examined. The current data suggest that MCM-2 protein expression is significantly associated with important clinicopathological characteristics for patients' management, being correlated with the cell proliferation state in colon cancer.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 M. Asias str, Goudi, Athens, 11527, Greece
| | | | | | | | | | | | | |
Collapse
|
35
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Shumaker DK, Solimando L, Sengupta K, Shimi T, Adam SA, Grunwald A, Strelkov SV, Aebi U, Cardoso MC, Goldman RD. The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication. ACTA ACUST UNITED AC 2008; 181:269-80. [PMID: 18426975 PMCID: PMC2315674 DOI: 10.1083/jcb.200708155] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study provides insights into the role of nuclear lamins in DNA replication. Our data demonstrate that the Ig-fold motif located in the lamin C terminus binds directly to proliferating cell nuclear antigen (PCNA), the processivity factor necessary for the chain elongation phase of DNA replication. We find that the introduction of a mutation in the Ig-fold, which alters its structure and causes human muscular dystrophy, inhibits PCNA binding. Studies of nuclear assembly and DNA replication show that lamins, PCNA, and chromatin are closely associated in situ. Exposure of replicating nuclei to an excess of the lamin domain containing the Ig-fold inhibits DNA replication in a concentration-dependent fashion. This inhibitory effect is significantly diminished in nuclei exposed to the same domain bearing the Ig-fold mutation. Using the crystal structures of the lamin Ig-fold and PCNA, molecular docking simulations suggest probable interaction sites. These findings also provide insights into the mechanisms underlying the numerous disease-causing mutations located within the lamin Ig-fold.
Collapse
Affiliation(s)
- Dale K Shumaker
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Uchiyama Y, Suzuki Y, Sakaguchi K. Characterization of plant XRCC1 and its interaction with proliferating cell nuclear antigen. PLANTA 2008; 227:1233-41. [PMID: 18247046 DOI: 10.1007/s00425-008-0695-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 01/16/2008] [Indexed: 05/21/2023]
Abstract
In plants, there are no DNA polymerase beta (Pol beta) and DNA ligase III (Lig3) genes. Thus, the plant short-patch base excision repair (short-patch BER) pathway must differ considerably from that in mammals. We characterized the rice (Oryza Sativa L. cv. Nipponbare) homologue of the mammalian X-ray repair cross complementing 1 (XRCC1), a well-known BER protein. The plant XRCC1 lacks the N-terminal domain (NTD) which is required for Pol beta binding and is essential for mammalian cell survival. The recombinant rice XRCC1 (OsXRCC1) protein binds single-stranded DNA (ssDNA) as well as double-stranded DNA (dsDNA) and also interacts with rice proliferating cell nuclear antigen (OsPCNA) in a pull-down assay. Through immunoprecipitation, we demonstrated that OsXRCC1 forms a complex with PCNA in vivo. OsXRCC1 mRNA was expressed in all rice organs and was induced by application of bleomycin, but not of MMS, H(2)O(2) or UV-B. Bleomycin also increased the fraction of OsXRCC1 associated with chromatin. These results suggest that OsXRCC1 contributes to DNA repair pathways that differ from the mammalian BER system.
Collapse
Affiliation(s)
- Yukinobu Uchiyama
- Department of Applied Biological Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | | | | |
Collapse
|
38
|
Liu H, Takeuchi S, Moroi Y, Lin N, Urabe K, Kokuba H, Imafuku S, Dainichi T, Uchi H, Furue M, Tu Y. Expression of minichromosome maintenance 5 protein in proliferative and malignant skin diseases. Int J Dermatol 2008; 46:1171-6. [PMID: 17988337 DOI: 10.1111/j.1365-4632.2007.03335.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The entire minichromosome maintenance (MCM) family (MCM2-7) play roles in the initiation and elongation of DNA replication. Many studies have demonstrated that MCM proteins may be better indicators of a wide variety of proliferative or cancer cells in malignant tissues. OBJECTIVES To characterize the pattern and frequency of MCM5 expression in proliferative and malignant skin diseases in comparison with those of proliferating cell nuclear antigen (PCNA). METHODS Twelve normal skin specimens, 12 specimens of psoriasis, 21 specimens of bowenoid papulosis (BP), 16 specimens of Bowen's disease (BD), 38 specimens of skin squamous cell carcinoma (SCC), and 11 specimens of basal cell carcinoma (BCC) were subjected to immunohistochemical staining for MCM5 and PCNA. Results MCM5 protein was expressed in the lower layers of epidermis in psoriasis, while MCM5 protein were present throughout the tumor cells in BP, BD, and moderately/poorly differentiated SCC. MCM5 protein was preferentially expressed in the periphery of well-differentiated SCC or bigger nests of BCC, although some small nests of BCC seemingly showed diffuse staining patterns. The percentages of MCM5-positive cells were 15.7% in normal skin, 21.8% in psoriasis, 75.9% in BP, 83.8% in BD, 63.5% in well-differentiated SCC, 77.5% in moderately differentiated SCC, 79.8% in poorly differentiated SCC, and 21.2% in BCC in average. Well-differentiated SCC showed a significantly lower percentage of positive cells than did moderately differentiated SCC or poorly differentiated SCC. MCM5 staining basically show a similar staining pattern to that of PCNA, but more cells tended to be stained with MCM5 than with PCNA. CONCLUSIONS Our results demonstrate pattern and frequency of MCM5 expression in various skin diseases and suggest that MCM5 may be a useful marker to detect cell proliferation in skin tissue sections.
Collapse
Affiliation(s)
- Houjun Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Petrov VV, van Pelt JF, Vermeesch JR, Van Duppen VJ, Vekemans K, Fagard RH, Lijnen PJ. TGF-beta1-induced cardiac myofibroblasts are nonproliferating functional cells carrying DNA damages. Exp Cell Res 2008; 314:1480-94. [PMID: 18295203 DOI: 10.1016/j.yexcr.2008.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/03/2007] [Accepted: 01/09/2008] [Indexed: 01/07/2023]
Abstract
TGF-beta1 induces differentiation and total inhibition of cardiac MyoFb cell division and DNA synthesis. These effects of TGF-beta1 are irreversible. Inhibition of MyoFb proliferation is accompanied with the expression of Smad1, Mad1, p15Ink4B and total inhibition of telomerase activity. Surprisingly, TGF-beta1-activated MyoFbs are growth-arrested not only at G1-phase but also at S-phase of the cell cycle. Staining with TUNEL indicates that these cells carry DNA damages. However, the absolute majority of MyoFbs are non-apoptotic cells as established with two apoptosis-specific methods, flow cytometry and caspase-dependent cleavage of cytokeratin 18. Expression in MyoFbs of proliferative cell nuclear antigen even in the absence of serum confirms that these MyoFbs perform repair of DNA damages. These results suggest that TGF-beta1-activated MyoFbs can be growth-arrested by two checkpoints, the G1/S checkpoint, which prevents cells from entering S-phase and the intra-S checkpoint, which is activated by encountering DNA damage during the S phase or by unrepaired damage that escapes the G1/S checkpoint. Despite carrying of the DNA damages TGF-beta1-activated MyoFbs are highly functional cells producing lysyl oxidase and contracting the collagen matrix.
Collapse
Affiliation(s)
- Victor V Petrov
- Department of Heart Diseases, University of Leuven (KULeuven), Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
40
|
Cheng N, Wauthier E, Reid L. Mature Human Hepatocytes fromEx VivoDifferentiation of Alginate-Encapsulated Hepatoblasts. Tissue Eng Part A 2008; 14:1-7. [DOI: 10.1089/ten.a.2007.0131] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Nancy Cheng
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, North Carolina
| | - Eliane Wauthier
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, North Carolina
| | - L.M. Reid
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, North Carolina
- Department of Biomedical Engineering, Program in Molecular Biology and Biotechnology, Lineberger Cancer Center and Center for Gastrointestinal and Biliary Disease Biology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
41
|
Cheng N, Wauthier E, Reid L. Mature Human Hepatocytes fromEx VivoDifferentiation of Alginate-Encapsulated Hepatoblasts. ACTA ACUST UNITED AC 2008. [DOI: 10.1089/ten.2007.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Gambichler T, Bischoff S, Bechara FG, Altmeyer P, Kreuter A. Expression of proliferation markers and cell cycle regulators in T cell lymphoproliferative skin disorders. J Dermatol Sci 2007; 49:125-32. [PMID: 17826963 DOI: 10.1016/j.jdermsci.2007.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/03/2007] [Accepted: 07/27/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Abnormal cell proliferation, which results from deregulation of the cell cycle, is fundamental in tumorigenesis. OBJECTIVES To investigate the expression of proliferation markers and cell cycle regulators in a range of T cell lymphoproliferative skin diseases. METHODS We studied skin specimens of 51 patients with parapsoriasis (PP), mycosis fungiodes (MF), or lymphomatoid papulosis (LyP). Immunohistochemistry was performed for Ki-67, proliferating cell nuclear antigen (PCNA), minichromosome maintenance protein 7 (MCM7), and p21. RESULTS MF with stage IIB-IV and LyP showed a significantly greater number of Ki-67-positive cells than PP (P=0.02 and 0.001) and MF I-IIA (P=0.019 and 0.003), respectively. MCM7 staining revealed significantly higher labeling indices for MF IIB-IV and LyP when compared to PP (P=0.002 and 0.04) and MF I-IIA (P=0.0005 and 0.01), respectively. Compared to PP and MF I-IIA, MF IIB-IV was associated with significantly higher labeling indices for PCNA (P=0.006 and 0.0004). p21 staining was significantly increased in MF IIB-IV and LyP when compared to PP (P=0.006 and 0.003) and MF I-IIA (P=0.003). However, p21 staining was all in all very weak. CONCLUSIONS Ki-67 and PCNA seem to be useful immunohistological parameters for the correlation with the clinical stage of MF. In the differentiation and prognostication of T cell lymphoproliferative skin disorders, MCM7 may serve as a novel biomarker which is, in contrast to Ki-67 and PCNA, stable throughout the cell cycle.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.
| | | | | | | | | |
Collapse
|
43
|
Ongür D, Pohlman J, Dow AL, Eisch AJ, Edwin F, Heckers S, Cohen BM, Patel TB, Carlezon WA. Electroconvulsive seizures stimulate glial proliferation and reduce expression of Sprouty2 within the prefrontal cortex of rats. Biol Psychiatry 2007; 62:505-12. [PMID: 17336937 DOI: 10.1016/j.biopsych.2006.11.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/14/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Reductions in cell number are found within the medial prefrontal cortex (PFC) in major depression and bipolar disorder, conditions for which electroconvulsive therapy (ECT) is a highly effective treatment. We investigated whether electroconvulsive seizure (ECS) in rats stimulates cellular proliferation in the PFC immediately and four weeks after the treatments. In parallel, we examined if ECS also alters the expression of Sprouty2 (SPRY2), an inhibitor of cell proliferation. METHODS Sprague-Dawley rats received 10 days of ECS treatments and bromodeoxyuridine (BrdU) injections. After a four week survival period, we estimated the density and number of BrdU-, proliferating cell nuclear antigen (PCNA)-, and SPRY2-immunoreactive cells in the medial (infralimbic) PFC (ILPFC). We also determined the percentage of BrdU-labeled cells that were immunoreactive for markers specific to oligodendrocytes, astrocytes, endothelial cells and neurons. RESULTS ECS dramatically enhanced the proliferation of new cells in the infralimbic PFC, and this effect persisted four weeks following the treatments. The percentage of new cells expressing oligodendrocyte precursor cell markers increased slightly following ECS. In contrast, ECS dramatically reduced the number of cells expressing SPRY2. CONCLUSIONS ECS stimulates long-lasting increases in glial proliferation within the ILPFC. ECS also decreases SPRY2 expression in the same region, an effect that might contribute to increased glial proliferation.
Collapse
Affiliation(s)
- Dost Ongür
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ruike T, Takeuchi R, Takata KI, Oshige M, Kasai N, Shimanouchi K, Kanai Y, Nakamura R, Sugawara F, Sakaguchi K. Characterization of a second proliferating cell nuclear antigen (PCNA2) from Drosophila melanogaster. FEBS J 2007; 273:5062-73. [PMID: 17087725 DOI: 10.1111/j.1742-4658.2006.05504.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic DNA polymerase processivity factor, proliferating cell nuclear antigen, is an essential component in the DNA replication and repair machinery. In Drosophila melanogaster, we cloned a second PCNA cDNA that differs from that encoded by the gene mus209 (for convenience called DmPCNA1 in this article). The second PCNA cDNA (DmPCNA2) encoded a 255 amino acid protein with 51.7% identity to DmPCNA1, and was ubiquitously expressed during Drosophila development. DmPCNA2 was localized in nuclei as a homotrimeric complex and associated with Drosophila DNA polymerase delta and epsilonin vivo. Treatment of cells with methyl methanesulfonate or hydrogen peroxide increased the amount of both DmPCNA2 and DmPCNA1 associating with chromatin, whereas exposure to UV light increased the level of association of only DmPCNA1. Our observations suggest that DmPCNA2 may function as an independent sliding clamp of DmPCNA1 when DNA repair occurs.
Collapse
Affiliation(s)
- Tatsushi Ruike
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Imazawa T, Nishikawa A, Miyauchi M, Okazaki K, Takahashi S, Umemura T, Hirose M. DNA Adduct Formation, Nucleolar Segregation and Cell Proliferation in Rats Treated with 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. J Toxicol Pathol 2007. [DOI: 10.1293/tox.20.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Takayoshi Imazawa
- Division of Pathology, National Institute of Health Sciences
- Toxicogenomics Project, National Institute of Biomedical Innovation
| | | | - Makoto Miyauchi
- Division of Pathology, National Institute of Health Sciences
| | - Kazushi Okazaki
- Division of Pathology, National Institute of Health Sciences
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences
| | - Masao Hirose
- Division of Pathology, National Institute of Health Sciences
| |
Collapse
|
46
|
Merkerova M, Bruchova H, Brdicka R. Expression analysis of PCNA gene in chronic myelogenous leukemia--combined application of siRNA silencing and expression arrays. Leuk Res 2006; 31:661-72. [PMID: 17070905 DOI: 10.1016/j.leukres.2006.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 09/30/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
Imatinib metylase is the first choice treatment for BCR/ABL positive chronic myelogenous leukemia (CML). However, as some CML patients develop resistance to imatinib therapy, there is a significant interest in development of alternative treatment strategies, such as identifying targets other than BCR/ABL that may participate in CML. Previously, we demonstrated strong PCNA up-regulation in CML patients. To further study its role in CML pathogenesis, we performed silencing of PCNA expression followed by array experiments. PCNA inhibition led to down-regulation of CDK1, CDK4, PLK1, ERK3, JNK1, STAT5, and several inhibitors of apoptosis (DAXX, Mdm2, survivin). The following genes were up-regulated: CDK inhibitors p21 and p19-INK4D, pro-apoptotic FAST kinase, fibronectin, etc. However, as PCNA affects cell growth in naturally proliferating cells as well as in cancerous cells, it seems to act a secondary role relating to proliferation activity of leukemic cells.
Collapse
MESH Headings
- Apoptosis
- Benzamides
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Silencing
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Oligonucleotide Array Sequence Analysis
- Piperazines/therapeutic use
- Proliferating Cell Nuclear Antigen/genetics
- Pyrimidines/therapeutic use
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Michaela Merkerova
- Institute of Hematology and Blood Transfusion, Department of Molecular Genetics, U nemocnice 1, 12820 Prague 2, Czech Republic.
| | | | | |
Collapse
|
47
|
Perucca P, Cazzalini O, Mortusewicz O, Necchi D, Savio M, Nardo T, Stivala LA, Leonhardt H, Cardoso MC, Prosperi E. Spatiotemporal dynamics of p21CDKN1A protein recruitment to DNA-damage sites and interaction with proliferating cell nuclear antigen. J Cell Sci 2006; 119:1517-27. [PMID: 16551699 DOI: 10.1242/jcs.02868] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21CDKN1A plays a fundamental role in the DNA-damage response by inducing cell-cycle arrest, and by inhibiting DNA replication through association with the proliferating cell nuclear antigen (PCNA). However, the role of such an interaction in DNA repair is poorly understood and controversial. Here, we provide evidence that a pool of p21 protein is rapidly recruited to UV-induced DNA-damage sites, where it colocalises with PCNA and PCNA-interacting proteins involved in nucleotide excision repair (NER), such as DNA polymerase δ, XPG and CAF-1. In vivo imaging and confocal fluorescence microscopy analysis of cells coexpressing p21 and PCNA fused to green or red fluorescent protein (p21-GFP, RFP-PCNA), showed a rapid relocation of both proteins at microirradiated nuclear spots, although dynamic measurements suggested that p21-GFP was recruited with slower kinetics. An exogenously expressed p21 mutant protein unable to bind PCNA neither colocalised, nor coimmunoprecipitated with PCNA after UV irradiation. In NER-deficient XP-A fibroblasts, p21 relocation was greatly delayed, concomitantly with that of PCNA. These results indicate that early recruitment of p21 protein to DNA-damage sites is a NER-related process dependent on interaction with PCNA, thus suggesting a direct involvement of p21 in DNA repair.
Collapse
Affiliation(s)
- Paola Perucca
- Dipartimento di Medicina Sperimentale, sez. Patologia generale, Università di Pavia, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Obermann EC, Went P, Zimpfer A, Tzankov A, Wild PJ, Stoehr R, Pileri SA, Dirnhofer S. Expression of minichromosome maintenance protein 2 as a marker for proliferation and prognosis in diffuse large B-cell lymphoma: a tissue microarray and clinico-pathological analysis. BMC Cancer 2005; 5:162. [PMID: 16368013 PMCID: PMC1343577 DOI: 10.1186/1471-2407-5-162] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 12/20/2005] [Indexed: 11/24/2022] Open
Abstract
Background Minichromosome maintenance (MCM) proteins are essential for the initiation of DNA replication and have been found to be relevant markers for prognosis in a variety of tumours. The aim of this study was to assess the proliferative activity of diffuse large B-cell lymphoma (DLBCL) in tissue microarray (TMA) using one of the minichromosome maintenance proteins (Mcm2) and to explore its potential value to predict prognosis. Methods Immunohistochemistry for Mcm2 was performed on TMAs constructed from 302 cases of DLBCL. A monoclonal mouse antibody was used after heat induced antigen retrieval. Mcm2 expression was scored quantitatively. Positivity for Mcm2 was defined as presence of nuclear expression of Mcm2 in greater than or equal to 40 % of tumour cells. A statistical analysis was carried out of the association of Mcm2 and the clinico-pathological characteristics. Results Mcm2 expression was clearly evident in the nuclei of proliferating non-neoplastic cells and tumour cells. Positivity for Mcm2 was found in 46% (98/211) of analysable cases. A significant correlation existed between Mcm2 expression and presence of bulky disease (p = 0.003). Poor disease specific survival was observed in patients with DLBCL positive for Mcm2 expression in the univariate analysis (p = 0.0424). Conclusion Mcm2 expression can be used to assess tumour proliferation and may be useful as an additional prognostic marker to refine the prediction of outcome in DLBCL.
Collapse
Affiliation(s)
- Ellen C Obermann
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Philip Went
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Annette Zimpfer
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
- Institute of Pathology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexandar Tzankov
- Institute of Pathology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter J Wild
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Robert Stoehr
- Department of Urology, University of Regensburg, 93053 Regensburg, Germany
| | - Stefano A Pileri
- Chair of Pathology and Unit of Haematopathology, University of Bologna, Italy
| | - Stephan Dirnhofer
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
49
|
Abstract
DNA in living cells is constantly subjected to different chemical and physical factors of the environment and to cell metabolites. Some changes altering DNA structure occur spontaneously. This raises the potential danger of harmful mutations that could be transmitted to offspring. To avoid the danger of mutations and changing genetic information, a cell is capable to switch on multiple mechanisms of DNA repair that remove damage and restore native structure. In many cases, removal of the same damage may involve several alternative pathways; this is very important for DNA repair under the most unfavorable conditions. This review summarizes data about all known mechanisms of eukaryotic DNA repair including excision repair (base excision repair and nucleotide excision repair), mismatch repair, repair of double-strand breaks, and cross-link repair. Special attention is given to the regulation of excision repair by different proteins--proliferating cell nuclear antigen (PCNA), p53, and proteasome. The review also highlights problem of bypassing irremovable lesions in DNA.
Collapse
Affiliation(s)
- N P Sharova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
50
|
Wharton SB, Williams GH, Stoeber K, Gelsthorpe CH, Baxter L, Johnson AL, Ince PG. Expression of Ki67, PCNA and the chromosome replication licensing protein Mcm2 in glial cells of the ageing human hippocampus increases with the burden of Alzheimer-type pathology. Neurosci Lett 2005; 383:33-8. [PMID: 15936508 DOI: 10.1016/j.neulet.2005.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 03/29/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Cell-cycle mechanisms may be aberrantly reactivated in the ageing brain and associated with the development of pathology, including Alzheimer's disease. Activation of cell-cycle mechanisms in glia has, however, been little studied. Our aim was to determine whether expression of a marker for chromosomal replication licensing, Mcm2, occurs in glia of the ageing hippocampus, and to compare its expression to that of Ki67 and PCNA. Blocks of hippocampus were obtained from 19 elderly brains derived from the MRC-CFAS neuropathology cohort, which included a spectrum of Alzheimer-type pathology, semi-quantified using the Braak scoring system for neurofibrillary tangles. Mcm2, PCNA and Ki67 were detected immunohistochemically. Expression of Mcm2, Ki67 and PCNA was observed in glial cells and neurons, with a trend to increased expression in association with higher burdens of Alzheimer-type pathology. Mcm2 expression in glial cells showed a significant linear trend across Braak stages (P = 0.043). This study demonstrates that grey and white matter glial cells show expression of cell-cycle markers in the ageing brain and that re-licensing for chromosomal replication is a component of the mechanisms activated. A quantitative relationship to the burden of Alzheimer-type pathology suggests that cell-cycle re-entry in glial cells may be important in the pathogenesis of age-related neurodegeneration.
Collapse
Affiliation(s)
- Stephen B Wharton
- Academic Unit of Pathology, University of Sheffield, Medical School, UK.
| | | | | | | | | | | | | |
Collapse
|