1
|
Premature activation of Cdk1 leads to mitotic events in S phase and embryonic lethality. Oncogene 2018; 38:998-1018. [PMID: 30190546 PMCID: PMC6756125 DOI: 10.1038/s41388-018-0464-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023]
Abstract
Cell cycle regulation, especially faithful DNA replication and mitosis, are crucial to maintain genome stability. Cyclin-dependent kinase (CDK)/cyclin complexes drive most processes in cellular proliferation. In response to DNA damage, cell cycle surveillance mechanisms enable normal cells to arrest and undergo repair processes. Perturbations in genomic stability can lead to tumor development and suggest that cell cycle regulators could be effective targets in anticancer therapy. However, many clinical trials ended in failure due to off-target effects of the inhibitors used. Here, we investigate in vivo the importance of WEE1- and MYT1-dependent inhibitory phosphorylation of mammalian CDK1. We generated Cdk1AF knockin mice, in which two inhibitory phosphorylation sites are replaced by the non-phosphorylatable amino acids T14A/Y15F. We uncovered that monoallelic expression of CDK1AF is early embryonic lethal in mice and induces S phase arrest accompanied by γH2AX and DNA damage checkpoint activation in mouse embryonic fibroblasts (MEFs). The chromosomal fragmentation in Cdk1AF MEFs does not rely on CDK2 and is partly caused by premature activation of MUS81-SLX4 structure-specific endonuclease complexes, as well as untimely onset of chromosome condensation followed by nuclear lamina disassembly. We provide evidence that tumor development in liver expressing CDK1AF is inhibited. Interestingly, the regulatory mechanisms that impede cell proliferation in CDK1AF expressing cells differ partially from the actions of the WEE1 inhibitor, MK-1775, with p53 expression determining the sensitivity of cells to the drug response. Thus, our work highlights the importance of improved therapeutic strategies for patients with various cancer types and may explain why some patients respond better to WEE1 inhibitors.
Collapse
|
2
|
Torvaldson E, Kochin V, Eriksson JE. Phosphorylation of lamins determine their structural properties and signaling functions. Nucleus 2015; 6:166-71. [PMID: 25793944 DOI: 10.1080/19491034.2015.1017167] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lamin A/C is part of the nuclear lamina, a meshwork of intermediate filaments underlying the inner nuclear membrane. The lamin network is anchoring a complex set of structural and linker proteins and is either directly or through partner proteins also associated or interacting with a number of signaling protein and transcription factors. During mitosis the nuclear lamina is dissociated by well established phosphorylation- dependent mechanisms. A-type lamins are, however, also phosphorylated during interphase. A recent study identified 20 interphase phosphorylation sites on lamin A/C and explored their functions related to lamin dynamics; movements, localization and solubility. Here we discuss these findings in the light of lamin functions in health and disease.
Collapse
Affiliation(s)
- Elin Torvaldson
- a Department of Biosciences; Åbo Akademi University ; Turku , Finland
| | | | | |
Collapse
|
3
|
Kochin V, Shimi T, Torvaldson E, Adam SA, Goldman A, Pack CG, Melo-Cardenas J, Imanishi SY, Goldman RD, Eriksson JE. Interphase phosphorylation of lamin A. J Cell Sci 2014; 127:2683-96. [PMID: 24741066 DOI: 10.1242/jcs.141820] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear lamins form the major structural elements that comprise the nuclear lamina. Loss of nuclear structural integrity has been implicated as a key factor in the lamin A/C gene mutations that cause laminopathies, whereas the normal regulation of lamin A assembly and organization in interphase cells is still undefined. We assumed phosphorylation to be a major determinant, identifying 20 prime interphase phosphorylation sites, of which eight were high-turnover sites. We examined the roles of these latter sites by site-directed mutagenesis, followed by detailed microscopic analysis - including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and nuclear extraction techniques. The results reveal three phosphorylation regions, each with dominant sites, together controlling lamin A structure and dynamics. Interestingly, two of these interphase sites are hyper-phosphorylated in mitotic cells and one of these sites is within the sequence that is missing in progerin of the Hutchinson-Gilford progeria syndrome. We present a model where different phosphorylation combinations yield markedly different effects on the assembly, subunit turnover and the mobility of lamin A between, and within, the lamina, the nucleoplasm and the cytoplasm of interphase cells.
Collapse
Affiliation(s)
- Vitaly Kochin
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland Department of Pathology, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Takeshi Shimi
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Elin Torvaldson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland
| | - Stephen A Adam
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Anne Goldman
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Chan-Gi Pack
- Cellular Informatics Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Johanna Melo-Cardenas
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
| | - Robert D Goldman
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland
| |
Collapse
|
4
|
Simon DN, Wilson KL. Partners and post-translational modifications of nuclear lamins. Chromosoma 2013; 122:13-31. [PMID: 23475188 DOI: 10.1007/s00412-013-0399-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
Nuclear intermediate filament networks formed by A- and B-type lamins are major components of the nucleoskeleton that are required for nuclear structure and function, with many links to human physiology. Mutations in lamins cause diverse human diseases ('laminopathies'). At least 54 partners interact with human A-type lamins directly or indirectly. The less studied human lamins B1 and B2 have 23 and seven reported partners, respectively. These interactions are likely to be regulated at least in part by lamin post-translational modifications. This review summarizes the binding partners and post-translational modifications of human lamins and discusses their known or potential implications for lamin function.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
5
|
Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Biosci Rep 2010; 30:243-55. [DOI: 10.1042/bsr20090171] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.
Collapse
|
6
|
Royou A, McCusker D, Kellogg DR, Sullivan W. Grapes(Chk1) prevents nuclear CDK1 activation by delaying cyclin B nuclear accumulation. ACTA ACUST UNITED AC 2008; 183:63-75. [PMID: 18824564 PMCID: PMC2557043 DOI: 10.1083/jcb.200801153] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nuclear mitotic events. In untreated embryos or embryos arrested in interphase with a protein synthesis inhibitor, injection of CycB accelerates nuclear envelope breakdown and mitotic remodeling of the cytoskeleton. Upon activation of the Grapes(checkpoint kinase 1) (Grp(Chk1))-dependent S-phase checkpoint, increased levels of CycB drives cytoplasmic but not nuclear mitotic events. Grp(Chk1) prevents nuclear CDK1 activation by delaying CycB nuclear accumulation through Wee1-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Anne Royou
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
7
|
Bentley AM, Normand G, Hoyt J, King RW. Distinct sequence elements of cyclin B1 promote localization to chromatin, centrosomes, and kinetochores during mitosis. Mol Biol Cell 2007; 18:4847-58. [PMID: 17881737 PMCID: PMC2096604 DOI: 10.1091/mbc.e06-06-0539] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mitotic cyclins promote cell division by binding and activating cyclin-dependent kinases (CDKs). Each cyclin has a unique pattern of subcellular localization that plays a vital role in regulating cell division. During mitosis, cyclin B1 is known to localize to centrosomes, microtubules, and chromatin. To determine the mechanisms of cyclin B1 localization in M phase, we imaged full-length and mutant versions of human cyclin B1-enhanced green fluorescent protein in live cells by using spinning disk confocal microscopy. In addition to centrosome, microtubule, and chromatin localization, we found that cyclin B1 also localizes to unattached kinetochores after nuclear envelope breakdown. Kinetochore recruitment of cyclin B1 required the kinetochore proteins Hec1 and Mad2, and it was stimulated by microtubule destabilization. Mutagenesis studies revealed that cyclin B1 is recruited to kinetochores through both CDK1-dependent and -independent mechanisms. In contrast, localization of cyclin B1 to chromatin and centrosomes is independent of CDK1 binding. The N-terminal domain of cyclin B1 is necessary and sufficient for chromatin association, whereas centrosome recruitment relies on sequences within the cyclin box. Our data support a role for cyclin B1 function at unattached kinetochores, and they demonstrate that separable and distinct sequence elements target cyclin B1 to kinetochores, chromatin, and centrosomes during mitosis.
Collapse
Affiliation(s)
- Anna M. Bentley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Guillaume Normand
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Jonathan Hoyt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Randall W. King
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Hetzer MW, Walther TC, Mattaj IW. PUSHING THE ENVELOPE: Structure, Function, and Dynamics of the Nuclear Periphery. Annu Rev Cell Dev Biol 2005; 21:347-80. [PMID: 16212499 DOI: 10.1146/annurev.cellbio.21.090704.151152] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear envelope (NE) is a highly specialized membrane that delineates the eukaryotic cell nucleus. It is composed of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) and, in metazoa, the lamina. The NE not only regulates the trafficking of macromolecules between nucleoplasm and cytosol but also provides anchoring sites for chromatin and the cytoskeleton. Through these interactions, the NE helps position the nucleus within the cell and chromosomes within the nucleus, thereby regulating the expression of certain genes. The NE is not static, rather it is continuously remodeled during cell division. The most dramatic example of NE reorganization occurs during mitosis in metazoa when the NE undergoes a complete cycle of disassembly and reformation. Despite the importance of the NE for eukaryotic cell life, relatively little is known about its biogenesis or many of its functions. We thus are far from understanding the molecular etiology of a diverse group of NE-associated diseases.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
9
|
Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 2005; 114:212-29. [PMID: 16133352 DOI: 10.1007/s00412-005-0016-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/29/2005] [Accepted: 07/04/2005] [Indexed: 01/15/2023]
Abstract
Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.
Collapse
Affiliation(s)
- Helen A Foster
- Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | |
Collapse
|
10
|
Abstract
Intermediate filament (IF) proteins are the building blocks of cytoskeletal filaments, the main function of which is to maintain cell shape and integrity. The lamins are thought to be the evolutionary progenitors of IF proteins and they have profound influences on both nuclear structure and function. These influences require the lamins to have dynamic properties and dual identities--as building blocks and transcriptional regulators. Which one of these identities underlies a myriad of genetic diseases is a topic of intense debate.
Collapse
Affiliation(s)
- Christopher J Hutchison
- Department of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
11
|
John PC, Mews M, Moore R. Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. PROTOPLASMA 2001; 216:119-142. [PMID: 11732181 DOI: 10.1007/bf02673865] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA replication and mitosis are dependent on the activity of cyclin-dependent protein kinase (CDK) enzymes, which are heterodimers of a catalytic subunit with a cyclin subunit. Cyclin binding to specific individual proteins is thought to provide potential substrates to Cdk. Protein binding by cyclins is assessed in terms of its mechanisms and biological significance, using evidence from diverse organisms including substrate specificity in animal Cdk enzymes containing D-, A-, and B-type cyclins and extensive cyclin gene manipulations in yeasts. Assembly of protein complexes with cyclin/Cdk is noted and the capacity of the cyclin-dependent kinase subunit Cks, in such complex, to extend the range of Cdk substrates is documented and discussed in terms of cell cycle regulation. Cell cycle progression involves changing abundance of individual cyclins, due to changing rates of their transcription or proteolysis, with consequent changes in the substrates of CDK through the cell cycle. Some overlap of the functions of individual cyclins in vivo has been identified by cyclin deletions and is suggested to follow a pattern in which cyclins can commonly complete functions initiated by the preceding cyclins well enough to preserve viability as groups of cyclins are removed by proteolysis. Cyclin accumulation is particularly important in terminating the G1 phase, when it raises CDK activity and starts events leading to DNA replication. It is suggested that plants share this mechanism. The distribution of cyclins and Cdk in maize root tip cells during mitosis and cytokinesis indicates the presence of Cdk1 (Cdc2a) and cyclin CycB1zm;2 at the mature and disassembling preprophase band and the presence of CycB1zm;2 at condensing and condensed chromosomes. Both observations correlate with the earlier-reported capacity of injected metaphase cyclin/CDK to accelerate preprophase band disassembly and chromosome condensation and with observations of the location of Cdk and cyclins in other laboratories. Additionally CycB1zm;2 is seen at the nuclear envelope during its breakdown, which correlates with an acceleration of the process by injected metaphase cyclin B/CDK. A phenomenon possibly unique to the plant kingdom is the persistence of mitotic cyclins after anaphase. Participation of cyclins in cytokinesis is indicated by the concentration of the mitotic cyclin CycA1;zm;1 at the phragmoplast. It is suggested that cyclins have a general function of spatially focusing Cdk activity and that in the plant cell the concentrations of cyclins are important mediators of CDK activity at the cytoskeleton, chromosomes, spindle, nuclear envelope, and phragmoplast.
Collapse
Affiliation(s)
- P C John
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
12
|
Hagting A, Jackman M, Simpson K, Pines J. Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr Biol 1999; 9:680-9. [PMID: 10395539 DOI: 10.1016/s0960-9822(99)80308-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND At M phase, cyclin B1 is phosphorylated in the cytoplasmic retention sequence (CRS), which is required for nuclear export. During interphase, cyclin B1 shuttles between the nucleus and the cytoplasm because constitutive nuclear import is counteracted by rapid nuclear export. In M phase, cyclin B moves rapidly into the nucleus coincident with its phosphorylation, an overall movement that might be caused simply by a decrease in its nuclear export. However, the questions of whether CRS phosphorylation is required for cyclin B1 translocation in mitosis and whether a reduction in nuclear export is sufficient to explain its rapid relocalisation have not been addressed. RESULTS We have used two forms of green fluorescent protein to analyse simultaneously the translocation of wild-type cyclin B1 and a phosphorylation mutant of cyclin B1 in mitosis, and correlated this with an in vitro nuclear import assay. We show that cyclin B1 rapidly translocates into the nucleus approximately 10 minutes before breakdown of the nuclear envelope, and that this movement requires the CRS phosphorylation sites. A cyclin B1 mutant that cannot be phosphorylated enters the nucleus after the wild-type protein. Phosphorylation of the CRS creates a nuclear import signal that enhances cyclin B1 import in vitro and in vivo, in a manner distinct from the previously described import of cyclin B1 mediated by importin beta. CONCLUSIONS We show that phosphorylation of human cyclin B1 is required for its rapid translocation to the nucleus towards the end of prophase. Phosphorylation enhances cyclin B1 nuclear import by creating a nuclear import signal. The phosphorylation of the CRS is therefore a critical step in the control of mitosis.
Collapse
Affiliation(s)
- A Hagting
- Wellcome/CRC Institute, Department of Zoology, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | | | |
Collapse
|
13
|
Hinchcliffe EH, Thompson EA, Miller FJ, Yang J, Sluder G. Nucleo-cytoplasmic interactions that control nuclear envelope breakdown and entry into mitosis in the sea urchin zygote. J Cell Sci 1999; 112 ( Pt 8):1139-48. [PMID: 10085249 DOI: 10.1242/jcs.112.8.1139] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In sea urchin zygotes and mammalian cells nuclear envelope breakdown (NEB) is not driven simply by a rise in cytoplasmic cyclin dependent kinase 1-cyclin B (Cdk1-B) activity; the checkpoint monitoring DNA synthesis can prevent NEB in the face of mitotic levels of Cdk1-B. Using sea urchin zygotes we investigated whether this checkpoint prevents NEB by restricting import of regulatory proteins into the nucleus. We find that cyclin B1-GFP accumulates in nuclei that cannot complete DNA synthesis and do not break down. Thus, this checkpoint limits NEB downstream of both the cytoplasmic activation and nuclear accumulation of Cdk1-B1. In separate experiments we fertilize sea urchin eggs with sperm whose DNA has been covalently cross-linked to inhibit replication. When the pronuclei fuse, the resulting zygote nucleus does not break down for >180 minutes (equivalent to three cell cycles), even though Cdk1-B activity rises to greater than mitotic levels. If pronuclear fusion is prevented, then the female pronucleus breaks down at the normal time (average 68 minutes) and the male pronucleus with cross-linked DNA breaks down 16 minutes later. This male pronucleus has a functional checkpoint because it does not break down for >120 minutes if the female pronucleus is removed just prior to NEB. These results reveal the existence of an activity released by the female pronucleus upon its breakdown, that overrides the checkpoint in the male pronucleus and induces NEB. Microinjecting wheat germ agglutinin into binucleate zygotes reveals that this activity involves molecules that must be actively translocated into the male pronucleus.
Collapse
Affiliation(s)
- E H Hinchcliffe
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- P Nurse
- Imperial Cancer Research Fund, London, UK
| |
Collapse
|
15
|
Lottering ML, de Kock M, Viljoen TC, Grobler CJ, Seegers JC. 17beta-Estradiol metabolites affect some regulators of the MCF-7 cell cycle. Cancer Lett 1996; 110:181-6. [PMID: 9018099 DOI: 10.1016/s0304-3835(96)04489-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The activity of p34(cdc2) plays a key role in the regulation of the eukaryotic cell cycle. Another cell cycle associated molecule is PCNA. We investigated the effects of 2-hydroxy-17beta-estradiol, a cell proliferator, and 2-methoxy-17beta-estradiol, a potent inhibitor of cell growth, on the levels and activity of p34(cdc2) and on the levels of PCNA, as well as on protein phosphorylation in MCF-7 cells. 2-Hydroxyestradiol increased p34(cdc2) activity at G1/S and elevated PCNA levels during S-phase. 2-Methoxyestradiol caused unscheduled activation of p34(cdc2) in S-phase and decreased levels of p34(cdc2) and PCNA during G2/M. We conclude that 2-hydroxy- and 2-methoxyestradiol have definite, though different regulatory functions during the cell cycle.
Collapse
Affiliation(s)
- M L Lottering
- Department of Physiology, Faculty of Medicine, University of Pretoria, South Africa
| | | | | | | | | |
Collapse
|
16
|
Foisner R, Malecz N, Dressel N, Stadler C, Wiche G. M-phase-specific phosphorylation and structural rearrangement of the cytoplasmic cross-linking protein plectin involve p34cdc2 kinase. Mol Biol Cell 1996; 7:273-88. [PMID: 8688558 PMCID: PMC275879 DOI: 10.1091/mbc.7.2.273] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Plectin, a widespread and abundant cytoskeletal cross-linking protein, serves as a target for protein kinases throughout the cell cycle, without any significant variation in overall phosphorylation level. One of the various phosphorylation sites of the molecule was found to be phosphorylated preferentially during mitosis. By in vivo phosphorylation of ectopically expressed plectin domains in stably transfected Chinese hamster ovary cells, this site was mapped to the C-terminal repeat 6 domain of the polypeptide. The same site has been identified as an in vitro target for p34cdc2 kinase. Mitosis-specific phosphorylation of plectin was accompanied by a rearrangement of plectin structures, changing from a filamentous, largely vimentin-associated state in interphase to a diffuse vimentin-independent distribution in mitosis as visualized by immunofluorescence microscopy. Subcellular fractionation studies showed that in interphase cells up to 80% of cellular plectin was found associated with an insoluble cell fraction mostly consisting of intermediate filaments, while during mitosis the majority of plectin (> 75%) became soluble. Furthermore, phosphorylation of purified plectin by p34cdc2 kinase decreased plectin's ability to interact with preassembled vimentin filaments in vitro. Together, our data suggest that a mitosis-specific phosphorylation involving p34cdc2 kinase regulates plectin's cross-linking activities and association with intermediate filaments during the cell cycle.
Collapse
Affiliation(s)
- R Foisner
- Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
17
|
Abstract
The facts that the nuclear matrix represents a structural framework of the cell nucleus and that nuclear events, such as DNA replication, transcription, and DNA repair, are associated with this skeletal structure suggest that its components are subject to cell cycle-regulatory mechanisms. Cell cycle regulation has been shown for nuclear lamina assembly and disassembly during mitosis and chromatin reorganization. Little attention has so far been paid to internal nuclear matrix proteins and matrix-associated proteins with respect to the cell cycle. This survey attempts to summarize available data and presents experimental evidence that important metabolic functions of the nucleus are regulated by the transient, cell cycle-dependent attachment of enzymes and regulatory proteins to the nuclear matrix. Results on thymidine kinase and RNA polymerase during the synchronous cell cycle of Physarum polycephalum demonstrate that reversible binding to the nuclear matrix represents an additional level of regulation for nuclear processes.
Collapse
Affiliation(s)
- P Loidl
- Department of Microbiology, University of Innsburck-Medical School, Austria
| | | |
Collapse
|
18
|
Moir RD, Spann TP, Goldman RD. The dynamic properties and possible functions of nuclear lamins. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162B:141-82. [PMID: 8557486 DOI: 10.1016/s0074-7696(08)62616-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nuclear lamins are thought to form a thin fibrous layer called the nuclear lamina, underlying the inner nuclear envelope membrane. In this review, we summarize data on the dynamic properties of nuclear lamins during the cell cycle and during development. We discuss the implications of dynamics for lamin functions. The lamins may be involved in DNA replication, chromatin organization, differentiation, nuclear structural support, and nuclear envelope reassembly. Emphasis is placed on recent data that indicate that the lamina, contrary to previous views, is not a static structure. For example, the lamins form nucleoplasmic foci, distinct from the peripheral lamina, which vary in their patterns of distribution as well as their composition in a cell cycle-dependent manner. During the S phase, these foci colocalize with chromatin and sites of DNA replication. At other points during the cell cycle, they may represent sites of lamin post-translation processing that take place prior to incorporation into the lamina. Secondary modifications of the lamins such as isoprenylation and phosphorylation are involved in the regulation of the dynamic properties and the assembly of lamins. In addition, a number of lamin-associated proteins have been recently identified and these are described along with their potential functions.
Collapse
Affiliation(s)
- R D Moir
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- J Pines
- Wellcome/CRC Institute, Cambridge, U.K
| |
Collapse
|
20
|
Dalton M, Sinensky M. Expression systems for nuclear lamin proteins: farnesylation in assembly of nuclear lamina. Methods Enzymol 1995; 250:134-48. [PMID: 7651146 DOI: 10.1016/0076-6879(95)50068-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M Dalton
- Eleanor Roosevelt Institute, Denver, Colorado 80206, USA
| | | |
Collapse
|
21
|
Towards understanding lamin gene regulation. J Biosci 1994. [DOI: 10.1007/bf02703206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Smith S, Blobel G. Colocalization of vertebrate lamin B and lamin B receptor (LBR) in nuclear envelopes and in LBR-induced membrane stacks of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1994; 91:10124-8. [PMID: 7937849 PMCID: PMC44970 DOI: 10.1073/pnas.91.21.10124] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have expressed human lamin B and the chicken lamin B receptor (LBR), either separately or together, in yeast and have monitored the subcellular location of the expressed proteins by immunofluorescence microscopy, immunoelectron microscopy, and cell fractionation. At the light microscopic level, the heterologous lamin B localized to the yeast nuclear rim and at electron microscopic resolution was found subjacent to the yeast inner nuclear membrane. These data indicate that vertebrate lamin B was correctly targeted in yeast. Expression of the heterologous LBR, either alone or together with the heterologous lamin B, resulted in the formation of membrane stacks primarily adjacent to the nuclear envelope, but also projecting from the nuclear envelope into the cytoplasm or under the plasma membrane. Double immunoelectron microscopy showed colocalization of the heterologous lamin B and LBR in the yeast nuclear envelope and in the LBR-induced membrane stacks. Cell fractionation showed the presence of the heterologous lamin B and LBR in a subnuclear fraction enriched in nuclear envelopes. The heterologous lamin B was extracted at 8 M urea, but not at 4 M urea, thus behaving as a peripheral membrane protein and indistinguishable from assembled lamins. The heterologous LBR was not extracted by 8 M urea, indicating that it was integrated into the membrane. The observed colocalization and cofractionation are consistent with previously reported in vitro binding data and suggest that heterologous lamin B and LBR interact with each other when coexpressed in yeast.
Collapse
Affiliation(s)
- S Smith
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021
| | | |
Collapse
|
23
|
|
24
|
Affiliation(s)
- L S Cox
- Department of Biochemistry, University of Dundee, Scotland
| | | |
Collapse
|
25
|
Mackay D, Kieckbusch R, Adamczewski J, Warren G. Cyclin A-mediated inhibition of intra-Golgi transport requires p34cdc2. FEBS Lett 1993; 336:549-54. [PMID: 8282125 DOI: 10.1016/0014-5793(93)80874-t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An in vitro assay was used to study the role of p34cdc2 in cyclin A-mediated vesicular transport inhibition. It was shown that the S-phase kinase p33cdk2 reduced the effect of cyclin A on transport assays performed with sHeLa cytosol, even though histone kinase was strongly activated. Also, transport with FT210 cytosol (which is temperature-sensitive for p34cdc2) was inhibited by cyclin A only at the permissive temperature. However, the phosphatase inhibitor microcystin inhibited transport without any requirement for p34cdc2 activity. These results show that transport is inhibited by cyclin A via p34cdc2, and also by another kinase, possibly downstream of p34cdc2.
Collapse
Affiliation(s)
- D Mackay
- Cell Biology Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | |
Collapse
|
26
|
Denison SH, Käfer E, May GS. Mutation in the bimD gene of Aspergillus nidulans confers a conditional mitotic block and sensitivity to DNA damaging agents. Genetics 1993; 134:1085-96. [PMID: 8375649 PMCID: PMC1205577 DOI: 10.1093/genetics/134.4.1085] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mutation in the bimD gene of Aspergillus nidulans results in a mitotic block in anaphase characterized by a defective mitosis. Mutation in bimD also confers, at temperatures permissive for the mitotic arrest phenotype, an increased sensitivity to DNA damaging agents, including methyl methanesulfonate and ultraviolet light. In order to better understand the relationship between DNA damage and mitotic progression, we cloned the bimD gene from Aspergillus. A cosmid containing the bimD gene was identified among pools of cosmids by cotransformation with the nutritional selective pyrG gene of a strain carrying the recessive, temperature-sensitive lethal bimD6 mutation. The bimD gene encodes a predicted polypeptide of 166,000 daltons in mass and contains amino acid sequence motifs similar to those found in some DNA-binding transcription factors. These sequences include a basic domain followed by a leucine zipper, which together are called a bZIP motif, and a carboxyl-terminal domain enriched in acidic amino acids. Overexpression of the wild-type bimD protein resulted in an arrest of the nuclear division cycle that was reversible and determined to be in either the G1 or S phase of the cell cycle. Our data suggest that bimD may play an essential regulatory role relating to DNA metabolism which is required for a successful mitosis.
Collapse
Affiliation(s)
- S H Denison
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
27
|
Hennekes H, Peter M, Weber K, Nigg EA. Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2. J Cell Biol 1993; 120:1293-304. [PMID: 8449977 PMCID: PMC2119761 DOI: 10.1083/jcb.120.6.1293] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The nuclear lamina is a karyoskeletal structure at the nucleoplasmic surface of the inner nuclear membrane. Its assembly state is regulated by phosphorylation of the intermediate filament type lamin proteins. Strong evidence has been obtained for a causal link between phosphorylation of lamins by the p34cdc2 protein kinase and disassembly of the nuclear lamina during mitosis. In contrast, no information is currently available on the role of lamin phosphorylation during interphase of the cell cycle. Here, we have identified four protein kinase C phosphorylation sites in purified chicken lamin B2 as serines 400, 404, 410, and 411. In vivo, the tryptic peptide containing serines 400 and 404 is phosphorylated throughout interphase, whereas serines 410 and 411 become phosphorylated specifically in response to activation of protein kinase C by phorbol ester. Prompted by the close proximity of serines 410/411 to the nuclear localization signal of lamin B2, we have studied the influence of phosphorylation of these residues on nuclear transport. Using an in vitro assay, we show that phosphorylation of lamin B2 by protein kinase C strongly inhibits transport to the nucleus. Moreover, phorbol ester treatment of intact cells leads to a substantial reduction of the rate of nuclear import of newly synthesized lamin B2 in vivo. These findings have implications for the dynamic structure of the nuclear lamina, and they suggest that the modulation of nuclear transport rates by cytoplasmic phosphorylation may represent a general mechanism for regulating nuclear activities.
Collapse
Affiliation(s)
- H Hennekes
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | | | | | |
Collapse
|
28
|
Martin RC, Mok MC, Mok DW. Cytolocalization of zeatin O-xylosyltransferase in Phaseolus. Proc Natl Acad Sci U S A 1993; 90:953-7. [PMID: 11607359 PMCID: PMC45788 DOI: 10.1073/pnas.90.3.953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zeatin O-xylosyltransferase (EC 2.4.2.-) mediates the formation of O-xylosylzeatin from trans-zeatin and UDP-xylose in immature seeds of Phaseolus vulgaris. Tissue printing with a monoclonal antibody specific for the enzyme and a cDNA probe demonstrated that the enzyme was primarily localized and synthesized in the endosperm. Immunolocalization performed on monolayer endosperm at the free-nuclei stage and on EM sections demonstrated that the enzyme was associated with the nucleus as well as with the cytoplasm. Immunoanalysis of nuclear fractions revealed that the enzyme was retained in the nuclear pellet. Western analysis also showed that the enzyme was present in the nuclei of cotyledons and endosperm callus. The findings suggest that the enzyme may be involved in the nuclear-cytoplasmic transport of cytokinins and related molecules or, possibly, with chromatin of rapidly dividing cells.
Collapse
Affiliation(s)
- R C Martin
- Department of Horticulture and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
29
|
Genetic damage and escape from proliferation control. Int J Cancer 1993. [DOI: 10.1002/ijc.2910530129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Affiliation(s)
- D Wickramasinghe
- Department of Anatomy and Cellular Biology, Tufts University Schools of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
31
|
Russo G, Vandenberg M, Yu I, Bae Y, Franza B, Marshak D. Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88704-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Irvine RF, Divecha N. Phospholipids in the nucleus--metabolism and possible functions. SEMINARS IN CELL BIOLOGY 1992; 3:225-35. [PMID: 1330068 DOI: 10.1016/1043-4682(92)90024-p] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most of the phospholipids in the nuclear envelope are contained in the double nuclear membrane, and this has an active lipid metabolism consistent with its origins as a component of the endoplasmic reticular system. However, even after removal of the nuclear membrane with detergents, some phospholipids, mostly of unknown location and function, remain. Amongst these are all of the components of what appears to be a nuclear polyphosphoinositide signalling system, distinct from the well-established inositide pathway found in the plasma membrane. The consequences for nuclear function of the activation of these two inositide pathways are discussed, with a detailed consideration of proposed intranuclear functions for protein kinase C, and the maintenance of nuclear Ca2+ homoeostasis.
Collapse
Affiliation(s)
- R F Irvine
- Department of Biochemistry, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, UK
| | | |
Collapse
|
33
|
Abstract
The nuclear lamina is a karyoskeletal structure composed of intermediate filament type proteins. It underlies the inner nuclear membrane and confers mechanical stability to the nuclear envelope. In addition, it interacts with chromatin and may thereby participate in determining the three-dimensional organization of the interphase nucleus. During mitosis, the nuclear lamina is transiently disassembled, most probably through hyperphosphorylation of lamin proteins by the protein kinase p34cdc2, a key regulator of the eukaryotic cell cycle. Mitotic disassembly of the lamina is necessary but not sufficient for nuclear envelope breakdown. Electron microscopic analyses have begun to provide insights into the principles that govern lamina assembly in vitro, and sequence motifs required for targeting newly synthesized lamins to the nuclear envelope have been identified. Of particular interest, lamins were shown to undergo a type of hydrophobic modification known as isoprenylation. Finally, recent studies addressing the nature of lamin-chromatin interactions may provide the basis for elucidating the role of lamins in organizing the distribution of interphase chromatin.
Collapse
Affiliation(s)
- E A Nigg
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| |
Collapse
|
34
|
Molloy S, Little M. p34cdc2 kinase-mediated release of lamins from nuclear ghosts is inhibited by cAMP-dependent protein kinase. Exp Cell Res 1992; 201:494-9. [PMID: 1322319 DOI: 10.1016/0014-4827(92)90299-n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During mitosis the lamins are found in a hyperphosphorylated and soluble state. p34cdc2 kinase (MPF), a protein kinase complex with a pivotal role during mitosis, has been found to phosphorylate the lamins and, in some cases, though not all, to cause depolymerization of the lamina in vitro. Due to the variety of protein interactions in the lamina, there is a probable requirement for multiple enzyme activities to effect its breakdown in mitosis. Using nuclear ghosts as substrate, we have fractionated a Xenopus mitotic extract into a lamin-releasing fraction (p34cdc2 kinase) and a fraction that inhibits p34cdc2 kinase-mediated lamin release if the nuclear ghosts are first preincubated in it. The lamin-release-inhibiting activity in the p34cdc2 kinase-depleted mitotic extract is, in turn, inhibited if PKI, a protein kinase inhibitor specific for PKA, is included in the preincubation reaction mixture. Furthermore, a similar degree of inhibition can be achieved by using purified PKA to preincubate the nuclear ghosts. This suggests that dephosphorylation of PKA substrate sites is necessary for lamin depolymerization.
Collapse
Affiliation(s)
- S Molloy
- Institute for Cell and Tumour Biology, German Cancer Research Centre, Heidelberg
| | | |
Collapse
|
35
|
Paddy MR, Agard DA, Sedat JW. An extended view of nuclear lamin structure, function, and dynamics. SEMINARS IN CELL BIOLOGY 1992; 3:255-66. [PMID: 1421171 DOI: 10.1016/1043-4682(92)90027-s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecularly-based studies of nuclear lamins have progressed at a rapid rate in the last decade. However, we still have no answer to the most important question: what are the functions of lamins? In this review we describe recent experiments which challenge traditional views of lamin function and structure. These surprising results indicate that much lamin functionality remains to be discovered, and that more global approaches to lamin structure and function are especially appropriate at this time.
Collapse
Affiliation(s)
- M R Paddy
- Howard Hughes Medical Institute, University of California, San Francisco 94143-0554
| | | | | |
Collapse
|
36
|
Lew J, Beaudette K, Litwin C, Wang J. Purification and characterization of a novel proline-directed protein kinase from bovine brain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42222-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Abstract
The past 18 months have seen significant advances in our knowledge of the constituents of the nuclear envelope, their interactions during interphase and the mechanisms involved in their mitotic dynamics. Although most of the new data are in general agreement with, and contribute detail to, our traditional image of the nuclear envelope, a few observations appear to mark the beginning of new and important directions in research.
Collapse
Affiliation(s)
- G N Dessev
- Northwestern University Medical School, Chicago, Illinois
| |
Collapse
|
38
|
Abstract
Considerable progress has recently been made in elucidating the biochemical mechanisms regulating changes in chromatin structure during all stages of the cell cycle. Although anticipated, the apparently ubiquitous role played by phosphorylation/dephosphorylation reactions in modulating these changes is, nonetheless, remarkable.
Collapse
Affiliation(s)
- R Reeves
- Department of Biochemistry and Biophysics, Washington State University, Pullman 99164-4660
| |
Collapse
|
39
|
Peter M, Sanghera JS, Pelech SL, Nigg EA. Mitogen-activated protein kinases phosphorylate nuclear lamins and display sequence specificity overlapping that of mitotic protein kinase p34cdc2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:287-94. [PMID: 1555589 DOI: 10.1111/j.1432-1033.1992.tb16779.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Members of the mitogen-activated protein (MAP) kinase family are implicated in mediating entry of cells into the cell cycle, as well as passage through meiotic M phase. These kinases have attracted much interest because their activation involves phosphorylation on both tyrosine and threonine residues, but little is known about their physiological targets. In this study, two distinct members of the MAP kinase family (p44mpk and p42mapk) are shown to phosphorylate chicken lamin B2 at a single site identified as Ser16. Moreover, these MAP kinases cause depolymerization of in-vitro-assembled longitudinal lamin head-to-tail polymers. Ser16 was previously shown to be phosphorylated during mitosis in vivo, and to be a target of the mitotic protein kinase p34cdc2 in vitro. Accordingly, lamins were proposed to be direct in vivo substrates of p34cdc2. This proposal is supported by quantitative analyses indicating that lamin B2, when assayed in vitro, is a substantially better substrate for p34cdc2 than for MAP kinases. Nevertheless, a physiological role of MAP kinases in lamin phosphorylation is not excluded. The observation that members of the MAP kinase family display sequence specificities overlapping that of p34cdc2 raises the possibility that some of the purported substrates of p34cdc2 may actually be physiological substrates of MAP kinases.
Collapse
Affiliation(s)
- M Peter
- Swiss Institute for Experimental Cancer Research, Epalinges
| | | | | | | |
Collapse
|
40
|
Shimanuki M, Goebl M, Yanagida M, Toda T. Fission yeast sts1+ gene encodes a protein similar to the chicken lamin B receptor and is implicated in pleiotropic drug-sensitivity, divalent cation-sensitivity, and osmoregulation. Mol Biol Cell 1992; 3:263-73. [PMID: 1320960 PMCID: PMC275528 DOI: 10.1091/mbc.3.3.263] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Schizosaccharomyces pombe sts1+ gene, identified by supersensitive mutations to a protein kinase inhibitor, staurosporine, was isolated by complementation by the use of a fission yeast genomic library. Nucleotide sequencing shows that the sts1+ gene encodes a 453 amino acid putative membrane-associated protein that is significantly similar (26% identity) to the chicken lamin B receptor. It is also highly related (53% identity) to a budding yeast ORF, YGL022. These three proteins contain a similar hydrophobicity pattern consisting of eight or nine putative transmembrane domains. By gene disruption we demonstrate that the sts1+ gene is not essential for viability. These disruptants exhibit pleiotropic defects, such as cold-sensitivity for growth and at the permissive temperature, a supersensitivity to divalent cations and several unrelated drugs including staurosporine, caffeine, chloramphenicol, sorbitol, and SDS. Disruption of the sts1+ gene does not lead to a sensitivity to thiabendazole or hydroxyurea.
Collapse
Affiliation(s)
- M Shimanuki
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
41
|
Abstract
Recently, progress in the study of lamins has been made in three areas: signals required for targetting newly synthesized lamins to the correct subnuclear compartment have been identified; information on lamina assembly has been obtained from in vitro studies using bacterially expressed proteins; and a mechanistic explanation for how the nuclear lamina is diassembled at the onset of mitosis is emerging.
Collapse
Affiliation(s)
- E A Nigg
- Swiss Institute for Experimental Cancer Research, Epalinges
| |
Collapse
|
42
|
Hurt EC, Mutvei A, Carmo-Fonseca M. The nuclear envelope of the yeast Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 136:145-84. [PMID: 1380493 DOI: 10.1016/s0074-7696(08)62052-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- E C Hurt
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
43
|
MacNeill SA, Warbrick E, Fantes PA. Controlling cell cycle progress in the fission yeast Schizosaccharomyces pombe. Curr Opin Genet Dev 1991; 1:307-12. [PMID: 1840886 DOI: 10.1016/s0959-437x(05)80292-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The suitability of fission yeast as a model for understanding the eukaryotic cell cycle has been validated in five years of exciting developments. We review recent advances in understanding the nature of the controls that regulate progression through the cell cycle and the coordination of DNA replication and mitosis.
Collapse
Affiliation(s)
- S A MacNeill
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
44
|
Klymkowsky MW, Maynell LA, Nislow C. Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vg1. J Biophys Biochem Cytol 1991; 114:787-97. [PMID: 1714462 PMCID: PMC2289896 DOI: 10.1083/jcb.114.4.787] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During meiotic maturation, the cortical cytokeratin filament system of the Xenopus oocyte disappears (Klymkowsky, M. W., and L. A. Maynell. 1989. Dev. Biol. 134:479). Here we demonstrate that this disappearance results from the severing of cytokeratin filaments into a heterogenous population of oligomers, with S- values ranging from 12S and greater. Cytokeratin filament severing correlates with the hyperphosphorylation of the type II cytokeratin of the oocyte. Both the severing of cytokeratin filaments and cytokeratin hyperphosphorylation are reversed by treatment with cycloheximide. These data suggest that fragmentation of cytokeratin filaments is controlled, at least in part, by the phosphorylation of the type II cytokeratin, and that the cytokeratin kinase activity responsible is biosynthetically labile. Cytokeratin filaments have been suggested to anchor the maternal mRNA Vg1 to the vegetal cortex of the oocyte (Pondel, M., and M. L. King. 1988. Proc. Natl. Acad. Sci. USA. 85:7216). By injecting fractions containing active maturation promoting factor or a purified, mutant cyclin protein, we find that the bulk of the Vg1 mRNA in the oocyte can be solubilized under conditions that block the fragmentation of cytokeratin filaments, and that the fragmentation of cytokeratin filaments itself leads to the solubilization of only a minor fraction of the Vg1 mRNA. Thus, at best, cytokeratin filaments directly anchor only a minor fraction of the Vg1 mRNA in the oocyte. Moreover, factors distinct from maturation promoting factor appear to be required for the complete solubilization of Vg1 mRNA during oocyte maturation.
Collapse
Affiliation(s)
- M W Klymkowsky
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | |
Collapse
|
45
|
Peter M, Heitlinger E, Häner M, Aebi U, Nigg EA. Disassembly of in vitro formed lamin head-to-tail polymers by CDC2 kinase. EMBO J 1991; 10:1535-44. [PMID: 1851086 PMCID: PMC452817 DOI: 10.1002/j.1460-2075.1991.tb07673.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. At the onset of mitosis it depolymerizes, presumably in response to phosphorylation of the lamin proteins. Recently, cdc2 kinase, a major regulator of the eukaryotic cell cycle, was shown to induce lamina depolymerization when incubated with isolated nuclei. Here, we have analysed the structural consequences of lamin phosphorylation by cdc2 kinase using lamin head-to-tail polymers reconstituted in vitro from bacterially expressed chicken lamin B2 protein as a substrate. The effects of phosphorylation were monitored by both a pelleting assay and electron microscopy. We show that lamin B2 head-to-tail polymers disassemble in response to phosphorylation of specific sites that are phosphorylated also during mitosis in vivo. These sites are located within SP/TP motifs N- and C-terminal to the central alpha-helical rod domain of lamin proteins. Subsequent dephosphorylation of these sites by purified phosphatase 1 allows reformation of lamin head-to-tail polymers. The relative importance of N- and C-terminal phosphorylation sites for controlling the assembly state of nuclear lamins was assessed by mutational analysis. Polymers formed of lamin proteins carrying mutations in the C-terminal phosphoacceptor motif could still be disassembled by cdc2 kinase. In contrast, a single point mutation in the N-terminal site (Ser16----Ala) rendered head-to-tail polymers resistant to disassembly. These results emphasize the importance of the N-terminal end domain for lamin head-to-tail polymerization in vitro, and they demonstrate that phosphorylation-dephosphorylation is sufficient to control the longitudinal assembly of lamin B2 dimers.
Collapse
Affiliation(s)
- M Peter
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | | | | | | | |
Collapse
|
46
|
Editorial overview. Curr Opin Cell Biol 1991. [DOI: 10.1016/0955-0674(91)90145-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|