1
|
Krappmann S, Gabl E, Pazen T, Heizmann A, Pöggeler S, Krüger T, Kniemeyer O, Einsiedel J, Gmeiner P, Yu Y, Dyer PS, Baker SE, Nowrousian M. Identification of an a-factor-like pheromone secreted by the heterothallic ascomycete Aspergillus fumigatus. Curr Biol 2025; 35:2414-2423.e5. [PMID: 40262616 DOI: 10.1016/j.cub.2025.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Members of the fungal kingdom serve as models for numerous cellular processes, among them sexuality.1 In heterothallic ascomycetes, mating-type systems ensure that only compatible isolates fuse to enter the sexual phase.2,3,4,5,6 This includes reciprocal secretion and recognition of pheromones, commonly termed α-factor and a-factor, which are processed from peptide precursors.7,8,9,10 Identification of fungal mating pheromones and their cognate receptors has been achieved by homology searches11,12,13,14,15,16,17; however, this approach had failed to detect a-factor-like pheromones from Eurotiomycetes,5,18,19,20,21 a fungal group including medically and economically important species.22 Sexuality of the opportunistic pathogen Aspergillus fumigatus23,24,25 is genetically determined by a bipolar mating-type system encoding MAT1-1-1 and MAT1-2-1 regulators.16,26,27,28,29,30 By analyzing transcriptome data from strains overexpressing the corresponding MAT genes,31 we identified a candidate pheromone precursor gene B (ppgB) to encode the elusive Eurotiomycete a-factor pheromone. Its deduced peptide is 24 aa in length and features a canonical CaaX farnesylation motif. Further analyses provided supporting evidence that PpgB is a prototype for the a-factor-like pheromone of the aspergilli, including expression of ppgB in a MAT1-2-1-dependent manner, and that an A. fumigatus ppgBΔ deletion strain was unable to mate and form fruiting bodies with a compatible partner. Inspection of Aspergillus genomes from members of the section Fumigati revealed high conservation of PpgB sequence as well as of the α-factor-like PpgA, indicating that incompatibility factors other than solely pheromone discrimination are responsible for speciation. The identification of the A. fumigatusa-factor-like pheromone closes a substantial knowledge gap with respect to cellular recognition and sexual propagation of Eurotiomycete fungi.
Collapse
Affiliation(s)
- Sven Krappmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany; FAU Profile Center Immunomedicine (I-MED), FAU Erlangen-Nürnberg, Freyeslebenstraße 1, 91058 Erlangen, Germany.
| | - Elisabeth Gabl
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Tobias Pazen
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Anna Heizmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August University (GAU) Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, FAU Erlangen-Nürnberg, Nikolaus-Fiebinger-Straße 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, FAU Erlangen-Nürnberg, Nikolaus-Fiebinger-Straße 10, 91058 Erlangen, Germany
| | - Yidong Yu
- Institute of Medical Mycology, Teikyō University, 359 Otsuka, 192-0395 Hachioji-shi, Tokyo, Japan
| | - Paul S Dyer
- School of Life Sciences, University of Nottingham, B85 Laboratory Life Science Building, University Park, Nottingham NG7 2RD, UK
| | - Scott E Baker
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA; DOE Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum (RUB), ND 7/130 Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
2
|
Srikant S, Gaudet R, Murray AW. Extending the reach of homology by using successive computational filters to find yeast pheromone genes. Curr Biol 2023; 33:4098-4110.e3. [PMID: 37699395 PMCID: PMC10592104 DOI: 10.1016/j.cub.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
The mating of fungi depends on pheromones that mediate communication between two mating types. Most species use short peptides as pheromones, which are either unmodified (e.g., α-factor in Saccharomyces cerevisiae) or C-terminally farnesylated (e.g., a-factor in S. cerevisiae). Peptide pheromones have been found by genetics or biochemistry in a small number of fungi, but their short sequences and modest conservation make it impossible to detect homologous sequences in most species. To overcome this problem, we used a four-step computational pipeline to identify candidate a-factor genes in sequenced genomes of the Saccharomycotina, the fungal clade that contains most of the yeasts: we require that candidate genes have a C-terminal prenylation motif, are shorter than 100 amino acids long, and contain a proteolytic-processing motif upstream of the potential mature pheromone sequence and that closely related species contain highly conserved homologs of the potential mature pheromone sequence. Additional manual curation exploits the observation that many species carry more than one a-factor gene, encoding identical or nearly identical pheromones. From 332 Saccharomycotina genomes, we identified strong candidate pheromone genes in 241 genomes, covering 13 clades that are each separated from each other by at least 100 million years, the time required for evolution to remove detectable sequence homology among small pheromone genes. For one small clade, the Yarrowia, we demonstrated that our algorithm found the a-factor genes: deleting all four related genes in the a-mating type of Yarrowia lipolytica prevents mating.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Seike T, Niki H. Pheromone Response and Mating Behavior in Fission Yeast. Microbiol Mol Biol Rev 2022; 86:e0013022. [PMID: 36468849 PMCID: PMC9769774 DOI: 10.1128/mmbr.00130-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most ascomycete fungi, including the fission yeast Schizosaccharomyces pombe, secrete two peptidyl mating pheromones: C-terminally modified and unmodified peptides. S. pombe has two mating types, plus and minus, which secrete two different pheromones, P-factor (unmodified) and M-factor (modified), respectively. These pheromones are specifically recognized by receptors on the cell surface of cells of opposite mating types, which trigger a pheromone response. Recognition between pheromones and their corresponding receptors is important for mate discrimination; therefore, genetic changes in pheromone or receptor genes affect mate recognition and cause reproductive isolation that limits gene flow between populations. Such genetic variation in recognition via the pheromone/receptor system may drive speciation. Our recent studies reported that two pheromone receptors in S. pombe might have different stringencies in pheromone recognition. In this review, we focus on the molecular mechanism of pheromone response and mating behavior, emphasizing pheromone diversification and its impact on reproductive isolation in S. pombe and closely related fission yeast species. We speculate that the "asymmetric" system might allow flexible adaptation to pheromone mutational changes while maintaining stringent recognition of mating partners. The loss of pheromone activity results in the extinction of an organism's lineage. Therefore, genetic changes in pheromones and their receptors may occur gradually and/or coincidently before speciation. Our findings suggest that the M-factor plays an important role in partner discrimination, whereas P-factor communication allows flexible adaptation to create variations in S. pombe. Our inferences provide new insights into the evolutionary mechanisms underlying pheromone diversification.
Collapse
Affiliation(s)
- Taisuke Seike
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
4
|
Arras SDM, Hibbard TR, Mitsugi-McHattie L, Woods MA, Johnson CE, Munkacsi A, Denmat SHL, Ganley ARD. Creeping yeast: a simple, cheap, and robust protocol for the identification of mating type in Saccharomyces cerevisiae. FEMS Yeast Res 2022; 22:6550023. [PMID: 35298616 PMCID: PMC9202641 DOI: 10.1093/femsyr/foac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Saccharomyces cerevisiae is an exceptional genetic system, with genetic crosses facilitated by its ability to be maintained in haploid and diploid forms. Such crosses are straightforward if the mating type/ploidy of the strains is known. Several techniques can determine mating type (or ploidy), but all have limitations. Here, we validate a simple, cheap and robust method to identify S. cerevisiae mating types. When cells of opposite mating type are mixed in liquid media, they ‘creep’ up the culture vessel sides, a phenotype that can be easily detected visually. In contrast, mixtures of the same mating type or with a diploid simply settle out. The phenotype is observable for several days under a range of routine growth conditions and with different media/strains. Microscopy suggests that cell aggregation during mating is responsible for the phenotype. Yeast knockout collection analysis identified 107 genes required for the creeping phenotype, with these being enriched for mating-specific genes. Surprisingly, the RIM101 signaling pathway was strongly represented. We propose that RIM101 signaling regulates aggregation as part of a wider, previously unrecognized role in mating. The simplicity and robustness of this method make it ideal for routine verification of S. cerevisiae mating type, with future studies required to verify its molecular basis.
Collapse
Affiliation(s)
- Samantha D M Arras
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Taylor R Hibbard
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | | | - Matthew A Woods
- Digital Life Institute, University of Auckland 0632, New Zealand
| | - Charlotte E Johnson
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Andrew Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | | | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand.,Digital Life Institute, University of Auckland 0632, New Zealand.,Institute of Natural and Mathematical Sciences, Massey University, Auckland 0632, New Zealand
| |
Collapse
|
5
|
Peris D, Lu DS, Kinneberg VB, Methlie IS, Dahl MS, James TY, Kauserud H, Skrede I. Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. PLoS Genet 2022; 18:e1010097. [PMID: 35358178 PMCID: PMC8970355 DOI: 10.1371/journal.pgen.1010097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.
Collapse
Affiliation(s)
- David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health, Valencian International University (VIU), Valencia, Spain
| | - Dabao Sun Lu
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vilde Bruhn Kinneberg
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ine-Susanne Methlie
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Malin Stapnes Dahl
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Wood KM, Spear ED, Mossberg OW, Odinammadu KO, Xu W, Michaelis S. Defining substrate requirements for cleavage of farnesylated prelamin A by the integral membrane zinc metalloprotease ZMPSTE24. PLoS One 2020; 15:e0239269. [PMID: 33315887 PMCID: PMC7735620 DOI: 10.1371/journal.pone.0239269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
The integral membrane zinc metalloprotease ZMPSTE24 plays a key role in the proteolytic processing of farnesylated prelamin A, the precursor of the nuclear scaffold protein lamin A. Failure of this processing step results in the accumulation of permanently farnesylated forms of prelamin A which cause the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS), as well as related progeroid disorders, and may also play a role in physiological aging. ZMPSTE24 is an intriguing and unusual protease because its active site is located inside of a closed intramembrane chamber formed by seven transmembrane spans with side portals in the chamber permitting substrate entry. The specific features of prelamin A that make it the sole known substrate for ZMPSTE24 in mammalian cells are not well-defined. At the outset of this work it was known that farnesylation is essential for prelamin A cleavage in vivo and that the C-terminal region of prelamin A (41 amino acids) is sufficient for recognition and processing. Here we investigated additional features of prelamin A that are required for cleavage by ZMPSTE24 using a well-established humanized yeast system. We analyzed the 14-residue C-terminal region of prelamin A that lies between the ZMPSTE24 cleavage site and the farnesylated cysteine, as well 23-residue region N-terminal to the cleavage site, by generating a series of alanine substitutions, alanine additions, and deletions in prelamin A. Surprisingly, we found that there is considerable flexibility in specific requirements for the length and composition of these regions. We discuss how this flexibility can be reconciled with ZMPSTE24's selectivity for prelamin A.
Collapse
Affiliation(s)
- Kaitlin M. Wood
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eric D. Spear
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Otto W. Mossberg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kamsi O. Odinammadu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wenxin Xu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Babatz TD, Spear ED, Xu W, Sun OL, Nie L, Carpenter EP, Michaelis S. Site specificity determinants for prelamin A cleavage by the zinc metalloprotease ZMPSTE24. J Biol Chem 2020; 296:100165. [PMID: 33293369 PMCID: PMC7948416 DOI: 10.1074/jbc.ra120.015792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 01/11/2023] Open
Abstract
The integral membrane zinc metalloprotease ZMPSTE24 is important for human health and longevity. ZMPSTE24 performs a key proteolytic step in maturation of prelamin A, the farnesylated precursor of the nuclear scaffold protein lamin A. Mutations in the genes encoding either prelamin A or ZMPSTE24 that prevent cleavage cause the premature aging disease Hutchinson–Gilford progeria syndrome (HGPS) and related progeroid disorders. ZMPSTE24 has a novel structure, with seven transmembrane spans that form a large water-filled membrane chamber whose catalytic site faces the chamber interior. Prelamin A is the only known mammalian substrate for ZMPSTE24; however, the basis of this specificity remains unclear. To define the sequence requirements for ZMPSTE24 cleavage, we mutagenized the eight residues flanking the prelamin A scissile bond (TRSY↓LLGN) to all other 19 amino acids, creating a library of 152 variants. We also replaced these eight residues with sequences derived from putative ZMPSTE24 cleavage sites from amphibian, bird, and fish prelamin A. Cleavage of prelamin A variants was assessed using an in vivo yeast assay that provides a sensitive measure of ZMPSTE24 processing efficiency. We found that residues on the C-terminal side of the cleavage site are most sensitive to changes. Consistent with other zinc metalloproteases, including thermolysin, ZMPSTE24 preferred hydrophobic residues at the P1’ position (Leu647), but in addition, showed a similar, albeit muted, pattern at P2’. Our findings begin to define a consensus sequence for ZMPSTE24 that helps to clarify how this physiologically important protease functions and may ultimately lead to identifying additional substrates.
Collapse
Affiliation(s)
- Timothy D Babatz
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA
| | - Eric D Spear
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA
| | - Wenxin Xu
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA
| | - Olivia L Sun
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA
| | - Laiyin Nie
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore Maryland, USA.
| |
Collapse
|
8
|
Srikant S, Gaudet R, Murray AW. Selecting for Altered Substrate Specificity Reveals the Evolutionary Flexibility of ATP-Binding Cassette Transporters. Curr Biol 2020; 30:1689-1702.e6. [PMID: 32220325 PMCID: PMC7243462 DOI: 10.1016/j.cub.2020.02.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) transporters are the largest family of ATP-hydrolyzing transporters, which import or export substrates across membranes, and have members in every sequenced genome. Structural studies and biochemistry highlight the contrast between the global structural similarity of homologous transporters and the enormous diversity of their substrates. How do ABC transporters evolve to carry such diverse molecules and what variations in their amino acid sequence alter their substrate selectivity? We mutagenized the transmembrane domains of a conserved fungal ABC transporter that exports a mating pheromone and selected for mutants that export a non-cognate pheromone. Mutations that alter export selectivity cover a region that is larger than expected for a localized substrate-binding site. Individual selected clones have multiple mutations, which have broadly additive contributions to specific transport activity. Our results suggest that multiple positions influence substrate selectivity, leading to alternative evolutionary paths toward selectivity for particular substrates and explaining the number and diversity of ABC transporters. Srikant et al. find that mutations at many different positions in an ABC transporter of fungal mating pheromone have roughly additive effects on substrate recognition. This helps explain the evolvability of ABC transporters to transport a remarkable variety of substrates and their presence as the largest protein family across all domains of life.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Ashok S, Hildebrandt ER, Ruiz CS, Hardgrove DS, Coreno DW, Schmidt WK, Hougland JL. Protein Farnesyltransferase Catalyzes Unanticipated Farnesylation and Geranylgeranylation of Shortened Target Sequences. Biochemistry 2020; 59:1149-1162. [PMID: 32125828 DOI: 10.1021/acs.biochem.0c00081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein prenylation is a posttranslational modification involving the attachment of a C15 or C20 isoprenoid group to a cysteine residue near the C-terminus of the target substrate by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I), respectively. Both of these protein prenyltransferases recognize a C-terminal "CaaX" sequence in their protein substrates, but recent studies in yeast- and mammalian-based systems have demonstrated FTase can also accept sequences that diverge in length from the canonical four-amino acid motif, such as the recently reported five-amino acid C(x)3X motif. In this work, we further expand the substrate scope of FTase by demonstrating sequence-dependent farnesylation of shorter three-amino acid "Cxx" C-terminal sequences using both genetic and biochemical assays. Strikingly, biochemical assays utilizing purified mammalian FTase and Cxx substrates reveal prenyl donor promiscuity leading to both farnesylation and geranylgeranylation of these sequences. These findings expand the substrate pool of sequences that can be potentially prenylated, further refine our understanding of substrate recognition by FTase and GGTase-I, and suggest the possibility of a new class of prenylated proteins within proteomes.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily R Hildebrandt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Colby S Ruiz
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Daniel S Hardgrove
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - David W Coreno
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Walter K Schmidt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Perry AM, Hernday AD, Nobile CJ. Unraveling How Candida albicans Forms Sexual Biofilms. J Fungi (Basel) 2020; 6:jof6010014. [PMID: 31952361 PMCID: PMC7151012 DOI: 10.3390/jof6010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These “conventional” biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized “sexual” biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans.
Collapse
Affiliation(s)
- Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
11
|
Hsu ET, Vervacke JS, Distefano MD, Hrycyna CA. A Quantitative FRET Assay for the Upstream Cleavage Activity of the Integral Membrane Proteases Human ZMPSTE24 and Yeast Ste24. Methods Mol Biol 2019; 2009:279-293. [PMID: 31152411 DOI: 10.1007/978-1-4939-9532-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The integral membrane protease ZMPSTE24 plays an important role in the lamin A maturation pathway. ZMPSTE24 is the only known enzyme to cleave the last 15 residues from the C-terminus of prelamin A, including a farnesylated and carboxyl methylated cysteine. Mutations in ZMPSTE24 lead to progeroid diseases with abnormal prelamin A accumulation in the nucleus. Ste24 is the yeast functional homolog of ZMPSTE24 and similarly cleaves the a-factor pheromone precursor during its posttranslational maturation. To complement established qualitative techniques used to detect the upstream enzymatic cleavage by ZMPSTE24 and Ste24, including gel-shift assays and mass spectrometry analyses, we developed an enzymatic in vitro FRET-based assay to quantitatively measure the upstream cleavage activities of these two enzymes. This assay uses either purified enzyme or enzyme in crude membrane preparations and a 33-amino acid a-factor analog peptide that is a substrate for both Ste24 and ZMPSTE24. This peptide contains a fluorophore (2-aminobenzoic acid-Abz) at its N-terminus and a quencher moiety (dinitrophenol-DNP) positioned four residues downstream from the cleavage site. Upon cleavage, a fluorescent signal is generated in real time at 420 nm that is proportional to cleavage of the peptide and these kinetic data are used to quantify activity. This assay should provide a useful tool for kinetic analysis and for studying the catalytic mechanism of both ZMPSTE24 and Ste24.
Collapse
Affiliation(s)
- Erh-Ting Hsu
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
12
|
Protein Isoprenylation in Yeast Targets COOH-Terminal Sequences Not Adhering to the CaaX Consensus. Genetics 2018; 210:1301-1316. [PMID: 30257935 PMCID: PMC6283164 DOI: 10.1534/genetics.118.301454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Protein isoprenylation targets a subset of COOH-terminal Cxxx tetrapeptide sequences that has been operationally defined as a CaaX motif. The specificity of the farnesyl transferase toward each of the possible 8000 combinations of Cxxx sequences, however, remains largely unresolved. In part, it has been difficult to consolidate results stemming from in vitro and in silico approaches that yield a wider array of prenylatable sequences relative to those known in vivo We have investigated whether this disconnect results from the multistep complexity of post-translational modification that occurs in vivo to CaaX proteins. For example, the Ras GTPases undergo isoprenylation followed by additional proteolysis and carboxymethylation events at the COOH-terminus. By contrast, Saccharomyces cerevisiae Hsp40 Ydj1p is isoprenylated but not subject to additional modification. In fact, additional modifications are detrimental to Ydj1p activity in vivo We have taken advantage of the properties of Ydj1p and a Ydj1p-dependent growth assay to identify sequences that permit Ydj1p isoprenylation in vivo while simultaneously selecting against nonprenylatable and more extensively modified sequences. The recovered sequences are largely nonoverlapping with those previously identified using an in vivo Ras-based yeast reporter. Moreover, most of the sequences are not readily predicted as isoprenylation targets by existing prediction algorithms. Our results reveal that the yeast CaaX-type prenyltransferases can utilize a range of sequence combinations that extend beyond the traditional constraints for CaaX proteins, which implies that more proteins may be isoprenylated than previously considered.
Collapse
|
13
|
Erpf PE, Fraser JA. The Long History of the Diverse Roles of Short ORFs: sPEPs in Fungi. Proteomics 2018; 18:e1700219. [PMID: 29465163 DOI: 10.1002/pmic.201700219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Indexed: 12/30/2022]
Abstract
Since the completion of the genome sequence of the model eukaryote Saccharomyces cerevisiae, there have been significant advancements in the field of genome annotation, in no small part due to the availability of datasets that make large-scale comparative analyses possible. As a result, since its completion there has been a significant change in annotated ORF size distribution in this first eukaryotic genome, especially in short ORFs (sORFs) predicted to encode polypeptides less than 150 amino acids in length. Due to their small size and the difficulties associated with their study, it is only relatively recently that these genomic features and the sORF-encoded peptides (sPEPs) they encode have become a focus of many researchers. Yet while this class of peptides may seem new and exciting, the study of this part of the proteome is nothing new in S. cerevisiae, a species where the biological importance of sPEPs has been elegantly illustrated over the past 30 years. Here the authors showcase a range of different sORFs found in S. cerevisiae and the diverse biological roles of their encoded sPEPs, and provide an insight into the sORFs found in other fungal species, particularly those pathogenic to humans.
Collapse
Affiliation(s)
- Paige E Erpf
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Peter JJ, Watson TL, Walker ME, Gardner JM, Lang TA, Borneman A, Forgan A, Tran T, Jiranek V. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions. FEMS Yeast Res 2018; 18:4841842. [DOI: 10.1093/femsyr/foy009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/05/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Josephine J Peter
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tommaso L Watson
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Jennifer M Gardner
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tom A Lang
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Angus Forgan
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tina Tran
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
15
|
Blanden MJ, Suazo KF, Hildebrandt ER, Hardgrove DS, Patel M, Saunders WP, Distefano MD, Schmidt WK, Hougland JL. Efficient farnesylation of an extended C-terminal C( x) 3X sequence motif expands the scope of the prenylated proteome. J Biol Chem 2017; 293:2770-2785. [PMID: 29282289 DOI: 10.1074/jbc.m117.805770] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/24/2017] [Indexed: 12/25/2022] Open
Abstract
Protein prenylation is a post-translational modification that has been most commonly associated with enabling protein trafficking to and interaction with cellular membranes. In this process, an isoprenoid group is attached to a cysteine near the C terminus of a substrate protein by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I or II (GGTase-I and GGTase-II). FTase and GGTase-I have long been proposed to specifically recognize a four-amino acid CAAX C-terminal sequence within their substrates. Surprisingly, genetic screening reveals that yeast FTase can modify sequences longer than the canonical CAAX sequence, specifically C(x)3X sequences with four amino acids downstream of the cysteine. Biochemical and cell-based studies using both peptide and protein substrates reveal that mammalian FTase orthologs can also prenylate C(x)3X sequences. As the search to identify physiologically relevant C(x)3X proteins begins, this new prenylation motif nearly doubles the number of proteins within the yeast and human proteomes that can be explored as potential FTase substrates. This work expands our understanding of prenylation's impact within the proteome, establishes the biologically relevant reactivity possible with this new motif, and opens new frontiers in determining the impact of non-canonically prenylated proteins on cell function.
Collapse
Affiliation(s)
- Melanie J Blanden
- Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Daniel S Hardgrove
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Meet Patel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - William P Saunders
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, New York 13244.
| |
Collapse
|
16
|
Clark KM, Jenkins JL, Fedoriw N, Dumont ME. Human CaaX protease ZMPSTE24 expressed in yeast: Structure and inhibition by HIV protease inhibitors. Protein Sci 2016; 26:242-257. [PMID: 27774687 DOI: 10.1002/pro.3074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
The function and localization of proteins and peptides containing C-terminal "CaaX" (Cys-aliphatic-aliphatic-anything) sequence motifs are modulated by post-translational attachment of isoprenyl groups to the cysteine sulfhydryl, followed by proteolytic cleavage of the aaX amino acids. The zinc metalloprotease ZMPSTE24 is one of two enzymes known to catalyze this cleavage. The only identified target of mammalian ZMPSTE24 is prelamin A, the precursor to the nuclear scaffold protein lamin A. ZMPSTE24 also cleaves prelamin A at a second site 15 residues upstream from the CaaX site. Mutations in ZMPSTE24 result in premature-aging diseases and inhibition of ZMPSTE24 activity has been reported to be an off-target effect of HIV protease inhibitors. We report here the expression (in yeast), purification, and crystallization of human ZMPSTE24 allowing determination of the structure to 2.0 Å resolution. Compared to previous lower resolution structures, the enhanced resolution provides: (1) a detailed view of the active site of ZMPSTE24, including water coordinating the catalytic zinc; (2) enhanced visualization of fenestrations providing access from the exterior to the interior cavity of the protein; (3) a view of the C-terminus extending away from the main body of the protein; (4) localization of ordered lipid and detergent molecules at internal and external surfaces and also projecting through fenestrations; (5) identification of water molecules associated with the surface of the internal cavity. We also used a fluorogenic assay of the activity of purified ZMPSTE24 to demonstrate that HIV protease inhibitors directly inhibit the human enzyme in a manner indicative of a competitive mechanism.
Collapse
Affiliation(s)
- Kathleen M Clark
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14642
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, 14642
| | - Nadia Fedoriw
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14642
| | - Mark E Dumont
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14642.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, 14642
| |
Collapse
|
17
|
Hildebrandt ER, Cheng M, Zhao P, Kim JH, Wells L, Schmidt WK. A shunt pathway limits the CaaX processing of Hsp40 Ydj1p and regulates Ydj1p-dependent phenotypes. eLife 2016; 5. [PMID: 27525482 PMCID: PMC5014548 DOI: 10.7554/elife.15899] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/14/2016] [Indexed: 11/21/2022] Open
Abstract
The modifications occurring to CaaX proteins have largely been established using few reporter molecules (e.g. Ras, yeast a-factor mating pheromone). These proteins undergo three coordinated COOH-terminal events: isoprenylation of the cysteine, proteolytic removal of aaX, and COOH-terminal methylation. Here, we investigated the coupling of these modifications in the context of the yeast Ydj1p chaperone. We provide genetic, biochemical, and biophysical evidence that the Ydj1p CaaX motif is isoprenylated but not cleaved and carboxylmethylated. Moreover, we demonstrate that Ydj1p-dependent thermotolerance and Ydj1p localization are perturbed when alternative CaaX motifs are transplanted onto Ydj1p. The abnormal phenotypes revert to normal when post-isoprenylation events are genetically interrupted. Our findings indicate that proper Ydj1p function requires an isoprenylatable CaaX motif that is resistant to post-isoprenylation events. These results expand on the complexity of protein isoprenylation and highlight the impact of post-isoprenylation events in regulating the function of Ydj1p and perhaps other CaaX proteins. DOI:http://dx.doi.org/10.7554/eLife.15899.001
Collapse
Affiliation(s)
- Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Michael Cheng
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Peng Zhao
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - June H Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| |
Collapse
|
18
|
Hildebrandt ER, Arachea BT, Wiener MC, Schmidt WK. Ste24p Mediates Proteolysis of Both Isoprenylated and Non-prenylated Oligopeptides. J Biol Chem 2016; 291:14185-14198. [PMID: 27129777 DOI: 10.1074/jbc.m116.718197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/31/2022] Open
Abstract
Rce1p and Ste24p are integral membrane proteins involved in the proteolytic maturation of isoprenylated proteins. Extensive published evidence indicates that Rce1p requires the isoprenyl moiety as an important substrate determinant. By contrast, we report that Ste24p can cleave both isoprenylated and non-prenylated substrates in vitro, indicating that the isoprenyl moiety is not required for substrate recognition. Steady-state enzyme kinetics are significantly different for prenylated versus non-prenylated substrates, strongly suggestive of a role for substrate-membrane interaction in protease function. Mass spectroscopy analyses identify a cleavage preference at bonds where P1' is aliphatic in both isoprenylated and non-prenylated substrates, although this is not necessarily predictive. The identified cleavage sites are not at a fixed distance position relative to the C terminus. In this study, the substrates cleaved by Ste24p are based on known isoprenylated proteins (i.e. K-Ras4b and the yeast a-factor mating pheromone) and non-prenylated biological peptides (Aβ and insulin chains) that are known substrates of the M16A family of soluble zinc-dependent metalloproteases. These results establish that the substrate profile of Ste24p is broader than anticipated, being more similar to that of the M16A protease family than that of the Rce1p CAAX protease with which it has been functionally associated.
Collapse
Affiliation(s)
- Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Buenafe T Arachea
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Michael C Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
19
|
Evolutionary Selection on Barrier Activity: Bar1 Is an Aspartyl Protease with Novel Substrate Specificity. mBio 2015; 6:e01604-15. [PMID: 26604258 PMCID: PMC4669382 DOI: 10.1128/mbio.01604-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Peptide-based pheromones are used throughout the fungal kingdom for coordinating sexual responses between mating partners. Here, we address the properties and function of Bar1, an aspartyl protease that acts as a “barrier” and antagonist to pheromone signaling in multiple species. Candida albicans Bar1 was purified and shown to exhibit preferential cleavage of native α pheromone over pheromones from related fungal species. This result establishes that protease substrate specificity coevolved along with changes in its pheromone target. Pheromone cleavage by Bar1 occurred between residues Thr-5 and Asn-6 in the middle of the tridecapeptide sequence. Surprisingly, proteolytic activity was independent of the amino acid residues present at the scissile bond and instead relied on residues at the C terminus of α pheromone. Unlike most aspartyl proteases, Bar1 also exhibited a near-neutral pH optimum and was resistant to the class-wide inhibitor pepstatin A. In addition, genetic analysis was performed on C. albicansBAR1 and demonstrated that the protease not only regulates endogenous pheromone signaling but also can limit interspecies pheromone signaling. We discuss these findings and propose that the unusual substrate specificity of Bar1 is a consequence of its coevolution with the α pheromone receptor Ste2 for their shared peptide target. Pheromones are important for intraspecies communication across the tree of life. In the fungal kingdom, extracellular proteases play a key role in antagonizing pheromone signaling in multiple species. This study examines the properties and function of Candida albicans Bar1, an aspartyl protease that cleaves and thereby inactivates α pheromone. We demonstrate that Bar1 plays important roles in regulating both intra- and interspecies pheromone signaling. The fungal protease shows preferential activity on the endogenous pheromone, but, surprisingly, cleavage activity is dependent on amino acid residues distal to the scissile bond. We propose that the unusual substrate specificity of Bar1 is a direct result of coevolution with Ste2, the receptor for α pheromone, for recognition of the same peptide target. The novel specificity of Bar1 reveals the complex forces shaping the evolution of mating pathways in fungi and uncovers a protease with potentially important applications in the biotechnology industry.
Collapse
|
20
|
Rogers DW, Denton JA, McConnell E, Greig D. Experimental Evolution of Species Recognition. Curr Biol 2015; 25:1753-8. [PMID: 26073134 DOI: 10.1016/j.cub.2015.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 02/04/2023]
Abstract
Sex with another species can be disastrous, especially for organisms that mate only once, like yeast. Courtship signals, including pheromones, often differ between species and can provide a basis for distinguishing between reproductively compatible and incompatible partners. Remarkably, we show that the baker's yeast Saccharomyces cerevisiae does not reject mates engineered to produce pheromones from highly diverged species, including species that have been reproductively isolated for up to 100 million years. To determine whether effective discrimination against mates producing pheromones from other species is possible, we experimentally evolved pheromone receptors under conditions that imposed high fitness costs on mating with cells producing diverged pheromones. Evolved receptors allowed both efficient mating with cells producing the S. cerevisiae pheromone and near-perfect discrimination against cells producing diverged pheromones. Sequencing evolved receptors revealed that each contained multiple mutations that altered the amino acid sequence. By isolating individual mutations, we identified specific amino acid changes that dramatically improved discrimination. However, the improved discrimination conferred by these individual mutations came at the cost of reduced mating efficiency with cells producing the S. cerevisiae pheromone, resulting in low fitness. This tradeoff could be overcome by simultaneous introduction of separate mutations that improved mating efficiency alongside those that improved discrimination. Thus, if mutations occur sequentially, the shape of the fitness landscape may prevent evolution of the optimal phenotype--offering a possible explanation for the poor discrimination of receptors found in nature.
Collapse
Affiliation(s)
- David W Rogers
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, August-Thienemann Straße 2, 24306 Plön, Germany.
| | - Jai A Denton
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, August-Thienemann Straße 2, 24306 Plön, Germany
| | - Ellen McConnell
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, August-Thienemann Straße 2, 24306 Plön, Germany
| | - Duncan Greig
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, August-Thienemann Straße 2, 24306 Plön, Germany; Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
21
|
Abstract
Over the past decade, high-throughput studies have identified many novel transcripts. While their existence is undisputed, their coding potential and functionality have remained controversial. Recent computational approaches guided by ribosome profiling have indicated that translation is far more pervasive than anticipated and takes place on many transcripts previously assumed to be non-coding. Some of these newly discovered translated transcripts encode short, functional proteins that had been missed in prior screens. Other transcripts are translated, but it might be the process of translation rather than the resulting peptides that serves a function. Here, we review annotation studies in zebrafish to discuss the challenges of placing RNAs onto the continuum that ranges from functional protein-encoding mRNAs to potentially non-functional peptide-producing RNAs to non-coding RNAs. As highlighted by the discovery of the novel signaling peptide Apela/ELABELA/Toddler, accurate annotations can give rise to exciting opportunities to identify the functions of previously uncharacterized transcripts.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, MA, USA
| | - Eivind Valen
- Department of Molecular and Cellular Biology, Harvard University, MA, USA
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, MA, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
22
|
Huberman LB, Murray AW. Genetically engineered transvestites reveal novel mating genes in budding yeast. Genetics 2013; 195:1277-90. [PMID: 24121774 PMCID: PMC3832273 DOI: 10.1534/genetics.113.155846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/30/2013] [Indexed: 01/19/2023] Open
Abstract
Haploid budding yeast has two mating types, defined by the alleles of the MAT locus, MATa and MATα. Two haploid cells of opposite mating types mate by signaling to each other using reciprocal pheromones and receptors, polarizing and growing toward each other, and eventually fusing to form a single diploid cell. The pheromones and receptors are necessary and sufficient to define a mating type, but other mating-type-specific proteins make mating more efficient. We examined the role of these proteins by genetically engineering "transvestite" cells that swap the pheromone, pheromone receptor, and pheromone processing factors of one mating type for another. These cells mate with each other, but their mating is inefficient. By characterizing their mating defects and examining their transcriptomes, we found Afb1 (a-factor barrier), a novel MATα-specific protein that interferes with a-factor, the pheromone secreted by MATa cells. Strong pheromone secretion is essential for efficient mating, and the weak mating of transvestites can be improved by boosting their pheromone production. Synthetic biology can characterize the factors that control efficiency in biological processes. In yeast, selection for increased mating efficiency is likely to have continually boosted pheromone levels and the ability to discriminate between partners who make more and less pheromone. This discrimination comes at a cost: weak mating in situations where all potential partners make less pheromone.
Collapse
Affiliation(s)
- Lori B. Huberman
- Molecular and Cellular Biology and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Andrew W. Murray
- Molecular and Cellular Biology and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
23
|
Xu L, Chen W. Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:431-41. [PMID: 23252459 DOI: 10.1094/mpmi-07-12-0177-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Agrobacterium-mediated transformation (AMT) was used to identify potential virulence factors in Sclerotinia sclerotiorum. Screening AMT transformants identified two mutants showing significantly reduced virulence. The mutants showed growth rate, sclerotial formation, and oxalate production similar to that of the wild type. The mutation was due to a single T-DNA insertion at 212 bp downstream of the Cu/Zn superoxide dismutase (SOD) gene (SsSOD1, SS1G_00699). Expression levels of SsSOD1 were significantly increased under oxidative stresses or during plant infection in the wild-type strain but could not be detected in the mutant. SsSOD1 functionally complemented the Cu/Zn SOD gene in a Δsod1 Saccharomyces cerevisiae mutant. The SOD mutant had increased sensitivity to heavy metal toxicity and oxidative stress in culture and reduced ability to detoxify superoxide in infected leaves. The mutant also had reduced expression levels of other known pathogenicity genes such as endo-polygalacturanases sspg1 and sspg3. The functions of SsSOD1 were further confirmed by SsSOD1-deletion mutation. Like the AMT insertion mutant, the SsSOD1-deletion mutant exhibited normal growth rate, sclerotial formation, oxalate production, increased sensitivity to metal and oxidative stress, and reduced virulence. These results suggest that SsSOD1, while not being required for saprophytic growth and completion of the life cycle, plays critical roles in detoxification of reactive oxygen species during host-pathogen interactions and is an important virulence factor of Sclerotinia sclerotiorum.
Collapse
Affiliation(s)
- Liangsheng Xu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
24
|
Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol Mol Biol Rev 2013; 76:626-51. [PMID: 22933563 DOI: 10.1128/mmbr.00010-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery.
Collapse
|
25
|
|
26
|
Kukday SS, Manandhar SP, Ludley MC, Burriss ME, Alper BJ, Schmidt WK. Cell-permeable, small-molecule activators of the insulin-degrading enzyme. ACTA ACUST UNITED AC 2012; 17:1348-61. [PMID: 22740246 DOI: 10.1177/1087057112451921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insulin-degrading enzyme (IDE) cleaves numerous small peptides, including biologically active hormones and disease-related peptides. The propensity of IDE to degrade neurotoxic Aβ peptides marks IDE as a potential therapeutic target for Alzheimer disease. Using a synthetic reporter based on the yeast a-factor mating pheromone precursor, which is cleaved by multiple IDE orthologs, we identified seven small molecules that stimulate rat IDE activity in vitro. Half-maximal activation of IDE by the compounds is observed in vitro in the range of 43 to 198 µM. All compounds decrease the K(m) of IDE. Four compounds activate IDE in the presence of the competing substrate insulin, which disproportionately inhibits IDE activity. Two compounds stimulate rat IDE activity in a cell-based assay, indicating that they are cell permeable. The compounds demonstrate specificity for rat IDE since they do not enhance the activities of IDE orthologs, including human IDE, and they appear specific for a-factor-based reporters since they do not enhance rat IDE-mediated cleavage of Aβ-based reporters. Our results suggest that IDE activators function in the context of specific enzyme-substrate pairs, indicating that the choice of substrate must be considered in addition to target validation in IDE activator screens.
Collapse
|
27
|
Adolphsen K, Amell A, Havko N, Kevorkian S, Mears K, Neher H, Schwarz D, Schulze SR. Type-I prenyl protease function is required in the male germline of Drosophila melanogaster. G3 (BETHESDA, MD.) 2012; 2:629-42. [PMID: 22690372 PMCID: PMC3362292 DOI: 10.1534/g3.112.002188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/20/2012] [Indexed: 12/23/2022]
Abstract
Many proteins require the addition of a hydrophobic prenyl anchor (prenylation) for proper trafficking and localization in the cell. Prenyl proteases play critical roles in modifying proteins for membrane anchorage. The type I prenyl protease has a defined function in yeast (Ste24p/Afc1p) where it modifies a mating pheromone, and in humans (Zmpste24) where it has been implicated in a disease of premature aging. Despite these apparently very different biological processes, the type I prenyl protease gene is highly conserved, encoded by a single gene in a wide range of animal and plant groups. A notable exception is Drosophila melanogaster, where the gene encoding the type I prenyl protease has undergone an unprecedented series of duplications in the genome, resulting in five distinct paralogs, three of which are organized in a tandem array, and demonstrate high conservation, particularly in the vicinity of the active site of the enzyme. We have undertaken targeted deletion to remove the three tandem paralogs from the genome. The result is a male fertility defect, manifesting late in spermatogenesis. Our results also show that the ancestral type I prenyl protease gene in Drosophila is under strong purifying selection, while the more recent replicates are evolving rapidly. Our rescue data support a role for the rapidly evolving tandem paralogs in the male germline. We propose that potential targets for the male-specific type I prenyl proteases include proteins involved in the very dramatic cytoskeletal remodeling events required for spermatid maturation.
Collapse
Affiliation(s)
- Katie Adolphsen
- Biology Department, Western Washington University, Bellingham, Washington 98225
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gonçalves-Sá J, Murray A. Asymmetry in sexual pheromones is not required for ascomycete mating. Curr Biol 2011; 21:1337-46. [PMID: 21835624 DOI: 10.1016/j.cub.2011.06.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND We investigated the determinants of sexual identity in the budding yeast Saccharomyces cerevisiae. The higher fungi are divided into the ascomycetes and the basidiomycetes. Most ascomycetes have two mating types: one (called α in yeasts and MAT1-1 in filamentous fungi) produces a small, unmodified, peptide pheromone, and the other (a in yeasts and MAT1-2 in filamentous fungi) produces a peptide pheromone conjugated to a C-terminal farnesyl group that makes it very hydrophobic. In the basidiomycetes, all pheromones are lipid-modified, and this difference is a distinguishing feature between the phyla. We asked whether the asymmetry in pheromone modification is required for successful mating in ascomycetes. RESULTS We cloned receptor and pheromone genes from a filamentous ascomycete and a basidiomycete and expressed these in the budding yeast, Saccharomyces cerevisiae, to generate novel, alternative mating pairs. We find that two yeast cells can mate even when both cells secrete a-like or α-like peptides. Importantly, this is true regardless of whether the cells express the a- or α-mating-type loci, which control the expression of other, sex-specific genes, in addition to the pheromones and pheromone receptors. CONCLUSIONS We demonstrate that the asymmetric pheromone modification is not required for successful mating of ascomycete fungi and confirm that, in budding yeast, the primary determinants of mating are the specificity of the receptors and their corresponding pheromones.
Collapse
Affiliation(s)
- Joana Gonçalves-Sá
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
29
|
Self-induction of a/a or alpha/alpha biofilms in Candida albicans is a pheromone-based paracrine system requiring switching. EUKARYOTIC CELL 2011; 10:753-60. [PMID: 21498642 DOI: 10.1128/ec.05055-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Like MTL-heterozygous (a/α) cells, white MTL-homozygous (a/a or α/α) cells of Candida albicans, to which a minority of opaque cells of opposite mating type have been added, form thick, robust biofilms. The latter biofilms are uniquely stimulated by the pheromone released by opaque cells and are regulated by the mitogen-activated protein kinase signal transduction pathway. However, white MTL-homozygous cells, to which opaque cells of opposite mating type have not been added, form thinner biofilms. Mutant analyses reveal that these latter biofilms are self-induced. Self-induction of a/a biofilms requires expression of the α-receptor gene STE2 and the α-pheromone gene MFα, and self-induction of α/α biofilms requires expression of the a-receptor gene STE3 and the a-pheromone gene MFa. In both cases, deletion of WOR1, the master switch gene, blocks cells in the white phenotype and biofilm formation, indicating that self-induction depends upon low frequency switching from the white to opaque phenotype. These results suggest a self-induction scenario in which minority opaque a/a cells formed by switching secrete, in a mating-type-nonspecific fashion, α-pheromone, which stimulates biofilm formation through activation of the α-pheromone receptor of majority white a/a cells. A similar scenario is suggested for a white α/α cell population, in which minority opaque α/α cells secrete a-pheromone. This represents a paracrine system in which one cell type (opaque) signals a second highly related cell type (white) to undergo a complex response, in this case the formation of a unisexual white cell biofilm.
Collapse
|
30
|
Lum G, Min XJ. FunSecKB: the Fungal Secretome KnowledgeBase. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar001. [PMID: 21300622 PMCID: PMC3263735 DOI: 10.1093/database/bar001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Fungal Secretome KnowledgeBase (FunSecKB) provides a resource of secreted fungal proteins, i.e. secretomes, identified from all available fungal protein data in the NCBI RefSeq database. The secreted proteins were identified using a well evaluated computational protocol which includes SignalP, WolfPsort and Phobius for signal peptide or subcellular location prediction, TMHMM for identifying membrane proteins, and PS-Scan for identifying endoplasmic reticulum (ER) target proteins. The entries were mapped to the UniProt database and any annotations of subcellular locations that were either manually curated or computationally predicted were included in FunSecKB. Using a web-based user interface, the database is searchable, browsable and downloadable by using NCBI’s RefSeq accession or gi number, UniProt accession number, keyword or by species. A BLAST utility was integrated to allow users to query the database by sequence similarity. A user submission tool was implemented to support community annotation of subcellular locations of fungal proteins. With the complete fungal data from RefSeq and associated web-based tools, FunSecKB will be a valuable resource for exploring the potential applications of fungal secreted proteins. Database URL:http://proteomics.ysu.edu/secretomes/fungi.php
Collapse
Affiliation(s)
- Gengkon Lum
- Department of Computer Science and Information Systems, Center for Applied Chemical Biology, Youngstown State University, Youngstown, OH 44555, USA
| | | |
Collapse
|
31
|
Meissner D, Odman-Naresh J, Vogelpohl I, Merzendorfer H. A novel role of the yeast CaaX protease Ste24 in chitin synthesis. Mol Biol Cell 2010; 21:2425-33. [PMID: 20505074 PMCID: PMC2903671 DOI: 10.1091/mbc.e10-01-0080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ste24 is a membrane-integral CaaX metalloprotease residing in the endoplasmic reticulum (ER). In yeast, the only known substrate of Ste24 is the mating factor a precursor. A global screening for protein-protein interactions indicated that Ste24 interacts with chitin synthesis deficient (Chs)3, an enzyme required for chitin synthesis. We confirmed this interaction by yeast two-hybrid analyses and mapped the interacting cytoplasmic domains. Next, we investigated the influence of Ste24 on chitin synthesis. In sterile (ste)24Delta mutants, we observed resistance to calcofluor white (CFW), which was also apparent when the cells expressed a catalytically inactive version of Ste24. In addition, ste24Delta cells showed a decrease in chitin levels and Chs3-green fluorescent protein localized less frequently at the bud neck. Overexpression of STE24 resulted in hypersensitivity to CFW and a slight increase in chitin levels. The CFW phenotype of ste24Delta cells could be rescued by its human and insect orthologues. Although Chs3 binds to Ste24, it seems not to be a substrate for this protease. Instead, our data suggest that Chs3 and Ste24 form a complex in the ER that facilitates protease action on prenylated Chs4, a known activator of Chs3 with a C-terminal CaaX motif, leading to a more efficient localization of Chs3 at the plasma membrane.
Collapse
Affiliation(s)
- Derek Meissner
- Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
32
|
Abstract
Human fungal pathogens are associated with diseases ranging from dandruff and skin colonization to invasive bloodstream infections. The major human pathogens belong to the Candida, Aspergillus, and Cryptococcus clades, and infections have high and increasing morbidity and mortality. Many human fungal pathogens were originally assumed to be asexual. However, recent advances in genome sequencing, which revealed that many species have retained the genes required for the sexual machinery, have dramatically influenced our understanding of the biology of these organisms. Predictions of a rare or cryptic sexual cycle have been supported experimentally for some species. Here, I examine the evidence that human pathogens reproduce sexually. The evolution of the mating-type locus in ascomycetes (including Candida and Aspergillus species) and basidiomycetes (Malassezia and Cryptococcus) is discussed. I provide an overview of how sex is suppressed in different species and discuss the potential associations with pathogenesis.
Collapse
|
33
|
Krishnankutty RK, Kukday SS, Castleberry AJ, Breevoort SR, Schmidt WK. Proteolytic processing of certain CaaX motifs can occur in the absence of the Rce1p and Ste24p CaaX proteases. Yeast 2009; 26:451-63. [PMID: 19504624 DOI: 10.1002/yea.1678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The CaaX motif directs C-terminal protein modifications that include isoprenylation, proteolysis and carboxylmethylation. Proteolysis is generally believed to require either Rce1p or Ste24p. While investigating the substrate specificity of these proteases, using the yeast a-factor mating pheromone as a reporter, we observed Rce1p- and Ste24p-independent mating (RSM) when the CKQQ CaaX motif was used in lieu of the natural a-factor CVIA motif. Uncharged or negatively charged amino acid substitutions at the a(1) position of the CKQQ motif prevented RSM. Alanine substitutions at the a(2) and X positions enhanced RSM. Random mutagenesis of the CaaX motif provided evidence that RSM occurs with approximately 1% of all possible CaaX motif permutations. Combined mutational and genetic data indicate that RSM-promoting motifs have a positively charged amino acid at the a(1) position. Two of nine naturally occurring yeast CaaX motifs conforming to this pattern promoted RSM. The activity of the isoprenylcysteine carboxyl methyltransferase Ste14p was required for RSM, indicating that RSM-promoting CaaX motifs are indeed proteolysed. RSM was enhanced by the overexpression of Axl1p or Ste23p, suggesting a role for these M16A subfamily metalloproteases in this process. We have also determined that an N-terminal extension of the a-factor precursor, which is typically removed by the yeast M16A enzymes, is required for optimal RSM. These observations suggest a model that involves targeting of the a-factor precursor to the peptidosome cavity of M16A enzymes where subsequent interactions between RSM-promoting CaaX motifs and the active site of the M16A enzyme lead to proteolytic cleavage.
Collapse
|
34
|
Barrowman J, Michaelis S. ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders. Biol Chem 2009; 390:761-73. [DOI: 10.1515/bc.2009.080] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
ZMPSTE24 is an integral membrane zinc metalloprotease originally discovered in yeast as an enzyme (called Ste24p) required for maturation of the mating pheromone a-factor. Surprisingly, ZMPSTE24 has recently emerged as a key protease involved in human progeroid disorders. ZMPSTE24 has only one identified mammalian substrate, the precursor of the nuclear scaffold protein lamin A. ZMPSTE24 performs a critical endoproteolytic cleavage step that removes the hydrophobic farnesyl-modified tail of prelamin A. Failure to do so has drastic consequences for human health and longevity. Here, we discuss the discovery of the yeast and mammalian ZMPSTE24 orthologs and review the unexpected connection between ZMPSTE24 and premature aging.
Collapse
|
35
|
Xue C, Hsueh YP, Heitman J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 2008; 32:1010-32. [PMID: 18811658 PMCID: PMC2998294 DOI: 10.1111/j.1574-6976.2008.00131.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are responsible for transducing extracellular signals into intracellular responses that involve complex intracellular-signaling networks. This review highlights recent research advances in fungal GPCRs, including classification, extracellular sensing, and G protein-signaling regulation. The involvement of GPCRs in pheromone and nutrient sensing has been studied extensively over the past decade. Following recent advances in fungal genome sequencing projects, a panoply of GPCR candidates has been revealed and some have been documented to play key roles sensing diverse extracellular signals, such as pheromones, sugars, amino acids, nitrogen sources, and even photons. Identification and deorphanization of additional putative GPCRs may require the development of new research tools. Here, we compare research on GPCRs in fungi with information derived from mammalian systems to provide a useful road map on how to better understand ligand-GPCR-G protein interactions in general. We also emphasize the utility of yeast as a discovery tool for systemic studies of GPCRs from other organisms.
Collapse
Affiliation(s)
- Chaoyang Xue
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Yen-Ping Hsueh
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
36
|
Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C. The asexual yeast Candida glabrata maintains distinct a and alpha haploid mating types. EUKARYOTIC CELL 2008; 7:848-58. [PMID: 18375614 PMCID: PMC2394967 DOI: 10.1128/ec.00456-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/08/2008] [Indexed: 11/20/2022]
Abstract
The genome of the type strain of Candida glabrata (CBS138, ATCC 2001) contains homologs of most of the genes involved in mating in Saccharomyces cerevisiae, starting with the mating pheromone and receptor genes. Only haploid cells are ever isolated, but C. glabrata strains of both mating types are commonly found, the type strain being MAT alpha and most other strains, such as BG2, being MATa. No sexual cycle has been documented for this species. In order to understand which steps of the mating pathway are defective, we have analyzed the expression of homologs of some of the key genes involved as well as the production of mating pheromones and the organism's sensitivity to artificial pheromones. We show that cells of opposite mating types express both pheromone receptor genes and are insensitive to pheromones. Nonetheless, cells maintain specificity through regulation of the alpha1 and alpha2 genes and, more surprisingly, through differential splicing of the a1 transcript.
Collapse
Affiliation(s)
- Héloïse Muller
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS URA 2171, Université Pierre et Marie Curie-Paris 6 UFR927, F75015 Paris, France.
| | | | | | | | | |
Collapse
|
37
|
Hoff B, Pöggeler S, Kück U. Eighty years after its discovery, Fleming's Penicillium strain discloses the secret of its sex. EUKARYOTIC CELL 2008; 7:465-70. [PMID: 18223118 PMCID: PMC2268512 DOI: 10.1128/ec.00430-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/16/2008] [Indexed: 12/29/2022]
Abstract
Eighty years ago, Alexander Fleming discovered antibacterial activity in the asexual mold Penicillium, and the strain he studied later was replaced by an overproducing isolate still used for penicillin production today. Using a heterologous PCR approach, we show that these strains are of opposite mating types and that both have retained transcriptionally expressed pheromone and pheromone receptor genes required for sexual reproduction. This discovery extends options for industrial strain improvement programs using conventional genetical approaches.
Collapse
Affiliation(s)
- Birgit Hoff
- Ruhr-Universität Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Universitätsstr. 150, 44780 Bochum, Germany
| | | | | |
Collapse
|
38
|
Yi S, Sahni N, Daniels KJ, Pujol C, Srikantha T, Soll DR. The same receptor, G protein, and mitogen-activated protein kinase pathway activate different downstream regulators in the alternative white and opaque pheromone responses of Candida albicans. Mol Biol Cell 2007; 19:957-70. [PMID: 18162580 DOI: 10.1091/mbc.e07-07-0688] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida albicans must undergo a switch from white to opaque to mate. Opaque cells then release mating type-specific pheromones that induce mating responses in opaque cells. Uniquely in C. albicans, the same pheromones induce mating-incompetent white cells to become cohesive, form an adhesive basal layer of cells on a surface, and then generate a thicker biofilm that, in vitro, facilitates mating between minority opaque cells. Through mutant analysis, it is demonstrated that the pathways regulating the white and opaque cell responses to the same pheromone share the same upstream components, including receptors, heterotrimeric G protein, and mitogen-activated protein kinase cascade, but they use different downstream transcription factors that regulate the expression of genes specific to the alternative responses. This configuration, although common in higher, multicellular systems, is not common in fungi, and it has not been reported in Saccharomyces cerevisiae. The implications in the evolution of multicellularity in higher eukaryotes are discussed.
Collapse
Affiliation(s)
- Song Yi
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ongay-Larios L, Navarro-Olmos R, Kawasaki L, Velázquez-Zavala N, Sánchez-Paredes E, Torres-Quiroz F, Coello G, Coria R. Kluyveromyces lactis sexual pheromones. Gene structures and cellular responses to alpha-factor. FEMS Yeast Res 2007; 7:740-7. [PMID: 17506833 DOI: 10.1111/j.1567-1364.2007.00249.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The Kluyveromyces lactis genes for sexual pheromones have been analyzed. The alpha-factor gene encodes a predicted polypeptide of 187 amino acid residues containing four tridecapeptide repeats (WSWITLRPGQPIF). A nucleotide blast search of the entire K. lactis genome sequence allowed the identification of the nonannotated putative a-pheromone gene that encodes a predicted protein of 33 residues containing one copy of the dodecapeptide a-factor (WIIPGFVWVPQC). The role of the K. lactis structural genes KlMFalpha1 and KlMFA1 in mating has been investigated by the construction of disruption mutations that totally eliminate gene functions. Mutants of both alleles showed sex-dependent sterility, indicating that these are single-copy genes and essential for mating. MATalpha, Klsst2 mutants, which, by analogy to Saccharomyces cerevisiae, are defective in Galpha-GTPase activity, showed increased sensitivity to synthetic alpha-factor and increased capacity to mate. Additionally, Klbar1 mutants (putatively defective in alpha-pheromone proteolysis) showed delay in mating but sensitivity to alpha-pheromone. From these results, it can be deduced that the K. lactis MATa cell produces the homolog of the S. cerevisiaealpha-pheromone, whereas the MATalpha cell produces the a-pheromone.
Collapse
Affiliation(s)
- Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dignard D, El-Naggar AL, Logue ME, Butler G, Whiteway M. Identification and characterization of MFA1, the gene encoding Candida albicans a-factor pheromone. EUKARYOTIC CELL 2007; 6:487-94. [PMID: 17209123 PMCID: PMC1828930 DOI: 10.1128/ec.00387-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the opaque state, MTLa and MTLalpha strains of Candida albicans are able to mate, and this mating is directed by a pheromone-mediated signaling process. We have used comparisons of genome sequences to identify a C. albicans gene encoding a candidate a-specific mating factor. This gene is conserved in Candida dubliniensis and is similar to a three-gene family in the related fungus Candida parapsilosis but has extremely limited similarity to the Saccharomyces cerevisiae MFA1 (ScMFA1) and ScMFA2 genes. All these genes encode C-terminal CAAX box motifs characteristic of prenylated proteins. The C. albicans gene, designated CaMFA1, is found on chromosome 2 between ORF19.2165 and ORF19.2219. MFA1 encodes an open reading frame of 42 amino acids that is predicted to be processed to a 14-amino-acid prenylated mature pheromone. Microarray analysis shows that MFA1 is poorly expressed in opaque MTLa cells but is induced when the cells are treated with alpha-factor. Disruption of this C. albicans gene blocks the mating of MTLa cells but not MTLalpha cells, while the reintegration of the gene suppresses this cell-type-specific mating defect.
Collapse
Affiliation(s)
- Daniel Dignard
- NRC Biotechnology Research Institute, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada.
| | | | | | | | | |
Collapse
|
41
|
Huyer G, Kistler A, Nouvet FJ, George CM, Boyle ML, Michaelis S. Saccharomyces cerevisiae a-factor mutants reveal residues critical for processing, activity, and export. EUKARYOTIC CELL 2006; 5:1560-70. [PMID: 16963638 PMCID: PMC1563590 DOI: 10.1128/ec.00161-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae mating pheromone a-factor provides a paradigm for understanding the biogenesis of prenylated fungal pheromones. The biogenesis of a-factor involves multiple steps: (i) C-terminal CAAX modification (where C is cysteine, A is aliphatic, and X is any residue) which includes prenylation, proteolysis, and carboxymethylation (by Ram1p/Ram2p, Ste24p or Rce1p, and Ste14p, respectively); (ii) N-terminal processing, involving two sequential proteolytic cleavages (by Ste24p and Axl1p); and (iii) nonclassical export (by Ste6p). Once exported, mature a-factor interacts with the Ste3p receptor on MATalpha cells to stimulate mating. The a-factor biogenesis machinery is well defined, as is the CAAX motif that directs C-terminal modification; however, very little is known about the sequence determinants within a-factor required for N-terminal processing, activity, and export. Here we generated a large collection of a-factor mutants and identified residues critical for the N-terminal processing steps mediated by Ste24p and Axl1p. We also identified mutants that fail to support mating but do not affect biogenesis or export, suggesting a defective interaction with the Ste3p receptor. Mutants significantly impaired in export were also found, providing evidence that the Ste6p transporter recognizes sequence determinants as well as CAAX modifications. We also performed a phenotypic analysis of the entire set of isogenic a-factor biogenesis machinery mutants, which revealed information about the dependency of biogenesis steps upon one another, and demonstrated that export by Ste6p requires the completion of all processing events. Overall, this comprehensive analysis will provide a useful framework for the study of other fungal pheromones, as well as prenylated metazoan proteins involved in development and aging.
Collapse
Affiliation(s)
- Gregory Huyer
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
42
|
Protein Prenylation: An (Almost) Comprehensive Overview on Discovery History, Enzymology, and Significance in Physiology and Disease. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0534-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Alper B, Nienow T, Schmidt W. A common genetic system for functional studies of pitrilysin and related M16A proteases. Biochem J 2006; 398:145-52. [PMID: 16722821 PMCID: PMC1525005 DOI: 10.1042/bj20060311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pitrilysin is a bacterial protease that is similar to the mammalian insulin-degrading enzyme, which is hypothesized to protect against the onset of Alzheimer's disease, and the yeast enzymes Axl1p and Ste23p, which are responsible for production of the a-factor mating pheromone in Saccharomyces cerevisiae. The lack of a phenotype associated with pitrilysin deficiency has hindered studies of this enzyme. Herein, we report that pitrilysin can be heterologously expressed in yeast such that it functionally substitutes for the shared roles of Axl1p and Ste23p in pheromone production, resulting in a readily observable phenotype. We have exploited this phenotype to conduct structure-function analyses of pitrilysin and report that residues within four sequence motifs that are highly conserved among M16A enzymes are essential for its activity. These motifs include the extended metalloprotease motif, a second motif that has been hypothesized to be important for the function of M16A enzymes, and two others not previously recognized as being important for pitrilysin function. We have also established that the two self-folding domains of pitrilysin are both required for its proteolytic activity. However, pitrilysin does not possess all the enzymatic properties of the yeast enzymes since it cannot substitute for the role of Axl1p in the repression of haploid invasive growth. These observations further support the utility of the yeast system for structure-function and comparative studies of M16A enzymes.
Collapse
Affiliation(s)
- Benjamin J. Alper
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, U.S.A
| | - Tatyana E. Nienow
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, U.S.A
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
O'Toole N, Min XJ, Butler G, Storms R, Tsang A. Sequence-Based Analysis of Fungal Secretomes. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1874-5334(06)80015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
45
|
Kjaerulff S, Müller S, Jensen MR. Alternative protein secretion: The Mam1 ABC transporter supports secretion of M-factor linked GFP in fission yeast. Biochem Biophys Res Commun 2005; 338:1853-9. [PMID: 16288715 DOI: 10.1016/j.bbrc.2005.10.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/21/2005] [Indexed: 11/18/2022]
Abstract
To examine whether the fission yeast Mam1 ABC transporter can be used for secretion of heterologous proteins, thereby bypassing the classical secretion pathway, we have analyzed chimeric forms of the M-factor precursor. It was demonstrated that GFP can be exported when fused to both the amino-terminal prosequence from mfm1 and a CaaX motif. This secretion was dependent on the Mam1 transporter and not the classical secretion pathway. The secretion efficiency of GFP, however, was relatively low and most of the reporter protein was trapped in the vacuolar membranes. Our findings suggest that the Mam1 ABC protein is a promiscuous peptide transporter that can accommodate globular proteins of a relatively large size. Furthermore, our results help in defining the sequences required for processing and secretion of natural M-factor.
Collapse
|
46
|
Young SG, Fong LG, Michaelis S. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria--new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res 2005; 46:2531-58. [PMID: 16207929 DOI: 10.1194/jlr.r500011-jlr200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prelamin A undergoes multistep processing to yield lamin A, a structural protein of the nuclear lamina. Prelamin A terminates with a CAAX motif, which triggers farnesylation of a C-terminal cysteine (the C of the CAAX motif), endoproteolytic release of the last three amino acids (the AAX), and methylation of the newly exposed farnesylcysteine residue. In addition, prelamin A is cleaved a second time, releasing 15 more residues from the C terminus (including the farnesylcysteine methyl ester), generating mature lamin A. This second cleavage step is carried out by an endoplasmic reticulum membrane protease, ZMPSTE24. Interest in the posttranslational processing of prelamin A has increased with the recognition that certain progeroid syndromes can be caused by mutations that lead to an accumulation of farnesyl-prelamin A. Recently, we showed that a key cellular phenotype of these progeroid disorders, misshapen cell nuclei, can be ameliorated by inhibitors of protein farnesylation, suggesting a potential strategy for treating these diseases. In this article, we review the posttranslational processing of prelamin A, describe several mouse models for progeroid syndromes, explain the mutations underlying several human progeroid syndromes, and summarize recent data showing that misshapen nuclei can be ameliorated by treating cells with protein farnesyltransferase inhibitors.
Collapse
Affiliation(s)
- Stephen G Young
- Division of Cardiology, Department of Internal Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
47
|
Yamashita A, Kamata R, Kawagishi N, Nakanishi H, Suzuki H, Sugiura T, Waku K. Roles of C-terminal processing, and involvement in transacylation reaction of human group IVC phospholipase A2 (cPLA2gamma). J Biochem 2005; 137:557-67. [PMID: 15944408 DOI: 10.1093/jb/mvi067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The phospholipase A2s (PLA2s) are a diverse group of enzymes that hydrolyze the sn-2 fatty acid from phospholipids and play a role in a wide range of physiological functions. A 61-kDa calcium-independent PLA2, termed cPLA2gamma, was identified as an ortholog of cPLA2alpha with approximately 30% overall sequence identity. cPLA2gamma contains a potential prenylation motif at its C terminus, and is known to have PLA2 and lysophospholipase activities, but its physiological roles have not been clarified. In the present study, we expressed various forms of recombinant cPLA2gamma, including non-prenylated and non-cleaved forms, in order to investigate the effects of C-terminal processing. We examined the expression of the wild type and non-prenylated (SCLA) forms of cPLA2gamma, and found that the SCLA form was expressed normally and retained almost full activity. Expression of the prenylated and non-cleaved form of cPLA2gamma using yeast mutants lacking prenyl protein proteases AFC1 (a-factor-converting enzyme) and RCE1 (Ras-converting enzyme) revealed decreased expression in the mutant strain compared to that in the wild type yeast, suggesting that complete C-terminal processing is important for the functional expression of cPLA2gamma. In addition, cPLA2gamma was found to have coenzyme A (CoA)-independent transacylation and lysophospholipid (LPL) dismutase (LPLase/transacylase) activities, suggesting that it may be involved in fatty acid remodeling of phospholipids and the clearance of toxic lysophospholipids in cells.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195.
| | | | | | | | | | | | | |
Collapse
|
48
|
Corrigan D, Kuszczak D, Rusinol A, Thewke D, Hrycyna C, Michaelis S, Sinensky M. Prelamin A endoproteolytic processing in vitro by recombinant Zmpste24. Biochem J 2005; 387:129-38. [PMID: 15479156 PMCID: PMC1134940 DOI: 10.1042/bj20041359] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nuclear lamins form a karyoskeleton providing structural rigidity to the nucleus. One member of the lamin family, lamin A, is first synthesized as a 74 kDa precursor, prelamin A. After the endopeptidase and methylation reactions which occur after farnesylation of the CAAX-box cysteine, there is a second endoproteolysis that occurs 15 amino acids upstream from the C-terminal farnesylated cysteine residue. Studies with knockout mice have implicated the enzyme Zmpste24 (Face-1) as a suitable candidate to perform one or both of these proteolytic reactions. Evidence has been presented elsewhere establishing that Zmpste24 possesses a zinc-dependent CAAX endopeptidase activity. In the present study, we confirm this CAAX endopeptidase activity with recombinant, membrane-reconstituted Zmpste24 and show that it can accept a prelamin A farnesylated tetrapeptide as substrate. To monitor the second upstream endoproteolytic cleavage of prelamin A, we expressed a 33 kDa prelamin A C-terminal tail in insect cells. We demonstrate that this purified substrate possesses a C-terminal farnesylated and carboxyl-methylated cysteine and, therefore, constitutes a valid substrate for assaying the second endoproteolytic step in lamin A maturation. With this substrate, we demonstrate that insect cell membranes bearing recombinant Zmpste24 can also catalyse the second upstream endoproteolytic cleavage.
Collapse
Affiliation(s)
- Douglas P. Corrigan
- *Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Box 70581, Johnson City, TN 37614-0581, U.S.A
| | - Danuta Kuszczak
- *Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Box 70581, Johnson City, TN 37614-0581, U.S.A
| | - Antonio E. Rusinol
- *Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Box 70581, Johnson City, TN 37614-0581, U.S.A
| | - Douglas P. Thewke
- *Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Box 70581, Johnson City, TN 37614-0581, U.S.A
| | - Christine A. Hrycyna
- †Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, U.S.A
| | - Susan Michaelis
- ‡Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21205, U.S.A
| | - Michael S. Sinensky
- *Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Box 70581, Johnson City, TN 37614-0581, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
Riquelme M, Challen MP, Casselton LA, Brown AJ. The origin of multiple B mating specificities in Coprinus cinereus. Genetics 2005; 170:1105-19. [PMID: 15879506 PMCID: PMC1451185 DOI: 10.1534/genetics.105.040774] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/17/2005] [Indexed: 11/18/2022] Open
Abstract
Mushrooms, such as Coprinus cinereus, possess large families of pheromones and G-protein-coupled receptors that are sequestered at the B mating-type locus and whose function is to confer vast numbers of different mating types. This ability results from complex patterns of cognate and noncognate pheromone/receptor pairings, which potentially offer a unique insight into the molecular interaction between receptor and ligand. In this study we have identified many more members of these families by molecular analysis of strains collected worldwide. There are three groups of genes at each B locus. We have identified two alleles of group 1, five alleles of group 2, and seven alleles of group 3, encoding in total 14 different receptors and 29 different pheromones. The specificity of many newly identified alleles was determined by transformation analysis. One striking finding was that receptors fall into groups based on sequence homology but these do not correspond to the groups defined by position, indicating that complex evolutionary processes gave rise to the B loci. While additional allelic versions may occur in nature, the number of B specificities possible by combination of the alleles that we describe is 70, close to previous estimates based on population analysis.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Michael P. Challen
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Lorna A. Casselton
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Andrew J. Brown
- Assay Development and Compound Profiling, Discovery Research, GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex CM19 5AW, United Kingdom
| |
Collapse
|
50
|
Kim S, Lapham AN, Freedman CGK, Reed TL, Schmidt WK. Yeast as a tractable genetic system for functional studies of the insulin-degrading enzyme. J Biol Chem 2005; 280:27481-90. [PMID: 15944156 DOI: 10.1074/jbc.m414192200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed yeast as an expression and genetic system for functional studies of the insulin-degrading enzyme (IDE), which cleaves and inactivates certain small peptide molecules, including insulin and the neurotoxic A beta peptide. We show that heterologously expressed rat IDE is enzymatically active, as judged by the ability of IDE-containing yeast extracts to cleave insulin in vitro. We also show that IDE can promote the in vivo production of the yeast a-factor mating pheromone, a function normally attributed to the yeast enzymes Axl1p and Ste23p. However, IDE cannot substitute for the function of Axl1p in promoting haploid axial budding and repressing haploid invasive growth, activities that require an uncharacterized activity of Axl1p. Particulate fractions enriched for Axl1p or Ste23p are incapable of cleaving insulin, suggesting that the functional conservation of these enzymes may not be bidirectionally conserved. We have made practical use of our genetic system to confirm that residues composing the extended zinc metalloprotease motif of M16A family enzymes are required for the enzymatic activity of IDE, Ste23p, and Axl1p. We have determined that IDE and Axl1p both require an intact C terminus for optimal activity. We expect that the tractable genetic system that we have developed will be useful for investigating the enzymatic and structure/function properties of IDE and possibly for the identification of novel IDE alleles having altered substrate specificity.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|