1
|
Faber GP, Nadav-Eliyahu S, Shav-Tal Y. Nuclear speckles - a driving force in gene expression. J Cell Sci 2022; 135:275909. [PMID: 35788677 DOI: 10.1242/jcs.259594] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear speckles are dynamic membraneless bodies located in the cell nucleus. They harbor RNAs and proteins, many of which are splicing factors, that together display complex biophysical properties dictating nuclear speckle formation and maintenance. Although these nuclear bodies were discovered decades ago, only recently has in-depth genomic analysis begun to unravel their essential functions in modulation of gene activity. Major advancements in genomic mapping techniques combined with microscopy approaches have enabled insights into the roles nuclear speckles may play in enhancing gene expression, and how gene positioning to specific nuclear landmarks can regulate gene expression and RNA processing. Some studies have drawn a link between nuclear speckles and disease. Certain maladies either involve nuclear speckles directly or dictate the localization and reorganization of many nuclear speckle factors. This is most striking during viral infection, as viruses alter the entire nuclear architecture and highjack host machinery. As discussed in this Review, nuclear speckles represent a fascinating target of study not only to reveal the links between gene positioning, genome subcompartments and gene activity, but also as a potential target for therapeutics.
Collapse
Affiliation(s)
- Gabriel P Faber
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shani Nadav-Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
2
|
Razin SV, Gavrilov AA, Iarovaia OV. Modification of Nuclear Compartments and the 3D Genome in the Course of a Viral Infection. Acta Naturae 2020; 12:34-46. [PMID: 33456976 PMCID: PMC7800604 DOI: 10.32607/actanaturae.11041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
The review addresses the question of how the structural and functional compartmentalization of the cell nucleus and the 3D organization of the cellular genome are modified during the infection of cells with various viruses. Particular attention is paid to the role of the introduced changes in the implementation of the viral strategy to evade the antiviral defense systems and provide conditions for viral replication. The discussion focuses on viruses replicating in the cell nucleus. Cytoplasmic viruses are mentioned in cases when a significant reorganization of the nuclear compartments or the 3D genome structure occurs during an infection with these viruses.
Collapse
Affiliation(s)
- S. V. Razin
- Institute of Gene Biology Russian Academy of Sciences
| | | | | |
Collapse
|
3
|
Hasenson SE, Shav‐Tal Y. Speculating on the Roles of Nuclear Speckles: How RNA‐Protein Nuclear Assemblies Affect Gene Expression. Bioessays 2020; 42:e2000104. [DOI: 10.1002/bies.202000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah E. Hasenson
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| | - Yaron Shav‐Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| |
Collapse
|
4
|
Punga T, Ciftci S, Nilsson M, Krzywkowski T. In Situ Detection of Adenovirus DNA and mRNA in Individual Cells. ACTA ACUST UNITED AC 2018; 49:e54. [PMID: 30040197 DOI: 10.1002/cpmc.54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infection by DNA viruses such as human adenoviruses (HAdVs) causes a high-level accumulation of viral DNA and mRNA in the cell population. However, the average viral DNA and mRNA content in a heterogeneous cell population does not inevitably reflect the abundance in individual cells. As the vast majority of virus infection studies is carried out using standard experimental procedures with heterogeneous cell populations, there is a need for a method allowing simultaneous detection and quantitative analysis of viral genome accumulation and gene expression in individual infected cells within a population. This article describes a padlock probe-based rolling-circle amplification protocol that allows simultaneous detection of HAdV type 5 (HAdV-5) DNA and various virus-encoded mRNAs, as well as quantitative analysis of HAdV-5 DNA copies and mRNA species, in individual cells within a heterogeneous population. This versatile method can be used to detect the extent of pathogenic DNA virus infection in different cell types over prolonged infection times. Furthermore, simultaneous viral DNA and mRNA quantification in individual cells allows identification of cells in which persistent infections may be established. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sibel Ciftci
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells. J Virol 2016; 90:3411-27. [PMID: 26764008 DOI: 10.1128/jvi.00033-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle.
Collapse
|
6
|
James NJ, Howell GJ, Walker JH, Blair GE. The role of Cajal bodies in the expression of late phase adenovirus proteins. Virology 2010; 399:299-311. [PMID: 20137801 DOI: 10.1016/j.virol.2010.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/10/2009] [Accepted: 01/07/2010] [Indexed: 11/17/2022]
Abstract
Cajal bodies (CBs) are subnuclear structures involved in RNA metabolism. Here we show that, following infection of HeLa cells by adenovirus type 5 (Ad5), CBs fragment and form ordered structures, which we have termed "rosettes". Formation of CB rosettes was prevented by inhibition of viral DNA synthesis and preceded expression of the L4-33K protein. CB rosettes localised to the periphery of E2A-72K-containing replication centers and to the edges of ASF/SF2 and hnRNP A1 ring structures that demarcate sites of viral transcription and splicing. At later times of infection, CB rosettes were undetectable. Furthermore, knock-down of p80-coilin (the major structural protein of CBs) by RNA interference reduced the yield of infectious Ad5 and expression of the late proteins IIIa (from L1), hexon (from L3) and fiber (from L5), whereas the E2A-72K protein was unaffected. We conclude that CBs have an important role in the expression of adenovirus major late gene products.
Collapse
Affiliation(s)
- Nicola J James
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, Room 8.52d, Mount Preston Street, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
7
|
Boyne JR, Colgan KJ, Whitehouse A. Recruitment of the complete hTREX complex is required for Kaposi's sarcoma-associated herpesvirus intronless mRNA nuclear export and virus replication. PLoS Pathog 2008; 4:e1000194. [PMID: 18974867 PMCID: PMC2569588 DOI: 10.1371/journal.ppat.1000194] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 10/02/2008] [Indexed: 12/20/2022] Open
Abstract
A cellular pre-mRNA undergoes various post-transcriptional processing events, including capping, splicing and polyadenylation prior to nuclear export. Splicing is particularly important for mRNA nuclear export as two distinct multi-protein complexes, known as human TREX (hTREX) and the exon-junction complex (EJC), are recruited to the mRNA in a splicing-dependent manner. In contrast, a number of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic mRNAs lack introns and are exported by the virus-encoded ORF57 protein. Herein we show that ORF57 binds to intronless viral mRNAs and functions to recruit the complete hTREX complex, but not the EJC, in order assemble an export component viral ribonucleoprotein particle (vRNP). The formation of this vRNP is mediated by a direct interaction between ORF57 and the hTREX export adapter protein, Aly. Aly in turn interacts directly with the DEAD-box protein UAP56, which functions as a bridge to recruit the remaining hTREX proteins to the complex. Moreover, we show that a point mutation in ORF57 which disrupts the ORF57-Aly interaction leads to a failure in the ORF57-mediated recruitment of the entire hTREX complex to the intronless viral mRNA and inhibits the mRNAs subsequent nuclear export and virus replication. Furthermore, we have utilised a trans-dominant Aly mutant to prevent the assembly of the complete ORF57-hTREX complex; this results in a vRNP consisting of viral mRNA bound to ORF57, Aly and the nuclear export factor, TAP. Strikingly, although both the export adapter Aly and the export factor TAP were present on the viral mRNP, a dramatic decrease in intronless viral mRNA export and virus replication was observed in the absence of the remaining hTREX components (UAP56 and hTHO-complex). Together, these data provide the first direct evidence that the complete hTREX complex is essential for the export of KSHV intronless mRNAs and infectious virus production.
Collapse
Affiliation(s)
- James R. Boyne
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kevin J. Colgan
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Adrian Whitehouse
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Ishihama Y, Tadakuma H, Tani T, Funatsu T. The dynamics of pre-mRNAs and poly(A)+ RNA at speckles in living cells revealed by iFRAP studies. Exp Cell Res 2007; 314:748-62. [PMID: 18053984 DOI: 10.1016/j.yexcr.2007.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 11/19/2022]
Abstract
Speckles are subnuclear domains where pre-mRNA splicing factors accumulate in the interchromatin space. To investigate the dynamics of mRNAs at speckles, fluorescently labeled Drosophila Fushitarazu (ftz) pre-mRNAs were microinjected into the nuclei of Cos7 cells and the dissociation kinetics of pre-mRNAs from speckles was analyzed using photobleaching techniques. The microinjected ftz pre-mRNAs accumulated in speckles in an intron-dependent manner and were spliced and exported to the cytoplasm with a half-time of about 10 min. Dissociation of the accumulated pre-mRNAs in speckles exhibited rapid diffusion and slow-dissociation of about 100 s. The slow-dissociation required metabolic energy of ATP. Two types of splice-defective mutated mRNAs dissociated from the speckle with a time constant similar to that of wild-type mRNA, indicating that slow-dissociation was not coupled to the splicing reaction. Furthermore, some pre-mRNAs shuttled between speckles and nucleoplasm, suggesting that pre-mRNAs repeatedly associated with and dissociated from speckles until introns were removed. Next, endogenous poly(A)+ RNA was visualized by injecting Cy3-labeled 2'O-methyl oligo(U)22 probes. Some poly(A)+ RNA distributed diffusely within the nucleus, but some of them accumulated in speckles and dissociated at time constant of about 100 s.
Collapse
Affiliation(s)
- Yo Ishihama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | |
Collapse
|
9
|
Bridge E. Simultaneous detection of adenovirus RNA and cellular proteins by fluorescent labeling in situ. METHODS IN MOLECULAR MEDICINE 2007; 131:63-72. [PMID: 17656775 DOI: 10.1007/978-1-59745-277-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Investigating the cell biology of gene expression requires methodologies for localizing RNA relative to proteins involved in RNA transcription, processing, and export. Adenovirus is an important model system for the analysis of eukaryotic gene expression and is also being used to investigate the organization of gene expression within the nucleus. Here are described the combined in situ hybridization and immunofluorescence staining techniques that have been used to study the localization of viral RNA relative to nuclear structures that contain splicing factors.
Collapse
|
10
|
Gonzalez R, Huang W, Finnen R, Bragg C, Flint SJ. Adenovirus E1B 55-kilodalton protein is required for both regulation of mRNA export and efficient entry into the late phase of infection in normal human fibroblasts. J Virol 2006; 80:964-74. [PMID: 16378998 PMCID: PMC1346875 DOI: 10.1128/jvi.80.2.964-974.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein is required for selective nuclear export of viral late mRNAs from the nucleus and concomitant inhibition of export of cellular mRNAs in HeLa cells and some other human cell lines, but its contributions(s) to replication in normal human cells is not well understood. We have therefore examined the phenotypes exhibited by viruses carrying mutations in the E1B 55-kDa protein coding sequence in normal human fibroblast (HFFs). Ad5 replicated significantly more slowly in HFFs than it does in tumor cells, a difference that is the result of delayed entry into the late phase of infection. The A143 mutation, which specifically impaired export of viral late mRNAs from the nucleus in infected HeLa cells (R. A. Gonzalez and S. J. Flint, J. Virol. 76:4507-4519, 2002), induced a more severe defect in viral mRNA export in HFFs. This observation indicates that the E1B 55-kDa protein regulates mRNA export during the late phase of infection of normal human cells. Other mutants exhibited phenotypes not observed in HeLa cells. In HFFs infected by the null mutant Hr6, synthesis of viral late mRNAs and proteins was severely impaired. Such defects in late gene expression were the result of inefficient progression into the late phase of infection, for viral DNA synthesis was 10-fold less efficient in Hr6-infected HFFs than in cells infected by Ad5. Similar, but less severe, defects in viral DNA synthesis were induced by the insertion mutation H224, which has been reported to inhibit binding of the E1B 55-kDa protein to p53 (C. C. Kao, P. R. Yew, and A. J. Berk, Virology 179:806-814, 1990).
Collapse
Affiliation(s)
- Ramon Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
11
|
Flint SJ, Huang W, Goodhouse J, Kyin S. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs. Virology 2005; 337:7-17. [PMID: 15914216 DOI: 10.1016/j.virol.2005.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/20/2004] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
12
|
Bridger JM, Kalla C, Wodrich H, Weitz S, King JA, Khazaie K, Kräusslich HG, Lichter P. Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 2005; 302:180-93. [PMID: 15561100 DOI: 10.1016/j.yexcr.2004.07.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/30/2004] [Indexed: 12/15/2022]
Abstract
RNA polymerase II transcripts are confined to nuclear compartments. A detailed analysis of the nuclear topology of RNA from individual genes was performed for transcripts from the marker gene coding for chloramphenicol acetyltransferase, expressed at a high level from the HTLV-1 LTR promoter. The construct was transfected into A293 cells where the RNA was organized as an extensive reticular network. We also studied the RNA distribution from combinations of neighboring HIV and bacterial resistance genes that co-integrated within the genome of COS-7 cells-revealing spherical or track-like accumulations of RNA that were extensively branched. There were many nuclei with distinct but overlapping RNA accumulations. Since the coding genes localized at the overlapping points, the RNAs are synthesized at a common region and diverge. The correlation between the frequency of the separation of the transcripts and the physical distance of the respective genes suggests a subcompartmentalization in the microenvironment of genes on the basis of geometric parameters. Thus, the more distant the genes are on the same chromosome, the more likely they are confined to separated subcompartments of an extensive reticular system. Co-delineation of the RNA transcripts with Cajal bodies and chromosome territories indicated the organization of nuclear RNA transcripts in a reticular interchromosome domain compartment.
Collapse
Affiliation(s)
- Joanna M Bridger
- Abteilung Molekulare Genetik, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Molenaar C, Abdulle A, Gena A, Tanke HJ, Dirks RW. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. ACTA ACUST UNITED AC 2004; 165:191-202. [PMID: 15117966 PMCID: PMC2172041 DOI: 10.1083/jcb.200310139] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many of the protein factors that play a role in nuclear export of mRNAs have been identified, but still little is known about how mRNAs are transported through the cell nucleus and which nuclear compartments are involved in mRNA transport. Using fluorescent 2'O-methyl oligoribonucleotide probes, we investigated the mobility of poly(A)+ RNA in the nucleoplasm and in nuclear speckles of U2OS cells. Quantitative analysis of diffusion using photobleaching techniques revealed that the majority of poly(A)+ RNA move throughout the nucleus, including in and out of speckles (also called SC-35 domains), which are enriched for splicing factors. Interestingly, in the presence of the transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole, the association of poly(A)+ RNA with speckles remained dynamic. Our results show that RNA movement is energy dependent and that the proportion of nuclear poly(A)+ RNA that resides in speckles is a dynamic population that transiently interacts with speckles independent of the transcriptional status of the cell. Rather than the poly(A)+ RNA within speckles serving a stable structural role, our findings support the suggestion of a more active role of these regions in nuclear RNA metabolism and/or transport.
Collapse
Affiliation(s)
- Chris Molenaar
- Dept. of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Netherlands
| | | | | | | | | |
Collapse
|
14
|
Lindberg A, Gama-Carvalho M, Carmo-Fonseca M, Kreivi JP. A single RNA recognition motif in splicing factor ASF/SF2 directs it to nuclear sites of adenovirus transcription. J Gen Virol 2004; 85:603-608. [PMID: 14993643 DOI: 10.1099/vir.0.19722-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SR protein ASF/SF2 is a general pre-mRNA splicing factor as well as a regulator of alternative splicing. Data presented here show that ASF/SF2 is efficiently recruited to sites in the nucleus where adenovirus genes are transcribed and the resulting pre-mRNAs are processed. At the intermediate stages of a productive infection, ASF/SF2 colocalizes with small nuclear ribonucleoprotein particles (snRNPs), splicing factors in ring-like structures surrounding viral replication centres and, at late stages of the infection, in enlarged speckles. Results presented here demonstrate that ASF/SF2 requires only one of the two RNA-recognition motifs (RRMs) present in the protein for its efficient recruitment to the ring-like structures, where viral pre-mRNAs are transcribed and processed, and that the arginine/serine-rich (RS) domain in ASF/SF2 is both redundant and insufficient for the translocation of the protein to active viral RNA polymerase II genes in adenovirus-infected cells.
Collapse
Affiliation(s)
- Anette Lindberg
- Department of Medical Biochemistry & Microbiology, Unit of Microbiology, Uppsala University, Box 582, S-751 23 Uppsala, Sweden
| | - Margarida Gama-Carvalho
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1699 Lisboa Codex, Portugal
| | - Maria Carmo-Fonseca
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1699 Lisboa Codex, Portugal
| | - Jan-Peter Kreivi
- Department of Medical Biochemistry & Microbiology, Unit of Microbiology, Uppsala University, Box 582, S-751 23 Uppsala, Sweden
| |
Collapse
|
15
|
Custódio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA (NEW YORK, N.Y.) 2004; 10:622-33. [PMID: 15037772 PMCID: PMC1370553 DOI: 10.1261/rna.5258504] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies over the past years indicate that there is extensive coupling between nuclear export of mRNA and pre-mRNA processing. Here, we visualized the distribution of exon junction complex (EJC) proteins and RNA export factors relative to sites of abundant pre-mRNA synthesis in the nucleus. We analyzed both HeLa cells infected with adenovirus and murine erythroleukemia (MEL) cells stably transfected with the human beta-globin gene. Using in situ hybridization and confocal microscopy, we observe accumulation of EJC proteins (REF/Aly, Y14, SRm160, UAP56, RNPS1, and Magoh) and core spliceosome components (U snRNPs) at sites of transcription. This suggests that EJC proteins bind stably to pre-mRNA cotranscriptionally. No concentration of the export factors NXF1/TAP, p15, and Dbp5 was detected on nascent transcripts, arguing that in mammalian cells these proteins bind the mRNA shortly before or after release from the sites of transcription. These results also suggest that binding of EJC proteins to the mRNA is not sufficient to recruit TAP-p15, consistent with recent findings showing that the EJC does not play a crucial role in mRNA export. Contrasting to the results obtained in MEL cells expressing normal human beta-globin transcripts, mutant pre-mRNAs defective in splicing and 3'end processing do not colocalize with SRm160, REF, UAP56, or Sm proteins. This shows that the accumulation of EJC proteins at transcription sites requires efficient processing of the nascent pre-mRNAs, arguing that transcription per se is not sufficient for the stable assembly of the EJC.
Collapse
Affiliation(s)
- Noélia Custódio
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Kiesler E, Visa N. Intranuclear pre-mRNA trafficking in an insect model system. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 35:99-118. [PMID: 15113081 DOI: 10.1007/978-3-540-74266-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Eva Kiesler
- Department of Molecular Biology and Functional Genomics, Stockholm University, 10961 Stockholm, Sweden
| | | |
Collapse
|
17
|
Bridge E, Mattsson K, Aspegren A, Sengupta A. Adenovirus early region 4 promotes the localization of splicing factors and viral RNA in late-phase interchromatin granule clusters. Virology 2003; 311:40-50. [PMID: 12832201 DOI: 10.1016/s0042-6822(03)00189-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenovirus early region 4 (E4) mutants are defective for late gene expression and show reduced levels of late RNA in both the cytoplasm and the nucleus. These reductions reflect a posttranscriptional defect in the production of viral late RNA. We find that E4 mutants form replication centers during the initial stages of infection and are able to redistribute splicing factors to transcription sites that surround viral replication centers. However, E4 mutant infected cultures have reduced numbers of cells with splicing factors localized in enlarged interchromatin granule clusters during the late phase. Although the late-phase interchromatin granule clusters that formed in wild-type and E4 mutant infected cells had similar levels of poly(A) RNA, they contained reduced levels of viral RNA. These results suggest that E4 mutants do not efficiently accumulate viral late RNA in late-phase interchromatin granule clusters following the onset of late RNA transcription.
Collapse
Affiliation(s)
- Eileen Bridge
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
Adenoviruses are processed and assembled in the nuclei of infected cells and thereby produce significant perturbations to their structure and function. As the complex interactions that occur in the nuclei of uninfected cells are not yet fully understood many of the changes seen on infection have been described mainly in morphological terms. This chapter attempts to place more recent findings into this context and demonstrates that adenoviruses are able to hijack many cellular processes and enzymes to their advantage. In particular, modifications to nuclear PODs and nucleoli have more recently been explored in greater detail.
Collapse
Affiliation(s)
- W C Russell
- BMS Building, University of St Andrews, Fife KY16 9ST, Fife, Scotland, UK.
| | | |
Collapse
|
19
|
Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 2003; 272:287-330. [PMID: 12747554 DOI: 10.1007/978-3-662-05597-7_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the E1B 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08844, USA.
| | | |
Collapse
|
20
|
Akusjärvi G, Stévenin J. Remodelling of the host cell RNA splicing machinery during an adenovirus infection. Curr Top Microbiol Immunol 2003; 272:253-86. [PMID: 12747553 DOI: 10.1007/978-3-662-05597-7_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenovirus makes extensive use of RNA splicing to produce a complex set of spliced mRNAs during virus replication. All transcription units, except pIX and IVa2, encode multiple alternatively spliced mRNAs. The accumulation of viral mRNAs is subjected to a temporal regulation, a mechanism that ensures that proteins that are needed at certain stages of the viral life cycle are produced. The complex interaction between host cell RNA splicing factors and viral regulatory elements has been studied intensely during the last decade. Such studies have begun to produce a picture of how adenovirus remodels the host cell RNA splicing machinery to orchestrate the shift from the early to the late profile of viral mRNA accumulation. Recent progress has to a large extent focused on the mechanisms regulating E1A and L1 alternative splicing. Here we will review the current knowledge of cis-acting sequence element, trans-acting factors and mechanisms controlling E1A and L1 alternative splicing.
Collapse
Affiliation(s)
- G Akusjärvi
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, 751 23 Uppsala, Sweden
| | | |
Collapse
|
21
|
Shopland LS, Johnson CV, Lawrence JB. Evidence that all SC-35 domains contain mRNAs and that transcripts can be structurally constrained within these domains. J Struct Biol 2002; 140:131-9. [PMID: 12490161 DOI: 10.1016/s1047-8477(02)00507-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental question of mRNA metabolism concerns the spatial organization of the steps involved in generating mature transcripts and their relationship to SC-35 domains, nuclear compartments enriched in mRNA metabolic factors and poly A+ RNA. Because poly A+ RNA in SC-35 domains remains after transcription inhibition, a prevailing view has been that most or all SC-35 domains do not contain protein-encoding mRNAs but stable RNAs with nuclear functions and thus that these compartments do not have direct roles in mRNA synthesis or transport. However, the transcription, splicing, and transport of transcripts from a specific gene have been shown to occur in association with two of these 15-30 nuclear compartments. Here we show that virtually all SC-35 domains can contain specific mRNAs and that these persist in SC-35 domains after treatment with three different transcription-inhibitory drugs. This suggests perturbation of an mRNA transport step that normally occurs in SC-35 domains and is post-transcriptional but still dependent on ongoing transcription. Finally, even after several hours of transcription arrest, these transcripts do not disperse from SC-35 domains, indicating that they are structurally constrained within them. Our findings importantly suggest a spatially direct role for all SC-35 domains in the coupled steps of mRNA metabolism and transport.
Collapse
Affiliation(s)
- Lindsay S Shopland
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North (S3-138), Worcester, MA 01655-0002, USA
| | | | | |
Collapse
|
22
|
Aspegren A, Bridge E. Release of snRNP and RNA from transcription sites in adenovirus-infected cells. Exp Cell Res 2002; 276:273-83. [PMID: 12027457 DOI: 10.1006/excr.2002.5530] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small nuclear ribonucleoprotein (snRNP) splicing factors colocalize with nascent RNA in the nucleus of adenovirus-infected cells in a pattern that appears as a series of rings surrounding viral replication centers. We have studied the release of snRNP and RNA from transcription sites following transcription inhibition by actinomycin D. SnRNP, poly(A) RNA, and viral RNA were no longer detected in the ring pattern following transcription inhibition and were instead detected in nuclear clusters. Release of snRNP from transcription sites was blocked when transcription was inhibited at 4 degrees C, suggesting that release requires temperature-dependent processes. Release of snRNP was also inhibited when transcription was blocked in the presence of 9-beta-D-arabinofuranosyladenine, to inhibit 3'-end cleavage and polyadenylation, or staurosporine, to inhibit kinases. By contrast, release of snRNP was not inhibited when transcription was blocked in the presence of cordycepin, to inhibit RNA polyadenylation without affecting 3'-end cleavage, or okadaic acid, to inhibit phosphatase activity. Our results suggest that temperature-dependent processes involved in the release of splicing factors from transcription sites could include 3'-end cleavage of pre-mRNA and phosphorylation events inhibited by stauropsorine.
Collapse
Affiliation(s)
- Anders Aspegren
- Department of Genetics and Pathology, Uppsala University, Sweden
| | | |
Collapse
|
23
|
Gonzalez RA, Flint SJ. Effects of mutations in the adenoviral E1B 55-kilodalton protein coding sequence on viral late mRNA metabolism. J Virol 2002; 76:4507-19. [PMID: 11932416 PMCID: PMC155063 DOI: 10.1128/jvi.76.9.4507-4519.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Accepted: 01/30/2002] [Indexed: 11/20/2022] Open
Abstract
The human subgroup C adenoviral E1B 55-kDa protein cooperates with the viral E4 Orf6 protein to induce selective export of viral, late mRNAs from the nucleus to the cytoplasm. Previous studies have suggested that such preferential transport of viral mRNA and the concomitant inhibition of export of cellular mRNAs are the result of viral colonization of specialized microenvironments within the nucleus. However, neither the molecular basis of this phenomenon nor the mechanism by which the E1B 55-kDa protein acts has been elucidated. We therefore examined viral late mRNA metabolism in HeLa cells infected with a series of mutant viruses that carry insertions at various positions in the E1B protein coding sequence (P. R. Yew, C. C. Kao, and A. J. Berk, Virology 179:795-805, 1990). All the mutations examined impaired cytoplasmic accumulation of viral L2 mRNAs and reduced L2 mRNA export efficiency. However, in most cases these defects could be ascribed to reduced E1B 55-kDa protein concentration or the unexpected failure of the altered E1B proteins to enter the nucleus efficiently. The latter property, the pleiotropic defects associated with all the mutations that impaired nuclear entry of the E1B protein, and consideration of its primary sequence suggest that these insertions result in misfolding of the protein. Insertion of four amino acids at residue 143 also inhibited viral mRNA export but resulted in increased rather than decreased accumulation of the E1B 55-kDa protein in the nucleus. This mutation specifically impaired the previously described association of the E1B protein with intranuclear structures that correspond to sites of adenoviral DNA replication and transcription (D. Ornelles and T. Shenk, J. Virol. 65:424-439, 1991) and the colocalization of the E1B and E4 Orf6 proteins. As this insertion has been shown to inhibit the interaction of the E1B with the E4 Orf6 protein in infected cell extracts (S. Rubenwolf, H. Schütt, M. Nevels, H. Wolf, and T. Dobner, J. Virol. 71:1115-1123, 1997), these phenotypes provide direct support for the hypothesis that selective viral mRNA export is determined by the functional organization of the infected cell nucleus.
Collapse
Affiliation(s)
- Ramon A Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
24
|
Souquere-Besse S, Pichard E, Filhol O, Legrand V, Rosa-Calatrava M, Hovanessian AG, Cochet C, Puvion-Dutilleul F. Adenovirus infection targets the cellular protein kinase CK2 and RNA-activated protein kinase (PKR) into viral inclusions of the cell nucleus. Microsc Res Tech 2002; 56:465-78. [PMID: 11921349 DOI: 10.1002/jemt.10060] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of the adenovirus infection on the distribution of the cellular protein kinase CK2 and double-stranded RNA-activated protein kinase (PKR) were examined at the ultrastructural level. Immunogold labeling revealed the redistribution of CK2 subunits and PKR to morphologically distinct structures of the cell nucleus. The electron-clear amorphous structures, designated pIX nuclear bodies in our previous work (Rosa-Calatrava et al., 2001), contained CK2 alpha and PKR. The protein crystals, which result from the regular assembly of hexon, penton base, and fiber proteins [Boulanger et al. (1970) J Gen Virol 6:329-332], contained CK2 beta and PKR. Both viral structures were devoid of viral RNA, including the PKR-inhibitor VA1 RNA generated by the RNA polymerase III. Instead, VA1 RNA accumulated in PKR-free viral compact rings in which the viral RNA generated by the RNA polymerase II was excluded.
Collapse
|
25
|
Affiliation(s)
- T Dobner
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
26
|
Hendzel MJ, Kruhlak MJ, MacLean NA, Boisvert F, Lever MA, Bazett-Jones DP. Compartmentalization of regulatory proteins in the cell nucleus. J Steroid Biochem Mol Biol 2001; 76:9-21. [PMID: 11384859 DOI: 10.1016/s0960-0760(00)00153-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cell nucleus is increasingly recognized as a spatially organized structure. In this review, the nature and controversies associated with nuclear compartmentalization are discussed. The relationship between nuclear structure and organization of proteins involved in the regulation of RNA polymerase II-transcribed genes is then discussed. Finally, very recent data on the mobility of these proteins within the cell nucleus is considered and their implications for regulation through compartmentalization of proteins and genomic DNA are discussed.
Collapse
Affiliation(s)
- M J Hendzel
- Department of Oncology and Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave., Alta, T6G 1Z2, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Johnson C, Primorac D, McKinstry M, McNeil J, Rowe D, Lawrence JB. Tracking COL1A1 RNA in osteogenesis imperfecta. splice-defective transcripts initiate transport from the gene but are retained within the SC35 domain. J Cell Biol 2000; 150:417-32. [PMID: 10931857 PMCID: PMC2175183 DOI: 10.1083/jcb.150.3.417] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Accepted: 06/28/2000] [Indexed: 11/22/2022] Open
Abstract
This study illuminates the intra-nuclear fate of COL1A1 RNA in osteogenesis imperfecta (OI) Type I. Patient fibroblasts were shown to carry a heterozygous defect in splicing of intron 26, blocking mRNA export. Both the normal and mutant allele associated with a nuclear RNA track, a localized accumulation of posttranscriptional RNA emanating to one side of the gene. Both tracks had slightly elongated or globular morphology, but mutant tracks were cytologically distinct in that they lacked the normal polar distribution of intron 26. Normal COL1A1 RNA tracks distribute throughout an SC-35 domain, from the gene at the periphery. Normally, almost all 50 COL1A1 introns are spliced at or adjacent to the gene, before mRNA transits thru the domain. Normal COL1A1 transcripts may undergo maturation needed for export within the domain such as removal of a slow-splicing intron (shown for intron 24), after which they may disperse. Splice-defective transcripts still distribute thru the SC-35 domain, moving approximately 1-3 micrometer from the gene. However, microfluorimetric analyses demonstrate mutant transcripts accumulate to abnormal levels within the track and domain. Hence, mutant transcripts initiate transport from the gene, but are impeded in exit from the SC-35 domain. This identifies a previously undefined step in mRNA export, involving movement through an SC-35 domain. A model is presented in which maturation and release for export of COL1A1 mRNA is linked to rapid cycling of metabolic complexes within the splicing factor domain, adjacent to the gene. This paradigm may apply to SC-35 domains more generally, which we suggest may be nucleated at sites of high demand and comprise factors being actively used to facilitate expression of associated loci.
Collapse
Affiliation(s)
- C Johnson
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
28
|
Calado A, Carmo-Fonseca M. Localization of poly(A)-binding protein 2 (PABP2) in nuclear speckles is independent of import into the nucleus and requires binding to poly(A) RNA. J Cell Sci 2000; 113 ( Pt 12):2309-18. [PMID: 10825302 DOI: 10.1242/jcs.113.12.2309] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclei of mammalian cells contain domains, termed nuclear speckles, which are enriched in splicing factors and poly(A) RNA. Although nuclear speckles are thought to represent reservoirs from which splicing factors are recruited to sites of transcription and splicing, the presence of poly(A) RNA in these structures remains enigmatic. An additional component of the speckles is poly(A) binding protein 2 (PABP2), a protein that binds with high affinity to nascent poly(A) tails, stimulating their extension and controlling their length. In this work we investigated whether PABP2 contributes to the targeting of poly(A) RNA to the speckles. The results show that localization of PABP2 in speckles is independent of import of the protein into the nucleus. Inhibition of transcription or poly(A) synthesis at the end of mitosis does not affect nuclear import of PABP2 but prevents its localization to speckles. Furthermore, PABP2 mutants with decreased ability to bind to poly(A) fail to localize to speckles. Taken together the results show that PABP2 localizes to the nuclear speckles as a consequence of its binding to poly(A) RNA, contrasting to splicing factors which assemble into speckles in the absence of newly synthesized transcripts.
Collapse
Affiliation(s)
- A Calado
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Portugal
| | | |
Collapse
|
29
|
Melcák I, Cermanová S, Jirsová K, Koberna K, Malínský J, Raska I. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol Biol Cell 2000; 11:497-510. [PMID: 10679009 PMCID: PMC14788 DOI: 10.1091/mbc.11.2.497] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the present study, the spatial organization of intron-containing pre-mRNAs of Epstein-Barr virus (EBV) genes relative to location of splicing factors is investigated. The intranuclear position of transcriptionally active EBV genes, as well as of nascent transcripts, is found to be random with respect to the speckled accumulations of splicing factors (SC35 domains) in Namalwa cells, arguing against the concept of the locus-specific organization of mRNA genes with respect to the speckles. Microclusters of splicing factors are, however, frequently superimposed on nascent transcript sites. The transcript environment is a dynamic structure consisting of both nascent and released transcripts, i.e., the track-like transcript environment. Both EBV sequences of the chromosome 1 homologue are usually associated with the track, are transcriptionally active, and exhibit in most cases a polar orientation. In contrast to nascent transcripts (in the form of spots), the association of a post-transcriptional pool of viral pre-mRNA (in the form of tracks) with speckles is not random and is further enhanced in transcriptionally silent cells when splicing factors are sequestered in enlarged accumulations. The transcript environment reflects the intranuclear transport of RNA from the sites of transcription to SC35 domains, as shown by concomitant mapping of DNA, RNA, and splicing factors. No clear vectorial intranuclear trafficking of transcripts from the site of synthesis toward the nuclear envelope for export into the cytoplasm is observed. Using Namalwa and Raji cell lines, a correlation between the level of viral gene transcription and splicing factor accumulation within the viral transcript environment has been observed. This supports a concept that the level of transcription can alter the spatial relationship among intron-containing genes, their transcripts, and speckles attributable to various levels of splicing factors recruited from splicing factor reservoirs. Electron microscopic in situ hybridization studies reveal that the released transcripts are directed toward reservoirs of splicing factors organized in clusters of interchromatin granules. Our results point to the bidirectional intranuclear movement of macromolecular complexes between intron-containing genes and splicing factor reservoirs: the recruitment of splicing factors to transcription sites and movement of released transcripts from DNA loci to reservoirs of splicing factors.
Collapse
MESH Headings
- Biological Transport
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/ultrastructure
- Cell Nucleus/virology
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Directed RNA Polymerases/antagonists & inhibitors
- DNA-Directed RNA Polymerases/metabolism
- Genes, Viral/genetics
- Genome, Viral
- Herpesvirus 4, Human/genetics
- Heterogeneous-Nuclear Ribonucleoproteins
- Humans
- Introns/genetics
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Fluorescence
- Nuclear Proteins/metabolism
- Plasmids/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonucleoproteins/metabolism
- Serine-Arginine Splicing Factors
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Spliceosomes/ultrastructure
- Transcription, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- I Melcák
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Czech Republic
| | | | | | | | | | | |
Collapse
|
30
|
Miralles F, Öfverstedt LG, Sabri N, Aissouni Y, Hellman U, Skoglund U, Visa N. Electron tomography reveals posttranscriptional binding of pre-mRNPs to specific fibers in the nucleoplasm. J Cell Biol 2000; 148:271-82. [PMID: 10648560 PMCID: PMC2174289 DOI: 10.1083/jcb.148.2.271] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using electron tomography, we have analyzed whether the Balbiani ring (BR) pre-mRNP particles in transit from the gene to the nuclear pore complex (NPC) are bound to any structure that could impair free diffusion through the nucleoplasm. We show that one-third of the BR particles are in contact with thin connecting fibers (CFs), which in some cases merge into large fibrogranular clusters. The CFs have a specific protein composition different from that of BR particles, as shown by immuno-EM. Moreover, we have identified hrp65 as one of the protein components of the CFs. The sequencing of hrp65 cDNA reveals similarities with hnRNP proteins and splicing factors. However, hrp65 is likely to have a different function because it does not bind to nascent pre-mRNA and is not part of the pre-mRNP itself. Taken together, our observations indicate that pre-mRNPs are not always freely diffusible in the nucleoplasm but interact with fibers of specific structure and composition, which implies that some of the posttranscriptional events that the pre-mRNPs undergo before reaching the NPC occur in a bound state.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biological Transport
- Cell Nucleus/metabolism
- Cell Nucleus/ultrastructure
- Chironomidae
- Chromosomes/ultrastructure
- Cloning, Molecular
- DNA, Complementary/genetics
- Insect Proteins
- Microscopy, Electron/methods
- Models, Biological
- Models, Structural
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/isolation & purification
- RNA Precursors/isolation & purification
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- RNA-Binding Proteins
- Ribonucleoproteins/isolation & purification
- Salivary Glands/ultrastructure
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Francesc Miralles
- Department of Molecular Genome Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lars-Göran Öfverstedt
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Nafiseh Sabri
- Department of Molecular Genome Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Youssef Aissouni
- Institut Paoli Calmettes, INSERM-U119, Cancérologie Expérimentale, F-13009 Marseille, France
| | - Ulf Hellman
- Ludwig Institute for Cancer Research, SE-751 24 Uppsala, Sweden
| | - Ulf Skoglund
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Genome Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Wei X, Somanathan S, Samarabandu J, Berezney R. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 1999; 146:543-58. [PMID: 10444064 PMCID: PMC2150559 DOI: 10.1083/jcb.146.3.543] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 06/25/1999] [Indexed: 11/22/2022] Open
Abstract
Transcription sites are detected by labeling nascent transcripts with BrUTP in permeabilized 3T3 mouse fibroblasts followed by laser scanning confocal microscopy. Inhibition and enzyme digestion studies confirm that the labeled sites are from RNA transcripts and that RNA polymerase I (RP I) and II (RP II) are responsible for nucleolar and extranucleolar transcription, respectively. An average of 2,000 sites are detected per nucleus with over 90% in the extranucleolar compartment where they are arranged in clusters and three-dimensional networklike arrays. The number of transcription sites, their three-dimensional organization and arrangement into functional zones (Wei et al. 1998) is strikingly maintained after extraction for nuclear matrix. Significant levels of total RP II mediated transcription sites (45%) were associated with splicing factor-rich nuclear speckles even though the speckles occupied <10% of the total extranucleolar space. Moreover, the vast majority of nuclear speckles (>90%) had moderate to high levels of associated transcription activity. Transcription sites were found along the periphery as well as inside the speckles themselves. These spatial relations were confirmed in optical sections through individual speckles and after in vivo labeling of nascent transcripts. Our results demonstrate that nuclear speckles and their surrounding regions are major sites of RP II-mediated transcription in the cell nucleus, and support the view that both speckle- and nonspeckle-associated regions of the nucleus contain sites for the coordination of transcription and splicing processes.
Collapse
Affiliation(s)
- Xiangyun Wei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Suryanarayan Somanathan
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Jagath Samarabandu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
32
|
Aspegren A, Rabino C, Bridge E. Organization of splicing factors in adenovirus-infected cells reflects changes in gene expression during the early to late phase transition. Exp Cell Res 1998; 245:203-13. [PMID: 9828117 DOI: 10.1006/excr.1998.4264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spatial distribution of splicing factors is temporally regulated during adenovirus (ad) infection. Here we focus on two splicing factor distribution patterns characteristic of ad-infected cells. During the intermediate phase splicing factors surround sites of viral DNA accumulation in regions of high transcriptional activity. This distribution appears as a series of interconnected rings when viewed by microscopy. We refer to cells with this staining pattern as "ring cells." We have previously shown that at late times after infection, splicing factors are present in discrete structures identified as enlarged interchromatin granules (IGs) that also contain spliced viral RNA. We refer to cells with this pattern as "cluster cells." We determined which steps in viral gene expression occurred in ring and cluster cells. We found that transcription and some splicing of viral late genes had occurred in ring cells. Late RNA was present at transcription sites in ring cells. Cluster cells contained spliced viral late RNA in nuclear IGs and in the cytoplasm. The presence of cluster cells in the infected culture was well correlated with the export of viral RNA to the cytoplasm. Cluster cells had synthesized late proteins. Our data show that the dynamic localization of splicing factors reflects changes in gene expression activity of the infected cell as it switches over to late gene expression.
Collapse
Affiliation(s)
- A Aspegren
- Biomedical Center, Uppsala University, Uppsala, S-75123, Sweden
| | | | | |
Collapse
|
33
|
Hendzel MJ, Kruhlak MJ, Bazett-Jones DP. Organization of highly acetylated chromatin around sites of heterogeneous nuclear RNA accumulation. Mol Biol Cell 1998; 9:2491-507. [PMID: 9725908 PMCID: PMC25517 DOI: 10.1091/mbc.9.9.2491] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Histones found within transcriptionally competent and active regions of the genome are highly acetylated. Moreover, these highly acetylated histones have very short half-lives. Thus, both histone acetyltransferases and histone deacetylases must enrich within or near these euchromatic regions of the interphase chromatids. Using an antibody specific for highly acetylated histone H3, we have investigated the organization of transcriptionally active and competent chromatin as well as nuclear histone acetyltransferase and deacetylase activities. We observe an exclusion of highly acetylated chromatin around the periphery of the nucleus and an enrichment near interchromatin granule clusters (IGCs). The highly acetylated chromatin is found in foci that may reflect the organization of highly acetylated chromatin into "chromonema" fibers. Transmission electron microscopy of Indian muntjac fibroblast cell nuclei indicates that the chromatin associated with the periphery of IGCs remains relatively condensed, most commonly found in domains containing chromatin folded beyond 30 nm. Using electron spectroscopic imaging, we demonstrate that IGCs are clusters of ribonucleoprotein particles. The individual granules comprise RNA-rich fibrils or globular regions that fold into individual granules. Quantitative analysis of individual granules indicates that they contain variable amounts of RNA estimated between 1.5 and >10 kb. We propose that interchromatin granules are heterogeneous nuclear RNA-containing particles, some of which may be pre-mRNA generated by nearby transcribed chromatin. An intermediary zone between the IGC and surrounding chromatin is described that contains factors with the potential to provide specificity to the localization of sequences near IGCs.
Collapse
Affiliation(s)
- M J Hendzel
- Departments of Anatomy and Medical Biochemistry, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
34
|
Almeida F, Saffrich R, Ansorge W, Carmo-Fonseca M. Microinjection of anti-coilin antibodies affects the structure of coiled bodies. J Cell Biol 1998; 142:899-912. [PMID: 9722604 PMCID: PMC2132868 DOI: 10.1083/jcb.142.4.899] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The coiled body is a distinct subnuclear domain enriched in small nuclear ribonucleoprotein particles (snRNPs) involved in processing of pre-mRNA. Although the function of the coiled body is still unknown, current models propose that it may have a role in snRNP biogenesis, transport, or recycling. Here we describe that anti-coilin antibodies promote a specific disappearance of the coiled body in living human cells, thus providing a novel tool for the functional analysis of this structure. Monoclonal antibodies (mAbs) were raised against recombinant human coilin, the major structural protein of the coiled body. Four mAbs are shown to induce a progressive disappearance of coiled bodies within approximately 6 h after microinjection into the nucleus of HeLa cells. After their disappearance, coiled bodies are not seen to re-form, although injected cells remain viable for at least 3 d. Epitope mapping reveals that the mAbs recognize distinct amino acid motifs scattered along the complete coilin sequence. By 24 and 48 h after injection of antibodies that promote coiled body disappearance, splicing snRNPs are normally distributed in the nucleoplasm, the nucleolus remains unaffected, and the cell cycle progresses normally. Furthermore, cells devoid of coiled bodies for approximately 24 h maintain the ability to splice both adenoviral pre-mRNAs and transiently overexpressed human beta-globin transcripts. In conclusion, within the time range of this study, no major nuclear abnormalities are detected after coiled body disappearance.
Collapse
Affiliation(s)
- F Almeida
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1699 Lisboa Codex, Portugal
| | | | | | | |
Collapse
|
35
|
Cunha C, Monjardino J, Cheng D, Krause S, Carmo-Fonseca M. Localization of hepatitis delta virus RNA in the nucleus of human cells. RNA (NEW YORK, N.Y.) 1998; 4:680-693. [PMID: 9622127 PMCID: PMC1369650 DOI: 10.1017/s135583829898013x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hepatitis delta virus (HDV) is a human pathogen that can greatly increase the severity of liver damage caused by an hepatitis B infection. HDV contains a circular, single-stranded RNA genome that encodes a unique protein, the delta antigen. Two forms of the delta antigen, deltaAg-S and deltaAg-L, are derived from a single open reading frame by RNA editing. Here we analyze the subcellular distribution of HDV RNA and its spatial relationship to known intranuclear structures. The human hepatoma cell line Huh7 was stably transfected with wild-type HDV cDNA and the viral RNAs were localized by in situ hybridization and fluorescence confocal microscopy. HDV RNA is detected throughout the nucleoplasm, with additional concentration in focal structures closely associated with nuclear speckles or clusters of interchromatin granules. Both the smaller form of the delta antigen (deltaAg-S), which is required for HDV genomic replication, and the larger form of the delta antigen (deltaAg-L), which represses replication, co-localize with delta RNA throughout the nucleoplasm and in the foci. However, the foci do not incorporate bromo-UTP and do not concentrate either RNA polymerase II or cleavage and polyadenylation factors required for viral RNA synthesis and 3' end processing, respectively. Thus, it is unlikely that the delta foci represent major sites of viral transcription or replication. In conclusion, the data show that viral RNA-protein complexes accumulate in structures closely associated with interchromatin granules, a subnuclear domain highly enriched in small nuclear ribonucleoproteins, poly(A+) RNA, and RNA splicing protein factors. This implies a specific compartmentalization of ribonucleoproteins in the nucleus.
Collapse
Affiliation(s)
- C Cunha
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Portugal
| | | | | | | | | |
Collapse
|
36
|
Huang W, Flint SJ. The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J Virol 1998; 72:225-35. [PMID: 9420219 PMCID: PMC109368 DOI: 10.1128/jvi.72.1.225-235.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The subgroup C human adenoviruses induce selective export of newly synthesized viral mRNA from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of cellular mRNA species. Such posttranscriptional regulation of viral and cellular gene expression in infected cells requires viral E1B and E4 proteins. To facilitate the investigation of parameters that govern selective export in adenovirus-infected cells, we constructed a marked human beta-actin minigene under the control of the glucocorticoid-inducible enhancer-promoter of mouse mammary tumor virus and introduced it into the left end of the adenovirus type 5 (Ad5) genome. Transcription of this reporter gene (designated MA) as well as of a sibling, which differed only in the inclusion of a cDNA copy of the Ad2 major late tripartite leader sequence upstream of beta-actin sequences (termed MtplA), in recombinant virus-infected cells was strictly dependent on the addition of dexamethasone to the medium. When transcription of the MA gene was induced during the late phase of infection, newly synthesized MA RNA entered the cytoplasm. These transcripts, which contain no viral sequences, therefore reproduce the behavior of exceptional cellular mRNA species observed when transcription of their genes is activated during the late phase of infection (U.-C. Yang, W. Huang, and S. J. Flint, J. Virol. 70:4071-4080, 1996). Unexpectedly, however, higher concentrations of newly synthesized RNA accumulated in the cytoplasm when the tripartite leader sequence was present in the reporter RNA, despite equal rates of transcription of the two reporter genes. Examination of the partitioning of both newly synthesized and steady-state populations of MA and MtplA RNAs between nuclear and cytoplasmic compartments indicated that the tripartite leader sequence did not increase RNA stability in the cytoplasm. Comparison of nuclear and cytoplasmic reporter RNA species by Northern blotting, primer extension, and reverse transcription-PCR provided no evidence for altered processing induced by the tripartite leader sequence. We therefore conclude that the tripartite leader sequence, long known to facilitate the translation of mRNAs during the late phase of adenovirus infection, can also modulate mRNA export from the nucleus.
Collapse
MESH Headings
- Actins/genetics
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Animals
- Biological Transport, Active
- Cell Line
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Chimera/genetics
- Cytoplasm/metabolism
- Cytoplasm/virology
- Gene Expression Regulation, Viral
- Genes, Reporter
- Humans
- Mice
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombination, Genetic
Collapse
Affiliation(s)
- W Huang
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
37
|
Gama-Carvalho M, Krauss RD, Chiang L, Valcárcel J, Green MR, Carmo-Fonseca M. Targeting of U2AF65 to sites of active splicing in the nucleus. J Biophys Biochem Cytol 1997; 137:975-87. [PMID: 9166400 PMCID: PMC2136214 DOI: 10.1083/jcb.137.5.975] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
U2AF65 is an essential splicing factor that promotes binding of U2 small nuclear (sn)RNP at the pre-mRNA branchpoint. Here we describe a novel monoclonal antibody that reacts specifically with U2AF65. Using this antibody, we show that U2AF65 is diffusely distributed in the nucleoplasm with additional concentration in nuclear speckles, which represent subnuclear compartments enriched in splicing snRNPs and other splicing factors. Furthermore, transient expression assays using epitope-tagged deletion mutants of U2AF65 indicate that targeting of the protein to nuclear speckles is not affected by removing either the RNA binding domain, the RS domain, or the region required for interaction with U2AF35. The association of U2AF65 with speckles persists during mitosis, when transcription and splicing are downregulated. Moreover, U2AF65 is localized to nuclear speckles in early G1 cells that were treated with transcription inhibitors during mitosis, suggesting that the localization of U2AF65 in speckles is independent of the presence of pre-mRNA in the nucleus, which is consistent with the idea that speckles represent storage sites for inactive splicing factors. After adenovirus infection, U2AF65 redistributes from the speckles and is prefferentially detected at sites of viral transcription. By combining adenoviral infection with transient expression of deletion mutants, we show a specific requirement of the RS domain for recruitment of U2AF65 to sites of active splicing in the nucleus. This suggests that interactions involving the RS region of U2AF65 may play an important role in targeting this protein to spliceosomes in vivo.
Collapse
Affiliation(s)
- M Gama-Carvalho
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1699 Lisboa Codex, Portugal
| | | | | | | | | | | |
Collapse
|