1
|
Cavalcanti BC, Soares BM, Barreto FS, Magalhães HIF, Ferreira JRDO, Almeida ATAD, Araújo Beserra Filho JI, Silva J, Dos Santos HS, Marinho ES, Furtado CLM, Moraes Filho MOD, Pessoa C, Ferreira PMP. Hellebrigenin triggers death of promyelocytic leukemia cells by non-genotoxic ways. Toxicon 2024; 238:107591. [PMID: 38160738 DOI: 10.1016/j.toxicon.2023.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Bufadienolides are digitalis-like aglycones mainly found in skin secretions of toads. Among their biological properties, the mechanisms of antiproliferative action on tumor cells remain unclear for many compounds, including against leukemia cells. Herein, it was evaluated the mechanisms involved in the antiproliferative and genotoxic actions of hellebrigenin on tumor cell lines and in silico capacity to inhibit the human topoisomerase IIa enzyme. Firstly, its cytotoxic action was investigated by colorimetric assays in human tumor and peripheral blood mononuclear cells (PBMC). Next, biochemical and morphological studies were detailed by light microscopy (trypan blue dye exclusion), immunocytochemistry (BrdU uptake), flow cytometry and DNA/chromosomal damages (Cometa and aberrations). Finally, computational modelling was used to search for topoisomerase inhibition. Hellebrigenin reduced proliferation, BrdU incorporation, viability, and membrane integrity of HL-60 leukemia cells. Additionally, it increased G2/M arrest, internucleosomal DNA fragmentation, mitochondrial depolarization, and phosphatidylserine externalization in a concentration-dependent manner. In contrast to doxorubicin, hellebrigenin did not cause DNA strand breaks in HL-60 cell line and lymphocytes, and it interacts with ATPase domain residues of human topoisomerase IIa, generating a complex of hydrophobic and van der Waals interactions and hydrogen bonds. So, hellebrigenin presented potent anti-leukemic activity at concentrations as low as 0.06 μM, a value comparable to the clinical anticancer agent doxorubicin, and caused biochemical changes suggestive of apoptosis without genotoxic/clastogenic-related action, but it probably triggers catalytic inhibition of topoisomerase II. These findings also emphasize toad steroid toxins as promising lead antineoplasic compounds with relatively low cytotoxic action on human normal cells.
Collapse
Affiliation(s)
- Bruno Coêlho Cavalcanti
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Bruno Marques Soares
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco Stefânio Barreto
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Ana Tárcila Alves de Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Jacilene Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil
| | | | - Emmanuel Silva Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Limoeiro do Norte, Brazil
| | - Cristiana Libardi Miranda Furtado
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil; Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Cláudia Pessoa
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil.
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
2
|
Cadmium (II)-Induced Oxidative Stress Results in Replication Stress and Epigenetic Modifications in Root Meristem Cell Nuclei of Vicia faba. Cells 2021; 10:cells10030640. [PMID: 33805688 PMCID: PMC7999292 DOI: 10.3390/cells10030640] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Among heavy metals, cadmium is considered one of the most toxic and dangerous environmental factors, contributing to stress by disturbing the delicate balance between production and scavenging of reactive oxygen species (ROS). To explore possible relationships and linkages between Cd(II)-induced oxidative stress and the consequent damage at the genomic level (followed by DNA replication stress), root apical meristem (RAM) cells in broad bean (V. faba) seedlings exposed to CdCl2 treatment and to post-cadmium recovery water incubations were tested with respect to H2O2 production, DNA double-strand breaks (γ-phosphorylation of H2AX histones), chromatin morphology, histone H3S10 phosphorylation on serine (a marker of chromatin condensation), mitotic activity, and EdU staining (to quantify cells typical of different stages of nuclear DNA replication). In order to evaluate Cd(II)-mediated epigenetic changes involved in transcription and in the assembly of nucleosomes during the S-phase of the cell cycle, the acetylation of histone H3 on lysine 5 (H3K56Ac) was investigated by immunofluorescence. Cellular responses to cadmium (II) toxicity seem to be composed of a series of interlinked biochemical reactions, which, via generation of ROS and DNA damage-induced replication stress, ultimately activate signal factors engaged in cell cycle control pathways, DNA repair systems, and epigenetic adaptations.
Collapse
|
3
|
Chu L, Liang Z, Mukhina M, Fisher J, Vincenten N, Zhang Z, Hutchinson J, Zickler D, Kleckner N. The 3D Topography of Mitotic Chromosomes. Mol Cell 2020; 79:902-916.e6. [PMID: 32768407 DOI: 10.1016/j.molcel.2020.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023]
Abstract
A long-standing conundrum is how mitotic chromosomes can compact, as required for clean separation to daughter cells, while maintaining close parallel alignment of sister chromatids. Pursuit of this question, by high resolution 3D fluorescence imaging of living and fixed mammalian cells, has led to three discoveries. First, we show that the structural axes of separated sister chromatids are linked by evenly spaced "mini-axis" bridges. Second, when chromosomes first emerge as discrete units, at prophase, they are organized as co-oriented sister linear loop arrays emanating from a conjoined axis. We show that this same basic organization persists throughout mitosis, without helical coiling. Third, from prophase onward, chromosomes are deformed into sequential arrays of half-helical segments of alternating handedness (perversions), accompanied by correlated kinks. These arrays fluctuate dynamically over <15 s timescales. Together these discoveries redefine the foundation for thinking about the evolution of mitotic chromosomes as they prepare for anaphase segregation.
Collapse
Affiliation(s)
- Lingluo Chu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Zhangyi Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Maria Mukhina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jay Fisher
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Redbud Labs, Research Triangle, NC 27709, USA
| | - Nadine Vincenten
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Zheng Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - John Hutchinson
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Denise Zickler
- University Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Eykelenboom JK, Gierliński M, Yue Z, Hegarat N, Pollard H, Fukagawa T, Hochegger H, Tanaka TU. Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis. J Cell Biol 2019; 218:1531-1552. [PMID: 30858191 PMCID: PMC6504890 DOI: 10.1083/jcb.201807125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/19/2018] [Accepted: 02/05/2019] [Indexed: 01/27/2023] Open
Abstract
When human cells enter mitosis, chromosomes undergo substantial changes in their organization to resolve sister chromatids and compact chromosomes. To comprehend the timing and coordination of these events, we need to evaluate the progression of both sister chromatid resolution and chromosome compaction in one assay. Here we achieved this by analyzing changes in configuration of marked chromosome regions over time, with high spatial and temporal resolution. This assay showed that sister chromatids cycle between nonresolved and partially resolved states with an interval of a few minutes during G2 phase before completing full resolution in prophase. Cohesins and WAPL antagonistically regulate sister chromatid resolution in late G2 and prophase while local enrichment of cohesin on chromosomes prevents precocious sister chromatid resolution. Moreover, our assay allowed quantitative evaluation of condensin II and I activities, which differentially promote sister chromatid resolution and chromosome compaction, respectively. Our assay reveals novel aspects of dynamics in mitotic chromosome resolution and compaction that were previously obscure in global chromosome assays.
Collapse
Affiliation(s)
- John K Eykelenboom
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nadia Hegarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Hilary Pollard
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
5
|
Centromere mechanical maturation during mammalian cell mitosis. Nat Commun 2019; 10:1761. [PMID: 30988289 PMCID: PMC6465287 DOI: 10.1038/s41467-019-09578-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
During mitosis, tension develops across the centromere as a result of spindle-based forces. Metaphase tension may be critical in preventing mitotic chromosome segregation errors, however, the nature of force transmission at the centromere and the role of centromere mechanics in controlling metaphase tension remains unknown. We combined quantitative, biophysical microscopy with computational analysis to elucidate the mechanics of the centromere in unperturbed, mitotic human cells. We discovered that the mechanical stiffness of the human centromere matures during mitotic progression, which leads to amplified centromere tension specifically at metaphase. Centromere mechanical maturation is disrupted across multiple aneuploid cell lines, leading to a weak metaphase tension signal. Further, increasing deficiencies in centromere mechanical maturation are correlated with rising frequencies of lagging, merotelic chromosomes in anaphase, leading to segregation defects at telophase. Thus, we reveal a centromere maturation process that may be critical to the fidelity of chromosome segregation during mitosis. During mitosis, tension at the centromere occurs from the spindle but the role of centromere mechanics in controlling metaphase tension is poorly understood. Here, the authors report that mechanical stiffnness of the centromere matures during mitotic progression and is amplified specifically at metaphase.
Collapse
|
6
|
Stanyte R, Nuebler J, Blaukopf C, Hoefler R, Stocsits R, Peters JM, Gerlich DW. Dynamics of sister chromatid resolution during cell cycle progression. J Cell Biol 2018; 217:1985-2004. [PMID: 29695489 PMCID: PMC5987726 DOI: 10.1083/jcb.201801157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 01/04/2023] Open
Abstract
Faithful genome transmission in dividing cells requires that the two copies of each chromosome's DNA package into separate but physically linked sister chromatids. The linkage between sister chromatids is mediated by cohesin, yet where sister chromatids are linked and how they resolve during cell cycle progression has remained unclear. In this study, we investigated sister chromatid organization in live human cells using dCas9-mEGFP labeling of endogenous genomic loci. We detected substantial sister locus separation during G2 phase irrespective of the proximity to cohesin enrichment sites. Almost all sister loci separated within a few hours after their respective replication and then rapidly equilibrated their average distances within dynamic chromatin polymers. Our findings explain why the topology of sister chromatid resolution in G2 largely reflects the DNA replication program. Furthermore, these data suggest that cohesin enrichment sites are not persistent cohesive sites in human cells. Rather, cohesion might occur at variable genomic positions within the cell population.
Collapse
Affiliation(s)
- Rugile Stanyte
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Johannes Nuebler
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Claudia Blaukopf
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Rudolf Hoefler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Roman Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
7
|
Clarke DJ, Azuma Y. Non-Catalytic Roles of the Topoisomerase IIα C-Terminal Domain. Int J Mol Sci 2017; 18:ijms18112438. [PMID: 29149026 PMCID: PMC5713405 DOI: 10.3390/ijms18112438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022] Open
Abstract
DNA Topoisomerase IIα (Topo IIα) is a ubiquitous enzyme in eukaryotes that performs the strand passage reaction where a double helix of DNA is passed through a second double helix. This unique reaction is critical for numerous cellular processes. However, the enzyme also possesses a C-terminal domain (CTD) that is largely dispensable for the strand passage reaction but is nevertheless important for the fidelity of cell division. Recent studies have expanded our understanding of the roles of the Topo IIα CTD, in particular in mitotic mechanisms where the CTD is modified by Small Ubiquitin-like Modifier (SUMO), which in turn provides binding sites for key regulators of mitosis.
Collapse
Affiliation(s)
- Duncan J Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota, 420 Washington Ave SE, Minneapolis, MN 55455, USA.
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
8
|
Sen N, Leonard J, Torres R, Garcia-Luis J, Palou-Marin G, Aragón L. Physical Proximity of Sister Chromatids Promotes Top2-Dependent Intertwining. Mol Cell 2016; 64:134-147. [PMID: 27716481 PMCID: PMC5065527 DOI: 10.1016/j.molcel.2016.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/01/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023]
Abstract
Sister chromatid intertwines (SCIs), or catenanes, are topological links between replicated chromatids that interfere with chromosome segregation. The formation of SCIs is thought to be a consequence of fork swiveling during DNA replication, and their removal is thought to occur because of the intrinsic feature of type II topoisomerases (Top2) to simplify DNA topology. Here, we report that SCIs are also formed independently of DNA replication during G2/M by Top2-dependent concatenation of cohesed chromatids due to their physical proximity. We demonstrate that, in contrast to G2/M, Top2 removes SCIs from cohesed chromatids at the anaphase onset. Importantly, SCI removal in anaphase requires condensin and coincides with the hyperactivation of condensin DNA supercoiling activity. This is consistent with the longstanding proposal that condensin provides a bias in Top2 function toward decatenation. A comprehensive model for the formation and resolution of toxic SCI entanglements on eukaryotic genomes is proposed.
Collapse
Affiliation(s)
- Nicholas Sen
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Joanne Leonard
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Raul Torres
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jonay Garcia-Luis
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Gloria Palou-Marin
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Luis Aragón
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
9
|
Nagasaka K, Hossain MJ, Roberti MJ, Ellenberg J, Hirota T. Sister chromatid resolution is an intrinsic part of chromosome organization in prophase. Nat Cell Biol 2016; 18:692-9. [PMID: 27136266 DOI: 10.1038/ncb3353] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/01/2016] [Indexed: 12/19/2022]
Abstract
The formation of mitotic chromosomes requires both compaction of chromatin and the resolution of replicated sister chromatids. Compaction occurs during mitotic prophase and prometaphase, and in prophase relies on the activity of condensin II complexes. Exactly when and how sister chromatid resolution occurs has been largely unknown, as has its molecular requirements. Here, we established a method to visualize sister resolution by sequential replication labelling with two distinct nucleotide derivatives. Quantitative three-dimensional imaging then allowed us to measure the resolution of sister chromatids throughout mitosis by calculating their non-overlapping volume within the whole chromosome. Unexpectedly, we found that sister chromatid resolution starts already at the beginning of prophase, proceeds concomitantly with chromatin compaction and is largely completed by the end of prophase. Sister chromatid resolution was abolished by inhibition of topoisomerase IIα and by depleting or preventing mitotic activation of condensin II, whereas blocking cohesin dissociation from chromosomes had little effect. Mitotic sister chromatid resolution is thus an intrinsic part of mitotic chromosome formation in prophase that relies largely on DNA decatenation and shares the molecular requirement for condensin II with prophase compaction.
Collapse
Affiliation(s)
- Kota Nagasaka
- Cancer Institute of the Japanese Foundation for Cancer Research, Division of Experimental Pathology, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.,Tokyo Institute of Technology, Department of Biological Sciences, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - M Julius Hossain
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - M Julia Roberti
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jan Ellenberg
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Toru Hirota
- Cancer Institute of the Japanese Foundation for Cancer Research, Division of Experimental Pathology, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
10
|
Liang Z, Zickler D, Prentiss M, Chang FS, Witz G, Maeshima K, Kleckner N. Chromosomes Progress to Metaphase in Multiple Discrete Steps via Global Compaction/Expansion Cycles. Cell 2015; 161:1124-1137. [PMID: 26000485 PMCID: PMC4448932 DOI: 10.1016/j.cell.2015.04.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/20/2015] [Accepted: 04/09/2015] [Indexed: 01/29/2023]
Abstract
Mammalian mitotic chromosome morphogenesis was analyzed by 4D live-cell and snapshot deconvolution fluorescence imaging. Prophase chromosomes, whose organization was previously unknown, are revealed to comprise co-oriented sister linear loop arrays displayed along a single, peripheral, regularly kinked topoisomerase II/cohesin/condensin II axis. Thereafter, rather than smooth, progressive compaction as generally envisioned, progression to metaphase is a discontinuous process involving chromosome expansion as well as compaction. At late prophase, dependent on topoisomerase II and with concomitant cohesin release, chromosomes expand, axes split and straighten, and chromatin loops transit to a radial disposition around now-central axes. Finally, chromosomes globally compact, giving the metaphase state. These patterns are consistent with the hypothesis that the molecular events of chromosome morphogenesis are governed by accumulation and release of chromosome stress, created by chromatin compaction and expansion. Chromosome state could evolve analogously throughout the cell cycle.
Collapse
Affiliation(s)
- Zhangyi Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Denise Zickler
- Institut de Génétique and Microbiologie, Université Paris-sud, 91405 Orsay Cedex, France
| | - Mara Prentiss
- Deparment of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Frederick S Chang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Guillaume Witz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kazuhiro Maeshima
- National Institute of Genetics and Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Chromosome structure deficiencies in MCPH1 syndrome. Chromosoma 2015; 124:491-501. [PMID: 25845520 DOI: 10.1007/s00412-015-0512-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 01/11/2023]
Abstract
Mutations in the MCPH1 gene result in primary microcephaly in combination with a unique cellular phenotype of defective chromosome condensation. MCPH1 patient cells display premature chromosome condensation in G2 phase of the cell cycle and delayed decondensation in early G1 phase, observable as an increased proportion of cells with prophase-like appearance. MCPH1 deficiency thus appears to uncouple the chromosome cycle from the coordinated series of events that take place during mitosis such as some phases of the centrosome cycle and nuclear envelope breakdown. Here, we provide a further characterization of the effects of MCPH1 loss-of-function on chromosome morphology. In comparison to healthy controls, chromosomes of MCPH1 patients are shorter and display a pronounced coiling of their central chromatid axes. In addition, a substantial fraction of metaphase chromosomes shows apparently unresolved chromatids with twisted appearance. The patient chromosomes also showed signs of defective centromeric cohesion, which become more apparent and pronounced after harsh hypotonic conditions. Taking together, the observed alterations indicate additional so far unknown functions of MCPH1 during chromosome shaping and dynamics.
Collapse
|
12
|
Mengoli V, Bucciarelli E, Lattao R, Piergentili R, Gatti M, Bonaccorsi S. The analysis of mutant alleles of different strength reveals multiple functions of topoisomerase 2 in regulation of Drosophila chromosome structure. PLoS Genet 2014; 10:e1004739. [PMID: 25340516 PMCID: PMC4207652 DOI: 10.1371/journal.pgen.1004739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
Topoisomerase II is a major component of mitotic chromosomes but its role in the assembly and structural maintenance of chromosomes is rather controversial, as different chromosomal phenotypes have been observed in various organisms and in different studies on the same organism. In contrast to vertebrates that harbor two partially redundant Topo II isoforms, Drosophila and yeasts have a single Topo II enzyme. In addition, fly chromosomes, unlike those of yeast, are morphologically comparable to vertebrate chromosomes. Thus, Drosophila is a highly suitable system to address the role of Topo II in the assembly and structural maintenance of chromosomes. Here we show that modulation of Top2 function in living flies by means of mutant alleles of different strength and in vivo RNAi results in multiple cytological phenotypes. In weak Top2 mutants, meiotic chromosomes of males exhibit strong morphological abnormalities and dramatic segregation defects, while mitotic chromosomes of larval brain cells are not affected. In mutants of moderate strength, mitotic chromosome organization is normal, but anaphases display frequent chromatin bridges that result in chromosome breaks and rearrangements involving specific regions of the Y chromosome and 3L heterochromatin. Severe Top2 depletion resulted in many aneuploid and polyploid mitotic metaphases with poorly condensed heterochromatin and broken chromosomes. Finally, in the almost complete absence of Top2, mitosis in larval brains was virtually suppressed and in the rare mitotic figures observed chromosome morphology was disrupted. These results indicate that different residual levels of Top2 in mutant cells can result in different chromosomal phenotypes, and that the effect of a strong Top2 depletion can mask the effects of milder Top2 reductions. Thus, our results suggest that the previously observed discrepancies in the chromosomal phenotypes elicited by Topo II downregulation in vertebrates might depend on slight differences in Topo II concentration and/or activity.
Collapse
Affiliation(s)
- Valentina Mengoli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Elisabetta Bucciarelli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Ramona Lattao
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Roberto Piergentili
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Silvia Bonaccorsi
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| |
Collapse
|
13
|
Li L, Abraham AD, Zhou Q, Ali H, O'Brien JV, Hamill BD, Arcaroli JJ, Messersmith WA, LaBarbera DV. An improved high yield total synthesis and cytotoxicity study of the marine alkaloid neoamphimedine: an ATP-competitive inhibitor of topoisomerase IIα and potent anticancer agent. Mar Drugs 2014; 12:4833-50. [PMID: 25244109 PMCID: PMC4178486 DOI: 10.3390/md12094833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/25/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
Recently, we characterized neoamphimedine (neo) as an ATP-competitive inhibitor of the ATPase domain of human Topoisomerase IIα. Thus far, neo is the only pyridoacridine with this mechanism of action. One limiting factor in the development of neo as a therapeutic agent has been access to sufficient amounts of material for biological testing. Although there are two reported syntheses of neo, both require 12 steps with low overall yields (≤6%). In this article, we report an improved total synthesis of neo achieved in 10 steps with a 25% overall yield. In addition, we report an expanded cytotoxicity study using a panel of human cancer cell lines, including: breast, colorectal, lung, and leukemia. Neo displays potent cytotoxicity (nM IC50 values) in all, with significant potency against colorectal cancer (lowest IC50 = 6 nM). We show that neo is cytotoxic not cytostatic, and that neo exerts cytotoxicity by inducing G2-M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Adedoyin D Abraham
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Hadi Ali
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Jeremy V O'Brien
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Brayden D Hamill
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - John J Arcaroli
- Division of Medical Oncology, School of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Wells A Messersmith
- Division of Medical Oncology, School of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Farr CJ, Antoniou-Kourounioti M, Mimmack ML, Volkov A, Porter ACG. The α isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells. Nucleic Acids Res 2014; 42:4414-26. [PMID: 24476913 PMCID: PMC3985649 DOI: 10.1093/nar/gku076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As proliferating cells transit from interphase into M-phase, chromatin undergoes extensive reorganization, and topoisomerase (topo) IIα, the major isoform of this enzyme present in cycling vertebrate cells, plays a key role in this process. In this study, a human cell line conditional null mutant for topo IIα and a derivative expressing an auxin-inducible degron (AID)-tagged version of the protein have been used to distinguish real mitotic chromosome functions of topo IIα from its more general role in DNA metabolism and to investigate whether topo IIβ makes any contribution to mitotic chromosome formation. We show that topo IIβ does contribute, with endogenous levels being sufficient for the initial stages of axial shortening. However, a significant effect of topo IIα depletion, seen with or without the co-depletion of topo IIβ, is the failure of chromosomes to hypercompact when delayed in M-phase. This requires much higher levels of topo II protein and is impaired by drugs or mutations that affect enzyme activity. A prolonged delay at the G2/M border results in hyperefficient axial shortening, a process that is topo IIα-dependent. Rapid depletion of topo IIα has allowed us to show that its function during late G2 and M-phase is truly required for shaping mitotic chromosomes.
Collapse
Affiliation(s)
- Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK and Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK
| | | | | | | | | |
Collapse
|
15
|
Lane AB, Giménez-Abián JF, Clarke DJ. A novel chromatin tether domain controls topoisomerase IIα dynamics and mitotic chromosome formation. ACTA ACUST UNITED AC 2014; 203:471-86. [PMID: 24217621 PMCID: PMC3824022 DOI: 10.1083/jcb.201303045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dynamics of topoisomerase IIα binding to DNA and histones are important for successful mitosis and are regulated by a novel chromatin tether (ChT) domain in topoisomerase IIα. DNA topoisomerase IIα (Topo IIα) is the target of an important class of anticancer drugs, but tumor cells can become resistant by reducing the association of the enzyme with chromosomes. Here we describe a critical mechanism of chromatin recruitment and exchange that relies on a novel chromatin tether (ChT) domain and mediates interaction with histone H3 and DNA. We show that the ChT domain controls the residence time of Topo IIα on chromatin in mitosis and is necessary for the formation of mitotic chromosomes. Our data suggest that the dynamics of Topo IIα on chromosomes are important for successful mitosis and implicate histone tail posttranslational modifications in regulating Topo IIα.
Collapse
Affiliation(s)
- Andrew B Lane
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | | | | |
Collapse
|
16
|
Yano H, Saigoh C, Nakayama N, Hirose Y, Abe M, Ohe N, Ozeki M, Shinoda J, Iwama T. Mixed neuronal-glial tumor in the temporal lobe of an infant: a case report. Diagn Pathol 2013; 8:164. [PMID: 24088576 PMCID: PMC3853443 DOI: 10.1186/1746-1596-8-164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background Tumors that arise in the temporal lobes of infants and spread to the neural system are limited to several diagnoses. Herein, we present an infantile case of a temporal tumor showing neuronal and glial differentiation. Case presentation The patient was a 9-month-old boy with low body weight due to intrauterine growth retardation. At 9 months after birth, he presented partial seizures. Computed tomography scanning revealed a mass (35 * 40 mm) in the left temporal lobe. Isointensity was noted on magnetic resonance T1-weighted images and fluid attenuation inversion recovery images. The tumor was heterogeneously enhanced with gadolinium. Positron emission tomography showed high methionine uptake in the tumor. During surgery, the tumor, which was elastic and soft and bled easily, was gross totally resected. A moderately clear boundary was noted between the tumor and normal brain parenchyma. Histologically, the tumor mainly comprised a ganglioglioma-like portion and short spindle cells at different densities. The former was immunohistochemically positive for some kinds of neuronal markers including synaptophysin. The spindle cells were positive for glial fibrillary acidic protein, but desmoplasia was not observed. Discussion The tumor contained both neuronal and glial elements; the former were the main constituents of the tumor and included several ganglion-like cells. Because neuronal elements gradually transited to glial cells, a mixed neuronal-glial tumor was diagnosed. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2045126100982604
Collapse
Affiliation(s)
- Hirohito Yano
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Topoisomerase II- and condensin-dependent breakage of MEC1ATR-sensitive fragile sites occurs independently of spindle tension, anaphase, or cytokinesis. PLoS Genet 2012; 8:e1002978. [PMID: 23133392 PMCID: PMC3486896 DOI: 10.1371/journal.pgen.1002978] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022] Open
Abstract
Fragile sites are loci of recurrent chromosome breakage in the genome. They are found in organisms ranging from bacteria to humans and are implicated in genome instability, evolution, and cancer. In budding yeast, inactivation of Mec1, a homolog of mammalian ATR, leads to chromosome breakage at fragile sites referred to as replication slow zones (RSZs). RSZs are proposed to be homologous to mammalian common fragile sites (CFSs) whose stability is regulated by ATR. Perturbation during S phase, leading to elevated levels of stalled replication forks, is necessary but not sufficient for chromosome breakage at RSZs or CFSs. To address the nature of additional event(s) required for the break formation, we examined involvement of the currently known or implicated mechanisms of endogenous chromosome breakage, including errors in replication fork restart, premature mitotic chromosome condensation, spindle tension, anaphase, and cytokinesis. Results revealed that chromosome breakage at RSZs is independent of the RAD52 epistasis group genes and of TOP3, SGS1, SRS2, MMS4, or MUS81, indicating that homologous recombination and other recombination-related processes associated with replication fork restart are unlikely to be involved. We also found spindle force, anaphase, or cytokinesis to be dispensable. RSZ breakage, however, required genes encoding condensin subunits (YCG1, YSC4) and topoisomerase II (TOP2). We propose that chromosome break formation at RSZs following Mec1 inactivation, a model for mammalian fragile site breakage, is mediated by internal chromosomal stress generated during mitotic chromosome condensation. Chromosome breakage can occur during normal cell division. When it occurs, the breaks do not arise randomly throughout the genome, but at preferred locations referred to as fragile sites. Chromosome breakage at fragile sites is an evolutionarily conserved phenomenon, implicated in evolution and speciation. In humans, fragile site instability is also implicated in mental retardation and cancer. Despite its biological and clinical relevance, the mechanism(s) by which breaks are introduced at mammalian fragile sites remains unresolved. Although several plausible models have been proposed, it has not been possible to ascertain their contribution, largely due to the lack of a suitable experimental system. Here, we study a yeast model system that closely recapitulates the phenomenon of chromosome breakage at mammalian fragile sites. We eliminate all but one of the currently considered models—premature compaction of the incompletely replicated genome in preparation for their segregation during cell division. We also find that the breakage required functions of three proteins involved in the genome compaction, an essential process that is evolutionarily conserved from bacteria to humans. Our findings suggest that a fundamental chromosomal process required for normal cell division can paradoxically cause genome instability and/or cell death, by triggering chromosome breakage at fragile sites.
Collapse
|
18
|
The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev 2011; 25:863-74. [PMID: 21498573 DOI: 10.1101/gad.2016411] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cell cycle transition from interphase into mitosis is best characterized by the appearance of condensed chromosomes that become microscopically visible as thread-like structures in nuclei. Biochemically, launching the mitotic program requires the activation of the mitotic cyclin-dependent kinase Cdk1 (cyclin-dependent kinase 1), but whether and how Cdk1 triggers chromosome assembly at mitotic entry are not well understood. Here we report that mitotic chromosome assembly in prophase depends on Cdk1-mediated phosphorylation of the condensin II complex. We identified Thr 1415 of the CAP-D3 subunit as a Cdk1 phosphorylation site, which proved crucial as it was required for the Polo kinase Plk1 (Polo-like kinase 1) to localize to chromosome axes through binding to CAP-D3 and thereby hyperphosphorylate the condensin II complex. Live-cell imaging analysis of cells carrying nonphosphorylatable CAP-D3 mutants in place of endogenous protein suggested that phosphorylation of Thr 1415 is required for timely chromosome condensation during prophase, and that the Plk1-mediated phosphorylation of condensin II facilitates its ability to assemble chromosomes properly. These observations provide an explanation for how Cdk1 induces chromosome assembly in cells entering mitosis, and underscore the significance of the cooperative action of Plk1 with Cdk1.
Collapse
|
19
|
Matsumura F, Yamakita Y, Yamashiro S. Myosin phosphatase-targeting subunit 1 controls chromatid segregation. J Biol Chem 2011; 286:10825-33. [PMID: 21252232 PMCID: PMC3060533 DOI: 10.1074/jbc.m110.169722] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/27/2010] [Indexed: 11/06/2022] Open
Abstract
Myosin phosphatase is a heterotrimeric holoenzyme consisting of myosin phosphatase-targeting subunit 1 (MYPT1), a catalytic subunit of PP1Cβ, and a 20-kDa subunit of an unknown function. We have previously reported that myosin phosphatase also controls mitosis, apparently by antagonizing polo-like kinase 1 (PLK1). Here we found that depletion of MYPT1 by siRNA led to precocious chromatid segregation when HeLa cells were arrested at metaphase by a proteasome inhibitor, MG132, or by Cdc20 depletion. Consistently, cyclin B1 and securin were not degraded, indicating that the chromatid segregation is independent of the anaphase-promoting complex/cyclosome. Precocious segregation induced by MYPT1 depletion requires PLK1 activity because a PLK1 inhibitor, BI-2536, blocked precocious segregation. Furthermore, the expression of an unphosphorylatable mutant of SA2 (SCC3 homologue 2), a subunit of the cohesin complex, prevented precocious chromatid segregation induced by MYPT1 depletion. It has been shown that SA2 at centromeres is protected from phosphorylation by PP2A phosphatase recruited by Shugoshin (Sgo1), whereas SA2 along chromosome arms is phosphorylated by PLK1, leading to SA2 dissociation at chromosome arms. Taken together, our results suggest that hyperactivation of PLK1 caused by MYPT1 reduction could override the counteracting PP2A phosphatase, resulting in precocious chromatid segregation. We propose that SA2 at the centromeres is protected by two phosphatases. One is PP2A directly dephosphorylating SA2, and the other is myosin phosphatase counteracting PLK1.
Collapse
Affiliation(s)
- Fumio Matsumura
- From the Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Yoshihiko Yamakita
- From the Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Shigeko Yamashiro
- From the Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
20
|
Orta ML, Domínguez I, Pastor N, Cortés F, Mateos S. The role of the DNA hypermethylating agent Budesonide in the decatenating activity of DNA topoisomerase II. Mutat Res 2010; 694:45-52. [PMID: 20883705 DOI: 10.1016/j.mrfmmm.2010.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/31/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022]
Abstract
Catenations between sister chromatids result from DNA replication and must be resolved to ensure proper chromatid segregation in mitosis. Functionally active Topoisomerase II (Topo II), through its mechanism of concerted breaking and rejoining of double stranded DNA, is required to carry out this fundamental process. In previous studies we have shown that modifications in DNA sequence by halogenated pyrimidines and by the demethylating agent 5-azacytidine leads to malfunction of Topo II that results in an increased yield of endorreduplicated cells as a result of segregation failure. In the present work we have evaluated the possible influence of the methylating agent Budesonide to modify the frequency of endoreduplicated cells in AA8 Chinese hamster cell population. Our results seem to indicate that when Budesonide was administered for two consecutive cell cycles did induce an increase in the yield of endoreduplicated cells, as previously observed for the hypomethylating agent 5-azaC. We have also examined the possible relationship between extensive hypermethylation induced by Budesonide in DNA and stabilization of cleavable complexes by m-AMSA. Taken as a whole, our results show that the degree of methylation in DNA correlates with the effectiveness of m-AMSA to stabilize the Topo II-DNA complexes and to induce DNA cleavage. These findings evidence for the first time the functional importance of DNA hyper- and hypomethylation changes as epigenetic factors able to modulate Topo II activity for proper chromosome segregation.
Collapse
Affiliation(s)
- Manuel Luis Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
21
|
Lee MT, Bachant J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst) 2009; 8:557-68. [PMID: 19230795 DOI: 10.1016/j.dnarep.2009.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA topoisomerase II (topo II) is an essential determinant of chromosome structure and function, acting to resolve topological problems inherent in recombining, transcribing, replicating and segregating DNA. In particular, the unique decatenating activity of topo II is required for sister chromatids to disjoin and separate in mitosis. Topo II exhibits a dynamic localization pattern on mitotic chromosomes, accumulating at centromeres and axial chromosome cores prior to anaphase. In organisms ranging from yeast to humans, a fraction of topo II is targeted for SUMO conjugation in mitotic cells, and here we review our current understanding of the significance of this modification. As we shall see, an emerging consensus is that in metazoans SUMO modification is required for topo II to accumulate at centromeres, and that in the absence of this regulation there is an elevated frequency of chromosome non-disjunction, segregation errors, and aneuploidy. The underlying molecular mechanisms for how SUMO controls topo II are as yet unclear. In closing, however, we will evaluate two possible interpretations: one in which SUMO promotes enzyme turnover, and a second in which SUMO acts as a localization tag for topo II chromosome trafficking.
Collapse
Affiliation(s)
- Ming-Ta Lee
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
22
|
Giménez-Abián JF, Clarke DJ. Cytological analysis of chromosome structural defects that result from topoisomerase II dysfunction. Methods Mol Biol 2009; 582:189-207. [PMID: 19763951 DOI: 10.1007/978-1-60761-340-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For analyzing chromosome structural defects that result from topoisomerase II (topo II) dysfunction, we have adapted classical cell cycle experiments, classical cytological techniques, and the use of a potent topo II inhibitor (ICRF-193). In this chapter, we describe in detail the protocols used and we discuss the rationale for our choice and for the adaptations applied. We clarify in which cell cycle stages each of the different chromosomal aberrations induced by inhibiting topo II take place: lack of chromosome segregation, undercondensation, lack of sister chromatid resolution, and lack of chromosome individualization. We also put these observations into the context of the two topo II-dependent cell cycle checkpoints.
Collapse
|
23
|
Yang SY, Jia XZ, Feng LY, Li SY, An GS, Ni JH, Jia HT. Inhibition of topoisomerase II by 8-chloro-adenosine triphosphate induces DNA double-stranded breaks in 8-chloro-adenosine-exposed human myelocytic leukemia K562 cells. Biochem Pharmacol 2008; 77:433-43. [PMID: 19014910 DOI: 10.1016/j.bcp.2008.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 11/15/2022]
Abstract
8-Chloro-cAMP and 8-chloro-adenosine (8-Cl-Ado) are known to inhibit proliferation of cancer cells by converting 8-Cl-Ado into an ATP analog, 8-chloro-ATP (8-Cl-ATP). Because type II topoisomerases (Topo II) are ATP-dependent, we infer that 8-Cl-Ado exposure might interfere with Topo II activities and DNA metabolism in cells. We found that 8-Cl-Ado exposure inhibited Topo II-catalytic activities in K562 cells, as revealed by decreased relaxation of the supercoiled pUC19 DNA and inhibited decatenation of the kinetoplast DNA (kDNA). In vitro assays showed that 8-Cl-ATP, but not 8-Cl-Ado, could directly inhibit Topo IIalpha-catalyzed relaxation and decatenation of substrate DNA. Furthermore, 8-Cl-ATP inhibited Topo II-catalyzed ATP hydrolysis and increased salt-stabilized closed clamp. In addition, 8-Cl-Ado exposure decreased bromo-deoxyuridine (BrdU) incorporation into DNA and led to enhanced DNA double-stranded breaks (DSBs) and to increased formation of gamma-H2AX nuclear foci in exposed K562 cells. Together, 8-Cl-Ado/8-Cl-ATP can inhibit Topo II activities in cells, thereby inhibiting DNA synthesis and inducing DNA DSBs, which may contribute to 8-Cl-Ado-inhibited proliferation of cancers.
Collapse
Affiliation(s)
- Sheng-Yong Yang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Xue Yuan Road 38, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Díaz-Martínez LA, Giménez-Abián JF, Clarke DJ. Chromosome cohesion - rings, knots, orcs and fellowship. J Cell Sci 2008; 121:2107-14. [PMID: 18565823 DOI: 10.1242/jcs.029132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sister-chromatid cohesion is essential for accurate chromosome segregation. A key discovery towards our understanding of sister-chromatid cohesion was made 10 years ago with the identification of cohesins. Since then, cohesins have been shown to be involved in cohesion in numerous organisms, from yeast to mammals. Studies of the composition, regulation and structure of the cohesin complex led to a model in which cohesin loading during S-phase establishes cohesion, and cohesin cleavage at the onset of anaphase allows sister-chromatid separation. However, recent studies have revealed activities that provide cohesion in the absence of cohesin. Here we review these advances and propose an integrative model in which chromatid cohesion is a result of the combined activities of multiple cohesion mechanisms.
Collapse
Affiliation(s)
- Laura A Díaz-Martínez
- Department of Pharmacology, UT-Southwestern Medical Center, 6001 Forest Park Rd, Dallas, TX75390, USA.
| | | | | |
Collapse
|
25
|
Li C, Zhang J, Huang C, Chen Q, Wang H. Isolation of DNA topoisomerase II gene from Pleurotus ostreatus and its application in phylogenetic analysis. J Appl Microbiol 2007; 103:2026-32. [DOI: 10.1111/j.1365-2672.2007.03446.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Orta ML, Mateos S, Cantero G, Wolff LJ, Cortés F. Protection of halogenated DNA from strand breakage and sister-chromatid exchange induced by the topoisomerase I inhibitor camptothecin. Mutat Res 2007; 637:40-8. [PMID: 17706727 DOI: 10.1016/j.mrfmmm.2007.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 06/22/2007] [Accepted: 06/28/2007] [Indexed: 11/20/2022]
Abstract
The fundamental nuclear enzyme DNA topoisomerase I (topo I), cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication, and results in a protection against DNA breakage induced by the topo II poison m-AMSA [F. Cortés, N. Pastor, S. Mateos, I. Domínguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726; G. Cantero, S. Mateos, N. Pastor; F. Cortés, Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks (DSBs), DNA Repair 5 (2006) 667-674]. In the present investigation, we have assessed whether the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo I with DNA and thus the frequency with which the stabilisation of cleavage complexes by the topo I poison camptothecin (CPT) takes place, in such a way that it protects from chromosome breakage and sister-chromatid exchange. This protective effect is shown to parallel a loss in halogen-substituted cells of the otherwise CPT-increased catalytic activity bound to DNA.
Collapse
Affiliation(s)
- Manuel Luís Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
27
|
Martins RP, Krawetz SA. Decondensing the protamine domain for transcription. Proc Natl Acad Sci U S A 2007; 104:8340-5. [PMID: 17483471 PMCID: PMC1895951 DOI: 10.1073/pnas.0700076104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Potentiation is the transition from higher-order, transcriptionally silent chromatin to a less condensed state requisite to accommodating the molecular elements required for transcription. To examine the underlying mechanism of potentiation an approximately 13.7-kb mouse protamine domain of increased nuclease sensitivity flanked by 5' and 3' nuclear matrix attachment regions was defined. The potentiated DNase I-sensitive region is formed at the pachytene spermatocyte stage with the recruitment to the nuclear matrix of a large approximately 9.6-kb region just upstream of the domain. Attachment is then specified in the transcribing round spermatid, recapitulating the organization of the human cluster. In comparison to other modifiers that have no effect, i.e., histone methylation, HP1, and SATB1, topoisomerase engages nuclear matrix binding as minor marks of histone acetylation appear. Reorganization is marked by specific sites of topoisomerase II activity that are initially detected in leptotene-zygotene spermatocytes just preceding the formation of the DNase I-sensitive domain. This has provided a likely model of the events initiating potentiation, i.e., the opening of a chromatin domain.
Collapse
Affiliation(s)
| | - Stephen A. Krawetz
- *Center for Molecular Medicine and Genetics and
- Department of Obstetrics and Gynecology, School of Medicine and Institute for Scientific Computing, Wayne State University, Detroit, MI 48201
- To whom correspondence should be addressed at:
253 C. S. Mott Center, 275 East Hancock Avenue, Detroit, MI 48201. E-mail:
| |
Collapse
|
28
|
Escargueil A, Larsen A. Mitosis-specific MPM-2 phosphorylation of DNA topoisomerase IIalpha is regulated directly by protein phosphatase 2A. Biochem J 2007; 403:235-42. [PMID: 17212588 PMCID: PMC1874246 DOI: 10.1042/bj20061460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent results suggest a role for topoIIalpha (topoisomerase IIalpha) in the fine-tuning of mitotic entry. Mitotic entry is accompanied by the formation of specific phosphoepitopes such as MPM-2 (mitotic protein monoclonal 2) that are believed to control mitotic processes. Surprisingly, the MPM-2 kinase of topoIIalpha was identified as protein kinase CK2, otherwise known as a constitutive interphase kinase. This suggested the existence of alternative pathways for the creation of mitotic phosphoepitopes, different from the classical pathway where the substrate is phosphorylated by a mitotic kinase. In the present paper, we report that topoIIalpha is co-localized with both CK2 and PP2A (protein phosphatase 2A) during interphase. Simultaneous incubation of purified topoIIalpha with CK2 and PP2A had minimal influence on the total phosphorylation levels of topoIIalpha, but resulted in complete disappearance of the MPM-2 phosphoepitope owing to opposite sequence preferences of CK2 and PP2A. Accordingly, short-term exposure of interphase cells to okadaic acid, a selective PP2A inhibitor, was accompanied by the specific appearance of the MPM-2 phosphoepitope on topoIIalpha. During early mitosis, PP2A was translocated from the nucleus, while CK2 remained in the nucleus until pro-metaphase thus permitting the formation of the MPM-2 phosphoepitope. These results underline the importance of protein phosphatases as an alternative way of creating cell-cycle-specific phosphoepitopes.
Collapse
Affiliation(s)
- Alexandre E. Escargueil
- Group of Cancer Biology and Therapeutics, Inserm U673, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75572 Paris Cedex 12, France, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75572 Paris Cedex 12, France
| | - Annette K. Larsen
- Group of Cancer Biology and Therapeutics, Inserm U673, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75572 Paris Cedex 12, France, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75572 Paris Cedex 12, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Díaz-Martínez LA, Giménez-Abián JF, Clarke DJ. Cohesin is dispensable for centromere cohesion in human cells. PLoS One 2007; 2:e318. [PMID: 17389909 PMCID: PMC1820851 DOI: 10.1371/journal.pone.0000318] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 02/26/2007] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood. PRINCIPAL FINDINGS We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits using RNA interference and also by expressing a non-cleavable version of the Rad21 cohesin protein. Rad21 depletion results in aberrant anaphase, during which the sister chromatids separate and segregate in an asynchronous fashion. However, centromere cohesion was maintained before anaphase in Rad21-depleted cells, and the primary constrictions at centromeres were indistinguishable from those in control cells. Expression of non-cleavable Rad21 (NC-Rad21), in which the sites normally cleaved by separase are mutated, resulted in delayed sister chromatid resolution in prophase and prometaphase, and a blockage of chromosome arm separation in anaphase, but did not impede centromere separation. CONCLUSIONS These data indicate that cohesin complexes are dispensable for sister cohesion in early mitosis, yet play an important part in the fidelity of sister separation and segregation during anaphase. Cleavage at the separase-sensitive sites of Rad21 is important for arm separation, but not for centromere separation.
Collapse
Affiliation(s)
- Laura A. Díaz-Martínez
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Juan F. Giménez-Abián
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Proliferación Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
30
|
Díaz-Martínez LA, Giménez-Abián JF, Azuma Y, Guacci V, Giménez-Martín G, Lanier LM, Clarke DJ. PIASgamma is required for faithful chromosome segregation in human cells. PLoS One 2006; 1:e53. [PMID: 17183683 PMCID: PMC1762334 DOI: 10.1371/journal.pone.0000053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 10/24/2006] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The precision of the metaphase-anaphase transition ensures stable genetic inheritance. The spindle checkpoint blocks anaphase onset until the last chromosome biorients at metaphase plate, then the bonds between sister chromatids are removed and disjoined chromatids segregate to the spindle poles. But, how sister separation is triggered is not fully understood. PRINCIPAL FINDINGS We identify PIASgamma as a human E3 sumo ligase required for timely and efficient sister chromatid separation. In cells lacking PIASgamma, normal metaphase plates form, but the spindle checkpoint is activated, leading to a prolonged metaphase block. Sister chromatids remain cohered even if cohesin is removed by depletion of hSgo1, because DNA catenations persist at centromeres. PIASgamma-depleted cells cannot properly localize Topoisomerase II at centromeres or in the cores of mitotic chromosomes, providing a functional link between PIASgamma and Topoisomerase II. CONCLUSIONS PIASgamma directs Topoisomerase II to specific chromosome regions that require efficient removal of DNA catenations prior to anaphase. The lack of this activity activates the spindle checkpoint, protecting cells from non-disjunction. Because DNA catenations persist without PIASgamma in the absence of cohesin, removal of catenations and cohesin rings must be regulated in parallel.
Collapse
Affiliation(s)
- Laura A. Díaz-Martínez
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical SchoolMinneapolis, Minnesota, United States of America
| | - Juan F. Giménez-Abián
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical SchoolMinneapolis, Minnesota, United States of America
- Proliferación Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of KansasLawrence, Kansas, United States of America
| | - Vincent Guacci
- Carnegie Institute, Department of EmbryologyBaltimore, Maryland, United States of America
| | - Gonzalo Giménez-Martín
- Proliferación Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Lorene M. Lanier
- Department of Neuroscience, University of MinnesotaMinneapolis, Minnesota, United States of America
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical SchoolMinneapolis, Minnesota, United States of America
| |
Collapse
|
31
|
Vas AC, Andrews CA, Kirkland Matesky K, Clarke DJ. In vivo analysis of chromosome condensation in Saccharomyces cerevisiae. Mol Biol Cell 2006; 18:557-68. [PMID: 17151360 PMCID: PMC1783779 DOI: 10.1091/mbc.e06-05-0454] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although chromosome condensation in the yeast Saccharomyces cerevisiae has been widely studied, visualization of this process in vivo has not been achieved. Using Lac operator sequences integrated at two loci on the right arm of chromosome IV and a Lac repressor-GFP fusion protein, we were able to visualize linear condensation of this chromosome arm during G2/M phase. As previously determined in fixed cells, condensation in yeast required the condensin complex. Not seen after fixation of cells, we found that topoisomerase II is required for linear condensation. Further analysis of perturbed mitoses unexpectedly revealed that condensation is a transient state that occurs before anaphase in budding yeast. Blocking anaphase progression by activation of the spindle assembly checkpoint caused a loss of condensation that was dependent on Mad2, followed by a delayed loss of cohesion between sister chromatids. Release of cells from spindle checkpoint arrest resulted in recondensation before anaphase onset. The loss of condensation in preanaphase-arrested cells was abrogated by overproduction of the aurora B kinase, Ipl1, whereas in ipl1-321 mutant cells condensation was prematurely lost in anaphase/telophase. In vivo analysis of chromosome condensation has therefore revealed unsuspected relationships between higher order chromatin structure and cell cycle control.
Collapse
Affiliation(s)
- Amit C.J. Vas
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Catherine A. Andrews
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Kathryn Kirkland Matesky
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
32
|
Sheval EV, Polyakov VY. Chromosome scaffold and structural integrity of mitotic chromosomes. Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406060014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Andrews CA, Vas AC, Meier B, Giménez-Abián JF, Díaz-Martínez LA, Green J, Erickson SL, Vanderwaal KE, Hsu WS, Clarke DJ. A mitotic topoisomerase II checkpoint in budding yeast is required for genome stability but acts independently of Pds1/securin. Genes Dev 2006; 20:1162-74. [PMID: 16651657 PMCID: PMC1472475 DOI: 10.1101/gad.1367206] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Topoisomerase II (Topo II) performs topological modifications on double-stranded DNA molecules that are essential for chromosome condensation, resolution, and segregation. In mammals, G2 and metaphase cell cycle delays induced by Topo II poisons have been proposed to be the result of checkpoint activation in response to the catenation state of DNA. However, the apparent lack of such controls in model organisms has excluded genetic proof that Topo II checkpoints exist and are separable from the conventional DNA damage checkpoint controls. But here, we define a Topo II-dependent G2/M checkpoint in a genetically amenable eukaryote, budding yeast, and demonstrate that this checkpoint enhances cell survival. Conversely, a lack of the checkpoint results in aneuploidy. Neither DNA damage-responsive pathways nor Pds1/securin are needed for this checkpoint. Unusually, spindle assembly checkpoint components are required for the Topo II checkpoint, but checkpoint activation is not the result of failed chromosome biorientation or a lack of spindle tension. Thus, compromised Topo II function activates a yeast checkpoint system that operates by a novel mechanism.
Collapse
Affiliation(s)
- Catherine A Andrews
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cantero G, Mateos S, Pastor N, Cortés F. Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks. DNA Repair (Amst) 2006; 5:667-74. [PMID: 16406738 DOI: 10.1016/j.dnarep.2005.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/24/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
DNA topoisomerase II (topo II), a fundamental nuclear enzyme, cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported [F. Cortés, N. Pastor, S. Mateos, I. Domínguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726] that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication. The frequency of endoreduplicated cells paralleled the level of analogue substitution into DNA, lending support to the idea that thymidine analogue substitution into DNA is most likely responsible for the triggering of endoreduplication. Using the pulsed-field gel electrophoresis (PFGE) technique, we have now analyzed a possible protection provided by the incorporation of exogenous halogenated nucleosides against DNA breakage induced by the topo II poison m-AMSA. The result was that the different halogenated nucleosides were shown as able to protect DNA from double-strand breaks induced by m-AMSA depending such a protection upon the relative percent of incorporation of a given thymidine analogue into DNA. Our results clearly indicate that the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo II with DNA and thus the frequency with which cleavage can occur.
Collapse
Affiliation(s)
- Gloria Cantero
- Department of Cell Biology, Faculty of Biology, Avenida Reina Mercedes, 6, E-41012 Seville, Spain
| | | | | | | |
Collapse
|
35
|
Cantero G, Pastor N, Mateos S, Campanella C, Cortés F. Cisplatin-induced endoreduplication in CHO cells: DNA damage and inhibition of topoisomerase II. Mutat Res 2006; 599:160-6. [PMID: 16574165 DOI: 10.1016/j.mrfmmm.2006.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/23/2006] [Accepted: 02/15/2006] [Indexed: 11/17/2022]
Abstract
It has been proposed that polyploid cells that arise during a variety of pathological conditions and as a result of exposure to genotoxicants, typically in the liver, become aneuploid through genetic instability. Aneuploidy contributes to, or even drives, tumour development. We have assessed the capacity of the drug cisplatin, one of the most commonly used compounds for the treatment of malignancies, to induce endoreduplication, a particular type of polyploidy, in cultured Chinese hamster AA8 cells. Taking into account that any interference with DNA topoisomerase II (topo II) function leads to endoreduplication, we have found that treatment of the cells with this platinum compound results in a dose-dependent inhibition of the catalytic activity of the enzyme. These observations are discussed on the basis of a possible dual action of cisplatin leading to a combined negative effect on normal segregation of chromosomes. On the one hand, through the drug capacity to efficiently inhibiting the catalytic activity of topo II itself and, on the other hand, as a consequence of changes in DNA such as base modifications and cross-links that result from cisplatin treatment, likely leading to a lack of recognition/binding of DNA by the enzyme. These observations support a model in which the involvement of topo II in different pathways leading to induced endoreduplication has been proposed, and seem to bear significance as to the possible origin of the development of secondary tumours as a result of cisplatin treatment of primary malignancies.
Collapse
Affiliation(s)
- Gloria Cantero
- Department of Cell Biology, Faculty of Biology of Seville, E-41012 Seville, Spain
| | | | | | | | | |
Collapse
|
36
|
Kleckner N. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 2006; 115:175-94. [PMID: 16555016 DOI: 10.1007/s00412-006-0055-7] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/18/2006] [Accepted: 01/20/2006] [Indexed: 12/20/2022]
Abstract
Meiotic recombination proceeds in biochemical complexes that are physically associated with underlying chromosome structural axes. In this study, we discuss the organizational basis for these axes, the timing and nature of recombinosome/axis organization with respect to the prophase program of DNA and to structural changes, and the possible significance of axis organization. Furthermore, we discuss implications and extensions of our recently proposed mechanical model for chiasma formation. Finally, we give a broader consideration to past and present models for the role of the synaptonemal complex.
Collapse
|
37
|
Skladanowski A, Côme MG, Sabisz M, Escargueil AE, Larsen AK. Down-regulation of DNA topoisomerase IIalpha leads to prolonged cell cycle transit in G2 and early M phases and increased survival to microtubule-interacting agents. Mol Pharmacol 2005; 68:625-34. [PMID: 15942022 DOI: 10.1124/mol.105.013995] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubule binders are cell cycle-specific agents with preferential cytotoxicity toward mitotic cells. We have characterized vincristine-selected human leukemia cells to establish whether development of vincristine resistance was accompanied by changes in cell cycle kinetics and distribution. Our results indicate that vincristine resistance is accompanied by delayed G2 transit and prolonged early mitosis in both the absence and the presence of the microtubule binder nocodazole. The altered G2/M regulation is accompanied by resistance to short-term (12 h) but not continuous nocodazole exposure in agreement with the transient nature of the observed cell cycle alterations. Western blot analysis indicates that vincristine-selection is accompanied by down-regulation of topoisomerase IIalpha without detectable alterations of the other mitotic regulators studied, including Cdk1, p21, 14-3-3sigma, and 14-3-3epsilon. This was associated with at least 7-fold less chromosome-associated topoisomerase IIalpha, decreased catalytic activity, and cross-resistance to topoisomerase II inhibitors. Characterization of isogenic cell lines expressing different levels of topoisomerase II proteins shows that cellular levels of topoisomerase IIalpha, but not the closely related topoisomerase IIbeta, directly influence the cell cycle kinetics in G2 and early mitosis as well as the resistance to nocodazole. These results underline the importance of topoisomerase IIalpha in late G2 and early M phases and provide evidence for an as-yet-unsuspected interaction between topoisomerase II and microtubule-directed agents.
Collapse
Affiliation(s)
- Andrzej Skladanowski
- Group of Molecular and Clinical Cancer Therapeutics, INSERM U673, Hôpital Saint-Antoine, 75571 Paris 12, France
| | | | | | | | | |
Collapse
|
38
|
He D, Wen JF, Chen WQ, Lu SQ, Xin DD. Identification, characteristic and phylogenetic analysis of type II DNA topoisomerase gene in Giardia lamblia. Cell Res 2005; 15:474-82. [PMID: 15987606 DOI: 10.1038/sj.cr.7290316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The genes encoding type II DNA topoisomerases were investigated in Giardia lamblia genome, and a type IIA gene, GlTop 2 was identified. It is a single copy gene with a 4476 bp long ORF without intron. The deduced amino acid sequence shows strong homology to eukaryotic DNA Top 2. However, some distortions were found, such as six insertions in the ATPase domain and the central domain, a approximately 100 aa longer central domain; a approximately 200 aa shorter C-terminal domain containing rich charged residues. These features revealed by comparing with Top 2 of the host, human, might be helpful in exploiting drug selectivity for antigiardial therapy. Phylogenetic analysis of eukaryotic enzymes showed that kinetoplastids, plants, fungi, and animals were monophyletic groups, and the animal and fungi lineages shared a more recent common ancestor than either did with the plant lineage; microsporidia grouped with fungi. However, unlike many previous phylogenetic analyses, the "amitochondriate"G. lamblia was not the earliest branch but diverged after mitochondriate kinetoplastids in our trees. Both the finding of typical eukaryotic type IIA topoisomerase and the phylogenetic analysis suggest G. lamblia is not possibly as primitive as was regarded before and might diverge after the acquisition of mitochondria. This is consistent with the recent discovery of mitochondrial remnant organelles in G. lamblia.
Collapse
Affiliation(s)
- De He
- Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | | | | | | | | |
Collapse
|
39
|
Pastor N, Cantero G, Campanella C, Cortés F. Endoreduplication induced in cultured Chinese hamster cells by different anti-topoisomerase II chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 582:11-9. [PMID: 15781205 DOI: 10.1016/j.mrgentox.2004.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 11/11/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
With the ultimate purpose of testing the hypothesis that, as shown in yeast mutants, any malfunction of DNA topoisomerase II might result in aberrant mitosis due to defective chromosome segregation, we have chosen three chemicals of different nature, recently reported to catalytically inhibit the enzyme. The endpoint selected to assess any negative effect on the ability of topoisomerase II to properly carry out decatenation of fully replicated chromosomes in the G2/M phase of the cell cycle was the presence of metaphases showing diplochromosomes as a result of endoreduplication, i.e. two successive rounds of DNA replication without intervening mitosis. The anti-topoisomerase drugs selected were the anthracycline antibiotic and antineoplastic agent aclarubicin, the respiratory venom sodium azide, and 9-aminoacridine, a chemical compound with planar topology capable of intercalation between DNA bases. Our results show that the three chemicals tested are able to induce endoreduplication to different degrees. These observations seem to lend support to the proposal that topoisomerase II plays a central role in chromosome segregation in mammalian cells.
Collapse
Affiliation(s)
- Nuria Pastor
- Department of Cell Biology, Faculty of Biology, University of Seville, Avenida Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | |
Collapse
|
40
|
Mateos S, Domínguez I, Pastor N, Cantero G, Cortés F. The DNA demethylating 5-azaC induces endoreduplication in cultured Chinese hamster cells. Mutat Res 2005; 578:33-42. [PMID: 16202795 DOI: 10.1016/j.mrfmmm.2005.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/09/2005] [Accepted: 02/18/2005] [Indexed: 11/18/2022]
Abstract
We have investigated the possible influence of 5-azacytidine (5-azaC) substitution for cytidine into DNA on topoisomerase II (topo II) function in chromosome segregation. The endpoint chosen has been the induction of endoreduplicated cells at mitosis showing diplochromosomes. Experiments were performed in the presence and absence of the cytidine analogue to assess the degree of 5-azaC-induced DNA hypomethylation, using differential cutting by restriction endonucleases Hpa II and Msp I. Using the pulsed-field gel electrophoresis (PFGE) technique, we have also observed a protective effect provided by 5-azaC treatment against DNA breakage induced by the topo II poison m-AMSA. Concentrations of 5-azaC shown as able to induce extensive DNA hypomethylation and capable to protect DNA from double-strand breaks induced by m-AMSA were used for our cytogenetic experiments to analyze chromosome segregation. Our results seem to indicate that the presence of 5-azaC in DNA induces a dose-dependent increase in the yield of endoreduplicated cells that parallels the levels of hypomethylation observed.
Collapse
Affiliation(s)
- Santiago Mateos
- Department of Cell Biology, Faculty of Biology, University of Seville, Avda Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | | | |
Collapse
|
41
|
Cortés F, Mateos S, Pastor N, Domínguez I. Toward a comprehensive model for induced endoreduplication. Life Sci 2004; 76:121-35. [PMID: 15519359 DOI: 10.1016/j.lfs.2004.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 08/28/2004] [Indexed: 11/25/2022]
Abstract
Both the biological significance and the molecular mechanism of endoreduplication (END) have been debated for a long time by cytogeneticists and researchers into cell cycle enzymology and dynamics alike. Mainly due to the fact that a wide variety of agents have been reported as able to induce endoreduplication and the diversity of cell types where it has been described, until now no clear or unique mechanism of induction of this phenomenon, rare in animals but otherwise quite common in plants, has been proposed. DNA topoisomerase II (topo II), plays a major role in mitotic chromosome segregation after DNA replication. The classical topo II poisons act by stabilizing the enzyme in the so-called cleavable complex and result in DNA damage as well as END, while the true catalytic inhibitors, which are not cleavable-complex-stabilizers, do induce END without concomitant DNA and chromosome damage. Taking into account these observations on the induction of END by drugs that interfere with topo II, together with our recently obtained evidence that the nature of DNA plays an important role for chromosome segregation [Cortes, F., Pastor, N., Mateos, S., Dominguez, I., 2003. The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes. DNA Repair 2, 719-726.], a straightforward model is proposed in which the different mechanisms leading to induced END are considered.
Collapse
Affiliation(s)
- Felipe Cortés
- Department of Cell Biology, Faculty of Biology of Seville, Avenue Reina Mercedes 6, E-41012 Seville, Spain.
| | | | | | | |
Collapse
|
42
|
Carpenter AJ, Porter ACG. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line. Mol Biol Cell 2004; 15:5700-11. [PMID: 15456904 PMCID: PMC532048 DOI: 10.1091/mbc.e04-08-0732] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA Topoisomerase IIalpha (topoIIalpha) is a DNA decatenating enzyme, abundant constituent of mammalian mitotic chromosomes, and target of numerous antitumor drugs, but its exact role in chromosome structure and dynamics is unclear. In a powerful new approach to this important problem, with significant advantages over the use of topoII inhibitors or RNA interference, we have generated and characterized a human cell line (HTETOP) in which >99.5% topoIIalpha expression can be silenced in all cells by the addition of tetracycline. TopoIIalpha-depleted HTETOP cells enter mitosis and undergo chromosome condensation, albeit with delayed kinetics, but normal anaphases and cytokineses are completely prevented, and all cells die, some becoming polyploid in the process. Cells can be rescued by expression of topoIIalpha fused to green fluorescent protein (GFP), even when certain phosphorylation sites have been mutated, but not when the catalytic residue Y805 is mutated. Thus, in addition to validating GFP-tagged topoIIalpha as an indicator for endogenous topoIIalpha dynamics, our analyses provide new evidence that topoIIalpha plays a largely redundant role in chromosome condensation, but an essential catalytic role in chromosome segregation that cannot be complemented by topoIIbeta and does not require phosphorylation at serine residues 1106, 1247, 1354, or 1393.
Collapse
Affiliation(s)
- Adam J Carpenter
- Gene Targeting Group, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, London W12 ONN, United Kingdom
| | | |
Collapse
|
43
|
Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R, Henle J, Hutchinson J. A mechanical basis for chromosome function. Proc Natl Acad Sci U S A 2004; 101:12592-7. [PMID: 15299144 PMCID: PMC515102 DOI: 10.1073/pnas.0402724101] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We propose that chromosome function is governed by internal mechanical forces generated by programmed tendencies for expansion of the DNA/chromatin fiber against constraining features.
Collapse
Affiliation(s)
- Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R, Henle J, Hutchinson J. A mechanical basis for chromosome function. Proc Natl Acad Sci U S A 2004. [PMID: 15299144 DOI: 10.10732/fpnas.0402724101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
We propose that chromosome function is governed by internal mechanical forces generated by programmed tendencies for expansion of the DNA/chromatin fiber against constraining features.
Collapse
Affiliation(s)
- Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Coelho PA, Queiroz-Machado J, Sunkel CE. Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. J Cell Sci 2004; 116:4763-76. [PMID: 14600262 DOI: 10.1242/jcs.00799] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of compact mitotic chromosomes and resolution of sister chromatids are two essential processes for the correct segregation of the genome during mitosis. Condensin, a five-subunit protein complex, is thought to be required for chromosome condensation. However, recent genetic analysis suggests that condensin is only essential to resolve sister chromatids. To study further the function of condensin we have depleted DmSMC4, a subunit of the complex, from Drosophila S2 cells by dsRNA-mediated interference. Cells lacking DmSMC4 assemble short mitotic chromosomes with unresolved sister chromatids where Barren, a non-SMC subunit of the complex is unable to localise. Topoisomerase II, however, binds mitotic chromatin after depletion of DmSMC4 but it is no longer confined to a central axial structure and becomes diffusely distributed all over the chromatin. Furthermore, cell extracts from DmSMC4 dsRNA-treated cells show significantly reduced topoisomerase II-dependent DNA decatenation activity in vitro. Nevertheless, DmSMC4-depleted chromosomes have centromeres and kinetochores that are able to segregate, although sister chromatid arms form extensive chromatin bridges during anaphase. These chromatin bridges do not result from inappropriate maintenance of sister chromatid cohesion by DRAD21, a subunit of the cohesin complex. Moreover, depletion of DmSMC4 prevents premature sister chromatid separation, caused by removal of DRAD21, allowing cells to exit mitosis with chromatin bridges. Our results suggest that condensin is required so that an axial chromatid structure can be organised where topoisomerase II can effectively promote sister chromatid resolution.
Collapse
Affiliation(s)
- Paula A Coelho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
46
|
Cortés F, Pastor N, Mateos S, Domínguez I. The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes. DNA Repair (Amst) 2003; 2:719-26. [PMID: 12767350 DOI: 10.1016/s1568-7864(03)00044-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AA8 Chinese hamster ovary cells were treated with halogenated nucleosides analogues of thymidine, namely CldU, 5-iodo-2'-deoxyuridine (IdU), and 5-bromo-2'-deoxyuridine (BrdU), following different experimental protocols. The purpose was to see whether incorporation of exogenous pyrimidine analogues into DNA could interfere with normal chromosome segregation. The endpoint chosen was endoreduplication, that arises after aberrant mitosis when daughter chromatids segregation fails. Treatment with any of the halogenated nucleosides for two consecutive cell cycles resulted in endoreduplication, with a highest yield for CldU, intermediate for IdU, and lowest for BrdU. The frequency of endoreduplicated cells paralleled in all cases the level of analogue substitution into DNA. Our results seem to support that thymidine analogue substitution into DNA is responsible for the triggering of endoreduplication. Besides, the lack of any effect on endoreduplication when CldU was present for only one S-period strongly suggest that it is the nature of template, and not nascent DNA, that plays a major role in chromosome segregation. Taking into account that topoisomerase II cleaves DNA at preferred sequences within its recognition/binding sites, the likely involvement of the enzyme is discussed.
Collapse
Affiliation(s)
- Felipe Cortés
- Department of Cell Biology, Faculty of Biology, Avenida Reina Mercedes, 6. E-41012, Seville, Spain.
| | | | | | | |
Collapse
|
47
|
Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 2003; 161:281-94. [PMID: 12707311 PMCID: PMC2172906 DOI: 10.1083/jcb.200208092] [Citation(s) in RCA: 918] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The proper segregation of sister chromatids in mitosis depends on bipolar attachment of all chromosomes to the mitotic spindle. We have identified the small molecule Hesperadin as an inhibitor of chromosome alignment and segregation. Our data imply that Hesperadin causes this phenotype by inhibiting the function of the mitotic kinase Aurora B. Mammalian cells treated with Hesperadin enter anaphase in the presence of numerous monooriented chromosomes, many of which may have both sister kinetochores attached to one spindle pole (syntelic attachment). Hesperadin also causes cells arrested by taxol or monastrol to enter anaphase within <1 h, whereas cells in nocodazole stay arrested for 3-5 h. Together, our data suggest that Aurora B is required to generate unattached kinetochores on monooriented chromosomes, which in turn could promote bipolar attachment as well as maintain checkpoint signaling.
Collapse
Affiliation(s)
- Silke Hauf
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The condensin complex and topoisomerase II (topo II) have different biochemical activities in vitro, and both are required for mitotic chromosome condensation. We have used Xenopus egg extracts to investigate the functional interplay between condensin and topo II in chromosome condensation. When unreplicated chromatin is directly converted into chromosomes with single chromatids, the two proteins must function together, although they are independently targeted to chromosomes. In contrast, the requirement for topo II is temporarily separable from that of condensin when chromosome assembly is induced after DNA replication. This experimental setting allows us to find that, in the absence of condensin, topo II becomes enriched in an axial structure within uncondensed chromatin. Subsequent addition of condensin converts this structure into mitotic chromosomes in an ATP hydrolysis-dependent manner. Strikingly, preventing DNA replication by the addition of geminin or aphidicolin disturbs the formation of topo II-containing axes and alters the binding property of topo II with chromatin. Our results suggest that topo II plays an important role in an early stage of chromosome condensation, and that this function of topo II is tightly coupled with prior DNA replication.
Collapse
Affiliation(s)
- Olivier Cuvier
- Cold Spring Harbor Laboratory, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
49
|
Abstract
The condensation of mitotic chromosomes is essential for the faithful segregation of sister chromatids in anaphase. An emerging view is that chromosome assembly is an active and dynamic process of chromatin reorganization in which two ATP hydrolyzing enzymes, topoisomerase II and the condensin complex, play central roles. In this review, we discuss recent work that sheds new light on the molecular and structural dynamics of mitotic chromosomes.
Collapse
Affiliation(s)
- Jason R Swedlow
- Division of Gene Regulation and Expression, University of Dundee, DD1 5EH, Dundee, United Kingdom
| | | |
Collapse
|
50
|
Cortés F, Pastor N. Induction of endoreduplication by topoisomerase II catalytic inhibitors. Mutagenesis 2003; 18:105-12. [PMID: 12621064 DOI: 10.1093/mutage/18.2.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The striking phenomenon of endoreduplication has long attracted attention from cytogeneticists and researchers into cell cycle enzymology and dynamics alike. Because of the variety of agents able to induce endoreduplication and the various cell types where it has been described, until now no clear or unique mechanism of induction of this phenomenon, rare in animals but otherwise quite common in plants, has been proposed. Recent years, however, have witnessed the unfolding of a number of essential physiological roles for DNA topoisomerase II, with special emphasis on its major role in mitotic chromosome segregation after DNA replication. In spite of the lack of mammalian mutants defective in topoisomerase II as compared with yeast, experiments with inhibitors of the enzyme have supported the hypothesis that this crucial untangling of daughter DNA molecules by passing an intact helix through a transient double-stranded break carried out by the enzyme, when it fails, leads to aberrant mitosis that results in endoreduplication, polyploidy and eventually cell death. Anticancer drugs that interfere with topoisomerase II can be classified into two groups. The classical poisons act by stabilizing the enzyme in the so-called cleavable complex and result in DNA damage, which represents a problem in the study of endoreduplication. The true catalytic inhibitors, which are not cleavable complex stabilizers, allow us to use doses efficient in the induction of endoreduplication while eliminating high levels of DNA and chromosome damage. This review will discuss the basic and applied aspects of this as yet scarcely explored field.
Collapse
Affiliation(s)
- Felipe Cortés
- Department of Cell Biology, Faculty of Biology, University of Seville, Av Reina Mercedes, 6, E-41012 Seville, Spain.
| | | |
Collapse
|