1
|
Won MM, Baublis A, Burleigh BA. Proximity-dependent biotinylation and identification of flagellar proteins in Trypanosoma cruzi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528900. [PMID: 36824716 PMCID: PMC9949143 DOI: 10.1101/2023.02.16.528900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The flagellated kinetoplastid protozoan and causative agent of human Chagas disease, Trypanosoma cruzi , inhabits both invertebrate and mammalian hosts over the course of its complex life cycle. In these disparate environments, T. cruzi uses its single flagellum to propel motile life stages and in some instances, to establish intimate contact with the host. Beyond its role in motility, the functional capabilities of the T. cruzi flagellum have not been defined. Moreover, the lack of proteomic information for this organelle, in any parasite life stage, has limited functional investigation. In this study, we employed a proximity-dependent biotinylation approach based on the differential targeting of the biotin ligase, TurboID, to the flagellum or cytosol in replicative stages of T. cruzi , to identify flagellar-enriched proteins by mass spectrometry. Proteomic analysis of the resulting biotinylated protein fractions yielded 218 candidate flagellar proteins in T. cruzi epimastigotes (insect stage) and 99 proteins in intracellular amastigotes (mammalian stage). Forty of these flagellar-enriched proteins were common to both parasite life stages and included orthologs of known flagellar proteins in other trypanosomatid species, proteins specific to the T. cruzi lineage and hypothetical proteins. With the validation of flagellar localization for several of the identified candidates, our results demonstrate that TurboID-based proximity proteomics is an effective tool for probing subcellular compartments in T. cruzi . The proteomic datasets generated in this work offer a valuable resource to facilitate functional investigation of the understudied T. cruzi flagellum.
Collapse
Affiliation(s)
- Madalyn M Won
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health Boston, MA 02115, USA
| | - Aaron Baublis
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health Boston, MA 02115, USA
| |
Collapse
|
2
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
3
|
Kelly FD, Yates PA, Landfear SM. Nutrient sensing in Leishmania: Flagellum and cytosol. Mol Microbiol 2020; 115:849-859. [PMID: 33112443 DOI: 10.1111/mmi.14635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
Parasites are by definition organisms that utilize resources from a host to support their existence, thus, promoting their ability to establish long-term infections and disease. Hence, sensing and acquiring nutrients for which the parasite and host compete is central to the parasitic mode of existence. Leishmania are flagellated kinetoplastid parasites that parasitize phagocytic cells, principally macrophages, of vertebrate hosts and the alimentary tract of sand fly vectors. Because nutritional supplies vary over time within both these hosts and are often restricted in availability, these parasites must sense a plethora of nutrients and respond accordingly. The flagellum has been recognized as an "antenna" that plays a core role in sensing environmental conditions, and various flagellar proteins have been implicated in sensing roles. In addition, these parasites exhibit non-flagellar intracellular mechanisms of nutrient sensing, several of which have been explored. Nonetheless, mechanistic details of these sensory pathways are still sparse and represent a challenging frontier for further experimental exploration.
Collapse
Affiliation(s)
- Felice D Kelly
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Phillip A Yates
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Scott M Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites. Microbiol Mol Biol Rev 2020; 84:84/2/e00079-19. [PMID: 32238446 DOI: 10.1128/mmbr.00079-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.
Collapse
|
5
|
Mucci J, Lantos AB, Buscaglia CA, Leguizamón MS, Campetella O. The Trypanosoma cruzi Surface, a Nanoscale Patchwork Quilt. Trends Parasitol 2016; 33:102-112. [PMID: 27843019 DOI: 10.1016/j.pt.2016.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
Abstract
The Trypanosoma cruzi trypomastigote membrane provides a major protective role against mammalian host-derived defense mechanisms while allowing the parasite to interact with different cell types and trigger pathogenesis. This surface has been historically appreciated as a rather unstructured 'coat', mainly consisting of a continuous layer of glycolipids and heavily O-glycosylated mucins, occasionally intercalated with different developmentally regulated molecules displaying adhesive and/or enzymatic properties. Recent findings, however, indicate that the trypomastigote membrane is made up of multiple, densely packed and discrete 10-150nm lipid-driven domains bearing different protein composition; hence resembling a highly organized 'patchwork quilt' design. Here, we discuss different aspects underlying the biogenesis, assembly, and dynamics of this cutting-edge fashion outfit, as well as its functional implications.
Collapse
Affiliation(s)
- Juan Mucci
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina
| | - Andrés B Lantos
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina
| | - María Susana Leguizamón
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Goldman-Pinkovich A, Balno C, Strasser R, Zeituni-Molad M, Bendelak K, Rentsch D, Ephros M, Wiese M, Jardim A, Myler PJ, Zilberstein D. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion. PLoS Pathog 2016; 12:e1005494. [PMID: 27043018 PMCID: PMC4846328 DOI: 10.1371/journal.ppat.1005494] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/15/2016] [Indexed: 11/18/2022] Open
Abstract
Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. Protozoa of the genus Leishmania are the causative agents of leishmaniasis in humans. These parasites cycle between promastigotes in the sand fly mid-gut and amastigotes in phagolysosome of mammalian macrophages. During infection, host cells up-regulate nitric oxide while/or parasites induce expression of host arginase, both of which use arginine as a substrate. These elevated activities deplete macrophage arginine pools, a situation that invading Leishmania must overcome since it is an essential amino acid. Leishmania donovani imports exogenous arginine via a mono-specific amino acid transporter (AAP3) and utilizes it primarily through the polyamine pathway to provide precursors for trypanothione biosynthesis as well as hypusination of eukaryotic translation Initiation Factor 5A. Here we report the discovery of a pathway whereby Leishmania sense the lack of environmental arginine and respond with rapid up-regulation in the expression and activity of AAP3, as well as several other transporters. Significantly, this arginine deprivation response is also activated in parasites during macrophage infection. Phosphoproteomic analyses of L. donovani promastigotes have implicated a mitogen-activated protein kinase 2 (MPK2)-mediated signaling cascade in this response, and L. mexicana mutants lacking MPK2 are unable to respond to arginine deprivation. The arginine-sensing pathway might play an important role in Leishmania virulence and hence serve as target for drug development.
Collapse
Affiliation(s)
| | - Caitlin Balno
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Haifa, Israel
| | - Rona Strasser
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Michal Zeituni-Molad
- Carmel Medical Center and Faculty of Medicine, Technion,—Israel institute of Technology, Haifa, Israel
| | - Keren Bendelak
- The Smoler Proteomic Center, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Moshe Ephros
- Carmel Medical Center and Faculty of Medicine, Technion,—Israel institute of Technology, Haifa, Israel
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Armando Jardim
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Peter J. Myler
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Departments of Global Health and Biomedical Informatics & Medical Education, University of Washington, Seattle, Washington, United States of America
| | - Dan Zilberstein
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
7
|
Size does matter: 18 amino acids at the N-terminal tip of an amino acid transporter in Leishmania determine substrate specificity. Sci Rep 2015; 5:16289. [PMID: 26549185 PMCID: PMC4637868 DOI: 10.1038/srep16289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022] Open
Abstract
Long N-terminal tails of amino acid transporters are known to act as sensors of the internal pool of amino acids and as positive regulators of substrate flux rate. In this study we establish that N-termini of amino acid transporters can also determine substrate specificity. We show that due to alternative trans splicing, the human pathogen Leishmania naturally expresses two variants of the proline/alanine transporter, one 18 amino acid shorter than the other. We demonstrate that the longer variant (LdAAP24) translocates both proline and alanine, whereas the shorter variant (∆18LdAAP24) translocates just proline. Remarkably, co-expressing the hydrophilic N-terminal peptide of the long variant with ∆18LdAAP24 was found to recover alanine transport. This restoration of alanine transport could be mediated by a truncated N-terminal tail, though truncations exceeding half of the tail length were no longer functional. Taken together, the data indicate that the first 18 amino acids of the negatively charged N-terminal LdAAP24 tail are required for alanine transport and may facilitate the electrostatic interactions of the entire negatively charged N-terminal tail with the positively charged internal loops in the transmembrane domain, as this mechanism has been shown to underlie regulation of substrate flux rate for other transporters.
Collapse
|
8
|
Landfear SM, Tran KD, Sanchez MA. Flagellar membrane proteins in kinetoplastid parasites. IUBMB Life 2015; 67:668-76. [PMID: 26599841 DOI: 10.1002/iub.1411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/06/2022]
Abstract
All kinetoplastid parasites, including protozoa such as Leishmania species, Trypanosoma brucei, and Trypanosoma cruzi that cause devastating diseases in humans and animals, are flagellated throughout their life cycles. Although flagella were originally thought of primarily as motility organelles, flagellar functions in other critical processes, especially in sensing and signal transduction, have become more fully appreciated in the recent past. The flagellar membrane is a highly specialized subdomain of the surface membrane, and flagellar membrane proteins are likely to be critical components for all the biologically important roles of flagella. In this review, we summarize recent discoveries relevant to flagellar membrane proteins in these parasites, including the identification of such proteins, investigation of their biological functions, and mechanisms of selective trafficking to the flagellar membrane. Prospects for future investigations and current unsolved problems are highlighted.
Collapse
Affiliation(s)
- Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Khoa D Tran
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Marco A Sanchez
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| |
Collapse
|
9
|
Rodriguez-Contreras D, Landfear SM. Transporters, channels and receptors in flagella. Channels (Austin) 2014; 8:477-8. [PMID: 25485659 DOI: 10.4161/19336950.2014.985481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Dayana Rodriguez-Contreras
- a Department of Molecular Microbiology & Immunology ; Oregon Health Sciences University ; Portland , OR USA
| | | |
Collapse
|
10
|
Rodriguez-Contreras D, Aslan H, Feng X, Tran K, Yates PA, Kamhawi S, Landfear SM. Regulation and biological function of a flagellar glucose transporter in Leishmania mexicana: a potential glucose sensor. FASEB J 2014; 29:11-24. [PMID: 25300620 DOI: 10.1096/fj.14-251991] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Leishmania mexicana parasites, a unique glucose transporter, LmxGT1, is selectively targeted to the flagellar membrane, suggesting a possible sensory role that is often associated with ciliary membrane proteins. Expression of LmxGT1 is down-regulated ∼20-fold by increasing cell density but is up-regulated ∼50-fold by depleting glucose from the medium, and the permease is strongly down-regulated when flagellated insect-stage promastigotes invade mammalian macrophages and transform into intracellular amastigotes. Regulation of LmxGT1 expression by glucose and during the lifecycle operates at the level of protein stability. Significantly, a ∆lmxgt1 null mutant, grown in abundant glucose, undergoes catastrophic loss of viability when parasites deplete glucose from the medium, a property not exhibited by wild-type or add-back lines. These results suggest that LmxGT1 may function as a glucose sensor that allows parasites to enter the stationary phase when they deplete glucose and that in the absence of this sensor, parasites do not maintain viability when they run out of glucose. However, alternate roles for LmxGT1 in monitoring glucose availability are considered. The absence of known sensory receptors with defined ligands and biologic functions in Leishmania and related kinetoplastid parasites underscores the potential significance of these observations.
Collapse
Affiliation(s)
| | - Hamide Aslan
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiuhong Feng
- Departments of Molecular Microbiology & Immunology and
| | - Khoa Tran
- Departments of Molecular Microbiology & Immunology and
| | - Phillip A Yates
- Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA; and
| | - Shaden Kamhawi
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
11
|
Traub-Cseko YM, Costa-Pinto D, McMahon-Pratt D. Epitope tagging in leishmania: testing of commercial monoclonal antibodies. ACTA ACUST UNITED AC 2013; 14:41-2. [PMID: 17040690 DOI: 10.1016/s0169-4758(97)01156-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Y M Traub-Cseko
- Oswaldo Cruz Institute, FIOCRUZ, Department of Biochemistry and Molecular Biology, PO Box 926, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
12
|
Feng X, Rodriguez-Contreras D, Polley T, Lye LF, Scott D, Burchmore RJS, Beverley SM, Landfear SM. 'Transient' genetic suppression facilitates generation of hexose transporter null mutants in Leishmania mexicana. Mol Microbiol 2012; 87:412-29. [PMID: 23170981 DOI: 10.1111/mmi.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 11/26/2022]
Abstract
The genome of Leishmania mexicana encompasses a cluster of three glucose transporter genes designated LmxGT1, LmxGT2 and LmxGT3. Functional and genetic studies of a cluster null mutant (Δlmxgt1-3) have dissected the roles of these proteins in Leishmania metabolism and virulence. However, null mutants were recovered at very low frequency, and comparative genome hybridizations revealed that Δlmxgt1-3 mutants contained a linear extrachromosomal 40 kb amplification of a region on chromosome 29 not amplified in wild type parasites. These data suggested a model where this 29-40k amplicon encoded a second site suppressor contributing to parasite survival in the absence of GT1-3 function. To test this, we quantified the frequency of recovery of knockouts in the presence of individual overexpressed open reading frames covering the 29-40k amplicon. The data mapped the suppressor activity to PIFTC3, encoding a component of the intraflagellar transport pathway. We discuss possible models by which PIFTC3 might act to facilitate loss of GTs specifically. Surprisingly, by plasmid segregation we showed that continued PIFTC3 overexpression was not required for Δlmxgt1-3 viability. These studies provide the first evidence that genetic suppression can occur by providing critical biological functions transiently. This novel form of genetic suppression may extend to other genes, pathways and organisms.
Collapse
Affiliation(s)
- Xiuhong Feng
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tran KD, Rodriguez-Contreras D, Shinde U, Landfear SM. Both sequence and context are important for flagellar targeting of a glucose transporter. J Cell Sci 2012; 125:3293-8. [PMID: 22467850 DOI: 10.1242/jcs.103028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the cilia- and flagella-specific integral membrane proteins identified to date function to sense the extracellular milieu, and there is considerable interest in defining pathways for targeting such proteins to these sensory organelles. The flagellar glucose transporter of Leishmania mexicana, LmxGT1, is targeted selectively to the flagellar membrane, whereas two other isoforms, LmxGT2 and LmxGT3, are targeted to the pellicular plasma membrane of the cell body. To define the flagellar targeting signal, deletions and point mutations were generated in the N-terminal hydrophilic domain of LmxGT1, which mediates flagellar localization. Three amino acids, N95-P96-M97, serve critical roles in flagellar targeting, resulting in strong mistargeting phenotypes when mutagenized. However, to facilitate flagellar targeting of other non-flagellar membrane proteins, it was necessary to attach a larger region surrounding the NPM motif containing amino acids 81-113. Molecular modeling suggests that this region might present the critical NPM residues at the surface of the N-terminal domain. It is likely that the NPM motif is recognized by currently unknown protein-binding partners that mediate flagellar targeting of membrane-associated proteins.
Collapse
Affiliation(s)
- Khoa D Tran
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
14
|
Nutrient transport and pathogenesis in selected parasitic protozoa. EUKARYOTIC CELL 2011; 10:483-93. [PMID: 21216940 DOI: 10.1128/ec.00287-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Parasitic protozoa, such as malaria parasites, trypanosomes, and Leishmania, acquire a plethora of nutrients from their hosts, employing transport proteins located in the plasma membrane of the parasite. Application of molecular genetic approaches and the completion of genome projects have allowed the identification and functional characterization of a cohort of transporters and their genes in these parasites. This review focuses on a subset of these permeases that have been studied in some detail, that import critical nutrients, and that provide examples of approaches being undertaken broadly with these and other parasite transporters. Permeases reviewed include those for hexoses, purines, iron, polyamines, carboxylates, and amino acids. Topics of special emphasis include structure-function approaches, critical roles for transporters in parasite viability and physiology, regulation of transporter expression, and subcellular targeting. Investigations of parasite transporters impact a broad spectrum of basic biological problems in these protozoa.
Collapse
|
15
|
Feng X, Feistel T, Buffalo C, McCormack A, Kruvand E, Rodriguez-Contreras D, Akopyants NS, Umasankar P, David L, Jardim A, Beverley SM, Landfear SM. Remodeling of protein and mRNA expression in Leishmania mexicana induced by deletion of glucose transporter genes. Mol Biochem Parasitol 2011; 175:39-48. [PMID: 20869991 PMCID: PMC2974008 DOI: 10.1016/j.molbiopara.2010.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Glucose is a major nutrient in the insect vector stage of Leishmania parasites. Glucose transporter null mutants of Leishmania mexicana exhibit profound phenotypic changes in both insect stage promastigotes and mammalian host stage amastigotes that reside within phagolysosomes of host macrophages. Some of these phenotypic changes could be either mediated or attenuated by changes in gene expression that accompany deletion of the glucose transporter genes. To search for changes in protein expression, the profile of proteins detected on two-dimensional gels was compared for wild type and glucose transporter null mutant promastigotes. A total of 50 spots whose intensities changed significantly and consistently in multiple experiments were detected, suggesting that a cohort of proteins is altered in expression levels in the null mutant parasites. Following identification of proteins by mass spectrometry, 3 such regulated proteins were chosen for more detailed analysis: mitochondrial aldehyde dehydrogenase, ribokinase, and hexokinase. Immunoblots employing antisera against these enzymes confirmed that their levels were upregulated, both in glucose transporter null mutants and in wild type parasites starved for glucose. Quantitative reverse transcriptase PCR (qRT-PCR) revealed that the levels of mRNAs encoding these enzymes were also enhanced. Global expression profiling using microarrays revealed a limited number of additional changes, although the sensitivity of the microarrays to detect modest changes in amplitude was less than that of two-dimensional gels. Hence, there is likely to be a network of proteins whose expression levels are altered by genetic ablation of glucose transporters, and much of this regulation may be reflected by changes in the levels of the cognate mRNAs. Some of these changes in protein expression may reflect an adaptive response of the parasites to limitation of glucose.
Collapse
Affiliation(s)
- Xiuhong Feng
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Torben Feistel
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cosmo Buffalo
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley McCormack
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Elizabeth Kruvand
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dayana Rodriguez-Contreras
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalia S. Akopyants
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - P.K. Umasankar
- Molecular Biology Unit, National Center for Cell Science, University of Pune, Ganeshkhind, Pune 411007, India
| | - Larry David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239
| | - Armando Jardim
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Scott M. Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
16
|
Bell AJ, Guerra C, Phung V, Nair S, Seetharam R, Satir P. GEF1 is a ciliary Sec7 GEF of Tetrahymena thermophila. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:483-99. [PMID: 19267341 PMCID: PMC2767173 DOI: 10.1002/cm.20348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ciliary guanine nucleotide exchange factors (GEFs) potentially activate G proteins in intraflagellar transport (IFT) cargo release. Several classes of GEFs have been localized to cilia or basal bodies and shown to be functionally important in the prevention of ciliopathies, but ciliary Arl-type Sec 7 related GEFs have not been well characterized. Nair et al. [ 1999] identified a Paramecium ciliary Sec7 GEF, PSec7. In Tetrahymena, Gef1p (GEF1), tentatively identified by PSec7 antibody, possesses ciliary and nuclear targeting sequences and like PSec7 localizes to cilia and macronuclei. Upregulation of GEF1 RNA followed deciliation and subsequent ciliary regrowth. Corresponding to similar Psec7 domains, GEF1domains contain IQ-like motifs and putative PH domains, in addition to GBF/BIG canonical motifs. Genomic analysis identified two additional Tetrahymena GBF/BIG Sec7 family GEFs (GEF2, GEF3), which do not possess ciliary targeting sequences. GEF1 and GEF2 were HA modified to determine cellular localization. Cells transformed to produce appropriately truncated GEF1-HA showed localization to somatic and oral cilia, but not to macronuclei. Subtle defects in ciliary stability and function were detected. GEF2-HA localized near basal bodies but not to cilia. These results indicate that GEF1 is the resident Tetrahymena ciliary protein orthologous to PSec7. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Aaron J Bell
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Darlyuk I, Goldman A, Roberts SC, Ullman B, Rentsch D, Zilberstein D. Arginine homeostasis and transport in the human pathogen Leishmania donovani. J Biol Chem 2009; 284:19800-7. [PMID: 19439418 DOI: 10.1074/jbc.m901066200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arginine is an essential amino acid for the human pathogen Leishmania but not to its host. Thus, the mechanism by which this protozoan parasite regulates cellular homeostasis of arginine is critical for its survival and virulence. In a previous study, we cloned and functionally characterized a high affinity arginine-specific transporter, LdAAP3, from Leishmania donovani. In this investigation, we have characterized the relationship between arginine transport via LdAAP3 and amino acid availability. Starving promastigotes for amino acids decreased the cellular level of most amino acids including arginine but also increased the abundance of both LdAAP3 mRNA and protein and up-regulated arginine transport activity. Genetic obliteration of the polyamine biosynthesis pathway for which arginine is the sole precursor caused a significant decrease in the rate of arginine transport. Cumulatively, we established that LdAAP3 expression and activity changed whenever the cellular level of arginine changed. Our findings have led to the hypothesis that L. donovani promastigotes have a signaling pathway that senses cellular concentrations of arginine and subsequently activates a mechanism that regulates LdAAP3 expression and activity. Interestingly, this response of LdAAP3 to amino acid availability in L. donovani is identical to that of the mammalian cation amino acid transporter 1. Thus, we conjecture that Leishmania mimics the host response to amino acid availability to improve virulence.
Collapse
Affiliation(s)
- Ilona Darlyuk
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Ginger ML, Portman N, McKean PG. Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol 2008; 6:838-50. [PMID: 18923411 DOI: 10.1038/nrmicro2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | |
Collapse
|
19
|
Landfear SM. Drugs and transporters in kinetoplastid protozoa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:22-32. [PMID: 18365656 DOI: 10.1007/978-0-387-77570-8_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kinetoplastid protozoa express hundreds of membrane transport proteins that allow them to take up nutrients, establish ion gradients, efflux metabolites, translocate compounds from one intracellular compartment to another, and take up or export drugs. The combination of molecular cloning, genetic approaches, and the completed genome projects for Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi have allowed detailed functional analysis of various transporters and predictions about the likely functions of others. Thus many opportunities exist to define the biological and pharmacological properties of parasite transporters whose genes were often difficult to identify in the pregenomic era. A subset of these transporters that are essential for parasite viability could serve as targets for novel drug therapies by identifying compounds that interfere with their uptake functions. Other permeases provide routes for uptake of selectively cytotoxic compounds and can thus be useful for delivery of drugs. Drug resistance may develop in strains where such drug uptake transporters are nonfunctional or in parasites that over-express other permeases that export a drug. A summary of recent work on Leishmania transporters for glucose and for purines is provided as an example of permeases that are being studied in molecular detail.
Collapse
Affiliation(s)
- Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
20
|
Abstract
Data reported at an international meeting on the sensory and motile functions of cilia, including the primary cilium found on most cells in the human body, have thrust this organelle to the forefront of studies on the cell biology of human disease.
Collapse
Affiliation(s)
- Roger D Sloboda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | | |
Collapse
|
21
|
Lupetti P. Stay tuned! It is an exciting era for the biology of cilia and flagella. Report on the FASEB summer research conference on the Biology of Cilia and Flagella. August 4-9, Vermont Academy, USA. Tissue Cell 2007; 39:445-55. [PMID: 18022658 DOI: 10.1016/j.tice.2007.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pietro Lupetti
- Department of Evolutionary Biology, Siena University, Italy.
| |
Collapse
|
22
|
Figarella K, Uzcategui NL, Zhou Y, LeFurgey A, Ouellette M, Bhattacharjee H, Mukhopadhyay R. Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol 2007; 65:1006-17. [PMID: 17640270 DOI: 10.1111/j.1365-2958.2007.05845.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Leishmania major aquaglyceroporin, LmAQP1, is responsible for the transport of trivalent metalloids, arsenite and antimonite. We have earlier shown that downregulation of LmAQP1 provides resistance to trivalent antimony compounds whereas increased expression of LmAQP1 in drug-resistant parasites can reverse the resistance. In this paper we describe the biochemical characterization of LmAQP1. Expression of LmAQP1 in Xenopus oocytes rendered them permeable to water, glycerol, methylglyoxal, dihydroxyacetone and sugar alcohols. The transport property of LmAQP1 was severely affected when a critical Arg230, located inside the pore of the channel, was altered to either alanine or lysine. Immunofluorescence and immuno-electron microscopy revealed LmAQP1 to be localized to the flagellum of Leishmania promastigotes and in the flagellar pocket membrane and contractile vacuole/spongiome complex of amastigotes. This is the first report of an aquaglyceroporin being localized to the flagellum of any microbe. Leishmania promastigotes and amastigotes expressing LmAQP1 could regulate their volume in response to hypoosmotic stress. Additionally, Leishmania promastigotes overexpressing LmAQP1 were found to migrate faster towards an osmotic gradient. These results taken together suggest that Leishmania LmAQP1 has multiple physiological roles, being involved in solute transport, volume regulation and osmotaxis.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Fridberg A, Buchanan KT, Engman DM. Flagellar membrane trafficking in kinetoplastids. Parasitol Res 2006; 100:205-12. [PMID: 17058110 DOI: 10.1007/s00436-006-0329-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Alina Fridberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Ward Building 6-140, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
24
|
de Koning HP, Bridges DJ, Burchmore RJS. Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiol Rev 2005; 29:987-1020. [PMID: 16040150 DOI: 10.1016/j.femsre.2005.03.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 01/10/2023] Open
Abstract
Purine salvage is an essential function for all obligate parasitic protozoa studied to date and most are also capable of efficient uptake of preformed pyrimidines. Much progress has been made in the identification and characterisation of protozoan purine and pyrimidine transporters. While the genes encoding protozoan or metazoan pyrimidine transporters have yet to be identified, numerous purine transporters have now been cloned. All protozoan purine transporter-encoding genes characterised to date have been of the Equilibrative Nucleoside Transporter family conserved in a great variety of eukaryote organisms. However, these protozoan transporters have been shown to be sufficiently different from mammalian transporters to mediate selective uptake of therapeutic agents. Recent studies are increasingly addressing the structure and substrate recognition mechanisms of these vital transport proteins.
Collapse
Affiliation(s)
- Harry P de Koning
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
25
|
Pappas GJ, Benabdellah K, Zingales B, González A. Expressed sequence tags from the plant trypanosomatid Phytomonas serpens. Mol Biochem Parasitol 2005; 142:149-57. [PMID: 15869816 DOI: 10.1016/j.molbiopara.2005.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/24/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
We have generated 2190 expressed sequence tags (ESTs) from a cDNA library of the plant trypanosomatid Phytomonas serpens. Upon processing and clustering the set of 1893 accepted sequences was reduced to 697 clusters consisting of 452 singletons and 245 contigs. Functional categories were assigned based on BLAST searches against a database of the eukaryotic orthologous groups of proteins (KOG). Thirty six percent of the generated sequences showed no hits against the KOG database and 39.6% presented similarity to the KOG classes corresponding to translation, ribosomal structure and biogenesis. The most populated cluster contained 45 ESTs homologous to members of the glucose transporter family. This fact can be immediately correlated to the reported Phytomonas dependence on anaerobic glycolytic ATP production due to the lack of cytochrome-mediated respiratory chain. In this context, not only a number of enzymes of the glycolytic pathway were identified but also of the Krebs cycle as well as specific components of the respiratory chain. The data here reported, including a few hundred unique sequences and the description of tandemly repeated motifs and putative transcript stability motifs at untranslated mRNA ends, represent an initial approach to overcome the lack of information on the molecular biology of this organism.
Collapse
Affiliation(s)
- Georgios J Pappas
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
26
|
Araújo-Santos JM, Parodi-Talice A, Castanys S, Gamarro F. The overexpression of an intracellular ABCA-like transporter alters phospholipid trafficking in Leishmania. Biochem Biophys Res Commun 2005; 330:349-55. [PMID: 15781271 DOI: 10.1016/j.bbrc.2005.02.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Indexed: 11/27/2022]
Abstract
In parasites, ATP-binding cassette (ABC) transporters represent an important family of proteins related to drug resistance and other biological activities. Here we report the characterization of LtrABCA2, a new ABC transporter of the ABCA subfamily in the protozoan parasite Leishmania tropica, localized at the flagellar pocket region and in internal vesicles. The overexpression of this transporter reduced the accumulation of fluorescent glycerophospholipid analogs, increased the exocytic activity, and decreased infectivity of macrophage, but did not confer resistance to drugs. Together, these results suggest that this new ABC transporter plays a role in phospholipid trafficking, which may be modifying the vesicular trafficking and the infectivity of the parasite.
Collapse
Affiliation(s)
- José María Araújo-Santos
- Instituto de Parasitología y Biomedicina López-Neyra, C.S.I.C, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n 18100 Armilla, Granada, Spain
| | | | | | | |
Collapse
|
27
|
Uzcategui NL, Figarella K, Camacho N, Ponte-Sucre A. Substrate preferences and glucose uptake in glibenclamide-resistant Leishmania parasites. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:395-402. [PMID: 15886061 DOI: 10.1016/j.cca.2005.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 03/28/2005] [Accepted: 04/01/2005] [Indexed: 11/23/2022]
Abstract
Several drug-resistant mammalian cell types exhibit increased glycolytic rates, preferential synthesis of ATP through oxidative phosphorylation, and altered glucose transport. Herein we analyzed the influence of parasite growth phase on energy substrate uptake and use in a Leishmania strain [NR(Gr)] selected for resistance against glibenclamide. Glibenclamide is an ABC-transporter blocker which modulates the function of glucose transporters in some mammalian cells. Our results demonstrate for the first time that compared to glibenclamide-sensitive Leishmania, exponential phase glibenclamide-resistant parasites exhibit decreased use of glucose as energy substrate, decreased glucose uptake and decreased glucose transporter expression. However, compared to glibenclamide-sensitive cells, stationary phase resistant parasites display an increased use of amino acids as energy substrate and an increased activity of the enzymes hexokinase, phosphoglucose isomerase, and especially NAD(+)-linked glutamate dehydrogenase. These results suggest that drug resistance in Leishmania involves a metabolic adaptation that promotes a stage dependent modulation of energy substrate uptake and use as a physiological response to the challenge imposed by drug pressure.
Collapse
Affiliation(s)
- Nestor Luis Uzcategui
- Laboratorio de Fisiología Molecular, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | |
Collapse
|
28
|
Abstract
Eukaryotic cilia and flagella are cytoskeletal organelles that are remarkably conserved from protists to mammals. Their basic unit is the axoneme, a well-defined cylindrical structure composed of microtubules and up to 250 associated proteins. These complex organelles are assembled by a dynamic process called intraflagellar transport. Flagella and cilia perform diverse motility and sensitivity functions in many different organisms. Trypanosomes are flagellated protozoa, responsible for various tropical diseases such as sleeping sickness and Chagas disease. In this review, we first describe general knowledge on the flagellum: its occurrence in the living world, its molecular composition, and its mode of assembly, with special emphasis on the exciting developments that followed the discovery of intraflagellar transport. We then present recent progress regarding the characteristics of the trypanosome flagellum, highlighting the original contributions brought by this organism. The most striking phenomenon is the involvement of the flagellum in several aspects of the trypanosome cell cycle, including cell morphogenesis, basal body migration, and cytokinesis.
Collapse
Affiliation(s)
- Linda Kohl
- INSERM U565, CNRS UMR5153, and MNHN USM 0503, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | | |
Collapse
|
29
|
Tull D, Vince JE, Callaghan JM, Naderer T, Spurck T, McFadden GI, Currie G, Ferguson K, Bacic A, McConville MJ. SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol Biol Cell 2004; 15:4775-86. [PMID: 15342784 PMCID: PMC524726 DOI: 10.1091/mbc.e04-06-0457] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mechanisms by which proteins are targeted to the membrane of eukaryotic flagella and cilia are largely uncharacterized. We have identified a new family of small myristoylated proteins (SMPs) that are present in Leishmania spp and related trypanosomatid parasites. One of these proteins, termed SMP-1, is targeted to the Leishmania flagellum. SMP-1 is myristoylated and palmitoylated in vivo, and mutation of Gly-2 and Cys-3 residues showed that both fatty acids are required for flagellar localization. SMP-1 is associated with detergent-resistant membranes based on its recovery in the buoyant fraction after Triton X-100 extraction and sucrose density centrifugation and coextraction with the major surface glycolipids in Triton X-114. However, the flagellar localization of SMP-1 was not affected when sterol biosynthesis and the properties of detergent-resistant membranes were perturbed with ketoconazole. Remarkably, treatment of Leishmania with ketoconazole and myriocin (an inhibitor of sphingolipid biosynthesis) also had no affect on SMP-1 localization, despite causing the massive distension of the flagellum membrane and the partial or complete loss of internal axoneme and paraflagellar rod structures, respectively. These data suggest that flagellar membrane targeting of SMP-1 is not dependent on axonemal structures and that alterations in flagellar membrane lipid composition disrupt axoneme extension.
Collapse
Affiliation(s)
- Dedreia Tull
- Department of Biochemistry and Molecular Biology, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nasser MIA, Landfear SM. Sequences required for the flagellar targeting of an integral membrane protein. Mol Biochem Parasitol 2004; 135:89-100. [PMID: 15287590 DOI: 10.1016/j.molbiopara.2004.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies have established that the ISO1 glucose transporter of Leishmania enriettii resides primarily in the flagellar membrane, whereas the ISO2 glucose transporter is located in the pellicular plasma membrane surrounding the cell body. This pronounced difference in subcellular targeting is conferred by the NH2-terminal domain of the transporters, since this is the only region of the two permeases that differs in sequence. Analysis of the 130 residue NH2-terminal domain of ISO1 using multiple terminal deletion mutants and various internal deletion mutants established that a sequence located between amino acids 84 and 100 of this domain is required for flagellar trafficking. In addition, chimeras between ISO1 and ISO2 indicated that the region between residues 110 and 118 of ISO1 is also required for flagellar targeting. These results imply that flagellar targeting information for this integral membrane protein does not constitute a simple linear sequence of amino acids but is at least bipartite in structure.
Collapse
Affiliation(s)
- Marina Ignatushchenko Abdel Nasser
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | |
Collapse
|
31
|
Burchmore RJS, Rodriguez-Contreras D, McBride K, Merkel P, Barrett MP, Modi G, Sacks D, Landfear SM. Genetic characterization of glucose transporter function in Leishmania mexicana. Proc Natl Acad Sci U S A 2003; 100:3901-6. [PMID: 12651954 PMCID: PMC153020 DOI: 10.1073/pnas.0630165100] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both insect and mammalian life cycle stages of Leishmania mexicana take up glucose and express all three isoforms encoded by the LmGT glucose transporter gene family. To evaluate glucose transporter function in intact parasites, a null mutant line has been created by targeted disruption of the LmGT locus that encompasses the LmGT1, LmGT2, and LmGT3 genes. This deltalmgt null mutant exhibited no detectable glucose transport activity. The growth rate of the deltalmgt knockout in the promastigote stage was reduced to a rate comparable with that of WT cells grown in the absence of glucose. deltalmgt cells also exhibited dramatically reduced infectivity to macrophages, demonstrating that expression of LmGT isoforms is essential for viability of amastigotes. Furthermore, WT L. mexicana were not able to grow as axenic culture form amastigotes if glucose was withdrawn from the medium, implying that glucose is an essential nutrient in this life cycle stage. Expression of either LmGT2 or LmGT3, but not of LmGT1, in deltalmgt null mutants significantly restored growth as promastigotes, but only LmGT3 expression substantially rescued amastigote growth in macrophages. Subcellular localization of the three isoforms was investigated in deltalmgt cells expressing individual LmGT isoforms. Using anti-LmGT antiserum and GFP-tagged LmGT fusion proteins, LmGT2 and LmGT3 were localized to the cell body, whereas LmGT1 was localized specifically to the flagellum. These results establish that each glucose transporter isoform has distinct biological functions in the parasite.
Collapse
Affiliation(s)
- Richard J S Burchmore
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 2002; 66:122-54; table of contents. [PMID: 11875130 PMCID: PMC120783 DOI: 10.1128/mmbr.66.1.122-154.2002] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Trypanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles in the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
33
|
Abstract
Leishmania have a digenetic life cycle, involving a motile, extracellular stage (promastigote) which parasitises the alimentary tract of a sandfly vector. Bloodfeeding activity by an infected sandfly can result in transmission of infective (metacyclic) promastigotes to mammalian hosts, including humans. Leishmania promastigotes are rapidly phagocytosed but may survive and transform into non-motile amastigote forms which can persist as intracellular parasites. Leishmania amastigotes multiply in an acidic intracellular compartment, the parasitophorous vacuole. pH plays a central role in the developmental switch between promastigote and amastigote stages, and amastigotes are metabolically most active when their environment is acidic, although the cytoplasm of the amastigote is regulated at near-neutral pH by an active process of proton extrusion. A steep proton gradient is thus maintained across the amastigote surface and all membrane processes must be adapted to function under these conditions. Amastigote uptake systems for glucose, amino acids, nucleosides and polyamines are optimally active at acidic pH. Promastigote uptake systems are kinetically distinct and function optimally at more neutral environmental pH, indicating that membrane transport activity is developmentally regulated. The nutrient environment encountered by amastigotes is not well understood but the parasitophorous vacuole can fuse with endosomes, phagosomes and autophagosomes, suggesting that a diverse range of macromolecules will be present. The parasitophorous vacuole is a hydrolytic compartment in which such material will be rapidly degraded to low molecular weight components which are typical substrates for membrane transporters. Amastigote surface transporters must compete for these substrates with equivalent host transporters in the membrane of the parasitophorous vacuole. The elaboration of accumulative transporters with high affinity will be beneficial to amastigotes in this environment. The influence of environmental pH on membrane transporter function is discussed, with emphasis on the potential role of a transmembrane proton gradient in active, high affinity transport.
Collapse
Affiliation(s)
- R J Burchmore
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
34
|
Abstract
The flagellum and flagellar pocket are distinctive organelles present among all of the trypanosomatid protozoa. Currently, recognized functions for these organelles include generation of motility for the flagellum and dedicated secretory and endocytic activities for the flagellar pocket. The flagellar and flagellar pocket membranes have long been recognized as morphologically separate domains that are component parts of the plasma membrane that surrounds the entire cell. The structural and functional specialization of these two membranes has now been underscored by the identification of multiple proteins that are targeted selectively to each of these domains, and non-membrane proteins have also been identified that are targeted to the internal lumina of these organelles. Investigations on the functions of these organelle-specific proteins should continue to shed light on the unique biological activities of the flagellum and flagellar pocket. In addition, work has begun on identifying signals or modifications of these proteins that direct their targeting to the correct subcellular location. Future endeavors should further refine our knowledge of targeting signals and begin to dissect the molecular machinery involved in transporting and retaining each polypeptide at its designated cellular address.
Collapse
Affiliation(s)
- S M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, 97201, Portland, OR, USA.
| | | |
Collapse
|
35
|
Costa-Pinto D, Trindade LS, McMahon-Pratt D, Traub-Cseko YM. Cellular trafficking in trypanosomatids: a new target for therapies? Int J Parasitol 2001; 31:536-43. [PMID: 11334939 DOI: 10.1016/s0020-7519(01)00145-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogenic trypanosomatids cause a plethora of diseases marked by the lack of efficient vaccines and therapies. As a consequence, studies are being conducted that are geared towards the understanding of basic mechanisms and various biological aspects of these parasites that might be used as targets for new developments in these areas. One such aspect is the understanding of specific cellular trafficking mechanisms that might be attacked with the intention of disease control. In this paper, we give an overview of our current knowledge of cellular targeting mechanisms in trypanosomatids, with special emphasis on our data related to lysosomal targeting of cysteine proteinases in Leishmania.
Collapse
Affiliation(s)
- D Costa-Pinto
- Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil 4365, RJ 21045-900, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
36
|
Bastin P, Pullen TJ, Moreira-Leite FF, Gull K. Inside and outside of the trypanosome flagellum:a multifunctional organelle. Microbes Infect 2000; 2:1865-74. [PMID: 11165931 DOI: 10.1016/s1286-4579(00)01344-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Amongst the earliest eukaryotes, trypanosomes have developed conventional organelles but sometimes with extreme features rarely seen in other organisms. This is the case of the flagellum, containing conventional and unique structures whose role in infectivity is still enigmatic.
Collapse
Affiliation(s)
- P Bastin
- Department of Biochemistry, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, M13 9PT, Manchester, UK.
| | | | | | | |
Collapse
|
37
|
Abstract
The ability to clone and functionally express genes encoding membrane transporters in Leishmania and related parasitic protozoa has illuminated the processes whereby these parasites acquire nutrients from their hosts. It is now possible to probe the physiological functions of these permeases and investigate their role in drug delivery and resistance.
Collapse
Affiliation(s)
- S M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA.
| |
Collapse
|
38
|
Seyfang A, Landfear SM. Four conserved cytoplasmic sequence motifs are important for transport function of the Leishmania inositol/H(+) symporter. J Biol Chem 2000; 275:5687-93. [PMID: 10681553 DOI: 10.1074/jbc.275.8.5687] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protozoan Leishmania donovani has a myo-inositol/proton symporter (MIT) that is a member of a large sugar transporter superfamily. Active transport by MIT is driven by the proton electrochemical gradient across the parasite membrane, and MIT is a prototype for understanding the function of an active transporter in lower eukaryotes. MIT contains two duplicated 6- or 7-amino acid motifs within cytoplasmic loops, which are highly conserved among 50 members of the sugar transporter superfamily and are designated A(1), A(2) ((V)(D/E)(R/K)PhiGR(R/K)), and B(1) (PESPRPhiL), B(2) (VPETKG). In particular, the three acidic residues within these motifs, Glu(187)(B(1)), Asp(300)(A(2)), and Glu(429)(B(2)) in MIT, are highly conserved with 96, 78, and 96% amino acid identity within the analyzed members of this transporter superfamily ranging from bacteria, archaea, and fungi to plants and the animal kingdom. We have used site-directed mutagenesis in combination with functional expression of transporter mutants in Xenopus oocytes and overexpression in Leishmania transfectants to investigate the significance of these three acidic residues in the B(1), A(2), and B(2) motifs. Alteration to the uncharged amides greatly reduced MIT transport function to 23% (E187Q), 1.4% (D300N), and 3% (E429Q) of wild-type activity, respectively, by affecting V(max) but not substrate affinity. Conservative mutations that retained the charge revealed a less pronounced effect on inositol transport with 39% (E187D), 16% (D300E) and 20% (E429D) remaining transport activity. Immunofluorescence microscopy of oocyte cryosections confirmed that MIT mutants were expressed on the oocyte surface in similar quantity to MIT wild type. The proton uncouplers carbonylcyanide-4-(trifluoromethoxy) phenylhydrazone and dinitrophenol inhibited inositol transport by 50-70% in the wild type as well as in E187Q, D300N, and E429Q, despite their reduced transport activities, suggesting that transport in these mutants is still proton-coupled. Furthermore, temperature-dependent uptake studies showed an increased Arrhenius activation energy for the B(1)-E187Q and the B(2)-E429Q mutants, which supports the idea of an impaired transporter cycle in these mutants. We conclude that the conserved acidic residues Glu(187), Asp(300), and Glu(429) are critical for transport function of MIT.
Collapse
Affiliation(s)
- A Seyfang
- Department of Molecular Microbiology, School of Medicine, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | |
Collapse
|
39
|
Seyfang A, Landfear SM. Substrate depletion upregulates uptake of myo-inositol, glucose and adenosine in Leishmania. Mol Biochem Parasitol 1999; 104:121-30. [PMID: 10589986 DOI: 10.1016/s0166-6851(99)00138-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Leishmania flagellates undergo a digenetic life cycle in the gut of the sandfly insect vector and in macrophage phagolysosomes of the mammalian host. This involves vast changes of the environment to which the parasite has to adapt, including temperature, pH and concentration of nutrients between different types of meals of the insect vector or within the enclosed intracellular environment of the phagolysosome. The regulation of transporters for important organic substrates in Leishmania donovani, Leishmania mexicana and Leishmania enriettii has been investigated. A pronounced upregulation of inositol (25-fold), adenosine (11-fold) or glucose (5-fold) uptake activities was found when cells were depleted of the respective substrates during culture. Inositol-depleted cells showed a half-maximal uptake rate at nanomolar inositol concentration. Depletion of inositol only affected inositol uptake but did not affect uptake of glucose analog or proline in control experiments, indicating the specificity of the mechanism(s) underlying transport regulation. Adenosine-depleted cells showed an approximately 10-fold increase in both adenosine and uridine uptake, both mediated by the L. donovani nucleoside transporter 1 (LdNT1), but no change in guanosine uptake, which is mediated by the L. donovani nucleoside transporter 2 (LdNT2). These results suggest that extracellular adenosine concentration specifically regulates LdNT1 transport activity and does not affect LdNT2. The data imply that upregulation of transport activities by substrate depletion is a general phenomenon in protozoan flagellates, which is in remarkable contrast to bacteria where upregulation typically follows an increase of extracellular organic substrate. Hence, the parasites can maximize the uptake of important nutrients from the host even under limiting conditions, whereas bacteria often have dormant stages (spores) to overcome unfavorable environmental conditions or are heterotrophic for organic substrates.
Collapse
Affiliation(s)
- A Seyfang
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health Sciences University, Portland 97201-3098, USA.
| | | |
Collapse
|
40
|
Snapp EL, Landfear SM. Characterization of a targeting motif for a flagellar membrane protein in Leishmania enriettii. J Biol Chem 1999; 274:29543-8. [PMID: 10506220 DOI: 10.1074/jbc.274.41.29543] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The surface membranes of eukaryotic flagella and cilia are contiguous with the plasma membrane. Despite the absence of obvious physical structures that could form a barrier between the two membrane domains, the lipid and protein compositions of flagella and cilia are distinct from the rest of the cell surface membrane. We have exploited a flagellar glucose transporter from the parasitic protozoan Leishmania enriettii as a model system to characterize the first targeting motif for a flagellar membrane protein in any eukaryotic organism. In this study, we demonstrate that the flagellar membrane-targeting motif is recognized by several species of Leishmania. Previously, we demonstrated that the 130 amino acid NH(2)-terminal cytoplasmic domain of isoform 1 glucose transporter was sufficient to target a nonflagellar integral membrane protein into the flagellar membrane. We have now determined that an essential flagellar targeting signal is located between amino acids 20 and 35 of the NH(2)-terminal domain. We have further analyzed the role of specific amino acids in this region by alanine replacement mutagenesis and determined that single amino acid substitutions did not abrogate targeting to the flagellar membrane. However, individual mutations located within a cluster of five contiguous amino acids, RTGTT, conferred differences in the degree of targeting to the flagellar membrane and the flagellar pocket, implying a role for these residues in the mechanism of flagellar trafficking.
Collapse
Affiliation(s)
- E L Snapp
- Department of Molecular Microbiology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
41
|
Kündig C, Haimeur A, Légaré D, Papadopoulou B, Ouellette M. Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae. EMBO J 1999; 18:2342-51. [PMID: 10228149 PMCID: PMC1171317 DOI: 10.1093/emboj/18.9.2342] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Functional cloning led to the isolation of a novel methotrexate (MTX) resistance gene in the protozoan parasite Leishmania. The gene corresponds to orfG, an open reading frame (ORF) of the LD1/CD1 genomic locus that is frequently amplified in several Leishmania stocks. A functional ORF G-green fluorescence protein fusion was localized to the plasma membrane. Transport studies indicated that ORF G is a high affinity biopterin transporter. ORF G also transports folic acid, with a lower affinity, but does not transport the drug analog MTX. Disruption of both alleles of orfG led to a mutant strain that became hypersensitive to MTX and had no measurable biopterin transport. Leishmania tarentolae MTX-resistant cells without their high affinity folate transporters have a rearranged orfG gene and increased orfG RNA levels. Overexpression of orfG leads to increased biopterin uptake and, in folate-rich medium, to increased folate uptake. MTX-resistant cells compensate for mutations in their high affinity folate/MTX transporter by overexpressing ORF G, which increases the uptake of pterins and selectively increases the uptake of folic acid, but not MTX.
Collapse
Affiliation(s)
- C Kündig
- Centre de Recherche en Infectiologie, CHUQ, Pavilon CHUL, 2705 Boulevard Laurier, RC-709, Ste-Foy, Quebec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
42
|
Burchmore RJ, Landfear SM. Differential regulation of multiple glucose transporter genes in Leishmania mexicana. J Biol Chem 1998; 273:29118-26. [PMID: 9786920 DOI: 10.1074/jbc.273.44.29118] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the structure and expression of glucose transporter genes in the parasitic protozoan Leishmania mexicana. Three distinct glucose transporter isoforms, LmGT1, LmGT2, and LmGT3, are encoded by single copy genes that are clustered together at a single locus. Quantitation of Northern blots reveals that LmGT2 mRNA is present at approximately 15-fold higher level in promastigotes, the insect stage of the parasite life cycle, compared with amastigotes, the intracellular stage of the life cycle that lives within the mammalian host. In contrast, LmGT1 and LmGT3 mRNAs are expressed at similar levels in both life cycle stages. Transcription of the LmGT genes in promastigotes and axenically cultured amastigotes occurs at similar levels, as measured by nuclear run-on transcription. Consequently, the approximately 15-fold up-regulation of LmGT2 mRNA levels in promastigotes compared with amastigotes must be controlled at the post-transcriptional level. Measurement of LmGT2 RNA decay in promastigotes and axenic amastigotes treated with actinomycin D suggests that differential mRNA stability may play a role in regulating glucose transporter mRNA levels in the two life cycle stages.
Collapse
Affiliation(s)
- R J Burchmore
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
43
|
Bringaud F, Vedrenne C, Cuvillier A, Parzy D, Baltz D, Tetaud E, Pays E, Venegas J, Merlin G, Baltz T. Conserved organization of genes in trypanosomatids. Mol Biochem Parasitol 1998; 94:249-64. [PMID: 9747975 DOI: 10.1016/s0166-6851(98)00080-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trypanosomatids are unicellular protozoan parasites which constitute some of the most primitive eukaryotes. Leishmania spp, Trypanosoma cruzi and members of the Trypanosoma brucei group, which cause human diseases, are the most studied representatives of this large family. Here we report a comparative analysis of a large genomic region containing glucose transporter genes in three Salivarian trypanosomes (T. brucei, T. congolense and T. vivax), T. cruzi and Leishmania donovani. In T. brucei, the 8 kb (upstream) and 14 kb (downstream) regions flanking the glucose transporter genes cluster contain two and six new genes, respectively, six of them encoding proteins homologous to known eukaryotic proteins (phosphatidylinositol 3 kinase, ribosomal protein S12, DNAJ and three small G-proteins--Rab1, YPT6 and ARL3). This gene organization is identical in T. brucei, T. congolense and T. vivax suggesting that Salivarian trypanosomes have a high level of conservation in gene organization. In T. cruzi and Leishmania, the overall organization of this cluster is conserved, with insertion of additional genes when compared with T. brucei. Phylogenetic reconstitution based on glucose transporters is in accord with the monophyly of the genus Trypanosoma and the early separation of T. vivax within Salivarian trypanosomes. On the basis of gene organization, biochemical characteristics of isoforms and phylogeny, we discuss the genesis of the glucose transporter multigene family in Salivarian trypanosomes.
Collapse
Affiliation(s)
- F Bringaud
- Laboratoire de Parasitologie Moléculaire, Université Victor Ségolène de Bordeaux II, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shih S, Hwang HY, Carter D, Stenberg P, Ullman B. Localization and targeting of the Leishmania donovani hypoxanthine-guanine phosphoribosyltransferase to the glycosome. J Biol Chem 1998; 273:1534-41. [PMID: 9430693 DOI: 10.1074/jbc.273.3.1534] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a key enzyme in the purine salvage pathway of many protozoan parasites. The predicted amino acid sequences of certain HGPRT proteins from parasites of the Trypanosomatidae family reveal a COOH-terminal tripeptide signal that is consistent with the degenerate topogenic signal targeting proteins to the glycosome, a fuel-metabolizing microbody unique to these parasites. To determine definitively the intracellular milieu of HGPRT in these pathogens, polyclonal antiserum to the purified recombinant HGPRT from Leishmania donovani was generated in rabbits, and confocal and immunoelectron microscopy were employed to establish that the L. donovani HGPRT is localized exclusively to the glycosome. No HGPRT protein was detected in delta hgprt null mutants in which both alleles of the HGPRT locus had been replaced by a drug-resistance cassette. Transfectants of the delta hgprt knockout strain in which a wildtype HGPRT was amplified on an expression plasmid contained augmented amounts of HGPRT, all of which was localized to the glycosome. delta hgprt transfectants containing amplified copies of a mutated HGPRT construct in which the Ser-Lys-Val COOH-terminal targeting signal had been deleted expressed HGPRT throughout the parasite, including subcellular organelles such as the nucleus and flagellum. These data demonstrate that the L. donovani HGPRT is compartmentalized exclusively within the glycosome and that the COOH-terminal tripeptide of the protein is necessary to achieve targeting to this organelle.
Collapse
Affiliation(s)
- S Shih
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | |
Collapse
|
45
|
Chiquero MJ, Pérez-Victoria JM, O'Valle F, González-Ros JM, del Moral RG, Ferragut JA, Castanys S, Gamarro F. Altered drug membrane permeability in a multidrug-resistant Leishmania tropica line. Biochem Pharmacol 1998; 55:131-9. [PMID: 9448735 DOI: 10.1016/s0006-2952(97)00385-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We selected a Leishmania tropica cell line resistant to daunomycin (DNM) that presents a multidrug-resistant (MDR) phenotype characterized by overexpression of a P-glycoprotein of 150 kDa. The resistant line overexpressed an MDR-like gene, called ltrmdr1, located in an extrachromosomal circular DNA. DNM uptake experiments using laser flow cytometry showed a significant reduction in drug accumulation in the resistant parasites. The initial stages of the interaction of DNM with membranes from wild-type and DNM-resistant parasites were defined by a rapid kinetic stopped-flow procedure which can be described by two kinetic components. On the basis of a previous similar kinetic study with tumor cells, we ascribed the fast component to rapid interaction of DNM with membrane surface components and the slow component to passive diffusion of the drug across the membranes. The results reported here indicate that entrance of DNM into wild-type parasites was facilitated in respect to the resistant ones. We propose that resistance to DNM in L. tropica is a multifactorial event involving at least two complementary mechanisms. an altered drug membrane permeability and the overexpression of a protein related to P-glycoprotein that regulates drug efflux.
Collapse
Affiliation(s)
- M J Chiquero
- Instituto de Parasitología y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Snapp EL, Landfear SM. Cytoskeletal association is important for differential targeting of glucose transporter isoforms in Leishmania. J Cell Biol 1997; 139:1775-83. [PMID: 9412471 PMCID: PMC2132635 DOI: 10.1083/jcb.139.7.1775] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/1997] [Revised: 10/16/1997] [Indexed: 02/05/2023] Open
Abstract
The major glucose transporter of the parasitic protozoan Leishmania enriettii exists in two isoforms, one of which (iso-1) localizes to the flagellar membrane, while the other (iso-2) localizes to the plasma membrane of the cell body, the pellicular membrane. These two isoforms differ only in their cytosolic NH2-terminal domains. Using immunoblots and immunofluorescence microscopy of detergent-extracted cytoskeletons, we have demonstrated that iso-2 associates with the microtubular cytoskeleton that underlies the cell body membrane, whereas the flagellar membrane isoform iso-1 does not associate with the cytoskeleton. Deletion mutants that remove the first 25 or more amino acids from iso-1 are retargeted from the flagellum to the pellicular membrane, suggesting that these deletions remove a signal required for flagellar targeting. Unlike the full-length iso-1 protein, these deletion mutants associate with the cytoskeleton. Our results suggest that cytoskeletal binding serves as an anchor to localize the iso-2 transporter within the pellicular membrane, and that the flagellar targeting signal of iso-1 diverts this transporter into the flagellar membrane and away from the pellicular microtubules.
Collapse
Affiliation(s)
- E L Snapp
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
47
|
Seyfang A, Kavanaugh MP, Landfear SM. Aspartate 19 and glutamate 121 are critical for transport function of the myo-inositol/H+ symporter from Leishmania donovani. J Biol Chem 1997; 272:24210-5. [PMID: 9305873 DOI: 10.1074/jbc.272.39.24210] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The protozoan flagellate Leishmania donovani has an active myo-inositol/proton symporter (MIT), which is driven by a proton gradient across the parasite membrane. We have used site-directed mutagenesis in combination with functional expression of transporter mutants in Xenopus oocytes and overexpression in Leishmania transfectants to investigate the significance of acidic transmembrane residues for proton relay and inositol transport. MIT has only three charged amino acids within predicted transmembrane domains. Two of these residues, Asp19 (TM1) and Glu121 (TM4), appeared to be critical for transport function of MIT, with a reduction of inositol transport to about 2% of wild-type activity when mutated to the uncharged amides D19N or E121Q and 20% (D19E) or 4% (E121D) of wild-type activity for the conservative mutations that retained the charge. Immunofluorescence microscopy of oocyte cryosections showed that MIT mutants were expressed on the oocyte surface at a similar level as MIT wild type, confirming that these mutations affect transport function and do not prevent trafficking of the transporter to the plasma membrane. The proton uncouplers carbonylcyanide-4-(trifluoromethoxy)phenylhydrazone and dinitrophenol inhibited inositol transport by 50-70% in the wild-type as well as in E121Q, despite its reduced transport activity. The mutant D19N, however, was stimulated about 4-fold by either protonophore and 2-fold by cyanide or increase of pH 7.5 to 8.5 but inhibited at pH 6.5. The conservative mutant D19E, in contrast, showed an inhibition profile similar to MIT wild type. We conclude that Asp19 and Glu121 are critical for myo-inositol transport, while the negatively charged carboxylate at Asp19 may be important for proton coupling of MIT.
Collapse
Affiliation(s)
- A Seyfang
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
48
|
Abstract
Protozoa of the order kinetoplastida have colonized many habitats, and several species are important parasites of humans. Adaptation to different environments requires an associated adaptation at a cell's interface with its environment, i.e. the plasma membrane. Sugar transport by the kinetoplastida as a phylogenetically related group of organisms offers an exceptional model in which to study the ways by which the carrier proteins involved in this process may evolve to meet differing environmental challenges. Seven genes encoding proteins involved in glucose transport have been cloned from several kinetoplastid species. The transporters all belong to the glucose transporter superfamily exemplified by the mammalian erythrocyte transporter GLUT1. Some species, such as the African trypanosome Trypanosoma brucei, which undergo a life cycle where the parasites are exposed to very different glucose concentrations in the mammalian bloodstream and tsetse-fly midgut, have evolved two different transporters to deal with this fluctuation. Other species, such as the South American trypanosome Trypanosoma cruzi, multiply predominantly in conditions of relative glucose deprivation (intracellularly in the mammalian host, or within the reduviid bug midgut) and have a single, relatively high-affinity type, transporter. All of the kinetoplastid transporters can also transport d-fructose, and are relatively insensitive to the classical inhibitors of GLUT1 transport cytochalasin B and phloretin.
Collapse
Affiliation(s)
- E Tetaud
- Laboratoire de Parasitologie Moléculaire, UPRESA CNRS 5016, Université de Bordeaux II, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
49
|
Becker B, Melkonian M. The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev 1996; 60:697-721. [PMID: 8987360 PMCID: PMC239460 DOI: 10.1128/mr.60.4.697-721.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All cells secrete a diversity of macromolecules to modify their environment or to protect themselves. Eukaryotic cells have evolved a complex secretory pathway consisting of several membrane-bound compartments which contain specific sets of proteins. Experimental work on the secretory pathway has focused mainly on mammalian cell lines or on yeasts. Now, some general principles of the secretory pathway have become clear, and most components of the secretory pathway are conserved between yeast cells and mammalian cells. However, the structure and function of the secretory system in protists have been less extensively studied. In this review, we summarize the current knowledge about the secretory pathway of five different groups of protists: Giardia lamblia, one of the earliest lines of eukaryotic evolution, kinetoplastids, the slime mold Dictyostelium discoideum, and two lineages within the "crown" of eukaryotic cell evolution, the alveolates (ciliates and Plasmodium species) and the green algae. Comparison of these systems with the mammalian and yeast system shows that most elements of the secretory pathway were presumably present in the earliest eukaryotic organisms. However, one element of the secretory pathway shows considerable variation: the presence of a Golgi stack and the number of cisternae within a stack. We suggest that the functional separation of the plasma membrane from the nucleus-endoplasmic reticulum system during evolution required a sorting compartment, which became the Golgi apparatus. Once a Golgi apparatus was established, it was adapted to the various needs of the different organisms.
Collapse
Affiliation(s)
- B Becker
- Botanisches Institut, Universität zu Köln, Germany.
| | | |
Collapse
|
50
|
Drew ME, Langford CK, Klamo EM, Russell DG, Kavanaugh MP, Landfear SM. Functional expression of a myo-inositol/H+ symporter from Leishmania donovani. Mol Cell Biol 1995; 15:5508-15. [PMID: 7565702 PMCID: PMC230801 DOI: 10.1128/mcb.15.10.5508] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The vast majority of surface molecules in such kinetoplastid protozoa as members of the genus Leishmania contain inositol and are either glycosyl inositol phospholipids or glycoproteins that are tethered to the external surface of the plasma membrane by glycosylphosphatidylinositol anchors. We have shown that the biosynthetic precursor for these abundant glycolipids, myo-inositol, is translocated across the parasite plasma membrane by a specific transporter that is structurally related to mammalian facilitative glucose transporters. This myo-inositol transporter has been expressed and characterized in Xenopus laevis oocytes. Two-electrode voltage clamp experiments demonstrate that this protein is a sodium-independent electrogenic symporter that appears to utilize a proton gradient to concentrate myo-inositol within the cell. Immunolocalization experiments with a transporter-specific polyclonal antibody reveal the presence of this protein in the parasite plasma membrane.
Collapse
Affiliation(s)
- M E Drew
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | |
Collapse
|