1
|
Mendoza G, González-Pastor R, Sánchez JM, Arce-Cerezo A, Quintanilla M, Moreno-Bueno G, Pujol A, Belmar-López C, de Martino A, Riu E, Rodriguez TA, Martin-Duque P. The E1a Adenoviral Gene Upregulates the Yamanaka Factors to Induce Partial Cellular Reprogramming. Cells 2023; 12:1338. [PMID: 37174738 PMCID: PMC10177049 DOI: 10.3390/cells12091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The induction of pluripotency by enforced expression of different sets of genes in somatic cells has been achieved with reprogramming technologies first described by Yamanaka's group. Methodologies for generating induced pluripotent stem cells are as varied as the combinations of genes used. It has previously been reported that the adenoviral E1a gene can induce the expression of two of the Yamanaka factors (c-Myc and Oct-4) and epigenetic changes. Here, we demonstrate that the E1a-12S over-expression is sufficient to induce pluripotent-like characteristics closely to epiblast stem cells in mouse embryonic fibroblasts through the activation of the pluripotency gene regulatory network. These findings provide not only empirical evidence that the expression of one single factor is sufficient for partial reprogramming but also a potential mechanistic explanation for how viral infection could lead to neoplasia if they are surrounded by the appropriate environment or the right medium, as happens with the tumorogenic niche.
Collapse
Affiliation(s)
- Gracia Mendoza
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Rebeca González-Pastor
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Juan Miguel Sánchez
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Altamira Arce-Cerezo
- Centro de Biotecnología Animal y de Terapia Génica (CBATEG), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Miguel Quintanilla
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Universidad Autónoma de Madrid (UAM), (UAM-CSIC), 28029 Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Universidad Autónoma de Madrid (UAM), (UAM-CSIC), 28029 Madrid, Spain
- Fundación MD Anderson Internacional, 28033 Madrid, Spain
- Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Red de Cáncer (CIBERONC) and Red de Nanomedicina y Nanomateriales (CIBER-BBN), 28029 Madrid, Spain
| | - Anna Pujol
- Centro de Biotecnología Animal y de Terapia Génica (CBATEG), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Carolina Belmar-López
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- OncoGenomics Lab, Universidad Privada San Juan Bautista, Lima 15038, Peru
| | - Alba de Martino
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Efrén Riu
- Centro de Biotecnología Animal y de Terapia Génica (CBATEG), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Pilar Martin-Duque
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Red de Cáncer (CIBERONC) and Red de Nanomedicina y Nanomateriales (CIBER-BBN), 28029 Madrid, Spain
- Fundación Araid, 50018 Zaragoza, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Cimas FJ, Callejas-Valera JL, García-Olmo DC, Hernández-Losa J, Melgar-Rojas P, Ruiz-Hidalgo MJ, Pascual-Serra R, Ortega-Muelas M, Roche O, Marcos P, Garcia-Gil E, Fernandez-Aroca DM, Ramón y Cajal S, Gutkind JS, Sanchez-Prieto R. E1a is an exogenous in vivo tumour suppressor. Cancer Lett 2017; 399:74-81. [DOI: 10.1016/j.canlet.2017.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 04/09/2017] [Indexed: 12/17/2022]
|
3
|
Boquoi A, Arora S, Chen T, Litwin S, Koh J, Enders GH. Reversible cell cycle inhibition and premature aging features imposed by conditional expression of p16Ink4a. Aging Cell 2015; 14:139-47. [PMID: 25481981 PMCID: PMC4326901 DOI: 10.1111/acel.12279] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2014] [Indexed: 11/28/2022] Open
Abstract
The cyclin-dependent kinase (Cdk) inhibitor p16Ink4a (p16) is a canonical mediator of cellular senescence and accumulates in aging tissues, where it constrains proliferation of some progenitor cells. However, whether p16 induction in tissues is sufficient to inhibit cell proliferation, mediate senescence, and/or impose aging features has remained unclear. To address these issues, we generated transgenic mice that permit conditional p16 expression. Broad induction at weaning inhibited proliferation of intestinal transit-amplifying and Lgr5+ stem cells and rapidly imposed features of aging, including hair loss, skin wrinkling, reduced body weight and subcutaneous fat, an increased myeloid fraction in peripheral blood, poor dentition, and cataracts. Aging features were observed with multiple combinations of p16 transgenes and transactivators and were largely abrogated by a germline Cdk4 R24C mutation, confirming that they reflect Cdk inhibition. Senescence markers were not found, and de-induction of p16, even after weeks of sustained expression, allowed rapid recovery of intestinal cell proliferation and reversal of aging features in most mice. These results suggest that p16-mediated inhibition of Cdk activity is sufficient to inhibit cell proliferation and impose aging features in somatic tissues of mammals and that at least some of these aging features are reversible.
Collapse
Affiliation(s)
- Amelie Boquoi
- Cancer Biology Program Fox Chase Cancer Center Philadelphia PA USA
- Department of Medicine Fox Chase Cancer Center Philadelphia PA USA
| | - Sanjeevani Arora
- Cancer Biology Program Fox Chase Cancer Center Philadelphia PA USA
- Department of Medicine Fox Chase Cancer Center Philadelphia PA USA
| | - Tina Chen
- Cancer Biology Program Fox Chase Cancer Center Philadelphia PA USA
- Department of Medicine Fox Chase Cancer Center Philadelphia PA USA
| | - Sam Litwin
- Department of Biostatistics Fox Chase Cancer Center Philadelphia PA USA
| | - James Koh
- Department of Surgery Duke University Medical Center Durham NC USA
| | - Greg H. Enders
- Cancer Biology Program Fox Chase Cancer Center Philadelphia PA USA
- Department of Medicine Fox Chase Cancer Center Philadelphia PA USA
| |
Collapse
|
4
|
Schneider MR. Genetic mouse models for skin research: strategies and resources. Genesis 2012; 50:652-64. [PMID: 22467532 DOI: 10.1002/dvg.22029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022]
Abstract
A number of features contributed to establishing the mouse as the favorite model organism for skin research: the genetic and pathophysiological similarities to humans, the small size and relatively short reproductive period, meaning low maintenance costs, and the availability of sophisticated tools for manipulating the genome, gametes, and embryos. While initial studies depended on strains displaying skin abnormalities due to spontaneous genetic mutations, the availability of the transgenic and knockout technologies and their astonishing perfection during the last decades allowed the development of mouse lines permitting any imaginable genetic modification including gene inactivation, substitution, modification, or overexpression. While these technologies have already contributed to the functional analysis of several genes and processes related to skin research, continued progress requires understanding, awareness, and access to these mouse resources. This review will identify the strategies currently employed for the genetic manipulation of mice in skin research, and outline current resources and their limitations.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| |
Collapse
|
5
|
Fields AL, Soprano DR, Soprano KJ. Characterization of alterations of Rb2/p130 tumor suppressor in all-trans-retinoic acid resistant SK-OV3 ovarian carcinoma cells. J Cell Physiol 2008; 217:77-85. [DOI: 10.1002/jcp.21477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Sudowe S, Dominitzki S, Montermann E, Bros M, Grabbe S, Reske-Kunz AB. Uptake and presentation of exogenous antigen and presentation of endogenously produced antigen by skin dendritic cells represent equivalent pathways for the priming of cellular immune responses following biolistic DNA immunization. Immunology 2008; 128:e193-205. [PMID: 18800984 DOI: 10.1111/j.1365-2567.2008.02947.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gene gun-mediated biolistic DNA vaccination with beta-galactosidase (betaGal)-encoding plasmid vectors efficiently modulated antigen-induced immune responses in an animal model of type I allergy, including the inhibition of immunoglobulin E (IgE) production. Here we show that CD4(+) as well as CD8(+) T cells from mice biolistically transfected with a plasmid encoding betaGal under the control of the fascin promoter (pFascin-betaGal) are capable of inhibiting betaGal-specific IgE production after adoptive transfer into naïve recipients. Moreover, suppression of IgE production was dependent on interferon (IFN)-gamma. To analyse the modalities of activation of CD4(+) and CD8(+) T cells regarding the localization of antigen synthesis following gene gun-mediated DNA immunization, we used the fascin promoter and the keratin 5 promoter (pK5-betaGal) to direct betaGal production mainly to dendritic cells (DCs) and to keratinocytes, respectively. Gene gun-mediated DNA immunization with each vector induced considerable activation of betaGal-specific CD8(+) cytotoxic T cells. Cytokine production by re-stimulated CD4(+) T cells in draining lymph nodes and immunoglobulin isotype profiles in sera of immunized mice indicated that immunization with pFascin-betaGal induced a T helper type 1 (Th1)-biased immune response, whereas immunization with pK5-betaGal generated a mixed Th1/Th2 immune response. Nevertheless, DNA vaccination with pFascin-betaGal and pK5-betaGal, respectively, efficiently inhibited specific IgE production in the mouse model of type I allergy. In conclusion, our data show that uptake of exogenous antigen produced by keratinocytes and its presentation by untransfected DCs as well as the presentation of antigen synthesized endogenously in DCs represent equivalent pathways for efficient priming of cellular immune responses.
Collapse
Affiliation(s)
- Stephan Sudowe
- Department of Dermatology, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Soprano KJ, Purev E, Vuocolo S, Soprano DR. Rb2/p130 and protein phosphatase 2A: key mediators of ovarian carcinoma cell growth suppression by all-trans retinoic acid. Oncogene 2006; 25:5315-25. [PMID: 16936753 DOI: 10.1038/sj.onc.1209679] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite a number of attempts to improve treatment of ovarian cancer, it remains the most common cause of death from gynecological cancers. Thus, it is very important to identify more effective drugs for treatment and prevention of ovarian cancer. All-trans-retinoic acid (ATRA) has been shown to arrest the growth of ovarian carcinoma cells in G0/G1 and to significantly elevate levels of Rb2/p130 protein, a member of the retinoblastoma family of tumor suppressors. As ATRA treatment leads to a significant increase in the amount of Rb2/p130 protein but not mRNA, the elevated levels of Rb2/p130 protein is likely the result of increased stability. In studies to elucidate the mechanism by which ATRA alters Rb2/p130 stability in ovarian cancer cells, it was determined that PP2A, a serine/threonine phosphatase, binds and dephosphorylates Rb2/p130. Dephosphorylated Rb2/p130 exhibits decreased ubiquitination and thus is not degraded by the proteasome. The sites at which PP2A catalytic subunit (PP2Ac) interacts with Rb2/p130 have been localized to the NLS in the C-terminus of Rb2/p130. These sites are also involved in the interaction of Rb/p130 with importin beta and importin alpha, members of the nuclear transport machinery. It is known that importin alpha recognizes a NLS on a target protein and importin beta binds the nuclear pore complex. Moreover, it has been shown that the binding of importin alpha to NLS significantly decreases with phosphorylation of NLS. In ATRA-treated ovarian carcinoma cells, PP2A binds to Rb2/p130 and dephosphorylates the NLS of Rb2/p130 leading to the interaction of importin alpha with Rb2/p130. Importin beta then binds to the importin alpha-Rb2/p130 complex, leading to the translocation of the Rb2/p130 to the nucleus where it acts to arrest ovarian cancer cells in G1 and suppress proliferation.
Collapse
Affiliation(s)
- K J Soprano
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
8
|
Yu BD, Becker-Hapak M, Snyder EL, Vooijs M, Denicourt C, Dowdy SF. Distinct and nonoverlapping roles for pRB and cyclin D:cyclin-dependent kinases 4/6 activity in melanocyte survival. Proc Natl Acad Sci U S A 2003; 100:14881-6. [PMID: 14630948 PMCID: PMC299840 DOI: 10.1073/pnas.2431391100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Deregulation of the p16INK4a-cyclin D:cyclin-dependent kinases (cdk) 4/6-retinoblastoma (pRB) pathway is a common paradigm in the oncogenic transformation of human cells and suggests that this pathway functions linearly in malignant transformation. However, it is not understood why p16INK4a and cyclin D:cdk4/6 mutations are disproportionately more common than the rare genetic event of RB inactivation in human malignancies such as melanoma. To better understand how these complexes contribute to altered tissue homeostasis, we blocked cdk4/6 activation and acutely inactivated Rb by conditional mutagenesis during mouse hair follicle cycling. Inhibition of cdk4/6 in the skin by subcutaneous administration of a membrane-transducible TAT-p16INK4a protein completely blocked hair follicle growth and differentiation. In contrast, acute disruption of Rb in the skin of homozygous RbLoxP/LoxP mice via subcutaneous administration of TAT-Cre recombinase failed to affect hair growth. However, loss of Rb resulted in severe depigmentation of hair follicles. Further analysis of follicular melanocytes in vivo and in primary cell culture demonstrated that pRB plays a cell-autonomous role in melanocyte survival. Moreover, functional inactivation of all three Rb family members (Rb, p107, and p130) in primary melanocytes by treatment with a transducible TAT-E1A protein did not rescue the apoptotic phenotype. These findings suggest that deregulated cyclin D:cdk4/6 complexes and pRB perform nonoverlapping functions in vivo and provide a cellular mechanism that accounts for the low incidence of RB inactivation in cancers such as melanoma.
Collapse
Affiliation(s)
- Benjamin D Yu
- Howard Hughes Medical Institute, University of California at San Diego School of Medicine, La Jolla, CA 92093-0686, USA
| | | | | | | | | | | |
Collapse
|
9
|
Ruiz S, Segrelles C, Bravo A, Santos M, Perez P, Leis H, Jorcano JL, Paramio JM. Abnormal epidermal differentiation and impaired epithelial-mesenchymal tissue interactions in mice lacking the retinoblastoma relatives p107 and p130. Development 2003; 130:2341-53. [PMID: 12702649 DOI: 10.1242/dev.00453] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functions of p107 and p130, members of the retinoblastoma family, include the control of cell cycle progression and differentiation in several tissues. Our previous studies suggested a role for p107 and p130 in keratinocyte differentiation in vitro. We now extend these data using knockout animal models. We found impaired terminal differentiation in the interfollicular keratinocytes of p107/p130-double-null mice epidermis. In addition, we observed a decreased number of hair follicles and a clear developmental delay in hair, whiskers and tooth germs. Skin grafts of p107/p130-deficient epidermis onto NOD/scid mice showed altered differentiation and hyperproliferation of the interfollicular keratinocytes, thus demonstrating that the absence of p107 and p130 results in the deficient control of differentiation in keratinocytes in a cell-autonomous manner. Besides normal hair formation, follicular cysts, misoriented and dysplastic follicles, together with aberrant hair cycling, were also observed in the p107/p130 skin transplants. Finally, the hair abnormalities in p107/p130-null skin were associated with altered Bmp4-dependent signaling including decreased DeltaNp63 expression. These results indicate an essential role for p107 and p130 in the epithelial-mesenchimal interactions.
Collapse
Affiliation(s)
- Sergio Ruiz
- Program on Cell and Molecular Biology and Gene Therapy. CIEMAT, Avenue Complutense 22, E28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Carraresi L, Tripodi SA, Mulder LC, Bertini S, Nuti S, Schuerfeld K, Cintorino M, Bensi G, Rossini M, Mora M. Thymic hyperplasia and lung carcinomas in a line of mice transgenic for keratin 5-driven HPV16 E6/E7 oncogenes. Oncogene 2001; 20:8148-53. [PMID: 11781829 DOI: 10.1038/sj.onc.1205007] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Revised: 09/26/2001] [Accepted: 10/01/2001] [Indexed: 01/13/2023]
Abstract
Human Papillomavirus type 16 (HPV-16) is the cause of both benign lesions and ano-genital cancers. In HPV-associated cancers the transforming properties of the expressed viral E6 and E7 proteins have been revealed by a number of different assays. We have generated transgenic mice expressing HPV-16 E6/E7 genes under the control of the murine keratin 5 gene promoter, which should confer cell-type specific expression in the basal cells of squamous stratified epithelia. Transgenic mice developed thymic hyperplasia and lung neoplasia with 100% frequency, the thymus showing a size increase at 2 months and reaching the maximum dimension at 6 months, when lung carcinomas appeared. After this time the size of hyperplastic thymi decreased, while malignant formations invaded the mediastinal area. Hepatic metastasis could be also observed in some of the animals at the autopsy and death invariably occurred around 10-11 months of age.
Collapse
Affiliation(s)
- L Carraresi
- Department of Physiopathology and Experimental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakamura M, Sundberg JP, Paus R. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: annotated tables. Exp Dermatol 2001; 10:369-90. [PMID: 11737257 DOI: 10.1034/j.1600-0625.2001.100601.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Numerous transgenic, targeted mutagenesis (so-called knockouts), conditional (so-called "gene switch") and spontaneous mutant mice develop abnormal hair phenotypes. The number of mice that exhibit such abnormalities is increasing exponentially as genetic engineering methods become routine. Since defined abnormalities in hair follicle morphogenesis, cycling and/or structure in such mutant mice provide important clues to the as yet poorly understood functional roles of many gene products, it is useful to summarize and classify these mutant mice according to their hair phenotype. This review provides a corresponding, annotated table of mutant mice with hair abnormalities, classifying the latter into 6 categories, 1) abnormally low number of hair follicles, 2) disorders of hair morphogenesis, 3) of hair follicle cycling, 4) of hair follicle structure 5) of sebaceous gland structure, and 6) hair growth disorders as a consequence of immunological abnormalities. This annotated table should serve as a useful source of reference for anyone who is interested in the molecular controls of hair growth, for investigators who are looking for mouse models to explore or compare the functional activities of their gene of interest, and for comparing the hair phenotype of newly generated mouse mutants with existing ones.
Collapse
Affiliation(s)
- M Nakamura
- Department of Dermatology, University Hospital Eppendorf, University of Hamburg, Martinistrasse 52, D-20246, Hamburg, Germany
| | | | | |
Collapse
|
12
|
Sugihara TM, Kudryavtseva EI, Kumar V, Horridge JJ, Andersen B. The POU domain factor Skin-1a represses the keratin 14 promoter independent of DNA binding. A possible role for interactions between Skn-1a and CREB-binding protein/p300. J Biol Chem 2001; 276:33036-44. [PMID: 11429405 DOI: 10.1074/jbc.m103000200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genes encoding keratin 5 and 14 are highly expressed in the basal cell layer keratinocytes of the epidermis, but both genes are silenced when keratinocytes move into the suprabasal compartment. The POU homeodomain factors Skn-1a and Tst-1, which are expressed in epidermis, may play a role in the suprabasal repression of the keratin 5 and 14 genes because keratin 14 mRNA expression persists in suprabasal cells in Skn-1/Tst-1 double knockout mice. In transfection experiments, both Skn-1a and Tst-1 repress the keratin 14 promoter, with the POU domain being sufficient for repression. The region of the keratin 14 gene sufficient and required for repression by Skn-1a is a 100-base pair sequence lacking POU-binding sites adjacent to the transcription start site. DNA-binding defective mutants of Skn-1a and Tst-1 are as effective at mediating repression as the wild type proteins, suggesting that protein-protein interactions rather than direct DNA binding are important for repression. We also show that CREB-binding protein (CBP)/p300 co-activators are strong activators of keratin 14 gene expression, acting through sequences close to the keratin 14 promoter. Further, CBP interacts directly with the POU domain of Skn-1a, and increasing concentrations of CBP can overcome Skn-1a-mediated repression, suggesting that POU domain factors may repress keratin 14 gene expression by interfering with the activity of co-activators such as CBP/p300.
Collapse
Affiliation(s)
- T M Sugihara
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093-0648, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chase as our model and tried to put the adult hair follicle growth cycle in perspective. We have tried to sketch the adult hair follicle cycle, as we know it today and what needs to be known. Above all, we hope that this work will serve as an introduction to basic biologists who are looking for a defined biological system that illustrates many of the challenges of modern biology: cell differentiation, epithelial-mesenchymal interactions, stem cell biology, pattern formation, apoptosis, cell and organ growth cycles, and pigmentation. The most important theme in studying the cycling hair follicle is that the follicle is a regenerating system. By traversing the phases of the cycle (growth, regression, resting, shedding, then growth again), the follicle demonstrates the unusual ability to completely regenerate itself. The basis for this regeneration rests in the unique follicular epithelial and mesenchymal components and their interactions. Recently, some of the molecular signals making up these interactions have been defined. They involve gene families also found in other regenerating systems such as fibroblast growth factor, transforming growth factor-beta, Wnt pathway, Sonic hedgehog, neurotrophins, and homeobox. For the immediate future, our challenge is to define the molecular basis for hair follicle growth control, to regenerate a mature hair follicle in vitro from defined populations, and to offer real solutions to our patients' problems.
Collapse
Affiliation(s)
- K S Stenn
- Beauty Genome Sciences Inc., Skillman, New Jersey, USA.
| | | |
Collapse
|
14
|
van der Neut R, Cachaço AS, Thorsteinsdóttir S, Janssen H, Prins D, Bulthuis J, van der Valk M, Calafat J, Sonnenberg A. Partial rescue of epithelial phenotype in integrin beta4 null mice by a keratin-5 promoter driven human integrin beta4 transgene. J Cell Sci 1999; 112 ( Pt 22):3911-22. [PMID: 10547352 DOI: 10.1242/jcs.112.22.3911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Integrin beta4 null mice exhibit extensive epidermal detachment, reminiscent of the human skin blistering disease junctional epidermolysis bullosa associated with pyloric atresia. Hemidesmosomes, the stable adhesion structures of squamous epithelia, are not formed in the absence of alpha6beta4. Null mutant mice die shortly after birth, but apart from their striking epithelial phenotype, no obvious developmental defects have been observed. To elucidate the cause of death in these mice, we generated transgenic mice with a heterologous construct consisting of the squamous epithelial-specific keratin-5 promoter and a human integrin beta4 subunit cDNA. The transgene was not expressed in the presence of endogenous beta4, probably as a result of competition for a limited pool of alpha6 subunits. In a beta4 null background, however, the transgene was expressed, and its expression pattern followed that of squamous epithelial-specific keratins. These rescued pups appeared healthy and ultrastructural analysis revealed that the interspecies heterodimer alpha6(mouse)/beta4(human) was sufficient to trigger the assembly of hemidesmosomes. After a variable period of up to 48 hours after birth these animals began to exhibit haemorrhages at the plantar and palmar areas. We observed the formation of small blisters and found that the transgene was not detectably expressed in this region, which is devoid of hair follicles. The rescued neonates became increasingly cyanotic and died soon after the onset of this phenomenon. We performed a developmental study of the expression of beta4 in the complete respiratory tract, but we found no correlation between the spatiotemporal distribution of beta4 and the onset of the respiratory insufficiency. It became clear, however, that there was a gradual detachment of squamous epithelia in the oral and nasal cavities which led to obstruction of the respiratory tract, suggesting that in beta4 null and rescued mice, neonatal death was a direct consequence of decreased adhesion properties of hairless squamous epithelia, rather than a developmental defect of the lungs.
Collapse
Affiliation(s)
- R van der Neut
- Division of Cell Biology, Netherlands Cancer Institute, Plesmanlaan 121, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brown K, Strathdee D, Bryson S, Lambie W, Balmain A. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr Biol 1998; 8:516-24. [PMID: 9560338 DOI: 10.1016/s0960-9822(98)70203-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND . Pinpointing the cells from which tumours arise is a major challenge n tumour biology. Previous work has shown that the targeted expression of a mutant ras gene within the interfollicular cell compartment of mouse skin induces the formation of benign papillomas, but these do not spontaneously progress to malignancy. We have investigated the carcinogenic effects of expressing the same oncogene in a different population of epidermal cells. RESULTS Expression of mutant ras from a truncated keratin 5 gene promoter, which directs expression to the follicular and interfollicular cells of newborn mice and the hair follicle cells of adults, stimulated the development of acanthotic areas in newborn mice. Within one week of birth, the acanthotic skin developed areas of carcinoma in situ and adult mice developed papillomas and keratoacanthomas, the latter having a high frequency of spontaneous malignant transformation to squamous and occasionally spindle carcinomas. The benign tumours that arose had several hallmarks of tumours at a high risk of malignant progression, including suprabasal cell proliferation and heterogeneous expression of keratin 13. In contrast to tumours induced by expressing mutant ras under the control of the keratin 10 or keratin 1 gene promoters, the formation of these lesions was not dependent on wounding or a tumour promoter. CONCLUSIONS Benign tumours that are at a risk of malignant conversion are primarily derived from cells located within the hair follicle, and the nature of the cell in which tumour initiation occurs is a major determinant of malignant potential.
Collapse
Affiliation(s)
- K Brown
- CRC Beatson Laboratories Department of Medical Oncology Alexander Stone Building University of Glasgow Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | | | | | | | |
Collapse
|
16
|
Powell BC, Rogers GE. The role of keratin proteins and their genes in the growth, structure and properties of hair. EXS 1997; 78:59-148. [PMID: 8962491 DOI: 10.1007/978-3-0348-9223-0_3] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The importance of wool in the textile industry has inspired extensive research into its structure since the 1960s. Over the past several years, however, the hair follicle has increased in significance as a system for studying developmental events and the process of terminal differentiation. The present chapter seeks to integrate the expanding literature and present a broad picture of what we know of the structure and formation of hair at the cellular and molecular level. We describe in detail the hair keratin proteins and their genes, their structure, function and regulation in the hair follicle, and also the major proteins and genes of the inner and outer root sheaths. We discuss hair follicle development with an emphasis on the factors involved and describe some hair genetic diseases and transgenic and gene knockout models because, in some cases, they stimulate natural mutations that are advancing our understanding of cellular interactions in the formation of hair.
Collapse
Affiliation(s)
- B C Powell
- Department of Biochemistry, University of Adelaide, South Australia
| | | |
Collapse
|
17
|
Saini KS, Byrne CR, Leish Z, Pruss CA, Rigby NW, Brownlee AG, Nancarrow CD, Ward KA. Introduction and expression of the bacterial glyoxylate cycle genes in transgenic mice. Transgenic Res 1996; 5:467-73. [PMID: 8840530 DOI: 10.1007/bf01980212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The glyoxylate cycle, catalysed by two unique enzymes: isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2), is necessary for the net conversion of acetate into glucose. This metabolic pathway operates in microorganisms, higher plants and nematodes. Two bacterial genes, encoding ICL and MS, were modified in order to introduce them into the mouse germ line. The ovine metallothionein-Ia (MT-Ia) promoter-ace B gene-ovine growth hormone (GH) gene (3' GH sequence) construct was fused to the ovine, MT-Ia promoter-ace A gene-ovine GH gene (3' GH sequence). Therefore, in this single DNA sequence, both ace A and ace B are under independent MT-Ia promoter control and can be induced by zinc. Transgenic mice were generated by pronuclear microinjection of the ace B-ace A gene construct. We now report the establishment of four mouse lines carying these two transgenes. Studies on the progeny of these lines indicate that one line (No. 91) is expressing both genes at the mRNA and enzyme levels in the liver and intestine, whereas another line (No. 66) has a much lower expression. Both enzyme activities were detected in the liver and intestine at levels up to 25% of those measured in fully derepressed Escherichia coli cells.
Collapse
Affiliation(s)
- K S Saini
- CSIRO Division of Animal Production, Prospect, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Stenn KS, Combates NJ, Eilertsen KJ, Gordon JS, Pardinas JR, Parimoo S, Prouty SM. Hair follicle growth controls. Dermatol Clin 1996; 14:543-58. [PMID: 9238315 DOI: 10.1016/s0733-8635(05)70383-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Research in hair biology has embarked in the pursuit for molecules that control hair growth. Many molecules already have been associated with the controls of hair patterning, hair maturation, and hair cycling and differentiation. Knowing how these molecules work gives us the tools for understanding and treating patients with hair disorders.
Collapse
Affiliation(s)
- K S Stenn
- Skin Biology Research Center, Johnson & Johnson, Skillman, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Robles AI, Larcher F, Whalin RB, Murillas R, Richie E, Gimenez-Conti IB, Jorcano JL, Conti CJ. Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc Natl Acad Sci U S A 1996; 93:7634-8. [PMID: 8755527 PMCID: PMC38798 DOI: 10.1073/pnas.93.15.7634] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To study the involvement of cyclin D1 in epithelial growth and differentiation and its putative role as an oncogene in skin, transgenic mice were developed carrying the human cyclin D1 gene driven by a bovine keratin 5 promoter. As expected, all squamous epithelia including skin, oral mucosa, trachea, vaginal epithelium, and the epithelial compartment of the thymus expressed aberrant levels of cyclin D1. The rate of epidermal proliferation increased dramatically in transgenic mice, which also showed basal cell hyperplasia. However, epidermal differentiation was unaffected, as shown by normal growth arrest of newborn primary keratinocytes in response to high extracellular calcium. Moreover, an unexpected phenotype was observed in the thymus. Transgenic mice developed a severe thymic hyperplasia that caused premature death due to cardio-respiratory failure within 4 months of age. By 14 weeks, the thymi of transgenic mice increased in weight up to 40-fold, representing 10% of total body weight. The hyperplastic thymi had normal histology revealing a well-differentiated cortex and medulla, which supported an apparently normal T-cell developmental program based on the distribution of thymocyte subsets. These results suggest that proliferation and differentiation of epithelial cells are under independent genetic controls in these organs and that cyclin D1 can modulate epithelial proliferation without altering the initiation of differentiation programs. No spontaneous development of epithelial tumors or thymic lymphomas was perceived in transgenic mice during their first 8 months of life, although they continue under observation. This model provides in vivo evidence of the action of cyclin D1 as a pure mediator of proliferation in epithelial cells.
Collapse
Affiliation(s)
- A I Robles
- The University of Texas, M. D. Anderson Cancer Center, Smithville 78957, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The use of animals models of human cancers has proved useful in the elucidation of molecular events which occur during tumour development. Mouse skin has been used as a model for human squamous cancer for a number of decades, and analysis of this model has identified a number of changes important for the evolution of malignancy. Transgenic mice offer a further avenue of advancement, allowing refinement of the model, and the ability to examine the consequences of individual events in vivo in greater detail. This article reviews the impact of transgenic approaches to our understanding of multistage squamous carcinogenesis in mouse skin.
Collapse
Affiliation(s)
- K Brown
- CRC Beatson Laboratories, University Department of Medical Oncology, UK
| | | |
Collapse
|
21
|
Abstract
Clusterin/TRPM-2 is a sulfated glycoprotein that is expressed in many tissues. Independently cloned and isolated by several laboratories, it bears many names, and has been shown to be involved in many processes. These include cell-cell adhesion and aggregation, inhibition of complement cytolysis, programmed cell death and apoptosis, tissue remodeling, and terminal differentiation. The hair follicle undergoes cycles of growth, regression, and rest, which involve both tissue remodeling and programmed cell death. To identify whether clusterin expression is involved in hair growth and cycling, we studied the expression of clusterin throughout the hair cycle. We demonstrate that clusterin is expressed during the growth phase of the hair cycle. We found no correlation between clusterin expression and the apoptotic regression of the hair follicle. Using immunohistochemistry we localized clusterin to the inner root sheath of the follicle. This suggests that clusterin might be involved in the morphogenesis and differentiation of the hair follicle. We propose that clusterin has a role in the maintenance of the layered structure of the hair follicle, and in the interactions between the inner root sheath and both the outer root sheath and the
Collapse
Affiliation(s)
- M Seiberg
- Skin Biology Research Center, R.W. Johnson Pharmaceutical Research Institute, Raritan, New Jersey 08869-0602, USA
| | | |
Collapse
|
22
|
Keough R, Powell B, Rogers G. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype. J Cell Sci 1995; 108 ( Pt 3):957-66. [PMID: 7542671 DOI: 10.1242/jcs.108.3.957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Directed expression of SV40 large T antigen (TAg) in transgenic mice can induce tissue-specific tumorigenesis and useful cell lines exhibiting differentiated characteristics can be established from resultant tumor cells. In an attempt to produce an immortalised mouse hair follicle cortical cell line for the study of hair keratin gene control, SV40 TAg expression was targeted to the hair follicles of transgenic mice using a sheep hair gene promoter. Expression of SV40 TAg in the follicle cortex disrupted normal fiber ultrastructure, producing a marked phenotypic effect. Affected hairs were wavy or severely kinked (depending on the severity of the phenotype) producing an appearance ranging from a ruffled coat to a stubble covering the back of the mouse. The transgenic hairs appeared to be weakened at the base of the fibers, leading to premature hair-loss and a thinner pelage, or regions of temporary nudity. No follicle tumors or neoplasia were apparent and immortalisation of cortical cells could not be established in culture. In situ hybridisation studies in the hair follicle using histone H3 as a cell proliferation marker suggested that cell proliferation had ceased prior to commencement of K2.10-TAg expression and was not re-established in the differentiating cortical cells. Hence, TAg was unable to induce cell immortalisation at that stage of cortical cell differentiation. However, transgenic mice developed various other abnormalities including vertebral abnormalities and bladder, liver and intestinal tumors, which resulted in reduced life expectancy.
Collapse
Affiliation(s)
- R Keough
- Department of Biochemistry, University of Adelaide, South Australia
| | | | | |
Collapse
|
23
|
Blessing M, Nanney LB, King LE, Hogan BL. Chemical skin carcinogenesis is prevented in mice by the induced expression of a TGF-beta related transgene. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 1995; 15:11-21. [PMID: 7604388 DOI: 10.1002/tcm.1770150103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Skin papillomas and squamous cell carcinomas (SCCs) are induced in mice by tumor initiation with a carcinogen followed by tumor promotion with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). These usually arise from preneoplastic lesions characterized by epidermal proliferation and hyperplasia, dermal edema, and inflammation. To evaluate the role of polypeptide growth factors in chemically induced skin carcinogenesis, we used transgenic mice carrying the cDNA for a TGF-beta related molecule, bone morphogenetic protein-4 (BMP-4), under the control of the regulatory elements of the cytokeratin IV* gene in a skin carcinogenesis protocol. Control non-transgenic littermates and BMP-4 transgenic mice were treated with a single dose of a carcinogen, N-methyl-N'-nitrosoguanidine (MNNG), and biweekly with the tumor promoter TPA for 9 months. In control littermates TPA induced epidermal hyperproliferation, atypia with "dark" cells, and dermal inflammation, resulting in papillomas and SCCs in 13 of 26 animals tested. In BMP-4 transgenic mice, TPA treatment induced the expression of the BMP-4 transgene in interfollicular epidermis but only minimal epidermal thickening, hyperproliferation, and inflammation were noted after the initial dose of TPA. Furthermore, the mitotic indices in transgenic epidermis after 9 months of TPA treatment were significantly lower than the corresponding indices from untreated transgenic epidermis. Consequently, none of the 22 transgenic animals tested developed papillomas or SCCs. In conclusion, we have shown that the TPA induced expression of the BMP-4 transgene blocks proliferation and inflammation in skin, steps that are critical to the subsequent formation of papillomas and SCCs and we characterized an inducible promotersystem which expresses polypeptides in interfollicular epidermis after exogenous stimulation.
Collapse
Affiliation(s)
- M Blessing
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
24
|
Dlugosz AA, Glick AB, Tennenbaum T, Weinberg WC, Yuspa SH. Isolation and utilization of epidermal keratinocytes for oncogene research. Methods Enzymol 1995; 254:3-20. [PMID: 8531694 DOI: 10.1016/0076-6879(95)54003-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A A Dlugosz
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Ramírez A, Bravo A, Jorcano JL, Vidal M. Sequences 5' of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation 1994; 58:53-64. [PMID: 7532601 DOI: 10.1046/j.1432-0436.1994.5810053.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of keratin K5 (and K14) in multilayered epithelia occurs predominantly in the basal layer of proliferating keratinocytes. When a keratinocyte becomes committed to terminal differentiation, it moves out of the basal layer towards the epithelial surface. As part of this program of terminal differentiation, the expression of K5 (and K14) is downregulated in suprabasal cells, and new pairs of differentiation-specific keratins are expressed. To define the cis-acting DNA sequences required for K5 cell-type- and differentiation-specific expression, chimeric gene fusions between portions of the bovine keratin K5 locus and the Escherichia coli lacZ gene were used to generate transgenic mice. In the genomic fragment consisting of 5.3 kb of 5' flanking sequences, 6.1 kb corresponding to the body of the gene and 4.5 kb of 3' flanking sequences, the subfragment extending from -5300 bp to +138 bp was the smaller region that directed lacZ expression to stratified epithelia in a manner analogous to the endogenous keratin K5. Proximal sequences from -1300 bp to +138 bp were inactive. We also determined the expression pattern of keratin K5 during mouse development using an antiserum specific for mouse keratin K5. Expression was first detected in ectodermal cells of 11.5 days postcoitum embryos, and from day 13.5 postcoitum onwards K5 was detected in the precursors of most epithelia and organs which express K5 at adult stages. This pattern was reproduced, with few differences, by the construct with sequences from -5300 bp to +138 bp fused to the lacZ gene. These findings identify sequences between -5.3 kb and -1.3 kb of the bovine K5 gene as being important for cell-type- and differentiation-specific gene expression both during mouse development and in the adult.
Collapse
Affiliation(s)
- A Ramírez
- Department of Cell and Molecular Biology, CIEMAT, Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Brissette JL, Kumar NM, Gilula NB, Hall JE, Dotto GP. Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation. Proc Natl Acad Sci U S A 1994; 91:6453-7. [PMID: 8022804 PMCID: PMC44220 DOI: 10.1073/pnas.91.14.6453] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gap junctional communication provides a mechanism for regulating multicellular activities by allowing the exchange of small diffusible molecules between neighboring cells. The diversity of gap junction proteins may exist to form channels that have different permeability properties. We report here that induction of terminal differentiation in mouse primary keratinocytes by calcium results in a specific switch in gap junction protein expression. Expression of alpha 1 (connexin 43) and beta 2 (connexin 26) gap junction proteins is down-modulated, whereas that of beta 3 (connexin 31) and beta 4 (connexin 31.1) proteins is induced. Although both proliferating and differentiating keratinocytes are electrically coupled, there are significant changes in the permeability properties of the junctions to small molecules. In parallel with the changes in gap junction protein expression during differentiation, the intercellular transfer of the small dyes neurobiotin, carboxyfluorescein, and Lucifer yellow is significantly reduced, whereas that of small metabolites, such as nucleotides and amino acids, proceeds unimpeded. Thus, a switch in gap junction protein expression in differentiating keratinocytes is accompanied by selective changes in junctional permeability that may play an important role in the coordinate control of the differentiation process.
Collapse
Affiliation(s)
- J L Brissette
- Department of Dermatology, Harvard Medical School, Charlestown, MA 02129
| | | | | | | | | |
Collapse
|
27
|
Abstract
In this review we tabulated molecules which have been experimentally identified to be associated with, or play a role in, hair follicle growth. While compiling these data we were impressed by the fact that this field is only now beginning to be developed in terms of molecular analysis. Ironically, hair was used in some of the earliest molecular approaches to biologic structure (e.g. Astbury and Street, 1931), but the field did not develop from there. From our review we have come to the following conclusions. (1) As indicated by the growing number of reports dealing with follicle-associated molecules in the past 3 years, the field of hair biology has entered a new molecular era. (2) In many reported hair biology studies not enough emphasis has been placed on the fact that the follicle is a dynamic structure. All too often a study is limited to follicles of one particular phase of the cycle or one phase of development. Students in the field have to be more sensitive to the remarkable changes that this deceptively simple structure can undergo during its cycle. (3) Although we have not been able to find any molecules unique to the follicle, some of the structural molecules come close to an ideal tool. It is our impression that even more specific molecule tags will be found. Whether this requires a subtraction library approach or gene mapping of specific mutants is not yet clear. It would appear that the large, diverse family of intermediate filament-associated proteins will prove to be an excellent source of unique follicle-labeling molecules. (4) There is an acute need for molecules which distinguish the phases of the cycle, e.g. telogen from early anagen. Telogen is by far the most difficult phase to identify morphologically since the earliest phase of anagen and the latest phase of catagen may appear structurally like telogen. That these phases are functionally distinguishable must imply a molecular difference. As the number of recognized hair follicle-associated molecules and their interactions increase, it will be essential to assemble libraries of highly specific RNA and antibody probes for localization and mapping studies. We recognize that this review, as written, is imperfect. It is particularly deficient in making any effort towards identifying unifying principles of structure and function. We look forward to returning to this subject within 3 years.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K S Stenn
- Skin Biology Research Center of Johnson and Johnson, R.W. Johnson Pharmaceutical Institute, Raritan, NJ 08869
| | | | | |
Collapse
|