1
|
Creutz CE. Expression of Metazoan Annexins in Yeast Provides Protection Against Deleterious Effects of the Biofuel Isobutanol. Sci Rep 2019; 9:18603. [PMID: 31819124 PMCID: PMC6901584 DOI: 10.1038/s41598-019-55169-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/23/2019] [Indexed: 02/08/2023] Open
Abstract
The ability of microorganisms to produce biofuels by fermentation is adversely affected by the perturbing effects of the hydrophobic biofuel on plasma membrane structure. It is demonstrated here that heterologous expression of metazoan, calcium-dependent, membrane-binding proteins of the annexin class can reduce deleterious effects of isobutanol on Saccharomyces cerevisiae viability and complex membrane functions. Therefore, expression of annexins in industrial strains of yeast or bacteria may prove beneficial in biofuel production.
Collapse
Affiliation(s)
- Carl E Creutz
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
2
|
Hegsted A, Votra S, Christophe AM, Yingling CV, Sundaramurthy S, Pruyne D. Functional importance of an inverted formin C-terminal tail at morphologically dynamic epithelial junctions. Cytoskeleton (Hoboken) 2019; 76:322-336. [PMID: 31215743 DOI: 10.1002/cm.21547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 06/09/2019] [Indexed: 11/10/2022]
Abstract
Epithelial cell-cell junctions have dual roles of accommodating morphological changes in an epithelium, while maintaining cohesion during those changes. An abundance of junction proteins has been identified, but many details on how intercellular junctions respond to morphological changes remain unclear. In Caenorhabditis elegans, the spermatheca is an epithelial sac that repeatedly dilates and constricts to allow ovulation. It is thought that the junctions between spermatheca epithelial cells undergo reversible partial unzipping to allow rapid dilation. Previously, we found that EXC-6, a C. elegans protein homolog of the human disease-associated formin INF2, is expressed in the spermatheca and promotes oocyte entry. We show here that EXC-6 localizes toward the apical aspect of the spermatheca epithelial junctions, and that the EXC-6-labeled junction domains "unzip" and dramatically flatten with oocyte entry into the spermatheca. We demonstrate that the C-terminal tail of EXC-6 is necessary and sufficient for junction localization. Moreover, expression of the tail alone worsens ovulation defects, suggesting this region not only mediates EXC-6 localization, but also interacts with other components important for junction remodeling.
Collapse
Affiliation(s)
- Anna Hegsted
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - SarahBeth Votra
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - Amylisa M Christophe
- Department of Clinical Laboratory Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Curtis V Yingling
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
3
|
Saxena S, Purushothaman S, Meghah V, Bhatti B, Poruri A, Meena Lakshmi MG, Sarath Babu N, Narasimha Murthy CL, Mandal KK, Kumar A, Idris MM. Role of annexin gene and its regulation during zebrafish caudal fin regeneration. Wound Repair Regen 2016; 24:551-9. [DOI: 10.1111/wrr.12429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Sandeep Saxena
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | | | | | - Bhawna Bhatti
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | - Akhila Poruri
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | | | | | | | - Komal K. Mandal
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | - Mohammed M. Idris
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| |
Collapse
|
4
|
Huang HC, Yao LL, Song ZM, Li XP, Hua QQ, Li Q, Pan CW, Xia CM. Development-specific differences in the proteomics of Angiostrongylus cantonensis. PLoS One 2013; 8:e76982. [PMID: 24204717 PMCID: PMC3808366 DOI: 10.1371/journal.pone.0076982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Angiostrongyliasis is an emerging communicable disease. Several different hosts are required to complete the life cycle of Angiostrongylus cantonensis. However, we lack a complete understanding of variability of proteins across different developmental stages and their contribution to parasite survival and progression. In this study, we extracted soluble proteins from various stages of the A. cantonensis life cycle [female adults, male adults, the fifth-stage female larvae (FL5), the fifth-stage male larvae (ML5) and third-stage larvae (L3)], separated those proteins using two-dimensional difference gel electrophoresis (2D-DIGE) at pH 4-7, and analyzed the gel images using DeCyder 7.0 software. This proteomic analysis produced a total of 183 different dominant protein spots. Thirty-seven protein spots were found to have high confidence scores (>95%) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Comparative proteomic analyses revealed that 29 spots represented cytoskeleton-associated proteins and functional proteins. Eight spots were unnamed proteins. Twelve protein spots that were matched to the EST of different-stage larvae of A. cantonensis were identified. Two genes and the internal control 18s were chosen for quantitative real-time PCR (qPCR) and the qPCR results were consistent with those of the DIGE studies. These findings will provide a new basis for understanding the characteristics of growth and development of A. cantonensis and the host-parasite relationship. They may also assist searches for candidate proteins suitable for use in diagnostic assays and as drug targets for the control of eosinophilic meningitis caused by A. cantonensis.
Collapse
Affiliation(s)
- Hui-Cong Huang
- Department of Parasitology, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Li-Li Yao
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Zeng-Mei Song
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xing-Pan Li
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Qian-Qian Hua
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Qiang Li
- Department of Laboratory Diagnosis, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, P. R. China
| | - Chang-Wang Pan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Chao-Ming Xia
- Department of Parasitology, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China
- * E-mail:
| |
Collapse
|
5
|
Hofmann A, Osman A, Leow CY, Driguez P, McManus DP, Jones MK. Parasite annexins--new molecules with potential for drug and vaccine development. Bioessays 2011; 32:967-76. [PMID: 21105292 DOI: 10.1002/bies.200900195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last few years, annexins have been discovered in several nematodes and other parasites, and distinct differences between the parasite annexins and those of the hosts make them potentially attractive targets for anti-parasite therapeutics. Annexins are ubiquitous proteins found in almost all organisms across all kingdoms.Here, we present an overview of novel annexins from parasitic organisms, and summarize their phylogenetic and biochemical properties, with a view to using them as drug or vaccine targets. Building on structural and biological information that has been accumulated for mammalian and plant annexins, we describe a predicted additional secondary structure element found in many parasite annexins that may confer unique functional properties, and present a specific antigenic epitope for use as a vaccine.
Collapse
Affiliation(s)
- Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
6
|
Tararam CA, Farias LP, Wilson RA, Leite LCDC. Schistosoma mansoni Annexin 2: molecular characterization and immunolocalization. Exp Parasitol 2010; 126:146-55. [PMID: 20417203 DOI: 10.1016/j.exppara.2010.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/19/2010] [Accepted: 04/16/2010] [Indexed: 11/18/2022]
Abstract
We here describe the cloning and characterization of the Schistosoma mansoni Annexin 2, previously identified in the tegument by proteomic studies, and as an up-regulated gene in schistosomulum stage by microarray data. In silico analysis predicts a conserved core containing four repeat domains of Annexin (ANX) and a variable N-terminal region similar to that described for mammalian isoforms. Real-time RT-PCR and Western blot analysis determined that S. mansoni Annexin 2 is significantly up-regulated in the transition from free-living cercaria to schistosomulum and adult worm parasitic stages. Immunolocalization experiments and tegument membrane preparations confirmed Annexin 2 as a protein mainly localized in the tegument of schistosomula and adult worms. Furthermore, it binds to the tegument surface membranes in a calcium-dependent manner. These results suggest that S. mansoni Annexin 2 is closely associated to the tegument arrangement, being a potential target for immune intervention.
Collapse
|
7
|
Calcium-dependent proapoptotic effect of Taenia solium metacestodes annexin B1 on human eosinophils: A novel strategy to prevent host immune response. Int J Biochem Cell Biol 2008; 40:2151-63. [DOI: 10.1016/j.biocel.2008.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 01/30/2008] [Accepted: 02/18/2008] [Indexed: 01/22/2023]
|
8
|
Hwang HJ, Moon CH, Kim HG, Kim JY, Lee JM, Park JW, Chung DK. Identification and functional analysis of salmon annexin 1 induced by a virus infection in a fish cell line. J Virol 2007; 81:13816-24. [PMID: 17881442 PMCID: PMC2168874 DOI: 10.1128/jvi.02822-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated changes in protein expression of fish cells induced by infection of infectious pancreatic necrosis virus (IPNV) using two-dimensional electrophoresis and matrix-assisted laser desorption-time of flight proton motive force analysis and identified a novel type of salmon annexin 1 that is induced in fish cells by infection with IPNV. Northern blotting showed that this annexin is overexpressed in IPNV-infected cells compared to control cells, and further analysis revealed that it has a 1,509-bp full-length cDNA sequence with an open reading frame encoding 339 amino acids (GenBank accession no. AY944135). Amino acid sequence analysis revealed that this protein belongs to the annexin 1 subfamily. By applying RNA interference, the mRNA levels of salmon annexin 1 were suppressed and, under these conditions, apoptosis of IPNV-infected cells was significantly increased. While small interfering RNA (siRNA) treatment did not affect the levels of the viral proteins significantly until 10 h postinfection, it reduced the titer of extracellular virus to 25% of that of a scrambled siRNA-treated control. These data provide evidence of an antiapoptotic function for salmon annexin 1 that is important for IPNV growth in cultured cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Annexins/chemistry
- Annexins/genetics
- Annexins/metabolism
- Annexins/pharmacology
- Apoptosis/drug effects
- Cells, Cultured
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation
- Infectious pancreatic necrosis virus/pathogenicity
- Molecular Sequence Data
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Salmon/virology
- Sequence Analysis, DNA
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Hyun Jin Hwang
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Eukaryotic cells contain various Ca(2+)-effector proteins that mediate cellular responses to changes in intracellular Ca(2+) levels. A unique class of these proteins - annexins - can bind to certain membrane phospholipids in a Ca(2+)-dependent manner, providing a link between Ca(2+) signalling and membrane functions. By forming networks on the membrane surface, annexins can function as organizers of membrane domains and membrane-recruitment platforms for proteins with which they interact. These and related properties enable annexins to participate in several otherwise unrelated events that range from membrane dynamics to cell differentiation and migration.
Collapse
Affiliation(s)
- Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Germany.
| | | | | |
Collapse
|
10
|
Kariya KI, Bui YK, Gao X, Sternberg PW, Kataoka T. Phospholipase Cepsilon regulates ovulation in Caenorhabditis elegans. Dev Biol 2004; 274:201-10. [PMID: 15355798 DOI: 10.1016/j.ydbio.2004.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 06/24/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC with unknown physiological functions. Here, we present the first genetic analysis of PLCepsilon in an intact organism, the nematode Caenorhabditis elegans. Ovulation in C. elegans is dependent on an inositol 1,4,5-trisphosphate (IP(3)) signaling pathway activated by the receptor tyrosine kinase LET-23. We generated deletion mutants of the gene, plc-1, encoding C. elegans PLCepsilon. We observed a novel ovulation phenotype whereby oocytes are trapped in the spermatheca due to delayed dilation of the spermatheca-uterine valve. The expression of plc-1 in the adult spermatheca is consistent with its involvement in regulation of ovulation. On the other hand, we failed to observe genetic interaction of plc-1 with let-23-mediated IP(3) signaling pathway genes, suggesting a complex mechanism for control of ovulation.
Collapse
Affiliation(s)
- Ken-Ichi Kariya
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan.
| | | | | | | | | |
Collapse
|
11
|
Perera A, Davis P, Robinson JJ. Functional role of a high mol mass protein complex in the sea urchin yolk granule. Dev Growth Differ 2004; 46:201-11. [PMID: 15066198 DOI: 10.1111/j.1440-169x.2004.00737.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the biochemical and functional characteristics of the major protein constituents of the yolk granule organelle present in sea urchin eggs and embryos. Compositional analysis, using sodium dodecyl sulfate polyacrylamide gel electrophoresis, revealed distinctly different polypeptide patterns under reducing and non-reducing conditions. In the presence of reducing agent, a 240 kDa species dissociated into polypeptides of apparent mol mass 160, 120 and 90 k. The relatedness of these polypeptides to the 240 kDa species was demonstrated in protein gel blot and peptide mapping analyses. The profile of yolk granule polypeptides was dynamic during embryonic development with the disappearance of the 160 kDa species and the coincidental appearance of lower mol mass polypeptides. However, the 240 kDa complex was detected even after the disappearance of the 160 kDa polypeptide. The 240 kDa complex was released from yolk granules in the absence of calcium and the purified species was shown to bind liposomes in a calcium-dependent manner. In addition, the 240 kDa complex possessed a calcium-dependent, liposome aggregating activity. The 240 kDa species could also induce the aggregation of yolk granules, previously denuded of the complex following treatment with either ethylenediaminetetraacetic acid or trypsin. Collectively, these results demonstrate the dynamic characteristics of the yolk granule 240 kDa protein complex and offer insights into a possible functional role.
Collapse
Affiliation(s)
- Aruni Perera
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | | | | |
Collapse
|
12
|
Abstract
The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes.
Collapse
Affiliation(s)
- Steven A Farber
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA.
| | | | | | | |
Collapse
|
13
|
Arur S, Uche UE, Rezaul K, Fong M, Scranton V, Cowan AE, Mohler W, Han DK. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 2003; 4:587-98. [PMID: 12689596 DOI: 10.1016/s1534-5807(03)00090-x] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Engulfment of apoptotic cells requires presentation of new cell surface ligands by the dying cells. Using a differential proteomics technology, we identify that annexin I is a caspase-dependent engulfment ligand; it is recruited from the cytosol and exported to the outer plasma membrane leaflet, colocalizes with phosphatidylserine, and is required for efficient clearance of apoptotic cells. Furthermore, phosphatidylserine receptor (PSR) clustering around apoptotic cells indicates a requirement for annexin I. In the nematode Caenorhabditis elegans, downregulation of the annexin homolog prevents efficient engulfment of pharyngeal cell corpses. These results provide novel mechanistic insights into how apoptotic cells are removed and may explain a pathogenic mechanism of chronic inflammatory diseases where annexin I autoantibodies have been described.
Collapse
Affiliation(s)
- Swathi Arur
- Center for Vascular Biology, Department of Physiology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mayne J, Robinson JJ. Localization and functional role of a 41 kDa collagenase/gelatinase activity expressed in the sea urchin embryo. Dev Growth Differ 2002; 44:345-56. [PMID: 12175369 DOI: 10.1046/j.1440-169x.2002.00645.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The egg storage compartment of the sea urchin embryo was investigated for a protein destined for export to the extracellular matrices. Using an antiserum prepared against a 41 kDa collagenase/gelatinase localized to the extraembryonic matrices (the hyaline layer and basal lamina), the egg storage compartment was mapped for this antigen. Indirect immunofluorescence analysis revealed the 41 kDa collagenase/gelatinase in the cortical granules as well as a second compartment which was dispersed throughout the egg cytoplasm. High resolution immunogold labeling defined this cytoplasmic compartment as the yolk granule organelle. Gelatin substrate gel zymography revealed the presence of a 41 kDa gelatin cleavage activity in purified yolk granules. These results suggest a role for yolk granules in regulated protein export and challenge the traditional view of this organelle as a benign storage compartment for nutrients. In additional experiments, embryos grown in the presence of the 41 kDa cleavage activity or the anti-41 kDa antiserum had severely delayed gut formation and spicule elongation. These results demonstrate a requirement for defined levels of the 41 kDa activity in the extracellular matrices of the developing embryo.
Collapse
Affiliation(s)
- Janice Mayne
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1B 3X9 Canada
| | | |
Collapse
|
15
|
Abstract
Annexins are Ca2+ and phospholipid binding proteins forming an evolutionary conserved multigene family with members of the family being expressed throughout animal and plant kingdoms. Structurally, annexins are characterized by a highly alpha-helical and tightly packed protein core domain considered to represent a Ca2+-regulated membrane binding module. Many of the annexin cores have been crystallized, and their molecular structures reveal interesting features that include the architecture of the annexin-type Ca2+ binding sites and a central hydrophilic pore proposed to function as a Ca2+ channel. In addition to the conserved core, all annexins contain a second principal domain. This domain, which NH2-terminally precedes the core, is unique for a given member of the family and most likely specifies individual annexin properties in vivo. Cellular and animal knock-out models as well as dominant-negative mutants have recently been established for a number of annexins, and the effects of such manipulations are strikingly different for different members of the family. At least for some annexins, it appears that they participate in the regulation of membrane organization and membrane traffic and the regulation of ion (Ca2+) currents across membranes or Ca2+ concentrations within cells. Although annexins lack signal sequences for secretion, some members of the family have also been identified extracellularly where they can act as receptors for serum proteases on the endothelium as well as inhibitors of neutrophil migration and blood coagulation. Finally, deregulations in annexin expression and activity have been correlated with human diseases, e.g., in acute promyelocytic leukemia and the antiphospholipid antibody syndrome, and the term annexinopathies has been coined.
Collapse
Affiliation(s)
- Volker Gerke
- Institute for Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | |
Collapse
|
16
|
Abstract
We discuss in this review recent studies using the worm Caenorhabditis elegans to decipher endocytic trafficking in a multicellular organism. Recent advances, including in vivo assay systems, new genetic screens, comparative functional analysis of conserved proteins, and RNA-mediated interference (RNAi) in C. elegans, are being used to study the functions of known membrane trafficking factors and to identify new ones. The ability to monitor endocytosis in vivo in worms allows one to test current endocytosis models and to demonstrate the physiological significance of factors identified by genetic and biochemical methods. The available human genome sequence facilitates comparative studies where human homologs of new factors identified in C. elegans can be quickly assayed for similar function using traditional cell biological methods in mammalian cell systems. New studies in C. elegans have used a combination of these techniques to reveal novel metazoan-specific trafficking factors required for endocytosis. Many more metazoan-specific trafficking factors and insights into the mechanisms of endocytosis are likely to be uncovered by analysis in C. elegans.
Collapse
Affiliation(s)
- Hanna Fares
- University of Arizona, Department of Molecular and Cellular Biology, Life Sciences South Building, Room 531, 1007 East Lowell Street, Tucson, AZ 85721, USA
| | | |
Collapse
|
17
|
Paupard MC, Miller A, Grant B, Hirsh D, Hall DH. Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J Histochem Cytochem 2001; 49:949-56. [PMID: 11457923 DOI: 10.1177/002215540104900803] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Because of the presence of a low-permeability cuticle covering the animal, fixation of C. elegans tissue for immunoelectron microscopy has proved very difficult. Here we applied a microwave fixation protocol to improve penetration of fixatives before postembedding immunogold labeling. Using this technique, we were able to successfully localize several components of yolk (YP170) trafficking in both wild-type and transgenic strains expressing a vitellogenin::green fluorescent protein fusion (YP170::GFP). Green fluorescent protein (GFP) and its variants are commonly used as markers to localize proteins in transgenic C. elegans using fluorescence microscopy. We have developed a robust method to localize GFP at the EM level. This procedure is applicable to the characterization of transgenic strains in which GFP is used to mark particular proteins or cell types and will undoubtedly be very useful for high-resolution analysis of marked structures.
Collapse
Affiliation(s)
- M C Paupard
- Center for C. elegans Anatomy, Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | |
Collapse
|
18
|
Daigle SN, Creutz CE. Transcription, biochemistry and localization of nematode annexins. J Cell Sci 1999; 112 ( Pt 12):1901-13. [PMID: 10341209 DOI: 10.1242/jcs.112.12.1901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The transcription of three annexin genes in the nematode, Caenorhabditis elegans, was detected by reverse transcriptase/polymerase chain reaction amplification of messenger RNAs. The highest level of expression was from the nex-1 gene, with lower levels detected for the nex-2 and nex-3 genes. The expression of nex-1 was reduced in the Dauer larval stage relative to the other annexins, correlating with the absence of the spermathecal valves, a major site of nex-1 protein localization. Recombinant nex-1 protein was expressed in yeast, isolated by calcium-dependent binding to acidic phospholipids, and its membrane binding and aggregating activities characterized using bovine chromaffin granules as a representative intracellular substrate. Binding to granule membranes was promoted by calcium with half-maximal binding seen at 630 microM calcium. Chromaffin granule aggregation was similarly promoted by the nex-1 protein at 630 microM calcium. This low sensitivity to calcium suggests the annexin can only be activated in vivo near the plasma membrane or other sources of calcium. Sequences including the nex-1 promoter were fused to the gene for green fluorescent protein and this construct was introduced into nematodes by microinjection. Examination of transgenic offspring revealed specific nex-1 promoter activity in the pharynx, the hypodermal cells, the vulva, and the spermathecal valve, locations in which the annexin may function in collagen secretion/deposition and membrane-membrane interactions. A sensitive anti-nex-1 antibody labelled with rhodamine was injected into body cavities of the nematode but did not detect extracellular nex-1 protein. Therefore, this annexin is apparently cytosolic and may function on the cytoplasmic side of the plasma membrane of the spermathecal valve to chaperon the folding of this membrane during the opening and closing of the valve.
Collapse
Affiliation(s)
- S N Daigle
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
19
|
Wen Y, Edelman JL, Kang T, Sachs G. Lipocortin V may function as a signaling protein for vascular endothelial growth factor receptor-2/Flk-1. Biochem Biophys Res Commun 1999; 258:713-21. [PMID: 10329451 DOI: 10.1006/bbrc.1999.0678] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Binding of vascular endothelial growth factor (VEGF) to its receptor, VEGFR-2 (Flk-1/KDR), induces dimerization and activation of the tyrosine kinase domain of the receptor, resulting in autophosphorylation of cytoplasmic tyrosine residues used as docking sites for signaling proteins that relay the signals for cell proliferation, migration, and permeability enhancement. We explored the VEGF/receptor signaling pathway by performing a two-hybrid screen of a rat lung cDNA library in yeast using the intracellular domain of rat VEGFR-2 as bait. Two clones encoding lipocortin V were isolated. Subsequent studies with the yeast two-hybrid assay showed that the complete intracellular domain of VEGFR-2 was required for the interaction. Co-immunoprecipitation of translated proteins confirmed the interaction between the VEGF receptor and lipocortin V. VEGF induced a rapid tyrosine phosphorylation of lipocortin V in human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with antisense oligodeoxyribonucleotide (ODN) for lipocortin V significantly inhibited VEGF-induced cell proliferation, which was accompanied by a decrease in protein synthesis and tyrosine phosphorylation of lipocortin V. Our results indicate that lipocortin V may function as a signaling protein for VEGFR-2 by directly interacting with the intracellular domain of the receptor and appears to be involved in regulation of vascular endothelial cell proliferation mediated by VEGFR-2.
Collapse
Affiliation(s)
- Y Wen
- Membrane Biology Laboratory, Department of Medicine, West, Los Angeles VA Medical Center and UCLA, Los Angeles, California, 90073, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Annexins, protein kinases C and cytosolic phospholipase A2 belong to three families of ubiquitous cytoplasmic proteins involved in signal transduction. All annexins share the property of binding to phospholipids in the presence of calcium. Most annexins are substrates for protein kinases C except annexin V, the most ubiquitous and abundant annexin. Protein kinases C (PKC) belong to three distinct groups of kinases, conventional PKCs (cPKCs) that depend on calcium, diacylglycerol and negatively charged phospholipids for their activity, novel PKCs (nPKCs) and atypical PKCs (aPKCs), that do not require calcium for their activity, although they both require negatively charged phospholipids. Cytosolic phospholipase A2 (cPLA2) depends on calcium for its catalytic activity as well as on serine phosphorylation by MAP kinases. We report that annexin V modulates the activity of cPKCs as well as of cPLA2 by interfering with their ability to bind to negatively charged phospholipids and calcium. We propose that annexin V could interfere with the calcium and phospholipid signalling pathway.
Collapse
Affiliation(s)
- F Russo-Marie
- Institut Cochin de Génétique Moléculaire, INSERM U332, Paris, France.
| |
Collapse
|
21
|
McCarter J, Bartlett B, Dang T, Schedl T. On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 1999; 205:111-28. [PMID: 9882501 DOI: 10.1006/dbio.1998.9109] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior to fertilization, oocytes undergo meiotic maturation (cell cycle progression) and ovulation (expulsion from the ovary). To begin the study of these processes in Caenorhabditis elegans, we have defined a time line of germline and somatic events by video microscopy. As the oocyte matures, its nuclear envelope breaks down and its cell cortex rearranges. Immediately thereafter, the oocyte is ovulated by increasing contraction of the myoepithelial gonadal sheath and relaxation of the distal spermatheca. By systematically altering the germ cell contents of the hermaphrodite using mutant strains, we have uncovered evidence of four cell-cell interactions that regulate maturation and ovulation. (1) Both spermatids and spermatozoa induce oocyte maturation. In animals with a feminized germline, maturation is inhibited and oocytes arrest in diakinesis. The introduction of sperm by mating restores maturation. (2) Sperm also directly promote sheath contraction. In animals with a feminized or tumorous germline, contractions are infrequent, whereas in animals with a masculinized germline or with sperm introduced by mating, contractions are frequent. (3 and 4) The maturing oocyte both induces spermathecal dilation and modulates sheath contractions at ovulation; dilation of the distal spermatheca and sharp increases in sheath contraction rates are only observed in the presence of a maturing oocyte.
Collapse
Affiliation(s)
- J McCarter
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | | | | | | |
Collapse
|
22
|
Mayne J, Robinson JJ. Calcium-protein interactions in the extracellular environment: calcium binding, activation, and immunolocalization of a collagenase/gelatinase activity expressed in the sea urchin embryo. J Cell Biochem 1998; 71:546-58. [PMID: 9827700 DOI: 10.1002/(sici)1097-4644(19981215)71:4<546::aid-jcb9>3.0.co;2-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have purified and characterized a collagenase/gelatinase activity expressed during sea urchin embryonic development. The native molecular mass was determined to be 160 kDa, while gelatin substrate gel zymography revealed an active species of 41 kDa, suggesting that the native enzyme is a tetramer of active subunits. Incubation in the presence of EGTA resulted in nearly complete loss of activity and this effect could be reversed by calcium. Calcium-induced reactivation appeared to be cooperative and occurred with an apparent kd value of 3.7 mM. Two modes of calcium binding to the 41-kDa subunit were detected; up to 80 moles of calcium bound with a kd value of 0.5 mM, while an additional 120 moles bound with a kd value of 5 mM. Amino acid analysis revealed a carboxy plus carboxyamide content of 24.3 mol/100 mol, indicating the availability of substantial numbers of weak Ca2+-binding sites. Calcium binding did not result in either secondary or quaternary structural changes in the collagenase/gelatinase, suggesting that Ca2+ may facilitate activation through directly mediating the binding of substrate to the enzyme. The collagenase/gelatinase activity was detected in blastocoelic fluid and in the hyalin fraction dissociated from 1-h-old embryos. Immunolocalization studies revealed two storage compartments in the egg; cortical granules and small granules/vesicles dispersed throughout the cytoplasm. After fertilization, the antigen was detected in both the apical and basal extracellular matrices, the hyaline layer, and basal lamina, respectively.
Collapse
Affiliation(s)
- J Mayne
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | | |
Collapse
|
23
|
Avila-Sakar AJ, Creutz CE, Kretsinger RH. Crystal structure of bovine annexin VI in a calcium-bound state. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1387:103-16. [PMID: 9748523 DOI: 10.1016/s0167-4838(98)00111-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The crystal structure of a calcium-bound form of bovine annexin VI has been determined with X-ray diffraction data to 2.9 A by molecular replacement. Six Ca2+ ions were found, five in AB loops, one in a DE loop. Two loops (II-AB, which binds calcium, and V-AB, which does not) have conformations that differ significantly from those in calcium-free, human recombinant annexin VI. There are only small differences between the calci- and the apo-annexin VI in the rest of the molecule. Calcium by itself does not promote a major conformational change.
Collapse
Affiliation(s)
- A J Avila-Sakar
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
24
|
Mayne J, Robinson JJ. The sea urchin egg yolk granule is a storage compartment for HCL-32, an extracellular matrix protein. Biochem Cell Biol 1998. [DOI: 10.1139/o98-009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have utilized protein gel blot analysis and immunogold labelling to define the intracellular storage compartment for HCL-32, a 32-kDa protein component of the sea urchin embryonic extracellular matrices, the hyaline layer and basal lamina. Anti-HCL-32 antiserum specifically labelled yolk granules in unfertilized eggs. Cortical granules, mitochondria, sparse granules, and lipid vacuoles were not labelled. Label continued to be detected in the yolk granules through to the blastula stage of development. However, by the gastrula stage no labelling was detected in the yolk granules. In protein gel blot analysis HCL-32 was detected in yolk granules prepared from unfertilized eggs. These results clearly define the yolk granule as a storage compartment for HCL-32, an extracellular matrix protein.Key words: embryo, yolk granule, extracellular matrix.
Collapse
|
25
|
Creutz CE, Tomsig JL, Snyder SL, Gautier MC, Skouri F, Beisson J, Cohen J. The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J Biol Chem 1998; 273:1393-402. [PMID: 9430674 DOI: 10.1074/jbc.273.3.1393] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In an attempt to identify proteins that might underlie membrane trafficking processes in ciliates, calcium-dependent, phospholipid-binding proteins were isolated from extracts of Paramecium tetraurelia. The major protein obtained, named copine, had a mass of 55 kDa, bound phosphatidylserine but not phosphatidylcholine at micromolar levels of calcium but not magnesium, and promoted lipid vesicle aggregation. The sequence of a 920-base pair partial cDNA revealed that copine is a novel protein that contains a C2 domain likely to be responsible for its membrane active properties. Paramecium was found to have two closely related copine genes, CPN1 and CPN2. Current sequence data bases indicate the presence of multiple copine homologs in green plants, nematodes, and humans. The full-length sequences reveal that copines consist of two C2 domains at the N terminus followed by a domain similar to the A domain that mediates interactions between integrins and extracellular ligands. A human homolog, copine I, was expressed in bacteria as a fusion protein with glutathione S-transferase. This recombinant protein exhibited calcium-dependent phospholipid binding properties similar to those of Paramecium copine. An antiserum raised against a fragment of human copine I was used to identify chromobindin 17, a secretory vesicle-binding protein, as a copine. This association with secretory vesicles, as well the general ability of copines to bind phospholipid bilayers in a calcium-dependent manner, suggests that these proteins may function in membrane trafficking.
Collapse
Affiliation(s)
- C E Creutz
- Department of Pharmacology, University of Virginia, Charlottesville 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- V Gerke
- Institute for Medical Biochemistry, ZMBE, University of Münster, Germany
| | | |
Collapse
|
27
|
Kawasaki H, Avila-Sakar A, Creutz CE, Kretsinger RH. The crystal structure of annexin VI indicates relative rotation of the two lobes upon membrane binding. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1313:277-82. [PMID: 8898865 DOI: 10.1016/0167-4889(96)00100-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The crystal structure of bovine liver annexin VI has been determined to low resolution by molecular replacement. The first lobe (domains 1-4) is rotated about 90 degrees relative to the second lobe (domains 5-8). Since the same crystal form (P4(3), 68 X 68 X 205 A) grew from (NH4)2SO4, polyethylene glycol, and sodium acetate with and without added calcium, this probably reflects the structure in solution. When bound to a lipid monolayer both lobes of annexin VI are coplanar. This implies a significant change in conformation upon binding to membranes.
Collapse
Affiliation(s)
- H Kawasaki
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | | | | | |
Collapse
|
28
|
Dubois T, Oudinet JP, Mira JP, Russo-Marie F. Annexins and protein kinases C. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1313:290-4. [PMID: 8898867 DOI: 10.1016/0167-4889(96)00102-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Annexins and protein kinases C belong to two distinct families of ubiquitous cytoplasmic proteins involved in signal transduction. All annexins share the property of binding calcium and phospholipids in the presence of calcium. Protein kinases C belong to three distinct groups of kinases: cPKCs (conventional PKCs) depend on calcium, diacylglycerol and negatively charged phospholipids for their activity, nPKCs (novel PKCs) depend on diacylglycerol and negatively charged phospholipids and aPKCs (atypical PKCs) only require negatively charged phospholipids. Almost all annexins are both in vitro and in vivo substrates for PKCs except annexin V. All annexins have a putative binding site for PKCs but only annexin V would possess a potential pseudo-substrate site. We propose that annexin V modulates the activity of some cPKCs on their substrates which may be the other annexins.
Collapse
Affiliation(s)
- T Dubois
- INSERM U 332, Institut Cochin de Génétique Moléculaire (ICGM), Paris, France
| | | | | | | |
Collapse
|