1
|
Loera-Lopez AL, Lord MN, Noble EE. Astrocytes of the hippocampus and responses to periprandial neuroendocrine hormones. Physiol Behav 2025; 295:114913. [PMID: 40209869 PMCID: PMC12066093 DOI: 10.1016/j.physbeh.2025.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Astrocytes have risen as stars in the field of energy homeostasis and neurocognitive function, acting as a bridge of communication between the periphery and the brain, providing metabolic support, signaling via gliotransmitters, and altering synaptic communication. Dietary factors and energy state have a profound influence on hippocampal function, and the hippocampus is critical for appropriate behavioral responses associated with feeding and internal hunger cues (being in the fasted or full state), but how the hippocampus senses periprandial status and is impacted by diet is largely unknown. Periprandial hormones act within the hippocampus to modulate processes involved in hippocampal-dependent learning and memory function and astrocytes likely play an important role in modulating this signaling. In addition to periprandial hormones, astrocytes are positioned to respond to changes in circulating nutrients like glucose. Here, we review literature investigating how astrocytes mediate changes in hippocampal function, highlighting astrocyte location, morphology, and function in the context of integrating glucose metabolism, neuroendocrine hormone action, and/or cognitive function in the hippocampus. Specifically, we discuss research findings on the effects of insulin, ghrelin, leptin, and GLP-1 on glucose homeostasis, neural activity, astrocyte function, and behavior in the hippocampus. Because obesogenic diets impact neuroendocrine hormones, astrocytes, and cognitive function, we also discuss the effects of diet and diet-induced obesity on these parameters.
Collapse
Affiliation(s)
- Ana L Loera-Lopez
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Magen N Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Emily E Noble
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
2
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Moore TL, Pannuzzo G, Costabile G, Palange AL, Spanò R, Ferreira M, Graziano ACE, Decuzzi P, Cardile V. Nanomedicines to treat rare neurological disorders: The case of Krabbe disease. Adv Drug Deliv Rev 2023; 203:115132. [PMID: 37918668 DOI: 10.1016/j.addr.2023.115132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.
Collapse
Affiliation(s)
- Thomas Lee Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy
| | - Gabriella Costabile
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy; Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples 80131, NA, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy; Facolta di Medicina e Chirurgia, Università degli Studi di Enna "Kore", Enna 94100, EN, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy.
| |
Collapse
|
4
|
Picciolini S, Rodà F, Gualerzi A, Mangolini V, Forleo L, Mangolini A, Sesana S, Antoniou A, Re F, Seneci P, Bedoni M. SPRi analysis of molecular interactions of mApoE-functionalized liposomes as drug delivery systems for brain diseases. Analyst 2023; 148:6070-6077. [PMID: 37904570 DOI: 10.1039/d3an01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The application of liposomes (LPs) to central nervous system disorders could represents a turning point in the therapy and quality of life of patients. Indeed, LPs have demonstrated their ability to cross the blood-brain barrier (BBB) and, as a consequence, to enhance the therapeutics delivery into the brain. Some approaches for BBB crossing involve the modification of LP surfaces with biologically active ligands. Among them, the Apolipoprotein E-modified peptide (mApoE) has been used for several LP-based nanovectors under investigation. In this study, we propose Surface Plasmon Resonance imaging (SPRi) for the characterization of multifunctionalized LPs for Glioblastoma treatment. LPs were functionalized with mApoE and with a metallo-protease sensitive lipopeptide to deliver and guarantee the localized release of an encapsulated drug in diseased areas. The SPRi analysis was optimized in order to evaluate the binding affinity between LPs and mApoE receptors, finding that mApoE-LPs generated SPRi signals referred to interactions between mApoE and receptors mainly present in the brain. Moreover, a significant binding between LPs and VCAM-1 (endothelial receptor) was observed, whereas LPs did not interact significantly with peripheral receptors expressed on monocytes and lymphocytes. SPRi results confirmed not only the presence of mApoE on LP surfaces, but also its binding affinity, thanks to the specific interaction with selected receptors. In conclusion, the high sensitivity and the multiplexing capability associated with the low volumes of sample required and the minimal sample preparation, make SPRi an excellent technique for the characterization of multifunctionalized nanoparticles-based formulations.
Collapse
Affiliation(s)
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | - Valentina Mangolini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Brescia, Italy
| | - Luana Forleo
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | | | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Antonia Antoniou
- Chemistry Department, Università Statale di, Milano, Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | | | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| |
Collapse
|
5
|
Martins C, Sarmento B. Multi-ligand functionalized blood-to-tumor sequential targeting strategies in the field of glioblastoma nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1893. [PMID: 37186374 DOI: 10.1002/wnan.1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 05/17/2023]
Abstract
Glioblastoma (GBM) is an unmet clinical need characterized by a standard of care (SOC) 5-year survival rate of only 5%, and a treatment mostly palliative. Significant hurdles in GBM therapies include an effective penetration of therapeutics through the brain protective barrier, namely the blood-brain barrier (BBB), and a successful therapeutic delivery to brain-invading tumor cells post-BBB crossing. These hurdles, along with the poor prognosis and critical heterogeneity of the disease, have shifted attention to treatment modalities with capacity to precisely and sequentially target (i) BBB cells, inducing blood-to-brain transport, and (ii) GBM cells, leading to a higher therapeutic accumulation at the tumor site. This sequential targeting allows therapeutic molecules to reach the brain parenchyma and compromise molecular processes that support tumor cell invasion. Besides improving formulation and pharmacokinetics constraints of drugs, nanomedicines offer the possibility of being surface functionalized with multiple possibilities of targeting ligands, while delivering the desired therapeutic cargos to the biological sites of interest. Targeting ligands exploit the site-specific expression or overexpression of specific molecules on BBB and GBM cells, triggering brain plus tumor transport. Since the efficacy of single-ligand functionalized nanomedicines is limited due to the GBM anatomical site (brain) and disease complexity, this review presents an overview of multi-ligand functionalized, BBB and GBM sequentially- and dual-targeted nanomedicines reported in literature over the last 10 years. The role of the BBB in GBM progression, treatment options, and the multiple possibilities of currently available targeting ligands will be summarized. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- IUCS-CESPU, Gandra, Portugal
| |
Collapse
|
6
|
Hoang TA, Cao E, Gracia G, Nicolazzo JA, Trevaskis NL. Development and application of a novel cervical lymph collection method to assess lymphatic transport in rats. Front Pharmacol 2023; 14:1111617. [PMID: 36744256 PMCID: PMC9895367 DOI: 10.3389/fphar.2023.1111617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Background: Fluids, solutes and immune cells have been demonstrated to drain from the brain and surrounding structures to the cervical lymph vessels and nodes in the neck via meningeal lymphatics, nasal lymphatics and/or lymphatic vessels associated with cranial nerves. A method to cannulate the efferent cervical lymph duct for continuous cervical lymph fluid collection in rodents has not been described previously and would assist in evaluating the transport of molecules and immune cells from the head and brain via the lymphatics, as well as changes in lymphatic transport and lymph composition with different physiological challenges or diseases. Aim: To develop a novel method to cannulate and continuously collect lymph fluid from the cervical lymph duct in rats and to analyze the protein, lipid and immune cell composition of the collected cervical lymph fluid. Methods: Male Sprague-Dawley rats were cannulated at the carotid artery with or without cannulation or ligation at the cervical lymph duct. Samples of blood, whole lymph and isolated lipoprotein fractions of lymph were collected and analyzed for lipid and protein composition using commercial kits. Whole lymph samples were centrifuged and isolated pellets were stained and processed for flow cytometry analysis of CD3+, CD4+, CD8a+, CD45R+ (B220) and viable cell populations. Results: Flow rate, phospholipid, triglyceride, cholesterol ester, free cholesterol and protein concentrations in cervical lymph were 0.094 ± 0.014 mL/h, 0.34 ± 0.10, 0.30 ± 0.04, 0.07 ± 0.02, 0.02 ± 0.01 and 16.78 ± 2.06 mg/mL, respectively. Protein was mostly contained within the non-lipoprotein fraction but all lipoprotein types were also present. Flow cytometry analysis of cervical lymph showed that 67.1 ± 7.4% of cells were CD3+/CD4+ T lymphocytes, 5.8 ± 1.6% of cells were CD3+/CD8+ T lymphocytes, and 10.8 ± 4.6% of cells were CD3-/CD45R+ B lymphocytes. The remaining 16.3 ± 4.6% cells were CD3-/CD45- and identified as non-lymphocytes. Conclusion: Our novel cervical lymph cannulation method enables quantitative analysis of the lymphatic transport of immune cells and molecules in the cervical lymph of rats for the first time. This valuable tool will enable more detailed quantitative analysis of changes to cervical lymph composition and transport in health and disease, and could be a valuable resource for discovery of biomarkers or therapeutic targets in future studies.
Collapse
|
7
|
Mantecón-Oria M, Rivero MJ, Diban N, Urtiaga A. On the quest of reliable 3D dynamic in vitro blood-brain barrier models using polymer hollow fiber membranes: Pitfalls, progress, and future perspectives. Front Bioeng Biotechnol 2022; 10:1056162. [PMID: 36483778 PMCID: PMC9723404 DOI: 10.3389/fbioe.2022.1056162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 09/10/2024] Open
Abstract
With the increasing concern of neurodegenerative diseases, the development of new therapies and effective pharmaceuticals targeted to central nervous system (CNS) illnesses is crucial for ensuring social and economic sustainability in an ageing world. Unfortunately, many promising treatments at the initial stages of the pharmaceutical development process, that is at the in vitro screening stages, do not finally show the expected results at the clinical level due to their inability to cross the human blood-brain barrier (BBB), highlighting the inefficiency of in vitro BBB models to recapitulate the real functionality of the human BBB. In the last decades research has focused on the development of in vitro BBB models from basic 2D monolayer cultures to 3D cell co-cultures employing different system configurations. Particularly, the use of polymeric hollow fiber membranes (HFs) as scaffolds plays a key role in perfusing 3D dynamic in vitro BBB (DIV-BBB) models. Their incorporation into a perfusion bioreactor system may potentially enhance the vascularization and oxygenation of 3D cell cultures improving cell communication and the exchange of nutrients and metabolites through the microporous membranes. The quest for developing a benchmark 3D dynamic in vitro blood brain barrier model requires the critical assessment of the different aspects that limits the technology. This article will focus on identifying the advantages and main limitations of the HFs in terms of polymer materials, microscopic porous morphology, and other practical issues that play an important role to adequately mimic the physiological environment and recapitulate BBB architecture. Based on this study, we consider that future strategic advances of this technology to become fully implemented as a gold standard DIV-BBB model will require the exploration of novel polymers and/or composite materials, and the optimization of the morphology of the membranes towards thinner HFs (<50 μm) with higher porosities and surface pore sizes of 1-2 µm to facilitate the intercommunication via regulatory factors between the cell co-culture models of the BBB.
Collapse
Affiliation(s)
- Marián Mantecón-Oria
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - María J. Rivero
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - Nazely Diban
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ane Urtiaga
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
8
|
Kakava S, Schlumpf E, Panteloglou G, Tellenbach F, von Eckardstein A, Robert J. Brain Endothelial Cells in Contrary to the Aortic Do Not Transport but Degrade Low-Density Lipoproteins via Both LDLR and ALK1. Cells 2022; 11:cells11193044. [PMID: 36231005 PMCID: PMC9564369 DOI: 10.3390/cells11193044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The transport of low-density lipoprotein (LDL) through the endothelium is a key step in the development of atherosclerosis, but it is notorious that phenotypic differences exist between endothelial cells originating from different vascular beds. Endothelial cells forming the blood–brain barrier restrict paracellular and transcellular passage of plasma proteins. Here, we systematically compared brain versus aortic endothelial cells towards their interaction with LDL and the role of proteins known to regulate the uptake of LDL by endothelial cells. Both brain endothelial cells and aortic endothelial cells bind and internalize LDL. However, whereas aortic endothelial cells degrade very small amounts of LDL and transcytose the majority, brain endothelial cells degrade but do not transport LDL. Using RNA interference (siRNA), we found that the LDLR–clathrin pathway leads to LDL degradation in either endothelial cell type. Both loss- and gain-of-function experiments showed that ALK1, which promotes transcellular LDL transport in aortic endothelial cells, also limits LDL degradation in brain endothelial cells. SR-BI and caveolin-1, which promote LDL uptake and transport into aortic endothelial cells, limit neither binding nor association of LDL to brain endothelial cells. Together, these results indicate distinct LDL trafficking by brain microvascular endothelial cells and aortic endothelial cells.
Collapse
Affiliation(s)
- Sofia Kakava
- Institute of Clinical Chemistry, University Hospital of Zurich, 8952 Schlieren, Switzerland
- Bio Medicine Program, Life Science Zurich Graduate School, University of Zurich, 8000 Zurich, Switzerland
| | - Eveline Schlumpf
- Institute of Clinical Chemistry, University Hospital of Zurich, 8952 Schlieren, Switzerland
| | - Grigorios Panteloglou
- Institute of Clinical Chemistry, University Hospital of Zurich, 8952 Schlieren, Switzerland
| | - Flavia Tellenbach
- Institute of Clinical Chemistry, University Hospital of Zurich, 8952 Schlieren, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital of Zurich, 8952 Schlieren, Switzerland
- Bio Medicine Program, Life Science Zurich Graduate School, University of Zurich, 8000 Zurich, Switzerland
| | - Jerome Robert
- Institute of Clinical Chemistry, University Hospital of Zurich, 8952 Schlieren, Switzerland
- Correspondence: or
| |
Collapse
|
9
|
Israel LL, Galstyan A, Cox A, Shatalova ES, Sun T, Rashid MH, Grodzinski Z, Chiechi A, Fuchs DT, Patil R, Koronyo-Hamaoui M, Black KL, Ljubimova JY, Holler E. Signature Effects of Vector-Guided Systemic Nano Bioconjugate Delivery Across Blood-Brain Barrier of Normal, Alzheimer's, and Tumor Mouse Models. ACS NANO 2022; 16:11815-11832. [PMID: 35961653 PMCID: PMC9413444 DOI: 10.1021/acsnano.1c10034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability to cross the blood-brain barrier (BBB) is critical for targeted therapy of the central nerve system (CNS). Six peptide vectors were covalently attached to a 50 kDa poly(β-l-malic acid)-trileucine polymer forming P/LLL(40%)/vector conjugates. The vectors were Angiopep-2 (AP2), B6, Miniap-4 (M4), and d-configurated peptides D1, D3, and ACI-89, with specificity for transcytosis receptors low-density lipoprotein receptor-related protein-1 (LRP-1), transferrin receptor (TfR), bee venom-derived ion channel, and Aβ/LRP-1 related transcytosis complex, respectively. The BBB-permeation efficacies were substantially increased ("boosted") in vector conjugates of P/LLL(40%). We have found that the copolymer group binds at the endothelial membrane and, by an allosterically membrane rearrangement, exposes the sites for vector-receptor complex formation. The specificity of vectors is indicated by competition experiments with nonconjugated vectors. P/LLL(40%) does not function as an inhibitor, suggesting that the copolymer binding site is eliminated after binding of the vector-nanoconjugate. The two-step mechanism, binding to endothelial membrane and allosteric exposure of transcytosis receptors, is supposed to be an integral feature of nanoconjugate-transcytosis pathways. In vivo brain delivery signatures of the nanoconjugates were recapitulated in mouse brains of normal, tumor (glioblastoma), and Alzheimer's disease (AD) models. BBB permeation of the tumor was most efficient, followed by normal and then AD-like brain. In tumor-bearing and normal brains, AP2 was the top performing vector; however, in AD models, D3 and D1 peptides were superior ones. The TfR vector B6 was equally efficient in normal and AD-model brains. Cross-permeation efficacies are manifested through modulated vector coligation and dosage escalation such as supra-linear dose dependence and crossover transcytosis activities.
Collapse
Affiliation(s)
- Liron L. Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Ekaterina S. Shatalova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Mohammad-Harun Rashid
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Zachary Grodzinski
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery and Department of Biomedical Sciences,
Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Julia Y. Ljubimova
- Terasaki Institute for Biomedical Innovation
(TIBI), 1018 Westwood
Boulevard, Los Angeles, California 90024, United States
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation
(TIBI), 1018 Westwood
Boulevard, Los Angeles, California 90024, United States
| |
Collapse
|
10
|
Pereira ELR, Feio DCA, Tavares JPL, Morikawa NM, Deus DF, Vital CG, Tavares ER, Maranhão RC. Uptake of lipid core nanoparticles by fragments of tissues collected during cerebral tumor excision surgeries: hypotheses for use in drug targeting therapy. J Neurooncol 2022; 158:413-421. [PMID: 35612697 DOI: 10.1007/s11060-022-04028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Malignant cerebral tumors have poor prognosis and the blood-brain barrier is a major hindrance for most drugs to reach those tumors. Lipid nanoparticles (LDE) that bind to lipoprotein receptors may carry anticancer drugs and penetrate the cells through those receptors that are overexpressed in gliomas. The aim was to investigate the in vivo uptake of LDE by human cerebral tumors. METHODS Twelve consecutive patients (4 with glioblastomas, 1 meduloblastoma, 1 primary lymphoma, 2 with non-cerebral metastases and 4 with benign tumors) scheduled for tumor excision surgery were injected intravenously, 12 h before surgery, with LDE labeled 14C-cholesterol oleate. Fragments of tumors and of normal head tissues (muscle, periosteum, dura mater) discarded by the surgeon were submitted to lipid extraction and radioactive counting. RESULTS Tumor LDE uptake (range: 10-283 d.p.m./g of tissue) was not lower than that of normal tissues (range: 20-263 d.p.m./g). Malignant tumor uptake was threefold greater than benign tumor uptake (140 ± 93 vs 46 ± 18 d.p.m./g, p < 0.05). Results show that LDE can concentrate in brain malignant tumors and may be used to carry drugs directed against those tumors. CONCLUSION As LDE was previously shown to markedly decrease drug toxicity this new therapeutic strategy should be tested in future trials.
Collapse
Affiliation(s)
- Edmundo Luís Rodrigues Pereira
- Servico de Cirurgia, Nucleo de Pesquisas em Neurooncologia, Hospital Universitario Joao de Barros Barreto, Universidade Federal do Para, Belem, Para, Brazil
| | | | - João Pojucan Lobo Tavares
- Servico de Cirurgia, Nucleo de Pesquisas em Neurooncologia, Hospital Universitario Joao de Barros Barreto, Universidade Federal do Para, Belem, Para, Brazil
| | - Natalia Megumi Morikawa
- Servico de Cirurgia, Nucleo de Pesquisas em Neurooncologia, Hospital Universitario Joao de Barros Barreto, Universidade Federal do Para, Belem, Para, Brazil
| | - Debora Fernandes Deus
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Carolina Graziani Vital
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Elaine Rufo Tavares
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Raul Cavalcante Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil. .,Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, São Paulo, Brazil. .,Instituto Nacional de Ciencias e Tecnologia em Fluidos Complexos (INCT-FCx), São Paulo, São Paulo, Brazil. .,Laboratório de Metabolismo e Lípides, Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44, bloco 2, 1º subsolo, São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Vigne S, Duc D, Peter B, Rebeaud J, Yersin Y, Ruiz F, Bressoud V, Collet TH, Pot C. Lowering blood cholesterol does not affect neuroinflammation in experimental autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:42. [PMID: 35130916 PMCID: PMC8822860 DOI: 10.1186/s12974-022-02409-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Background Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system (CNS) commonly affecting young adults. There is increasing evidence that environmental factors are important in the development and course of MS. The metabolic syndrome (MetS) which comprises dyslipidemia has been associated with a worse outcome in MS disease. Furthermore, the lipid-lowering drug class of statins has been proposed to improve MS disease course. However, cholesterol is also rate-limiting for myelin biogenesis and promotes remyelination in MS animal models. Thus, the impact of circulating blood cholesterol levels during the disease remains debated and controversial. Methods We assessed the role of circulating cholesterol on the murine model of MS, the experimental autoimmune encephalomyelitis (EAE) disease using two different approaches: (1) the mouse model of familial hypercholesterolemia induced by low-density lipoprotein receptor (LDLr) deficiency, and (2) the use of the monoclonal anti-PCSK9 neutralizing antibody alirocumab, which reduces LDLr degradation and consequently lowers blood levels of cholesterol. Results Elevated blood cholesterol levels induced by LDLr deficiency did not worsen clinical symptoms of mice during EAE. In addition, we observed that the anti-PCSK9 antibody alirocumab did not influence EAE disease course, nor modulate the immune response in EAE. Conclusions These findings suggest that blood cholesterol level has no direct role in neuro-inflammatory diseases and that the previously shown protective effects of statins in MS are not related to circulating cholesterol. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02409-x.
Collapse
Affiliation(s)
- Solenne Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Donovan Duc
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Benjamin Peter
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Jessica Rebeaud
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Yannick Yersin
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Valentine Bressoud
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Tinh-Hai Collet
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals (HUG), Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
12
|
Pucci C, Marino A, Şen Ö, De Pasquale D, Bartolucci M, Iturrioz-Rodríguez N, di Leo N, de Vito G, Debellis D, Petretto A, Ciofani G. Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomater 2022; 139:218-236. [PMID: 33894347 PMCID: PMC7612320 DOI: 10.1016/j.actbio.2021.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, represents the most aggressive primary brain tumor. The complex genetic heterogeneity, the acquired drug resistance, and the presence of the blood-brain barrier (BBB) limit the efficacy of the current therapies, with effectiveness demonstrated only in a small subset of patients. To overcome these issues, here we propose an anticancer approach based on ultrasound-responsive drug-loaded organic piezoelectric nanoparticles. This anticancer nanoplatform consists of nutlin-3a-loaded ApoE-functionalized P(VDF-TrFE) nanoparticles, that can be remotely activated with ultrasound-based mechanical stimulations to induce drug release and to locally deliver anticancer electric cues. The combination of chemotherapy treatment with chronic piezoelectric stimulation resulted in activation of cell apoptosis and anti-proliferation pathways, induction of cell necrosis, inhibition of cancer migration, and reduction of cell invasiveness in drug-resistant GBM cells. Obtained results pave the way for the use of innovative multifunctional nanomaterials in less invasive and more focused anticancer treatments, able to reduce drug resistance in GBM.
Collapse
|
13
|
Menaceur C, Gosselet F, Fenart L, Saint-Pol J. The Blood-Brain Barrier, an Evolving Concept Based on Technological Advances and Cell-Cell Communications. Cells 2021; 11:cells11010133. [PMID: 35011695 PMCID: PMC8750298 DOI: 10.3390/cells11010133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
The construction of the blood–brain barrier (BBB), which is a natural barrier for maintaining brain homeostasis, is the result of a meticulous organisation in space and time of cell–cell communication processes between the endothelial cells that carry the BBB phenotype, the brain pericytes, the glial cells (mainly the astrocytes), and the neurons. The importance of these communications for the establishment, maturation and maintenance of this unique phenotype had already been suggested in the pioneering work to identify and demonstrate the BBB. As for the history of the BBB, the evolution of analytical techniques has allowed knowledge to evolve on the cell–cell communication pathways involved, as well as on the role played by the cells constituting the neurovascular unit in the maintenance of the BBB phenotype, and more particularly the brain pericytes. This review summarises the key points of the history of the BBB, from its origin to the current knowledge of its physiology, as well as the cell–cell communication pathways identified so far during its development, maintenance, and pathophysiological alteration.
Collapse
|
14
|
Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology 2021; 19:159. [PMID: 34051806 PMCID: PMC8164776 DOI: 10.1186/s12951-021-00896-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemotherapy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations.
Collapse
Affiliation(s)
- Ehsan Kianfar
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey.
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
15
|
Pifferi F, Laurent B, Plourde M. Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Front Physiol 2021; 12:645646. [PMID: 33868013 PMCID: PMC8044814 DOI: 10.3389/fphys.2021.645646] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Many prospective studies have shown that a diet enriched in omega-3 polyunsaturated fatty acids (n-3 PUFAs) can improve cognitive function during normal aging and prevent the development of neurocognitive diseases. However, researchers have not elucidated how n-3 PUFAs are transferred from the blood to the brain or how they relate to cognitive scores. Transport into and out of the central nervous system depends on two main sets of barriers: the blood-brain barrier (BBB) between peripheral blood and brain tissue and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) between the blood and the CSF. In this review, the current knowledge of how lipids cross these barriers to reach the CNS is presented and discussed. Implications of these processes in health and disease, particularly during aging and neurodegenerative diseases, are also addressed. An assessment provided here is that the current knowledge of how lipids cross these barriers in humans is limited, which hence potentially restrains our capacity to intervene in and prevent neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Benoit Laurent
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
16
|
Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1695. [PMID: 33470550 DOI: 10.1002/wnan.1695] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nearly one in six people worldwide suffer from disorders of the central nervous system (CNS). There is an urgent need for effective strategies to improve the success rates in CNS drug discovery and development. The lack of effective technologies for delivering drugs and genes to the brain due to the blood-brain barrier (BBB), a structural barrier that effectively blocks most neurotherapeutic agents from reaching the brain, has posed a formidable hurdle for CNS drug development. Brain-homing and brain-penetrating molecular transport vectors, such as brain permeable peptides or BBB shuttle peptides, have shown promise in overcoming the BBB and ferrying the drug molecules to the brain. The BBB shuttle peptides are discovered by phage display technology or derived from natural neurotropic proteins or certain viruses and harness the receptor-mediated transcytosis molecular machinery for crossing the BBB. Brain permeable peptide-drug conjugates (PDCs), composed of BBB shuttle peptides, linkers, and drug molecules, have emerged as a promising CNS drug delivery system by taking advantage of the endogenous transcytosis mechanism and tricking the brain into allowing these bioactive molecules to pass the BBB. Here, we examine the latest development of brain-penetrating peptide shuttles and brain-permeable PDCs as molecular vectors to deliver small molecule drug payloads across the BBB to reach brain parenchyma. Emerging knowledge of the contribution of the peptides and their specific receptors expressed on the brain endothelial cells, choice of drug payloads, the design of PDCs, brain entry mechanisms, and delivery efficiency to the brain are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Quentin R Smith
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
17
|
Wünsch A, Mulac D, Langer K. Lecithin coating as universal stabilization and functionalization strategy for nanosized drug carriers to overcome the blood-brain barrier. Int J Pharm 2020; 593:120146. [PMID: 33279714 DOI: 10.1016/j.ijpharm.2020.120146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
Lecithin coated cholesteryl oleate (ChOl) based nanoparticles (NPs) imitating natural lipoproteins represent a new and promising drug carrier strategy to cross the blood-brain barrier (BBB). In such systems lecithin serves as stabilizing as well as functionalizing agent and enables the adsorptive binding of apolipoprotein E3 (ApoE) as potential drug targeting ligand. The present work is focused on the effect of size reduction on the lecithin coating and ApoE binding. Furthermore, the transferability of this lecithin coating strategy to other NP cores, namely polylactic-co-glycolic acid (PLGA) and polylactic acid (PLA), is investigated in order to provide a universal strategy for a wide range of cores to overcome the BBB. The ChOl NPs' size was successfully reduced from 100 nm to 70 nm. Varying the core size of ChOl NPs illustrated, that the at least needed lecithin amount for sufficient stabilization could be calculated surface area dependently. However, the size reduction led to reduced dye loading per NP and increased ApoE need per NP mass. These effects turned out as huge disadvantages of smaller NPs by weakening the observed ApoE mediated effects. Nevertheless, the extended understanding of the lecithin coating could be used to transfer the concept to other core materials. PLGA and PLA NPs were investigated as alternative core materials for lecithin coating. PLGA was found to be unsuitable, whereas in the case of PLA sufficient stabilization and 100% adsorptive binding efficiency to ApoE could be achieved. The ApoE mediated effects of transcytosis at an in vitro BBB model by bypassing lysosomes were reproduced in even stronger quantities than with a ChOl core, proving lecithin coating as transferable strategy to disguise various NPs with a certain lipophilicity as lipoproteins.
Collapse
Affiliation(s)
- A Wünsch
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstraße 48, 48149 Münster, Germany.
| | - D Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstraße 48, 48149 Münster, Germany.
| | - K Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstraße 48, 48149 Münster, Germany.
| |
Collapse
|
18
|
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2020; 269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
The parenteral administration of protein therapeutics is increasingly gaining importance for the treatment of human diseases. However, the presence of practically impermeable blood-brain barriers greatly restricts access of such pharmaceutics to the brain. Treating brain disorders with proteins thus remains a great challenge, and the slow clinical translation of these therapeutics may be largely ascribed to the lack of appropriate brain delivery system. Exploring new approaches to deliver proteins to the brain by circumventing physiological barriers is thus of great interest. Moreover, parallel advances in the molecular neurosciences are important for better characterizing blood-brain interfaces, particularly under different pathological conditions (e.g., stroke, multiple sclerosis, Parkinson's disease, and Alzheimer's disease). This review presents the current state of knowledge of the structure and the function of the main physiological barriers of the brain, the mechanisms of transport across these interfaces, as well as alterations to these concomitant with brain disorders. Further, the different strategies to promote protein delivery into the brain are presented, including the use of molecular Trojan horses, the formulation of nanosystems conjugated/loaded with proteins, protein-engineering technologies, the conjugation of proteins to polymers, and the modulation of intercellular junctions. Additionally, therapeutic approaches for brain diseases that do not involve targeting to the brain are presented (i.e., sink and scavenging mechanisms).
Collapse
Affiliation(s)
- A Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada
| | - J Drouin-Ouellet
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Brambilla
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - M A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
19
|
Wünsch A, Mulac D, Langer K. Lipoprotein imitating nanoparticles: Lecithin coating binds ApoE and mediates non-lysosomal uptake leading to transcytosis over the blood-brain barrier. Int J Pharm 2020; 589:119821. [DOI: 10.1016/j.ijpharm.2020.119821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
|
20
|
Vágvölgyi M, Bélteky P, Bogdán D, Nové M, Spengler G, Latif AD, Zupkó I, Gáti T, Tóth G, Kónya Z, Hunyadi A. Squalenoylated Nanoparticle Pro-Drugs of Adjuvant Antitumor 11α-Hydroxyecdysteroid 2,3-Acetonides Act as Cytoprotective Agents Against Doxorubicin and Paclitaxel. Front Pharmacol 2020; 11:552088. [PMID: 33013388 PMCID: PMC7516204 DOI: 10.3389/fphar.2020.552088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Several ecdysteroid acetonides act as adjuvant chemo-sensitizing agents against various cancer cell lines, and they can be formulated to self-assembling nanoparticle (NP) pro-drugs through a hydrolysable conjugation with squalene. In the bloodstream such squalenoylated nanoparticles dissolve into low-density lipoprotein (LDL) that allows targeting tissues containing high levels of LDL-receptors. In this work, ajugasterone C 2,3;20,22-diacetonide (3) and 11α-hydroxypoststerone 2,3-acetonide (4) were squalenoylated to obtain two new ecdysteroid pro-drugs (6 and 7) and their nano-assemblies (6NP and 7NP ). A complete NMR signal assignment of 6 and 7 was achieved. Interaction of compounds 3 and 4 with chemotherapeutics was studied by the Chou-Talalay method. Compound 3 showed strong synergism with doxorubicin on a multi-drug resistant lymphoma cell line. In contrast, its nanoassembly 6NP significantly decreased the cytotoxicity of doxorubicin on these MDR cells, strongly suggesting that at least the 2,3-acetonide group was cleaved by the acidic pH of lysosomes after endocytosis of the prodrug. Further, compound 4 acted in strong antagonism with paclitaxel on MCF-7 cells and its nanoassemby 7NP also protected MCF-7 cells from the effect of paclitaxel. Our results suggest that acid-resistant A-ring substitution would be crucial to design adjuvant antitumor squalenoylated ecdysteroid prodrugs. Additionally, our results may be considered as a serendipitous discovery of a novel way to deliver cytoprotective, adaptogen ecdysteroids to healthy tissues with upregulated LDL-R.
Collapse
Affiliation(s)
- Máté Vágvölgyi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Dóra Bogdán
- Department of Organic Chemistry, Semmelweis University, Budapest, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Márta Nové
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Ahmed D. Latif
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| | - Tamás Gáti
- Servier Research Institute of Medicinal Chemistry (SRIMC), Budapest, Hungary
| | - Gábor Tóth
- NMR Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Szeged, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Al-azzawi S, Masheta D, Guildford A, Phillips G, Santin M. A Peptide-Based Nanocarrier for an Enhanced Delivery and Targeting of Flurbiprofen into the Brain for the Treatment of Alzheimer's Disease: An In Vitro Study. NANOMATERIALS 2020; 10:nano10081590. [PMID: 32823499 PMCID: PMC7466704 DOI: 10.3390/nano10081590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is an age-related disease caused by abnormal accumulation of amyloid-β in the brain leading to progressive tissue degeneration. Flurbiprofen (FP), a drug used to mitigate the disease progression, has low efficacy due to its limited permeability across the blood-brain barrier (BBB). In a previous work, FP was coupled at the uppermost branching of an ε-lysine-based branched carrier, its root presenting a phenylalanine moiety able to increase the hydrophobicity of the complex and enhance the transport across the BBB by adsorptive-mediated transcytosis (AMT). The present study explores a different molecular design of the FP-peptide delivery system, whereby its root presents an ApoE-mimicking peptide, a targeting ligand that could enhance transport across the BBB by receptor-mediated transcytosis (RMT). The functionalised complex was synthesised using a solid-phase peptide synthesis and characterised by mass spectrometry and FTIR. Cytotoxicity and permeability of this complex across an in vitro BBB model were analysed. Moreover, its activity and degradation to release the drug were investigated. The results revealed successful synthesis and grafting of FP molecules at the uppermost molecular branches of the lysine terminal without observed cytotoxicity. When covalently linked to the nanocarrier, FP was still active on target cells, albeit with a reduced activity, and was released as a free drug upon hydrolysis in a lysosome-mimicking medium. Noticeably, this work shows the high efficiency of RMT-driven FP delivery over delivery systems relying on AMT.
Collapse
Affiliation(s)
- Shafq Al-azzawi
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- College of Pharmacy, University of Babylon, Ministry of Higher Education and Scientific Research, Hilla 51002, Iraq
| | - Dhafir Masheta
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- College of Pharmacy, University of Babylon, Ministry of Higher Education and Scientific Research, Hilla 51002, Iraq
| | - Anna Guildford
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- Tissue Click Ltd., Brighton BN2 6SJ, UK
| | - Gary Phillips
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- Tissue Click Ltd., Brighton BN2 6SJ, UK
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Bimolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (S.A.-a.); (D.M.); (A.G.); (G.P.)
- Correspondence:
| |
Collapse
|
22
|
Ovais M, Nethi SK, Ullah S, Ahmad I, Mukherjee S, Chen C. Recent advances in the analysis of nanoparticle-protein coronas. Nanomedicine (Lond) 2020; 15:1037-1061. [DOI: 10.2217/nnm-2019-0381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In spite of radical advances in nanobiotechnology, the clinical translation of nanoparticle (NP)-based agents is still a major challenge due to various physiological factors that influence their interactions with biological systems. Recent decade witnessed meticulous investigation on protein corona (PC) that is the first surrounds NPs once administered into the body. Formation of PC around NP surface exhibits resilient effects on their circulation, distribution, therapeutic activity, toxicity and other factors. Although enormous literature is available on the role of PC in altering pharmacokinetics and pharmacodynamics of NPs, understanding on its analytical characterization methods still remains shallow. Therefore, the current review summarizes the impact of PC on biological fate of NPs and stressing on analytical methods employed for studying the NP-PC.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience & Technology (NCNST), Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Susheel Kumar Nethi
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Saleem Ullah
- Department of Environmental Science & Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience & Technology (NCNST), Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
23
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
24
|
Montague-Cardoso K, Pitcher T, Chisolm K, Salera G, Lindstrom E, Hewitt E, Solito E, Malcangio M. Changes in vascular permeability in the spinal cord contribute to chemotherapy-induced neuropathic pain. Brain Behav Immun 2020; 83:248-259. [PMID: 31669344 PMCID: PMC6928576 DOI: 10.1016/j.bbi.2019.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023] Open
Abstract
Chemotherapy-induced neuropathic pain is a dose-limiting side effect of many cancer therapies due to their propensity to accumulate in peripheral nerves, which is facilitated by the permeability of the blood-nerve barrier. Preclinically, the chemotherapy agent vincristine (VCR) activates endothelial cells in the murine peripheral nervous system and in doing so allows the infiltration of monocytes into nerve tissue where they orchestrate the development of VCR-induced nociceptive hypersensitivity. In this study we demonstrate that VCR also activates endothelial cells in the murine central nervous system, increases paracellular permeability and decreases trans endothelial resistance. In in vivo imaging studies in mice, VCR administration results in trafficking of inflammatory monocytes through the endothelium. Indeed, VCR treatment affects the integrity of the blood-spinal cord-barrier as indicated by Evans Blue extravasation, disrupts tight junction coupling and is accompanied by the presence of monocytes in the spinal cord. Such inflammatory monocytes (Iba-1+ CCR2+ Ly6C+ TMEM119- cells) that infiltrate the spinal cord also express the pro-nociceptive cysteine protease Cathepsin S. Systemic treatment with a CNS-penetrant, but not a peripherally-restricted, inhibitor of Cathepsin S prevents the development of VCR-induced hypersensitivity, suggesting that infiltrating monocytes play a functional role in sensitising spinal cord nociceptive neurons. Our findings guide us towards a better understanding of central mechanisms of pain associated with VCR treatment and thus pave the way for the development of innovative antinociceptive strategies.
Collapse
Affiliation(s)
- Karli Montague-Cardoso
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom.
| | - Thomas Pitcher
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom
| | - Kim Chisolm
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom
| | - Giorgia Salera
- William Harvey Research Institute, Bart's and The London School of Medicine Queen Mary, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | - Egle Solito
- William Harvey Research Institute, Bart's and The London School of Medicine Queen Mary, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
25
|
Jin U, Park SJ, Park SM. Cholesterol Metabolism in the Brain and Its Association with Parkinson's Disease. Exp Neurobiol 2019; 28:554-567. [PMID: 31698548 PMCID: PMC6844833 DOI: 10.5607/en.2019.28.5.554] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most progressive neurodegenerative disorder of the aging population after Alzheimer’s disease (AD). Defects in the lysosomal systems and mitochondria have been suspected to cause the pathogenesis of PD. Nevertheless, the pathogenesis of PD remains obscure. Abnormal cholesterol metabolism is linked to numerous disorders, including atherosclerosis. The brain contains the highest level of cholesterol in the body and abnormal cholesterol metabolism links also many neurodegenerative disorders such as AD, PD, Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). The blood brain barrier effectively prevents uptake of lipoprotein-bound cholesterol from blood circulation. Accordingly, cholesterol level in the brain is independent from that in peripheral tissues. Because cholesterol metabolism in both peripheral tissue and the brain are quite different, cholesterol metabolism associated with neurodegeneration should be examined separately from that in peripheral tissues. Here, we review and compare cholesterol metabolism in the brain and peripheral tissues. Furthermore, the relationship between alterations in cholesterol metabolism and PD pathogenesis is reviewed.
Collapse
Affiliation(s)
- Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Cardiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
26
|
Ashizawa AT, Holt J, Faust K, Liu W, Tiwari A, Zhang N, Ashizawa T. Intravenously Administered Novel Liposomes, DCL64, Deliver Oligonucleotides to Cerebellar Purkinje Cells. THE CEREBELLUM 2019; 18:99-108. [PMID: 29987489 DOI: 10.1007/s12311-018-0961-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cerebellar Purkinje cells (PCs) show conspicuous damages in many ataxic disorders. Targeted delivery of short nucleic acids, such as antisense oligonucleotides, to PCs may be a potential treatment for ataxic disorders, especially spinocerebellar ataxias (SCAs), which are mostly caused by a gain of toxic function of the mutant RNA or protein. However, oligonucleotides do not cross the blood-brain barrier (BBB), necessitating direct delivery into the central nervous system (CNS) through intra-thecal, intra-cisternal, intra-cerebral ventricular, or stereotactic parenchymal administration. We have developed a novel liposome (100 to 200 nm in diameter) formulation, DCL64, composed of dipalmitoyl-phosphatidylcholine, cholesterol, and poloxamer L64, which incorporates oligonucleotides efficiently (≥ 70%). Confocal microscopy showed that DCL64 was selectively taken up by brain microvascular endothelial cells by interacting with low-density lipoprotein receptor (LDLr) family members on cell surface, but not with other types of lipid receptors such as caveolin or scavenger receptor class B type 1. LDLr family members are implicated in brain microvascular endothelial cell endocytosis/transcytosis, and are abundantly localized on cerebellar PCs. Intravenous administration of DCL64 in normal mice showed distribution of oligonucleotides to the brain, preferentially in PCs. Mice that received DCL64 showed no adverse effect on hematological, hepatic, and renal functions in blood tests, and no histopathological abnormalities in major organs. These studies suggest that DCL64 delivers oligonucleotides to PCs across the BBB via intravenous injection with no detectable adverse effects. This property potentially makes DCL64 particularly attractive as a delivery vehicle in treatments of SCAs.
Collapse
Affiliation(s)
- Ana Tari Ashizawa
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Bio-Path Holdings, Inc., Bellaire, TX, USA
| | - Jenny Holt
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Kelsey Faust
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Weier Liu
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Anjana Tiwari
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA
| | - Nan Zhang
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA
| | - Tetsuo Ashizawa
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA. .,Department of Neurology, University of Florida, Gainesville, FL, USA. .,Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Moura RP, Martins C, Pinto S, Sousa F, Sarmento B. Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Deliv 2019; 16:271-285. [PMID: 30767695 DOI: 10.1080/17425247.2019.1583205] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a highly limiting barrier that prevents the brain from contacting with several circulating molecules, including harmful agents. However, certain systemic nutrients and macromolecules are able to cross the BBB and reach the brain parenchyma, involving the interaction with multiple receptors and/or transporters at the BBB surface. Nanotechnology allows the creation of drug vehicles, functionalized with targeting ligands for binding specific BBB receptors and/or transporters, hence triggering the transport through this biobarrier. AREAS COVERED This review focuses the BBB receptors/transporters to be exploited in regard to their overall structure and biologic function, as well as their role in the development of strategies envisaging drug delivery to the brain. Then, the interplay between the targeting of these BBB receptors/transporters and nanotechnology is explored, as they can increase by several-fold the effectiveness of brain-targeted therapies. EXPERT OPINION Nanomedicine may be particularly useful in brain drug delivery, mainly due to the possibility of functionalizing nanoparticles to target specific receptors/transporters. Since the BBB is endowed with numerous receptors and transporters responsible for regulating the proper metabolic activity of the brain, their targeting can be a promising bypass strategy to circumvent the hurdle that the BBB represents for brain drug delivery.
Collapse
Affiliation(s)
- Rui Pedro Moura
- a CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra , Portugal
| | - Cláudia Martins
- b I3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal
| | - Soraia Pinto
- b I3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal
| | - Flávia Sousa
- a CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra , Portugal.,b I3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal
| | - Bruno Sarmento
- a CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra , Portugal.,b I3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal
| |
Collapse
|
28
|
Apawu AK, Curley SM, Dixon AR, Hali M, Sinan M, Braun RD, Castracane J, Cacace AT, Bergkvist M, Holt AG. MRI compatible MS2 nanoparticles designed to cross the blood-brain-barrier: providing a path towards tinnitus treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1999-2008. [PMID: 29665440 DOI: 10.1016/j.nano.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/17/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Fundamental challenges of targeting specific brain regions for treatment using pharmacotherapeutic nanoparticle (NP) carriers include circumventing the blood-brain-barrier (BBB) and tracking delivery. Angiopep-2 (AP2) has been shown to facilitate the transport of large macromolecules and synthetic nanoparticles across the BBB. Thus, conjugation of AP2 to an MS2 bacteriophage based NP should also permit transport across the BBB. We have fabricated and tested a novel MS2 capsid-based NP conjugated to the ligand AP2. The reaction efficiency was determined to be over 70%, with up to two angiopep-2 conjugated per MS2 capsid protein. When linked with a porphyrin ring, manganese (Mn2+) remained stable within MS2 and was MRI detectable. Nanoparticles were introduced intracerebroventricularly or systemically. Systemic delivery yielded dose dependent, non-toxic accumulation of NPs in the midbrain. Design of a multifunctional MRI compatible NP platform provides a significant step forward for the diagnosis and treatment of intractable brain conditions, such as tinnitus.
Collapse
Affiliation(s)
- Aaron K Apawu
- Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, United States
| | - Stephanie M Curley
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Rd., Albany, NY, United States
| | - Angela R Dixon
- Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, United States
| | - Mirabela Hali
- Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, United States
| | - Moaz Sinan
- Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, United States
| | - Rod D Braun
- Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, United States
| | - James Castracane
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Rd., Albany, NY, United States
| | - Anthony T Cacace
- Wayne State University, Department of Communication Sciences & Disorders, 207 Rackham, 60 Farnsworth, Detroit, MI, United States
| | - Magnus Bergkvist
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Rd., Albany, NY, United States
| | - Avril Genene Holt
- Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, United States; John D. Dingell VA Medical Center, 4646 John R St, Detroit, MI, United States.
| |
Collapse
|
29
|
David M, Lécorché P, Masse M, Faucon A, Abouzid K, Gaudin N, Varini K, Gassiot F, Ferracci G, Jacquot G, Vlieghe P, Khrestchatisky M. Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos. PLoS One 2018; 13:e0191052. [PMID: 29485998 PMCID: PMC5828360 DOI: 10.1371/journal.pone.0191052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/27/2017] [Indexed: 01/09/2023] Open
Abstract
Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells-or organs that express the LDLR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karine Varini
- VECT-HORUS SAS, Marseille, France
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | | - Géraldine Ferracci
- Aix Marseille Univ, CNRS, CRN2M, Marseille, France
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | | | - Michel Khrestchatisky
- Aix Marseille Univ, CNRS, NICN, Marseille, France
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
30
|
Su HT, Li X, Liang DS, Qi XR. Synthetic low-density lipoprotein (sLDL) selectively delivers paclitaxel to tumor with low systemic toxicity. Oncotarget 2018; 7:51535-51552. [PMID: 27409176 PMCID: PMC5239495 DOI: 10.18632/oncotarget.10493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Low density lipoprotein (LDL), which is a principal carrier for the delivery of cholesterol, has been used as a great candidate for the delivery of drugs to tumor based on the great requirements for cholesterol of many cancer cells. Mimicking the structure and composition of LDL, we designed a synthetic low-density lipoprotein (sLDL) to encapsulate paclitaxel-alpha linolenic acid (PALA) for tumor therapy. The PALA loaded sLDL (PALA-sLDL) and PALA-loaded microemulsion (PALA-ME, without the binding domain for LDLR) displayed uniform sizes with high drug loading efficiency (> 90%). In vitro studies demonstrated PALA-sLDL exhibited enhanced cellular uptake capacity and better cytotoxicity to LDLR over-expressed U87 MG cells as compared to PALA-ME. The uptake mechanisms of PALA-sLDL were involved in a receptor mediated endocytosis and macropinocytosis. Furthermore, the in vivo biodistribution and tumor growth inhibition studies of PALA-sLDL were investigated in xenograft U87 MG tumor-bearing mice. The results showed that PALA-sLDL exhibited higher tumor accumulation than PALA-ME and superior tumor inhibition efficiency (72.1%) compared to Taxol® (51.2%) and PALA-ME (58.8%) but with lower toxicity. These studies suggested that sLDL is potential to be used as a valuable carrier for the selective delivery of anticancer drugs to tumor with low systemic toxicity.
Collapse
Affiliation(s)
- Hai-Tao Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xin Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - De-Sheng Liang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xian-Rong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, PR China
| |
Collapse
|
31
|
Pardridge WM. Delivery of Biologics Across the Blood–Brain Barrier with Molecular Trojan Horse Technology. BioDrugs 2017; 31:503-519. [DOI: 10.1007/s40259-017-0248-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Liu Y, Ma Y, Xu J, Chen Y, Xie J, Yue P, Zheng Q, Yang M. Apolipoproteins adsorption and brain-targeting evaluation of baicalin nanocrystals modified by combination of Tween80 and TPGS. Colloids Surf B Biointerfaces 2017; 160:619-627. [PMID: 29031222 DOI: 10.1016/j.colsurfb.2017.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/23/2017] [Accepted: 10/03/2017] [Indexed: 01/14/2023]
Abstract
To help baicalin pass across BBB and improve its targeting in brain, we designed a novel formulation strategy of baicalin nanocrystals that preferentially adsorbing apolipoprotein E (ApoE) and repelling protein adsorption of opsonins. Intravenous baicalin nanocrystals suspensions (BCL-NS) modified by different surfactant were prepared by high-pressure homogenization. The targeting potential of surface-modified BCL-NS with mean particles size of about 250nm was assessed by in vitro protein adsorption studies using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), and further evaluated in vivo pharmacokinetics. The protein adsorption results showed that BCL-NS/TPGS, BCL-NS/TW80 and BCL-NS/TPGS+TW80 adsorbed very high amounts of apolipoproteins (ApoA-I, ApoA-Ⅱ, ApoA-IV, ApoC-III, ApoE, ApoJ) and relative low amounts of opsonins (fibrinogen, immunoglobulin heavy chain gamma, immunoglobulin light chain). The pharmacokinetics results demonstrated the AUC (0-∞) in brain of the BCL-NS/TW80+TPGS was 6.67 times as high as that of the BCL solution, and 2.59 times as high as that of the BCL-NS/TW80. It could be attributed to the most ApoE and Apo J adsorption indicative of strong BBB penetration, and least IgG γ and fibrinogen loading minimizing the risk of hepatic uptake. Combination of TW80 and TPGS can be rational choice of surfactants of baicalin nanocrystals for brain-targeting mediated by ApoE adsorption.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yueqin Ma
- Departments of Pharmacy, 94th Hospital of People's Liberation Army, Nanchang, China
| | - Junnan Xu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yingchong Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jin Xie
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| | - Qin Zheng
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
33
|
The role of non-endothelial cells on the penetration of nanoparticles through the blood brain barrier. Prog Neurobiol 2017; 159:39-49. [PMID: 28899762 DOI: 10.1016/j.pneurobio.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 12/26/2022]
Abstract
The blood brain barrier (BBB) is a well-established cell-based membrane that circumvents the central nervous system (CNS), protecting it from harmful substances. Due to its robustness and cell integrity, it is also an outstanding opponent when it comes to the delivery of several therapeutic agents to the brain, which requires the crossing through its highly-organized structure. This regulation and cell-cell communications occur mostly between astrocytes, pericytes and endothelial cells. Therefore, alternative ways to deliver drugs to the CNS, overcoming the BBB are required, to improve the efficacy of brain target drugs. Nanoparticles emerge here as a promising drug delivery strategy, due to their ability of high drug loading and the capability to exploit specific delivery pathways that most drugs are unable to when administered freely, increasing their bioavailability in the CNS. Thus, further attempts to assess the possible influence of non-endothelial may have on the BBB translocation of nanoparticles are here revised. Furthermore, the use of macrophages and/or monocytes as nanoparticle delivery cells are also approached. Lastly, the temporarily disruption of the overall organization and normal structure of the BBB to promote the penetration of nanoparticles aimed at the CNS is described, as a synergistic path.
Collapse
|
34
|
Application of dual targeting drug delivery system for the improvement of anti-glioma efficacy of doxorubicin. Oncotarget 2017; 8:58823-58834. [PMID: 28938600 PMCID: PMC5601696 DOI: 10.18632/oncotarget.19221] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/17/2017] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy of glioma is always hampered by the unsatisfactory tumor accumulation of drugs, of which the most noticeable obstacle is the limited drug permeability from vessels into tumor inner. In the present study, we developed a novel nanocarrier for the delivery of doxorubicin to brain tumor. Such novel drug delivery system was mainly composed of a tumor homing peptide and DOX-loaded PLA nanoparticles (AP1-NP-DOX). CRKRLDRNC peptide, named as AP1, was a newly glioma affinity peptide which could specifically binds to interleukin-4 receptor (IL-4R), highly expressing on both glioma cells and angiogenesis. Our findings showed that the peptide-functionalized nanoparticles had a high affinity with both tumor cells and vascular endothelial cells. Besides, tumor targeting assay exhibited that AP1 decorated nanoparticles accumulated more in tumor site than the unmodified ones. Moreover, the results of tumor uptake experiments indicated that AP1-NP-DOX might own the ability of blood brain barrier (BBB) penetration. In the anti-glioma study, AP1-NP-DOX exhibited the highest therapeutic effect on tumor-bearing mice compared with the unmodified nanoparticles and free doxorubicin. These results together indicated that AP1-functionalized nanoparticles could represent a promising way to expand the treatment horizons of onco-therapy.
Collapse
|
35
|
Abstract
The blood-brain barrier (BBB) is located at the brain microvessel level and isolates the brain from the whole body, thus restricting molecule and cell exchanges between cerebral and peripheral compartments. In order to better decipher and understand the BBB physiology and development, and to investigate transport mechanism and toxicity of neuropharmaceuticals, several in vitro BBB models have been developed using animal or human cells, primary or immortalized cells. The aim of this review is to explain to the reader the major criteria required for a pertinent in vitro BBB model and to briefly expose the different models currently available with their characteristics with a special focus on the static models.
Collapse
Affiliation(s)
- Fabien Gosselet
- Université Artois, EA 2465, laboratoire de la Barrière Hémato-Encéphalique (LBHE), rue Jean Souvraz, SP18, F-62300 Lens, France
| |
Collapse
|
36
|
Lu F, Pang Z, Zhao J, Jin K, Li H, Pang Q, Zhang L, Pang Z. Angiopep-2-conjugated poly(ethylene glycol)- co- poly(ε-caprolactone) polymersomes for dual-targeting drug delivery to glioma in rats. Int J Nanomedicine 2017; 12:2117-2127. [PMID: 28356732 PMCID: PMC5360408 DOI: 10.2147/ijn.s123422] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The blood–brain barrier is a formidable obstacle for glioma chemotherapy due to its compact structure and drug efflux ability. In this study, a dual-targeting drug delivery system involving Angiopep-2-conjugated biodegradable polymersomes loaded with doxorubicin (Ang-PS-DOX) was developed to exploit transport by the low-density lipoprotein receptor-related protein 1 (LRP1), which is overexpressed in both blood–brain barrier and glioma cells. The polymersomes (PS) were prepared using a thin-film hydration method. The PS were loaded with doxorubicin using the pH gradient method (Ang-PS-DOX). The resulting PS were uniformly spherical, with diameters of ~135 nm and with ~159.9 Angiopep-2 molecules on the surface of each PS. The drug-loading capacity and the encapsulation efficiency for doxorubicin were 7.94%±0.17% and 95.0%±1.6%, respectively. Permeability tests demonstrated that the proton diffusion coefficient across the PS membrane was far slower than that across the liposome membrane, and the common logarithm value was linearly dependent on the dioxane content in the external phase. Compared with PS-DOX, Ang-PS-DOX demonstrated significantly higher cellular uptake and stronger cytotoxicity in C6 cells. In vivo pharmacokinetics and brain distribution experiments revealed that Ang-PS-DOX achieved a more extensive distribution and more abundant accumulation in glioma cells than PS-DOX. Moreover, the survival time of glioma-bearing rats treated with Ang-PS-DOX was significantly prolonged compared with those treated with PS-DOX or a solution of free doxorubicin. These results suggested that Ang-PS-DOX can target glioma cells and enhance chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Fei Lu
- Department of Pharmacy, Xianju People's Hospital, Xianju, Zhejiang; Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai
| | - Zhiyong Pang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai; Chongyang Center for Disease Control and Prevention, Xianning, Hubei
| | - Jingjing Zhao
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai
| | - Kai Jin
- School of Life Science, Fudan University, Shanghai, People's Republic of China
| | - Haichun Li
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai
| | - Qiang Pang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai
| | - Long Zhang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai
| | - Zhiqing Pang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai
| |
Collapse
|
37
|
Weiler A, Volkenhoff A, Hertenstein H, Schirmeier S. Metabolite transport across the mammalian and insect brain diffusion barriers. Neurobiol Dis 2017; 107:15-31. [PMID: 28237316 DOI: 10.1016/j.nbd.2017.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/02/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
The nervous system in higher vertebrates is separated from the circulation by a layer of specialized endothelial cells. It protects the sensitive neurons from harmful blood-derived substances, high and fluctuating ion concentrations, xenobiotics or even pathogens. To this end, the brain endothelial cells and their interlinking tight junctions build an efficient diffusion barrier. A structurally analogous diffusion barrier exists in insects, where glial cell layers separate the hemolymph from the neural cells. Both types of diffusion barriers, of course, also prevent influx of metabolites from the circulation. Because neuronal function consumes vast amounts of energy and necessitates influx of diverse substrates and metabolites, tightly regulated transport systems must ensure a constant metabolite supply. Here, we review the current knowledge about transport systems that carry key metabolites, amino acids, lipids and carbohydrates into the vertebrate and Drosophila brain and how this transport is regulated. Blood-brain and hemolymph-brain transport functions are conserved and we can thus use a simple, genetically accessible model system to learn more about features and dynamics of metabolite transport into the brain.
Collapse
Affiliation(s)
- Astrid Weiler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Anne Volkenhoff
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Helen Hertenstein
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany.
| |
Collapse
|
38
|
Molino Y, David M, Varini K, Jabès F, Gaudin N, Fortoul A, Bakloul K, Masse M, Bernard A, Drobecq L, Lécorché P, Temsamani J, Jacquot G, Khrestchatisky M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J 2017; 31:1807-1827. [PMID: 28108572 DOI: 10.1096/fj.201600827r] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals (ldlr-/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.
Collapse
Affiliation(s)
- Yves Molino
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Marion David
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Karine Varini
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Françoise Jabès
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Nicolas Gaudin
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Aude Fortoul
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Karima Bakloul
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Maxime Masse
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Anne Bernard
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Lucile Drobecq
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | | | - Jamal Temsamani
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | | | - Michel Khrestchatisky
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| |
Collapse
|
39
|
Tornabene E, Brodin B. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier. J Pharm Sci 2016; 105:398-405. [PMID: 26869407 DOI: 10.1016/j.xphs.2015.11.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
Abstract
Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain barrier are useful tools to investigate the effects of induced ischemia under controlled conditions. In the present mini review, we aim to give a brief overview of the in vitro models of ischemia. Special focus is given to the expression of uptake and efflux transport pathways in the ischemic and postischemic endothelium. Finally, we will point toward future challenges within the field of in vitro models of brain ischemia.
Collapse
Affiliation(s)
- Erica Tornabene
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Birger Brodin
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
40
|
Portioli C, Bovi M, Benati D, Donini M, Perduca M, Romeo A, Dusi S, Monaco HL, Bentivoglio M. Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 2016; 105:847-858. [DOI: 10.1002/jbm.a.35961] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Corinne Portioli
- Department of Neuroscience, Biomedicine and Movement Sciences; University of Verona; Verona Italy
| | - Michele Bovi
- Department of Biotechnology; University of Verona; Verona Italy
| | - Donatella Benati
- Department of Neuroscience, Biomedicine and Movement Sciences; University of Verona; Verona Italy
| | - Marta Donini
- Department of Medicine; University of Verona; Verona Italy
| | | | - Alessandro Romeo
- Department of Computer Science; University of Verona; Verona Italy
| | - Stefano Dusi
- Department of Medicine; University of Verona; Verona Italy
| | - Hugo L. Monaco
- Department of Biotechnology; University of Verona; Verona Italy
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences; University of Verona; Verona Italy
| |
Collapse
|
41
|
Thuenauer R, Müller SK, Römer W. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery. Expert Opin Drug Deliv 2016; 14:341-351. [DOI: 10.1080/17425247.2016.1220364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 2016; 6:268-86. [PMID: 27471668 PMCID: PMC4951594 DOI: 10.1016/j.apsb.2016.05.013] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
Due to the ability of the blood-brain barrier (BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood-brain tumor barrier (BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.
Collapse
|
43
|
Coisne C, Hallier-Vanuxeem D, Boucau MC, Hachani J, Tilloy S, Bricout H, Monflier E, Wils D, Serpelloni M, Parissaux X, Fenart L, Gosselet F. β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells. Front Physiol 2016; 7:185. [PMID: 27252658 PMCID: PMC4879322 DOI: 10.3389/fphys.2016.00185] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/09/2016] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is an inflammatory disease that leads to an aberrant accumulation of cholesterol in vessel walls forming atherosclerotic plaques. During this process, the mechanism regulating complex cellular cholesterol pools defined as the reverse cholesterol transport (RCT) is altered as well as expression and functionality of transporters involved in this process, namely ABCA1, ABCG1, and SR-BI. Macrophages, arterial endothelial and smooth muscle cells (SMCs) have been involved in the atherosclerotic plaque formation. As macrophages are widely described as the major cell type forming the foam cells by accumulating intracellular cholesterol, RCT alterations have been poorly studied at the arterial endothelial cell and SMC levels. Amongst the therapeutics tested to actively counteract cellular cholesterol accumulation, the methylated β-cyclodextrin, KLEPTOSE® CRYSMEβ, has recently shown promising effects on decreasing the atherosclerotic plaque size in atherosclerotic mouse models. Therefore we investigated in vitro the RCT process occurring in SMCs and in arterial endothelial cells (ABAE) as well as the ability of some modified β-CDs with different methylation degree to modify RCT in these cells. To this aim, cells were incubated in the presence of different methylated β-CDs, including KLEPTOSE® CRYSMEβ. Both cell types were shown to express basal levels of ABCA1 and SR-BI whereas ABCG1 was solely found in ABAE. Upon CD treatments, the percentage of membrane-extracted cholesterol correlated to the methylation degree of the CDs independently of the lipid composition of the cell membranes. Decreasing the cellular cholesterol content with CDs led to reduce the expression levels of ABCA1 and ABCG1. In addition, the cholesterol efflux to ApoA-I and HDL particles was significantly decreased suggesting that cells forming the blood vessel wall are able to counteract the CD-induced loss of cholesterol. Taken together, our observations suggest that methylated β-CDs can significantly reduce the cellular cholesterol content of cells forming atherosclerotic lesions and can subsequently modulate the expression of ABC transporters involved in RCT. The use of methylated β-CDs would represent a valuable and efficient tool to interfere with atherosclerosis pathogenesis in patients, nonetheless their mode of action still needs further investigations to be fully understood and finely controlled at the cellular level.
Collapse
Affiliation(s)
- Caroline Coisne
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| | | | - Marie-Christine Boucau
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| | - Johan Hachani
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| | - Sébastien Tilloy
- Université Artois, CNRS, Centrale Lille, ENSCL, Université Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS) Lens, France
| | - Hervé Bricout
- Université Artois, CNRS, Centrale Lille, ENSCL, Université Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS) Lens, France
| | - Eric Monflier
- Université Artois, CNRS, Centrale Lille, ENSCL, Université Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS) Lens, France
| | - Daniel Wils
- ROQUETTE, Nutrition Direction Lestrem, France
| | | | | | - Laurence Fenart
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| | - Fabien Gosselet
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| |
Collapse
|
44
|
Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnology 2016; 14:27. [PMID: 27061902 PMCID: PMC4826547 DOI: 10.1186/s12951-016-0177-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/21/2016] [Indexed: 11/11/2022] Open
Abstract
Background The present study takes advantage of the beneficial effects of resveratrol as a neuroprotective compound. Resveratrol-loaded solid lipid nanoparticles were functionalized with apolipoprotein E which can be recognized by the LDL receptors overexpressed on the blood–brain barrier. Results Transmission electron microscopy images revealed spherical nanoparticles, dynamic light scattering gave a Z-average lower than 200 nm, and a zeta potential of around −13 mV and very high resveratrol entrapment efficiency (ca. 90 %). In vitro cytotoxic effects were assessed by MTT and LDH assays in hCMEC/D3 cell line and revealed no toxicity up to 50 μM over 4 h of incubation. The permeability through hCMEC/D3 monolayers showed a significant increase (1.8-fold higher) for resveratrol-loaded solid lipid nanoparticles functionalized with apolipoprotein E when compared to non-functionalized ones. Conclusions In conclusion, these nanosystems might be a promising strategy for resveratrol delivery into the brain, while protecting it from degradation in the blood stream.. ![]() Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0177-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Rute Neves
- UCIBIO/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Fontes Queiroz
- UCIBIO/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Salette Reis
- UCIBIO/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
45
|
Neves AR, Queiroz JF, Weksler B, Romero IA, Couraud PO, Reis S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. NANOTECHNOLOGY 2015; 26:495103. [PMID: 26574295 DOI: 10.1088/0957-4484/26/49/495103] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml(-1) over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.
Collapse
Affiliation(s)
- Ana Rute Neves
- REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
46
|
Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer. Ther Deliv 2015; 6:989-1016. [PMID: 26488496 DOI: 10.4155/tde.15.48] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.
Collapse
|
47
|
Di Marco LY, Venneri A, Farkas E, Evans PC, Marzo A, Frangi AF. Vascular dysfunction in the pathogenesis of Alzheimer's disease--A review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol Dis 2015; 82:593-606. [PMID: 26311408 DOI: 10.1016/j.nbd.2015.08.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
Late-onset dementia is a major health concern in the ageing population. Alzheimer's disease (AD) accounts for the largest proportion (65-70%) of dementia cases in the older population. Despite considerable research effort, the pathogenesis of late-onset AD remains unclear. Substantial evidence suggests that the neurodegenerative process is initiated by chronic cerebral hypoperfusion (CCH) caused by ageing and cardiovascular conditions. CCH causes reduced oxygen, glucose and other nutrient supply to the brain, with direct damage not only to the parenchymal cells, but also to the blood-brain barrier (BBB), a key mediator of cerebral homeostasis. BBB dysfunction mediates the indirect neurotoxic effects of CCH by promoting oxidative stress, inflammation, paracellular permeability, and dysregulation of nitric oxide, a key regulator of regional blood flow. As such, BBB dysfunction mediates a vicious circle in which cerebral perfusion is reduced further and the neurodegenerative process is accelerated. Endothelial interaction with pericytes and astrocytes could also play a role in the process. Reciprocal interactions between vascular dysfunction and neurodegeneration could further contribute to the development of the disease. A comprehensive overview of the complex scenario of interacting endothelium-mediated processes is currently lacking, and could prospectively contribute to the identification of adequate therapeutic interventions. This study reviews the current literature of in vitro and ex vivo studies on endothelium-mediated mechanisms underlying vascular dysfunction in AD pathogenesis, with the aim of presenting a comprehensive overview of the complex network of causative relationships. Particular emphasis is given to vicious circles which can accelerate the process of neurovascular degeneration.
Collapse
Affiliation(s)
- Luigi Yuri Di Marco
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK.
| | - Annalena Venneri
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK; IRCCS San Camillo Foundation Hospital, Venice, Italy
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Paul C Evans
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK
| | - Alberto Marzo
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
48
|
Gregori M, Bertani D, Cazzaniga E, Orlando A, Mauri M, Bianchi A, Re F, Sesana S, Minniti S, Francolini M, Cagnotto A, Salmona M, Nardo L, Salerno D, Mantegazza F, Masserini M, Simonutti R. Investigation of Functionalized Poly(N,N-dimethylacrylamide)-block-polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood-Brain Barrier In Vitro. Macromol Biosci 2015. [PMID: 26198385 DOI: 10.1002/mabi.201500172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the search of new drug delivery carriers for the brain, self-assembled nanoparticles (NP) were prepared from poly(N,N-dimethylacrylamide)-block-polystyrene polymer. NP displayed biocompatibility on cultured endothelial cells, macrophages and differentiated SH-SY5Y neuronal-like cells. The surface-functionalization of NP with a modified fragment of human Apolipoprotein E (mApoE) enhanced the uptake of NP by cultured human brain capillary endothelial cells, as assessed by confocal microscopy, and their permeability through a Transwell Blood Brain Barrier model made with the same cells, as assessed by fluorescence. Finally, mApoE-NP embedding doxorubicin displayed an enhanced release of drug at low pH, suggesting the potential use of these NP for the treatment of brain tumors.
Collapse
Affiliation(s)
- Maria Gregori
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.
| | - Daniela Bertani
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Emanuela Cazzaniga
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Antonina Orlando
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Alberto Bianchi
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Francesca Re
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Silvia Sesana
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Stefania Minniti
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, University of Milano and Fondazione Filarete, Via Vanvitelli 32, 20129, Milano, Italy
| | - Alfredo Cagnotto
- Department of Biochemistry and Molecular Pharmacology, IRCCS Mario Negri Institute for Pharmacological Research, Via La Masa 19, 20156, Milano, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, IRCCS Mario Negri Institute for Pharmacological Research, Via La Masa 19, 20156, Milano, Italy
| | - Luca Nardo
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Domenico Salerno
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Francesco Mantegazza
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Massimo Masserini
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Roberto Simonutti
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125, Milano, Italy
| |
Collapse
|
49
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
50
|
Targeted Drug Delivery Systems: Strategies and Challenges. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|