1
|
RNA seq and quantitative proteomic analysis of Dictyostelium knock-out cells lacking the core autophagy proteins ATG9 and/or ATG16. BMC Genomics 2021; 22:444. [PMID: 34126926 PMCID: PMC8204557 DOI: 10.1186/s12864-021-07756-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Autophagy is an evolutionary ancient mechanism that sequesters substrates for degradation within autolysosomes. The process is driven by many autophagy-related (ATG) proteins, including the core members ATG9 and ATG16. However, the functions of these two core ATG proteins still need further elucidation. Here, we applied RNAseq and tandem mass tag (TMT) proteomic approaches to identify differentially expressed genes (DEGs) and proteins (DEPs) in Dictyostelium discoideum ATG9‾, ATG16‾ and ATG9‾/16‾ strains in comparison to AX2 wild-type cells. RESULT In total, we identified 332 (279 up and 53 down), 639 (487 up and 152 down) and 260 (114 up and 146 down) DEGs and 124 (83 up and 41 down), 431 (238 up and 193 down) and 677 (347 up and 330 down) DEPs in ATG9‾, ATG16‾ and ATG9‾/16‾ strains, respectively. Thus, in the single knock-out strains, the number of DEGs was higher than the number of DEPs while in the double knock-out strain the number of DEPs was higher. Comparison of RNAseq and proteomic data further revealed, that only a small proportion of the transcriptional changes were reflected on the protein level. Gene ontology (GO) analysis revealed an enrichment of DEPs involved in lipid metabolism and oxidative phosphorylation. Furthermore, we found increased expression of the anti-oxidant enzymes glutathione reductase (gsr) and catalase A (catA) in ATG16‾ and ATG9‾/16‾ cells, respectively, indicating adaptation to excess reactive oxygen species (ROS). CONCLUSIONS Our study provides the first combined transcriptome and proteome analysis of ATG9‾, ATG16‾ and ATG9‾/16‾ cells. Our results suggest, that most changes in protein abundance were not caused by transcriptional changes, but were rather due to changes in protein homeostasis. In particular, knock-out of atg9 and/or atg16 appears to cause dysregulation of lipid metabolism and oxidative phosphorylation.
Collapse
|
2
|
Identification of Proteins Associated with Multilamellar Bodies Produced by Dictyostelium discoideum. PLoS One 2016; 11:e0158270. [PMID: 27340834 PMCID: PMC4920372 DOI: 10.1371/journal.pone.0158270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/13/2016] [Indexed: 02/05/2023] Open
Abstract
Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs) when fed digestible bacteria. The aim of the present study was to elucidate the proteic content of MLBs. The lipid composition of MLBs is mainly amoebal in origin, suggesting that MLB formation is a protozoa-driven process that could play a significant role in amoebal physiology. We identified four major proteins on purified MLBs using mass spectrometry in order to better understand the molecular mechanisms governing MLB formation and, eventually, to elucidate the true function of MLBs. These proteins were SctA, PhoPQ, PonC and a protein containing a cytidine/deoxycytidylate deaminase (CDD) zinc-binding region. SctA is a component of pycnosomes, which are membranous materials that are continuously secreted by amoebae. The presence of SctA on MLBs was confirmed by immunofluorescence and Western blotting using a specific anti-SctA antibody. The CDD protein may be one of the proteins recognized by the H36 antibody, which was used as a MLB marker in a previous study. The function of the CDD protein is unknown. Immunofluorescence and flow cytometric analyses confirmed that the H36 antibody is a better marker of MLBs than the anti-SctA antibody. This study is an additional step to elucidate the potential role of MLBs and revealed that only a small set of proteins appeared to be present on MLBs.
Collapse
|
3
|
Early Vertebrate Evolution of the Host Restriction Factor Tetherin. J Virol 2015; 89:12154-65. [PMID: 26401043 DOI: 10.1128/jvi.02149-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/17/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Tetherin is an interferon-inducible restriction factor targeting a broad range of enveloped viruses. Its antiviral activity depends on an unusual topology comprising an N-terminal transmembrane domain (TMD) followed by an extracellular coiled-coil region and a C-terminal glycosylphosphatidylinositol (GPI) anchor. One of the two membrane anchors is inserted into assembling virions, while the other remains in the plasma membrane of the infected cell. Thus, tetherin entraps budding viruses by physically bridging viral and cellular membranes. Although tetherin restricts the release of a large variety of diverse human and animal viruses, only mammalian orthologs have been described to date. Here, we examined the evolutionary origin of this protein and demonstrate that tetherin orthologs are also found in fish, reptiles, and birds. Notably, alligator tetherin efficiently blocks the release of retroviral particles. Thus, tetherin emerged early during vertebrate evolution and acquired its antiviral activity before the mammal/reptile divergence. Although there is only limited sequence homology, all orthologs share the typical topology. Two unrelated proteins of the slime mold Dictyostelium discoideum also adopt a tetherin-like configuration with an N-terminal TMD and a C-terminal GPI anchor. However, these proteins showed no evidence for convergent evolution and failed to inhibit virion release. In summary, our findings demonstrate that tetherin emerged at least 450 million years ago and is more widespread than previously anticipated. The early evolution of antiviral activity together with the high topology conservation but low sequence homology suggests that restriction of virus release is the primary function of tetherin. IMPORTANCE The continuous arms race with viruses has driven the evolution of a variety of cell-intrinsic immunity factors that inhibit different steps of the viral replication cycle. One of these restriction factors, tetherin, inhibits the release of newly formed progeny virions from infected cells. Although tetherin targets a broad range of enveloped viruses, including retro-, filo-, herpes-, and arenaviruses, the evolutionary origin of this restriction factor and its antiviral activity remained obscure. Here, we examined diverse vertebrate genomes for genes encoding cellular proteins that share with tetherin the highly unusual combination of an N-terminal transmembrane domain and a C-terminal glycosylphosphatidylinositol anchor. We show that tetherin orthologs are found in fish, reptiles, and birds and demonstrate that alligator tetherin efficiently inhibits the release of retroviral particles. Our findings identify tetherin as an evolutionarily ancient restriction factor and provide new important insights into the continuous arms race between viruses and their hosts.
Collapse
|
4
|
Sauter D. Counteraction of the multifunctional restriction factor tetherin. Front Microbiol 2014; 5:163. [PMID: 24782851 PMCID: PMC3989765 DOI: 10.3389/fmicb.2014.00163] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/26/2014] [Indexed: 01/28/2023] Open
Abstract
The interferon-inducible restriction factor tetherin (also known as CD317, BST-2 or HM1.24) has emerged as a key component of the antiviral immune response. Initially, tetherin was shown to restrict replication of various enveloped viruses by inhibiting the release of budding virions from infected cells. More recently, it has become clear that tetherin also acts as a pattern recognition receptor inducing NF-κB-dependent proinflammatory gene expression in virus infected cells. Whereas the ability to restrict virion release is highly conserved among mammalian tetherin orthologs and thus probably an ancient function of this protein, innate sensing seems to be an evolutionarily recent activity. The potent and broad antiviral activity of tetherin is reflected by the fact that many viruses evolved means to counteract this restriction factor. A continuous arms race with viruses has apparently driven the evolution of different isoforms of tetherin with different functional properties. Interestingly, tetherin has also been implicated in cellular processes that are unrelated to immunity, such as the organization of the apical actin network and membrane microdomains or stabilization of the Golgi apparatus. In this review, I summarize our current knowledge of the different functions of tetherin and describe the molecular strategies that viruses have evolved to antagonize or evade this multifunctional host restriction factor.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
5
|
Wang X, Shi Q, Xu K, Gao C, Chen C, Li XL, Wang GR, Tian C, Han J, Dong XP. Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells. PLoS One 2011; 6:e14602. [PMID: 21298055 PMCID: PMC3029303 DOI: 10.1371/journal.pone.0014602] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 01/06/2011] [Indexed: 01/22/2023] Open
Abstract
Background Genetic prion diseases are linked to point and inserted mutations in the prion protein (PrP) gene that are presumed to favor conversion of the cellular isoform of PrP (PrPC) to the pathogenic one (PrPSc). The pathogenic mechanisms and the subcellular sites of the conversion are not completely understood. Here we introduce several PRNP gene mutations (such as, PrP-KDEL, PrP-3AV, PrP-A117V, PrP-G114V, PrP-P102L and PrP-E200K) into the cultured cells in order to explore the pathogenic mechanism of familial prion disease. Methodology/Principal Findings To address the roles of aberrant retention of PrP in endoplasmic reticulum (ER), the recombinant plasmids expressing full-length human PrP tailed with an ER signal peptide at the COOH-terminal (PrP-KDEL) and PrP with three amino acids exchange in transmembrane region (PrP-3AV) were constructed. In the preparations of transient transfections, 18-kD COOH-terminal proteolytic resistant fragments (Ctm-PrP) were detected in the cells expressing PrP-KDEL and PrP-3AV. Analyses of the cell viabilities in the presences of tunicamycin and brefeldin A revealed that expressions of PrP-KDEL and PrP-3AV sensitized the transfected cells to ER stress stimuli. Western blots and RT-PCR identified the clear alternations of ER stress associated events in the cells expressing PrP-KDEL and PrP-3AV that induced ER mediated apoptosis by CHOP and capase-12 apoptosis pathway. Moreover, several familial CJD related PrP mutants were transiently introduced into the cultured cells. Only the mutants within the transmembrane region (G114V and A117V) induced the formation of Ctm-PrP and caused the ER stress, while the mutants outside the transmembrane region (P102L and E200K) failed. Conclusions/Significance The data indicate that the retention of PrP in ER through formation of Ctm-PrP results in ER stress and cell apoptosis. The cytopathic activities caused by different familial CJD associated PrP mutants may vary, among them the mutants within the transmembrane region undergo an ER-stress mediated cell apoptosis.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Kun Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- School of Medicine, Xi'an Jiao-Tong University, Xi'an, People's Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiao-Li Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Gui-Rong Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
6
|
Swarbrick JD, Cubeddu L, Ball GE, Curmi PMG, Gooley AA, Williams KL, Mabbutt BC. NMR assignment of prespore specific antigen--a cell surface adhesion glycoprotein from Dictyostelium discoideum. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:1-3. [PMID: 19636933 DOI: 10.1007/s12104-008-9126-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 10/21/2008] [Indexed: 05/28/2023]
Abstract
Presopore-specific antigen (PsA) is a cell surface glycoprotein of the cellular slime mould Dictyostelium discoidum implicated in cell adhesion. The (15)N, (13)C and (1)H chemical shift assignments of PsA were determined from multidimensional, multinuclear NMR experiments. Resonance assignments have been made for both the N-terminal globular domain and its attached O-glycosylated PTVT linker motif.
Collapse
Affiliation(s)
- James D Swarbrick
- Department of Chemistry & Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Barfoot RJ, Sheikh KH, Johnson BRG, Colyer J, Miles RE, Jeuken LJC, Bushby RJ, Evans SD. Minimal F-actin cytoskeletal system for planar supported phospholipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6827-6836. [PMID: 18522444 DOI: 10.1021/la800085n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Preferential binding of F-actin to lipid bilayers containing ponticulin was investigated on both planar supported bilayers and on a cholesterol-based tethering system. The transmembrane protein ponticulin in Dictyostelium discoideum is known to provide a direct link between the actin cytoskeleton and the cell membrane ( Wuestehube, L. J. ; Luna, E. J. J. Cell Biol. 1987, 105, 1741- 1751 ). Purification of ponticulin has allowed an in vitro model of the F-actin cytoskeletal scaffold system to be formed and investigated by AFM, epi-fluorescence microscopy, surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D). Single filament features of F-actin bound to the ponticulin containing lipid bilayer are shown by AFM to have a pitch of 37.3 +/- 1.1 nm and a filament height of 7.0 +/- 1.6 nm. The complementary techniques of QCM-D and SPR were used to obtain dissociation constants for the interaction of F-actin with ponticulin containing bilayers, giving 10.5 +/- 1.7 microM for a physisorbed bilayer and 10.8 +/- 3.6 microM for a tethered bilayer, respectively.
Collapse
Affiliation(s)
- Richard J Barfoot
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Galardi-Castilla M, Pergolizzi B, Bloomfield G, Skelton J, Ivens A, Kay RR, Bozzaro S, Sastre L. SrfB, a member of the Serum Response Factor family of transcription factors, regulates starvation response and early development in Dictyostelium. Dev Biol 2008; 316:260-74. [PMID: 18339368 PMCID: PMC3819988 DOI: 10.1016/j.ydbio.2008.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 01/11/2023]
Abstract
The Serum Response Factor (SRF) is an important regulator of cell proliferation and differentiation. Dictyostelium discoideum srfB gene codes for an SRF homologue and is expressed in vegetative cells and during development under the control of three alternative promoters, which show different cell-type specific patterns of expression. The two more proximal promoters directed gene transcription in prestalk AB, stalk and lower-cup cells. The generation of a strain where the srfB gene has been interrupted (srfB−) has shown that this gene is required for regulation of actin–cytoskeleton-related functions, such as cytokinesis and macropinocytosis. The mutant failed to develop well in suspension, but could be rescued by cAMP pulsing, suggesting a defect in cAMP signaling. srfB− cells showed impaired chemotaxis to cAMP and defective lateral pseudopodium inhibition. Nevertheless, srfB− cells aggregated on agar plates and nitrocellulose filters 2 h earlier than wild type cells, and completed development, showing an increased tendency to form slug structures. Analysis of wild type and srfB− strains detected significant differences in the regulation of gene expression upon starvation. Genes coding for lysosomal and ribosomal proteins, developmentally-regulated genes, and some genes coding for proteins involved in cytoskeleton regulation were deregulated during the first stages of development.
Collapse
Affiliation(s)
- María Galardi-Castilla
- Instituto de Investigaciones Biomédicas CSIC/UAM. Arturo Duperier, 4. 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Harrison CF, Barnham KJ, Hill AF. Neurotoxic species in prion disease: a role for PrP isoforms? J Neurochem 2007; 103:1709-20. [DOI: 10.1111/j.1471-4159.2007.04936.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Johnson BRG, Bushby RJ, Colyer J, Evans SD. Self-assembly of actin scaffolds at ponticulin-containing supported phospholipid bilayers. Biophys J 2005; 90:L21-3. [PMID: 16326915 PMCID: PMC1367125 DOI: 10.1529/biophysj.105.076521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipid vesicles containing ponticulin have been used to form solid supported and tethered bilayer lipid membranes. The ponticulin serves as both a nucleation site for actin polymerization as well as a binding site for F-actin. Studies of F-actin binding to such bilayers have demonstrated the formation of an in vitro actin scaffold. The dissociation constant for the binding of F-actin filaments to a ponticulin-containing tethered bilayer was found to be 11 +/- 5 nM, indicative of high affinity binding.
Collapse
|
11
|
Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, Banting G. Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 2003; 4:694-709. [PMID: 12956872 DOI: 10.1034/j.1600-0854.2003.00129.x] [Citation(s) in RCA: 357] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An expression screen of a rat cDNA library for sequences encoding Golgi-localized integral membrane proteins identified a protein with an apparent novel topology, i.e. with both an N-terminal transmembrane domain and a C-terminal glycosyl-phosphatidylinositol (GPI) anchor. Our data are consistent with this. Thus, the protein would have a topology that, in mammalian cells, is shared only by a minor, but pathologically important, topological isoform of the prion protein (PrP). The human orthologue of this protein has been described previously (BST-2 or HM1.24 antigen) as a cell surface molecule that appears to be involved in early pre-B-cell development and which is present at elevated levels at the surface of myeloma cells. We show that rat BST-2/HM1.24 has both a cell surface and an intracellular (juxtanuclear) location and is efficiently internalized from the cell surface. We also show that the cell surface pool of BST-2/HM1.24 is predominantly present in the apical plasma membrane of polarized cells. The fact that rat BST-2/HM1.24 apparently possesses a GPI anchor led us to speculate that it might exist in cholesterol-rich lipid microdomains (lipid rafts) at the plasma membrane. Data from several experiments are consistent with this localization. We present a model in which BST-2/HM1.24 serves to link adjacent lipid rafts within the plasma membrane.
Collapse
Affiliation(s)
- Sabine Kupzig
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
12
|
Hitt AL, Iijima-Shimizu M, DuBay MJ, Antonette LL, Urushihara H, Wilkerson CG. Identification of a second member of the ponticulin gene family and its differential expression pattern. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:79-87. [PMID: 12890554 DOI: 10.1016/s0167-4781(03)00115-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have identified a homologue (ponB) of the ponticulin gene (ponA), an F-actin binding protein, in the expressed sequence tag library generated to mRNA isolated from fusion-competent cells of Dictyostelium discoideum. PonB is predicted to have many of the same characteristics as ponticulin. Both proteins are predicted to possess a cleaved signal peptide, a glycosyl anchor, an amphipathic beta-strand structure and six conserved cysteines. Because of the sequence similarity and predicted conserved structures, this gene constitutes the second member of a ponticulin gene family. Unlike ponticulin, ponB is not expressed in axenically grown cells or during the asexual reproductive phase of D. discoideum. PonB is expressed by cells grown on bacterial lawns and by cells induced to be fusion-competent, i.e., gametes. The expression of ponB correlates with the appearance of a new F-actin binding activity in cell lysates of bacterially grown ponA(-) cells. By immunofluorescence microscopy, ponB appears to be localized to vesicles and to the plasma membrane of bacterially grown cells. Because ponticulin is the major high-affinity link between the plasma membrane and the cytoskeleton, the ponticulin gene family is likely to be part of the redundant system of proteins involved in connecting the cytoskeleton to the plasma membrane.
Collapse
Affiliation(s)
- Anne L Hitt
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Harris TJC, Ravandi A, Awrey DE, Siu CH. Cytoskeleton interactions involved in the assembly and function of glycoprotein-80 adhesion complexes in dictyostelium. J Biol Chem 2003; 278:2614-23. [PMID: 12421828 DOI: 10.1074/jbc.m206241200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adhesion complexes typically assemble from clustered receptors that link to the cytoskeleton via cytoplasmic adapter proteins. However, it is unclear how phospholipid-anchored adhesion molecules, such as the Dictyostelium receptor gp80, interact with the cytoskeleton. gp80 has been found to form adhesion complexes from raftlike membrane domains, which can be isolated as a Triton X-100-insoluble floating fraction (TIFF). We report here that the actin-binding protein ponticulin mediates TIFF-cytoskeleton interactions. Analysis of gp80-null cells revealed that these interactions were minimal in the absence of gp80. During development, gp80 was required to enhance these interactions as its adhesion complexes assembled. Whereas ponticulin and gp80 could partition independently into TIFF, gp80 was shown to recruit ponticulin to cell-cell contacts and to increase its partitioning into TIFF. However, these proteins did not co-immunoprecipitate. Furthermore, sterol sequestration abrogated the association of ponticulin with TIFF without affecting gp80, suggesting that sterols may mediate the interactions between ponticulin and gp80. In ponticulin-null cells, large gp80 adhesion complexes assembled in the absence of ponticulin despite the lack of cytoskeleton association. We propose that such nascent gp80 adhesion complexes produce expanded raftlike domains that recruit ponticulin and thereby establish stable cytoskeleton interactions to complete the assembly process.
Collapse
Affiliation(s)
- Tony J C Harris
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
14
|
Harris TJ, Ravandi A, Siu CH. Assembly of glycoprotein-80 adhesion complexes in Dictyostelium. Receptor compartmentalization and oligomerization in membrane rafts. J Biol Chem 2001; 276:48764-74. [PMID: 11604403 DOI: 10.1074/jbc.m108030200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phospholipid-anchored membrane glycoprotein (gp)-80 mediates cell-cell adhesion through a homophilic trans-interaction mechanism during Dictyostelium development and is enriched in a Triton X-100-insoluble floating fraction. To elucidate how gp80 adhesion complexes assemble in the plasma membrane, gp80-gp80 and gp80-raft interactions were investigated. A low density raft-like membrane fraction was isolated using a detergent-free method. It was enriched in sterols, the phospholipid-anchored proteins gp80, gp138, and ponticulin, as well as DdCD36 and actin, corresponding to components found in the Triton X-100-insoluble floating fraction. Chemical cross-linking revealed that gp80 oligomers were enriched in the raft-like membrane fraction, implicating stable oligomer-raft interactions. However, gp80 oligomers resisted sterol sequestration and were partially dissociated with Triton X-100, suggesting that compartmentalization in rafts was not solely responsible for their formation. The trans-dimer known to mediate adhesion was identified, but cis-oligomerization predominated and displayed greater accumulation during development. In fact, oligomerization was dependent on the level of gp80 expression and occurred among isolated gp80 extracellular domains, indicating that it was mediated by direct gp80-gp80 interactions. Rafts existed in gp80-null cells and such pre-existent membrane domains may provide optimal microenvironments for gp80 cis-oligomerization and the assembly of adhesion complexes.
Collapse
Affiliation(s)
- T J Harris
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | |
Collapse
|
15
|
Stewart RS, Drisaldi B, Harris DA. A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic Reticulum. Mol Biol Cell 2001; 12:881-9. [PMID: 11294893 PMCID: PMC32273 DOI: 10.1091/mbc.12.4.881] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Revised: 12/27/2000] [Accepted: 01/30/2001] [Indexed: 01/15/2023] Open
Abstract
Although there is considerable evidence that PrP(Sc) is the infectious form of the prion protein, it has recently been proposed that a transmembrane variant called (Ctm)PrP is the direct cause of prion-associated neurodegeneration. We report here, using a mutant form of PrP that is synthesized exclusively with the (Ctm)PrP topology, that (Ctm)PrP is retained in the endoplasmic reticulum and is degraded by the proteasome. We also demonstrate that (Ctm)PrP contains an uncleaved, N-terminal signal peptide as well as a C-terminal glycolipid anchor. These results provide insight into general mechanisms that control the topology of membrane proteins during their synthesis in the endoplasmic reticulum, and they also suggest possible cellular pathways by which (Ctm)PrP may cause disease.
Collapse
Affiliation(s)
- R S Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
16
|
Rifkin JL. Folate reception by vegetative Dictyostelium discoideum amoebae: distribution of receptors and trafficking of ligand. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:121-9. [PMID: 11169764 DOI: 10.1002/1097-0169(200102)48:2<121::aid-cm1003>3.0.co;2-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the first explicit demonstration of post-reception processing of a Dictyostelium chemoattractant. Folic acid stimulates reorganization of the cytoskeleton of vegetative amoebae of D. discoideum. In particular, folic acid is a potent chemoattractant and it causes enlargement of the filopodial array. The distribution of folic acid receptors and the fate of bound folate were investigated by presenting an agonist consisting of the conjugate, folic acid-lactalbumin-FITC (Folate*), to these amoebae. This novel probe was specifically bound to folic acid receptors of these amoebae and it stimulated chemotaxis and enlargement of their filopodial array. Hence, Folate* is a physiologically competent probe. The probe sans-folate moiety was not bound anywhere to living or fixed amoebae. Since Folate* did not bind to amoebae after incubation with equimolar folic acid, this probe is a receptor-specific agonist. We report here the first description, by confocal visualization of a competent agonist, of the distribution of folate receptors of D. discoideum vegetative amoebae and of the fate of this ligand. Examination of fixed amoebae revealed that bound Folate* was distributed generally over their entire surface including their filopodia. However, in living amoebae, Folate* was bound only at the cell body and this bound Folate* was almost completely internalized as concentrated packets into vacuoles. This endocytosis of the probe and the clustering of endocytosed Folate* is consistent with receptor-mediated internalization of a ligand. Possible routes for internalization of the folate probe and the implications of this endocytosis for signal molecule processing and temporal sensing are discussed.
Collapse
Affiliation(s)
- J L Rifkin
- Biology Department, Queens College of CUNY, Flushing, New York 11367-1597, USA.
| |
Collapse
|
17
|
Stewart RS, Harris DA. Most pathogenic mutations do not alter the membrane topology of the prion protein. J Biol Chem 2001; 276:2212-20. [PMID: 11053411 DOI: 10.1074/jbc.m006763200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prion protein (PrP), a glycolipid-anchored membrane glycoprotein, contains a conserved hydrophobic sequence that can span the lipid bilayer in either direction, resulting in two transmembrane forms designated (Ntm)PrP and (Ctm)PrP. Previous studies have shown that the proportion of (Ctm)PrP is increased by mutations in the membrane-spanning segment, and it has been hypothesized that (Ctm)PrP represents a key intermediate in the pathway of prion-induced neurodegeneration. To further test this idea, we have surveyed a number of mutations associated with familial prion diseases to determine whether they alter the proportions of (Ntm)PrP and (Ctm)PrP produced in vitro, in transfected cells, and in transgenic mice. For the in vitro experiments, PrP mRNA was translated in the presence of murine thymoma microsomes which, in contrast to the canine pancreatic microsomes used in previous studies, are capable of efficient glycolipidation. We confirmed that mutations within or near the transmembrane domain enhance the formation of (Ctm)PrP, and we demonstrate for the first time that this species contains a C-terminal glycolipid anchor, thus exhibiting an unusual, dual mode of membrane attachment. However, we find that pathogenic mutations in other regions of the molecule have no effect on the amounts of (Ctm)PrP and (Ntm)PrP, arguing against the proposition that transmembrane PrP plays an obligate role in the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- R S Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
18
|
Ramirez MI, Boscardin SB, Han SW, Paranhos-Baccala G, Yoshida N, Kelly JM, Mortara RA, Da Silveira JF. Heterologous expression of a Trypanosoma cruzi surface glycoprotein (gp82) in mammalian cells indicates the existence of different signal sequence requirements and processing. J Eukaryot Microbiol 1999; 46:557-65. [PMID: 10568029 DOI: 10.1111/j.1550-7408.1999.tb05131.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metacyclic trypomastigotes of Trypanosoma cruzi express a developmentally regulated 82 kDa surface glycoprotein (gp82) that has been implicated in the mammalian cell invasion. When the non-infective epimastigote stage of the parasite was transfected with a vector containing the gp82 gene, an 82 kDa surface glycoprotein, which was indistinguishable from the metacyclic stage protein, was expressed. In contrast, when the same gene was expressed in transfected mammalian cells, although a large amount of protein was produced, it was not imported into the endoplasmic reticulum and glycosylated. This blockage in targeting and processing could be partially compensated for by the addition of a virus haemagglutinin signal peptide to the amino terminus of gp82. Thus, the requirements for membrane protein processing are distinct in mammals and T. cruzi, and an intrinsic feature of the gp82 prevents subsequent sorting to the mammalian cell surface. These results could be useful in the development of new DNA vaccines against T. cruzi employing parasite genes encoding immunodominant surface glycoproteins.
Collapse
Affiliation(s)
- M I Ramirez
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The actin cytoskeleton is an essential structure for most movements at the cellular and intracellular level. Whereas for contraction a muscle cell requires a rather static organisation of cytoskeletal proteins, cell motility of amoeboid cells relies on a tremendously dynamic turnover of filamentous networks in a matter of seconds and at distinct regions inside the cell. The best model system for studying cell motility is Dictyostelium discoideum. The cells live as single amoebae but can also start a developmental program that leads to multicellular stages and differentiation into simple types of tissues. Thus, cell motility can be studied on single cells and on cells in a tissue-like aggregate. The ability to combine protein purification and biochemistry with fairly easy molecular genetics is a unique feature for investigation of the cytoskeleton and cell motility. The actin cytoskeleton in Dictyostelium harbours essentially all classes of actin-binding proteins that have been found throughout eukaryotes. By conventional mutagenesis, gene disruption, antisense approaches, or gene replacements many genes that code for cytoskeletal proteins have been disrupted, and altered phenotypes in transformants that lacked one or more of those cytoskeletal proteins allowed solid conclusions about their in vivo function. In addition, tagging the proteins or selected domains with green fluorescent protein allows the monitoring of protein redistribution during cell movement. Gene tagging by restriction enzyme mediated integration of vectors and the ongoing international genome and cDNA sequencing projects offer the chance to understand the dynamics of the cytoskeleton by identification and functional characterisation of all proteins involved.
Collapse
Affiliation(s)
- L Eichinger
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität, 80336 München, Germany.
| | | | | |
Collapse
|
20
|
Lodder AL, Lee TK, Ballester R. Characterization of the Wsc1 protein, a putative receptor in the stress response of Saccharomyces cerevisiae. Genetics 1999; 152:1487-99. [PMID: 10430578 PMCID: PMC1460702 DOI: 10.1093/genetics/152.4.1487] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Wsc1p, Wsc2p, Wsc3p, and Wsc4p, members of a novel protein family in the yeast Saccharomyces cerevisiae, are putative sensors or receptors in the stress response. Genetic characterization suggests that the WSC family are upstream regulators of the stress-activated PKC1-MAP kinase cascade and are required for the heat shock response and for maintenance of cell wall integrity. The Wsc proteins share sequence characteristics: at their N terminus they have a cysteine motif and a serine/threonine-rich domain predicted to be extracellular, a hydrophobic domain suggested to be transmembranous, and a variable, highly charged C terminus that may be involved in intracellular signaling. Although a role for the WSC genes in maintenance of cell wall integrity has been firmly established, little is known about the properties of the proteins. As reported here, to study its properties in vivo, we epitope tagged the Wsc1 protein. Wsc1p was found to fractionate with the membrane pellet after high-speed centrifugation. Extraction experiments show that Wsc1p is an integral membrane protein present in two forms: one solubilized by detergent, the other Triton X-100 insoluble. Our results also show that Wsc1p is glycosylated and phosphorylated. To characterize the contribution of different domains to the function of Wsc1p, we generated various deletion constructs. Analysis of the properties and function of the mutant proteins shows that the predicted extracellular serine/threonine-rich domain is required for Wsc1p functionality, as well as its glycosylation. A mutant Wsc1 protein lacking the putative transmembrane domain is not functional and partitions to the soluble fraction. Overexpression of full-length Wsc1p inhibits cell growth, with the N terminus alone being sufficient for this inhibition. This suggests that Wsc1p may function in a complex with at least one other protein important for normal cell growth.
Collapse
Affiliation(s)
- A L Lodder
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
21
|
Karakesisoglou I, Janssen KP, Eichinger L, Noegel AA, Schleicher M. Identification of a suppressor of the Dictyostelium profilin-minus phenotype as a CD36/LIMP-II homologue. J Biophys Biochem Cytol 1999; 145:167-81. [PMID: 10189376 PMCID: PMC2148220 DOI: 10.1083/jcb.145.1.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Profilin is an ubiquitous G-actin binding protein in eukaryotic cells. Lack of both profilin isoforms in Dictyostelium discoideum resulted in impaired cytokinesis and an arrest in development. A restriction enzyme-mediated integration approach was applied to profilin-minus cells to identify suppressor mutants for the developmental phenotype. A mutant with wild-type-like development and restored cytokinesis was isolated. The gene affected was found to code for an integral membrane glycoprotein of a predicted size of 88 kD containing two transmembrane domains, one at the NH2 terminus and the other at the COOH terminus. It is homologous to mammalian CD36/LIMP-II and represents the first member of this family in D. discoideum, therefore the name DdLIMP is proposed. Targeted disruption of the lmpA gene in the profilin-minus background also rescued the mutant phenotype. Immunofluorescence revealed a localization in vesicles and ringlike structures on the cell surface. Partially purified DdLIMP bound specifically to PIP2 in sedimentation and gel filtration assays. A direct interaction between DdLIMP and profilin could not be detected, and it is unclear how far upstream in a regulatory cascade DdLIMP might be positioned. However, the PIP2 binding of DdLIMP points towards a function via the phosphatidylinositol pathway, a major regulator of profilin.
Collapse
Affiliation(s)
- I Karakesisoglou
- A.-Butenandt-Institut für Zellbiologie, Ludwig-Maximilians-Universität, 80336 München, Germany
| | | | | | | | | |
Collapse
|
22
|
Rivero F, Kuspa A, Brokamp R, Matzner M, Noegel AA. Interaptin, an actin-binding protein of the alpha-actinin superfamily in Dictyostelium discoideum, is developmentally and cAMP-regulated and associates with intracellular membrane compartments. J Biophys Biochem Cytol 1998; 142:735-50. [PMID: 9700162 PMCID: PMC2148174 DOI: 10.1083/jcb.142.3.735] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In a search for novel members of the alpha-actinin superfamily, a Dictyostelium discoideum genomic library in yeast artificial chromosomes (YAC) was screened under low stringency conditions using the acting-binding domain of the gelation factor as probe. A new locus was identified and 8.6 kb of genomic DNA were sequenced that encompassed the whole abpD gene. The DNA sequence predicts a protein, interaptin, with a calculated molecular mass of 204,300 D that is constituted by an actin-binding domain, a central coiled-coil rod domain and a membrane-associated domain. In Northern blot analyses a cAMP-stimulated transcript of 5.8 kb is expressed at the stage when cell differentiation occurs. Monoclonal antibodies raised against bacterially expressed interaptin polypeptides recognized a 200-kD developmentally and cAMP-regulated protein and a 160-kD constitutively expressed protein in Western blots. In multicellular structures, interaptin appears to be enriched in anterior-like cells which sort to the upper and lower cups during culmination. The protein is located at the nuclear envelope and ER. In mutants deficient in interaptin development is delayed, but the morphology of the mature fruiting bodies appears normal. When starved in suspension abpD- cells form EDTA-stable aggregates, which, in contrast to wild type, dissociate. Based on its domains and location, interaptin constitutes a potential link between intracellular membrane compartments and the actin cytoskeleton.
Collapse
Affiliation(s)
- F Rivero
- Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
23
|
Golsteyn RM, Louvard D, Friederich E. The role of actin binding proteins in epithelial morphogenesis: models based upon Listeria movement. Biophys Chem 1997; 68:73-82. [PMID: 9468611 DOI: 10.1016/s0301-4622(97)00009-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We summarize recent findings on the organization of the protein actin in eucaryotic cells. In particular we focus on how actin can be used to generate a vectorial force that is required for cell movement. These forces arise from protein molecules that recruit actin to the plasma membrane in such a manner that actin filaments extend outward from the cell body. This type of actin dependent force generation has been described in a nucleation-release model, which is one of several models currently being tested to explain actin dependent cell movement. Data in support of this model has arisen unexpectedly from studies of an intracellular bacteria, Listeria monocytogenes. This bacteria uses actin to propel itself during infection of eucaryotic cells. By studying Listeria movement, the roles of several eucaryotic actin interacting proteins have been identified. One of these is zyxin, a human protein that shares important structural and possibly functional properties with ActA, an actin dependent force generating protein of Listeria. We intend to test the function of these and other actin interacting proteins in a simplified system that should facilitate precise measurement of their properties of force generation in vitro.
Collapse
Affiliation(s)
- R M Golsteyn
- Morphogenèse et Signalisation Cellulaires, Centre National de la Recherche Scientifique, UMR 144, Institut Curie, Paris, France.
| | | | | |
Collapse
|
24
|
Xiao Z, Devreotes PN. Identification of detergent-resistant plasma membrane microdomains in dictyostelium: enrichment of signal transduction proteins. Mol Biol Cell 1997; 8:855-69. [PMID: 9168471 PMCID: PMC276134 DOI: 10.1091/mbc.8.5.855] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures.
Collapse
Affiliation(s)
- Z Xiao
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
25
|
Dictyostelium discoideum glycoproteins: using a model system for organismic glycobiology. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0167-7306(08)60618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Vithalani KK, Shoffner JD, De Lozanne A. Isolation and characterization of a novel cytokinesis-deficient mutant in Dictyostelium discoideum. J Cell Biochem 1996; 62:290-301. [PMID: 8844408 DOI: 10.1002/(sici)1097-4644(199608)62:2<290::aid-jcb16>3.0.co;2-p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytokinesis is a dramatic event in the life of any cell during which numerous mechanisms must coordinate the legitimate and complete mechanical separation into two daughter cells. We have used Dictyostelium discoideum as a model system to study this highly orchestrated event through genetic analysis. Transformants were generated using a method of insertional mutagenesis known as restriction enzyme-mediated integration (REMI) and subsequently screened for defects in cytokinesis. Mutants isolated in a similar screen suffered a disruption in the myosin II heavy chain gene, a protein known to be essential for cytokinesis and in a novel gene encoding a rho-like protein termed racE [Larochelle et al., 1996]. In the screen reported here we isolated a third type of mutant, called 10BH2, which also had a complete defect in cytokinesis. 10BH2 mutant cells are able to propagate on tissue culture plates by fragmenting into smaller cells by a process known as traction-mediated cytofission. However, when grown in suspension culture, 10BH2 cells fail to divide and become large and multinucleate. Phenotypic characterization of the mutant cells showed that other cytoskeletal functions are preserved. The distribution of myosin and actin is identical to wild type cells. The cells can chemotax, phagocytose, cap crosslinked receptors, and contract normally. However, the 10BH2 mutants are unable to complete the Dictyostelium developmental program beyond the finger stage. The mutant cells contain functional genes for myosin II heavy and light chains and the racE gene. Thus, based on these findings, we conclude that 10BH2 represents a novel cytokinesis-deficient mutant.
Collapse
Affiliation(s)
- K K Vithalani
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
27
|
Stoeckelhuber M, Noegel AA, Eckerskorn C, Köhler J, Rieger D, Schleicher M. Structure/function studies on the pH-dependent actin-binding protein hisactophilin in Dictyostelium mutants. J Cell Sci 1996; 109 ( Pt 7):1825-35. [PMID: 8832405 DOI: 10.1242/jcs.109.7.1825] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies have shown that the actin-binding protein hisactophilin from Dictyostelium discoideum is a candidate for organizing the actin cytoskeleton at the plasma membrane in a pH-dependent manner. To further characterize this interaction we isolated hisactophilin overexpression (hisII+) and hisactophilin minus (his-) mutants. D. discoideum contains two hisactophilin isoforms; both genes are independently transcribed and carry a short intron at the same position of the coding region. The deduced amino acid sequence of hisactophilin II showed a characteristic high content of 35 histidine residues out of a total 118 amino acids. After transformation of Dictyostelium AX2 wild-type cells with a genomic fragment designed to inactivate the hisactophilin I gene we obtained hisactophilin II overexpressing mutants (hisII+). Multiple integration of the vector led to strong overexpression of hisactophilin II which even outnumbered the actin concentration by a factor of two. Hisactophilin II protein showed the same biochemical properties as hisactophilin I during purification and in its pH-dependent binding to F-actin; as shown by mass spectrometry the hisactophilin II fraction was almost completely myristoylated despite of this high overexpression. The inactivation of both hisactophilin genes was achieved by gene replacement with a vector construct encompassing parts of gene I and gene II connected by a geneticin cassette. The properties of the hisII+ and his- cells with regard to growth in shaking culture and on Klebsiella plates, development, chemotaxis and morphology were not affected under normal conditions. However, the hisII+ transformants revealed a significant difference to wild-type cells and his- cells when the cytoplasmic pH was lowered by diethylstilbestrol (DES), a proton pump inhibitor. HisII+ cells were more resistant to the acidification; in contrast to AX2 wild-type cells and his- cells they did not form plasma membrane protrusions, showed an increase in F-actin content, and contained large clusters of F-actin. Lowering the internal pH caused an accumulation of hisactophilin below the plasma membrane. The fact that cells deficient in hisactophilin again lose resistance to acidification is in good agreement with the hypothesis that hisactophilin functions as a pH sensor at the plasma membrane by reversibly connecting the membrane with the actin cortical network upon local changes of the proton concentration.
Collapse
Affiliation(s)
- M Stoeckelhuber
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Kuspa A, Loomis WF. Ordered yeast artificial chromosome clones representing the Dictyostelium discoideum genome. Proc Natl Acad Sci U S A 1996; 93:5562-6. [PMID: 8643615 PMCID: PMC39286 DOI: 10.1073/pnas.93.11.5562] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
High resolution gene maps of the six chromosomes of Dictyostelium discoideum have been generated by a combination of physical mapping techniques. A set of yeast artificial chromosome clones has been ordered into overlapping arrays that cover >98% of the 34-magabase pair genome. Clones were grouped and ordered according to the genes they carried, as determined by hybridization analyses with DNA fragments from several hundred genes. Congruence of the gene order within each arrangement of clones with the gene order determined from whole genome restriction site mapping indicates that a high degree of confidence can be placed on the clone map. This clone-based description of the Dictyostelium chromosomes should be useful for the physical mapping and subcloning of new genes and should facilitate more detailed analyses of this genome. cost of silicon-based construction and in the efficient sample handling afforded by component integration.
Collapse
Affiliation(s)
- A Kuspa
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
29
|
|
30
|
Topf PM, Stockem W. Protein and lipid composition of the cell surface complex from Amoeba proteus (Rhizopoda: Amoebida). Eur J Protistol 1996. [DOI: 10.1016/s0932-4739(96)80017-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Bouck GB, Ngô H. Cortical structure and function in euglenoids with reference to trypanosomes, ciliates, and dinoflagellates. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 169:267-318. [PMID: 8843656 DOI: 10.1016/s0074-7696(08)61988-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The membrane skeletal complex (cortex) of euglenoids generates and maintains cell form. In this review we summarize structural, biochemical, physiological, and molecular studies on the euglenoid membrane skeleton, focusing specifically on four principal components: the plasma membrane, a submembrane layer (epiplasm), cisternae of the endoplasmic reticulum, and microtubules. The data from euglenoids are compared with findings from representative organisms of three other protist groups: the trypanosomes, ciliates, and dinoflagellates. Although there are significant differences in cell form and phylogenetic affinities among these groups, there are also many similarities in the organization and possibly the function of their cortical components. For example, an epiplasmic (membrane skeletal) layer is widely used for adding strength and rigidity to the cell surface. The ER/alveolus/amphiesmal vesicle may function in calcium storage and regulation, and in mediating assembly of surface plates. GPI-linked variable surface antigens are characteristic of both ciliates and the unrelated trypanosomatids. Microtubules are ubiquitous, and cortices in trypanosomes may relay exclusively on microtubules and microtubule-associated proteins for maintaining cell form. Also, in agreement with previous suggestions, there is an apparent preservation of many cortical structures during cell duplication. In three of the four groups there is convincing evidence that part or all of the parental cortex persists during cytokinesis, thereby producing mosaics or chimeras consisting of both inherited and newly synthesized cortical components.
Collapse
Affiliation(s)
- G B Bouck
- Department of Biological Sciences (M/C 066), University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
32
|
Abstract
New avenues of cytoskeleton research in Dictyostelium discoideum have opened up with the cloning of the alpha- and beta-tubulin genes and the characterization of kinesins and cytoplasmic dynein. Much research, however, continues to focus on the actin cytoskeleton and its dynamics during chemotaxis, morphogenesis, and other motile processes. New actin-associated proteins are being identified and characterized by biochemical means and through isolation of mutants lacking individual components. This work is shedding light on the roles of specific actin assemblies in various biological processes.
Collapse
Affiliation(s)
- A A Noegel
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
33
|
Shutt DC, Wessels D, Wagenknecht K, Chandrasekhar A, Hitt AL, Luna EJ, Soll DR. Ponticulin plays a role in the positional stabilization of pseudopods. J Cell Biol 1995; 131:1495-506. [PMID: 8522606 PMCID: PMC2120683 DOI: 10.1083/jcb.131.6.1495] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ponticulin is a 17-kD glycoprotein that represents a major high affinity link between the plasma membrane and the cortical actin network of Dictyostelium. To assess the role of ponticulin in pseudopod extension and retraction, the motile behavior of two independently generated mutants lacking ponticulin was analyzed using computer-assisted two- and three-dimensional motion analysis systems. More than half of the lateral pseudopods formed off the substratum by ponticulin-minus cells slipped relative to the substratum during extension and retraction. In contrast, all pseudopods formed off the substratum by wild-type cells were positionally fixed in relation to the substratum. Ponticulin-minus cells also formed a greater proportion of both anterior and lateral pseudopods off the substratum and absorbed a greater proportion of lateral pseudopods into the uropod than wild-type cells. In a spatial gradient of cAMP, ponticulin-minus cells were less efficient in tracking the source of chemoattractant. Since ponticulin-minus cells extend and retract pseudopods with the same time course as wild-type cells, these behavioral defects in ponticulin-minus cells appear to be the consequence of pseudopod slippage. These results demonstrate that pseudopods formed off the substratum by wild-type cells are positionally fixed in relation to the substratum, that ponticulin is required for positional stabilization, and that the loss of ponticulin and the concomitant loss of positional stability of pseudopods correlate with a decrease in the efficiency of chemotaxis.
Collapse
Affiliation(s)
- D C Shutt
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Lehmann S, Harris DA. A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J Biol Chem 1995; 270:24589-97. [PMID: 7592679 DOI: 10.1074/jbc.270.41.24589] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inherited forms of prion disease have been linked to mutations in the gene encoding PrP, a neuronal and glial protein that is attached to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) anchor. One familial form of Creutzfeldt-Jakob disease is associated with a mutant PrP containing six additional octapeptide repeats. We report here our analysis of cultured Chinese hamster ovary cells expressing a murine homologue of this mutant PrP. We find that, like wild-type PrP, the mutant protein is glycosylated, GPI-anchored, and expressed on the cell surface. Surprisingly, however, cleavage of the GPI anchor using phosphatidylinositol-specific phospholipase C fails to release the mutant PrP from the surface of intact cells, suggesting that it has an additional mode of membrane attachment. The phospholipase-treated protein is hydrophobic, since it partitions into the detergent phase of Triton X-114 lysates; and it is tightly membrane-associated, since it is not extractable in carbonate buffer at pH 11.5. Whether membrane attachment of the mutant PrP involves integration of the polypeptide into the lipid bilayer, self-association, or binding to other membrane proteins remains to be determined. Our results suggest that alterations in the membrane association of PrP may be an important feature of prion diseases.
Collapse
Affiliation(s)
- S Lehmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
35
|
Hanakam F, Eckerskorn C, Lottspeich F, Müller-Taubenberger A, Schäfer W, Gerish G. The pH-sensitive actin-binding protein hisactophilin of Dictyostelium exists in two isoforms which both are myristoylated and distributed between plasma membrane and cytoplasm. J Biol Chem 1995; 270:596-602. [PMID: 7822284 DOI: 10.1074/jbc.270.2.596] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The histidine-rich protein hisactophilin is known to be associated with the inner surface of the plasma membrane and to be present as a soluble protein in the cytoplasm of Dictyostelium discoideum cells. Mass spectrometry of hisactophilin from the cytosol or extracted from a membrane fraction showed that none of the hisactophilin purified from D. discoideum cells had the mass predicted from the known cDNA-derived amino acid sequence of the protein. Electrospray mass spectrometry and liquid secondary ion mass spectrometry of tryptic fragments separated by reversed-phase high performance liquid chromatography (HPLC) identified the most hydrophobic peptide as a myristoylated fragment from the N terminus of hisactophilin. Taken together the analytical data, it is concluded that all hisactophilin in D. discoideum cells is N terminally modified by myristoylation. By reversed-phase HPLC, two isoforms of hisactophilin, HsI and HsII, were recovered from the cytosolic as well as the membrane fraction of D. discoideum cells. Whereas the masses of HsI fragments produced by trypsin fit into the previously published sequence of hisactophilin (myristoylation considered), HsII is another protein distinguished from HsI by several amino acid exchanges. HsI and HsII can form homo- and heterodimers by disulfide bridges. Hisactophilin is phosphorylated in vivo. Both isoforms proved to be substrates of membrane-associated threonine/serine kinase from D. discoideum, which may regulate the interaction of hisactophilin with the plasma membrane.
Collapse
Affiliation(s)
- F Hanakam
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Soil DR. The Use of Computers in Understanding How Animal Cells Crawl. INTERNATIONAL REVIEW OF CYTOLOGY 1995. [DOI: 10.1016/s0074-7696(08)62209-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Hitt AL, Hartwig JH, Luna EJ. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium. J Cell Biol 1994; 126:1433-44. [PMID: 8089176 PMCID: PMC2290950 DOI: 10.1083/jcb.126.6.1433] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Interactions between the plasma membrane and underlying actin-based cortex have been implicated in membrane organization and stability, the control of cell shape, and various motile processes. To ascertain the function of high affinity actin-membrane associations, we have disrupted by homologous recombination the gene encoding ponticulin, the major high affinity actin-membrane link in Dictyostelium discoideum amoebae. Cells lacking detectable amounts of ponticulin message and protein also are deficient in high affinity actin-membrane binding by several criteria. First, only 10-13% as much endogenous actin cosediments through sucrose and crude plasma membranes from ponticulin-minus cells, as compared with membranes from the parental strain. Second, purified plasma membranes exhibit little or no binding or nucleation of exogenous actin in vitro. Finally, only 10-30% as much endogenous actin partitions with plasma membranes from ponticulin-minus cells after these cells are mechanically unroofed with polylysine-coated coverslips. The loss of the cell's major actin-binding membrane protein appears to be surprisingly benign under laboratory conditions. Ponticulin-minus cells grow normally in axenic culture and pinocytose FITC-dextran at the same rate as do parental cells. The rate of phagocytosis of particles by ponticulin-minus cells in growth media also is unaffected. By contrast, after initiation of development, cells lacking ponticulin aggregate faster than the parental cells. Subsequent morphogenesis proceeds asynchronously, but viable spores can form. These results indicate that ponticulin is not required for cellular translocation, but apparently plays a role in cell patterning during development.
Collapse
Affiliation(s)
- A L Hitt
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | | | |
Collapse
|