1
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
2
|
Iglesias-Romero AB, Soto T, Flor-Parra I, Salas-Pino S, Ruiz-Romero G, Gould KL, Cansado J, Daga RR. MAPK-dependent control of mitotic progression in S. pombe. BMC Biol 2024; 22:71. [PMID: 38523261 PMCID: PMC10962199 DOI: 10.1186/s12915-024-01865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Mitogen-activated protein kinases (MAPKs) preserve cell homeostasis by transducing physicochemical fluctuations of the environment into multiple adaptive responses. These responses involve transcriptional rewiring and the regulation of cell cycle transitions, among others. However, how stress conditions impinge mitotic progression is largely unknown. The mitotic checkpoint is a surveillance mechanism that inhibits mitotic exit in situations of defective chromosome capture, thus preventing the generation of aneuploidies. In this study, we investigate the role of MAPK Pmk1 in the regulation of mitotic exit upon stress. RESULTS We show that Schizosaccharomyces pombe cells lacking Pmk1, the MAP kinase effector of the cell integrity pathway (CIP), are hypersensitive to microtubule damage and defective in maintaining a metaphase arrest. Epistasis analysis suggests that Pmk1 is involved in maintaining spindle assembly checkpoint (SAC) signaling, and its deletion is additive to the lack of core SAC components such as Mad2 and Mad3. Strikingly, pmk1Δ cells show up to twofold increased levels of the anaphase-promoting complex (APC/C) activator Cdc20Slp1 during unperturbed growth. We demonstrate that Pmk1 physically interacts with Cdc20Slp1 N-terminus through a canonical MAPK docking site. Most important, the Cdc20Slp1 pool is rapidly degraded in stressed cells undergoing mitosis through a mechanism that requires MAPK activity, Mad3, and the proteasome, thus resulting in a delayed mitotic exit. CONCLUSIONS Our data reveal a novel function of MAPK in preventing mitotic exit and activation of cytokinesis in response to stress. The regulation of Cdc20Slp1 turnover by MAPK Pmk1 provides a key mechanism by which the timing of mitotic exit can be adjusted relative to environmental conditions.
Collapse
Affiliation(s)
| | - Terersa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, 30071, Spain
| | - Ignacio Flor-Parra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Gabriel Ruiz-Romero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, 30071, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, 41013, Spain.
| |
Collapse
|
3
|
Guo X, Ramirez I, Garcia YA, Velasquez EF, Gholkar AA, Cohn W, Whitelegge JP, Tofig B, Damoiseaux R, Torres JZ. DUSP7 regulates the activity of ERK2 to promote proper chromosome alignment during cell division. J Biol Chem 2021; 296:100676. [PMID: 33865857 PMCID: PMC8131738 DOI: 10.1016/j.jbc.2021.100676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Human cell division is a highly regulated process that relies on the accurate capture and movement of chromosomes to the metaphase plate. Errors in the fidelity of chromosome congression and alignment can lead to improper chromosome segregation, which is correlated with aneuploidy and tumorigenesis. These processes are known to be regulated by extracellular signal-regulated kinase 2 (ERK2) in other species, but the role of ERK2 in mitosis in mammals remains unclear. Here, we have identified the dual-specificity phosphatase 7 (DUSP7), known to display selectivity for ERK2, as important in regulating chromosome alignment. During mitosis, DUSP7 bound to ERK2 and regulated the abundance of active phospho-ERK2 through its phosphatase activity. Overexpression of DUSP7, but not catalytically inactive mutants, led to a decrease in the levels of phospho-ERK2 and mitotic chromosome misalignment, while knockdown of DUSP7 also led to defective chromosome congression that resulted in a prolonged mitosis. Consistently, knockdown or chemical inhibition of ERK2 or chemical inhibition of the MEK kinase that phosphorylates ERK2 led to chromosome alignment defects. Our results support a model wherein MEK-mediated phosphorylation and DUSP7-mediated dephosphorylation regulate the levels of active phospho-ERK2 to promote proper cell division.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Yenni A Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Erick F Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Bobby Tofig
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, California, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA.
| |
Collapse
|
4
|
Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. ADVANCES IN PARASITOLOGY 2019; 106:1-50. [PMID: 31630755 DOI: 10.1016/bs.apar.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of the parasite Giardia duodenalis to perform complex functions with minimal amounts of proteins and organelles has attracted increasing numbers of scientists worldwide, trying to explain how this parasite adapts to internal and external changes to survive. One explanation could be that G. duodenalis evolved from a structurally complex ancestor by reductive evolution, resulting in adaptation to its parasitic lifestyle. Reductive evolution involves the loss of genes, organelles, and functions that commonly occur in many parasites, by which the host renders some structures and functions redundant. However, there is increasing data that Giardia possesses proteins able to perform more than one function. During recent decades, the concept of moonlighting was described for multitasking proteins, which involves only proteins with an extra independent function(s). In this chapter, we provide an overview of unusual proteins in Giardia that present multifunctional properties depending on the location and/or parasite requirement. We also discuss experimental evidence that may allow some giardial proteins to be classified as moonlighting proteins by examining the properties of moonlighting proteins in general. Up to date, Giardia does not seem to require the numerous redundant proteins present in other organisms to accomplish its normal functions, and thus this parasite may be an appropriate model for understanding different aspects of moonlighting proteins, which may be helpful in the design of drug targets.
Collapse
Affiliation(s)
- Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
5
|
Ciocci M, Iorio E, Carotenuto F, Khashoggi HA, Nanni F, Melino S. H2S-releasing nanoemulsions: a new formulation to inhibit tumor cells proliferation and improve tissue repair. Oncotarget 2018; 7:84338-84358. [PMID: 27741519 PMCID: PMC5356665 DOI: 10.18632/oncotarget.12609] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The improvement of solubility and/or dissolution rate of poorly soluble natural compounds is an ideal strategy to make them optimal candidates as new potential drugs. Accordingly, the allyl sulfur compounds and omega-3 fatty acids are natural hydrophobic compounds that exhibit two important combined properties: cardiovascular protection and antitumor activity. Here, we have synthesized and characterized a novel formulation of diallyl disulfide (DADS) and α-linolenic acid (ALA) as protein-nanoemulsions (BAD-NEs), using ultrasounds. BAD-NEs are stable over time at room temperature and show antioxidant and radical scavenging property. These NEs are also optimal H2S slow-release donors and show a significant anti-proliferative effect on different human cancer cell lines: MCF-7 breast cancer and HuT 78 T-cell lymphoma cells. BAD-NEs are able to regulate the ERK1/2 pathway, inducing apoptosis and cell cycle arrest at the G0/G1 phase. We have also investigated their effect on cell proliferation of human adult stem/progenitor cells. Interestingly, BAD-NEs are able to improve the Lin- Sca1+ human cardiac progenitor cells (hCPC) proliferation. This stem cell growth stimulation is combined with the expression and activation of proteins involved in tissue-repair, such as P-AKT, α-sma and connexin 43. Altogether, our results suggest that these antioxidant nanoemulsions might have potential application in selective cancer therapy and for promoting the muscle tissue repair.
Collapse
Affiliation(s)
- Matteo Ciocci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Felicia Carotenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Haneen A Khashoggi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Nanni
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Iwamoto E, Ueta N, Matsui Y, Kamijo K, Kuga T, Saito Y, Yamaguchi N, Nakayama Y. ERK Plays a Role in Chromosome Alignment and Participates in M-Phase Progression. J Cell Biochem 2015; 117:1340-51. [PMID: 26529125 DOI: 10.1002/jcb.25424] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/02/2015] [Indexed: 11/07/2022]
Abstract
Cell division, a prerequisite for cell proliferation, is a process in which each daughter cell inherits one complete set of chromosomes. The mitotic spindle is a dedicated apparatus for the alignment and segregation of chromosomes. Extracellular signal-regulated kinase (ERK) 1/2 plays crucial roles in cell cycle progression, particularly during M-phase. Although, association with the mitotic spindle has been reported, the precise roles played by ERK in the dynamics of the mitotic spindle and in M-phase progression remain to be elucidated. In this study, we used MEK inhibitors U0126 and GSK1120212 to dissect the roles of ERK in M-phase progression and chromosome alignment. Fluorescence microscopy revealed that ERK is localized to the spindle microtubules in a manner independent of Src kinase, which is one of the kinases upstream of ERK at mitotic entry. ERK inhibition induces an increase in the number of prophase cells and a decrease in the number of anaphase cells. Time-lapse imaging revealed that ERK inhibition perturbs chromosome alignment, thereby preventing cells from entering anaphase. These results suggest that ERK plays a role in M-phase progression by regulating chromosome alignment and demonstrate one of the mechanisms by which the aberration of ERK signaling may produce cancer cells.
Collapse
Affiliation(s)
- Erika Iwamoto
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Natsumi Ueta
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuki Matsui
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Keiju Kamijo
- Department of Anatomy, Anthropology and Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Takahisa Kuga
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Naoto Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| |
Collapse
|
7
|
Kim HH, Song HK, Lee BJ, Park SJ. Structural stability of CD1 domain of human mitotic checkpoint serine/threonine-protein kinase, Bub1. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2015. [DOI: 10.6564/jkmrs.2015.19.2.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58. [PMID: 23512483 DOI: 10.1007/s00412-013-0401-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | | |
Collapse
|
9
|
CpG Island Methylation, Microsatellite Instability, and BRAF Mutations and Their Clinical Application in the Treatment of Colon Cancer. CHEMOTHERAPY RESEARCH AND PRACTICE 2012; 2012:359041. [PMID: 22792460 PMCID: PMC3389642 DOI: 10.1155/2012/359041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/15/2012] [Indexed: 12/17/2022]
Abstract
There have been significant developments in colon cancer research over the last few years, enabling us to better characterize tumors individually and classifying them according to certain molecular or genetic features. Currently, we are able to use KRAS mutational status as a guide to therapy with anti-epidermal growth factor receptor antibodies. Other molecular features under research include BRAF mutation, microsatellite instability, and CpG island methylation. These three molecular features are often associated with tumors that have overlapping phenotypes and can be present simultaneously in the same tumor. However, they carry different prognostic and predictive qualities, making analysis of their interaction relatively complex. Much research thus far has examined the clinical relevance of microsatellite instability in helping determine prognosis and the predictive value of adjuvant 5-fluorouracil chemotherapy in stages II and III colon cancers. BRAF mutation appears to be a biomarker for poor prognosis. CpG island methylation is tightly associated with microsatellite instable tumors and BRAF mutation, but its clinical utility remains uncertain. Hereby, we examine preclinical and clinical data that supports the utilization of all three phenotypes in future research applied to clinical practice.
Collapse
|
10
|
Monteagudo S, Pérez-Martínez FC, Pérez-Carrión MD, Guerra J, Merino S, Sánchez-Verdú MP, Ceña V. Inhibition of p42 MAPK using a nonviral vector-delivered siRNA potentiates the anti-tumor effect of metformin in prostate cancer cells. Nanomedicine (Lond) 2011; 7:493-506. [PMID: 21995500 DOI: 10.2217/nnm.11.61] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS The aim of this work was to study if a G1-polyamidoamine dendrimer/siRNA dendriplex can remove the p42 MAPK protein in prostate cancer cells and to potentiate the anti-tumoral effect of the antidiabetic drug metformin and taxane docetaxel. MATERIAL & METHODS The dendriplex uptake was studied using flow cytometry analysis. Transfection efficiency was determined by measuring p42 MAPK mRNA and protein levels. Anti-tumoral effects were determined by measuring cellular proliferation and damage. RESULTS The dendriplex siRNA/G1-polyamidoamine dendrimer decreased both p42 MAPK mRNA and protein levels by more than 80%, which potentiates the anti-tumoral effects of metformin. CONCLUSION Blockade of the MAPK pathway using a dendrimer-vehiculized siRNA to block the MAPK signaling pathway in prostate cancer cells can potentiate the anti-tumoral activity of anticancer drugs, indicating that the combination of siRNA-mediated blockade of survival signals plus anti-tumoral therapy might be a useful approach for cancer therapy.
Collapse
|
11
|
Abstract
This paper presents evidence that chromatin condensation, like nuclear envelope breakdown, is brought about through the combined effects of cyclins A2 and B1, and that cyclins B1 and B2 are largely responsible for maintenance of a spindle assembly checkpoint arrest. Here we have used siRNAs and time-lapse epifluorescence microscopy to examine the roles of various candidate mitotic cyclins in chromatin condensation in HeLa cells. Knocking down cyclin A2 resulted in a substantial (∼7 h) delay in chromatin condensation and histone H3 phosphorylation, and expressing an siRNA-resistant form of cyclin A2 partially rescued chromatin condensation. There was no detectable delay in DNA replication in the cyclin A2 knockdowns, arguing that the delay in chromatin condensation is not secondary to a delay in S-phase completion. Cyclin A2 is required for the activation and nuclear accumulation of cyclin B1-Cdk1, raising the possibility that cyclin B1-Cdk1 mediates the effects of cyclin A2. Consistent with this possibility, we found that chromatin condensation was tightly associated temporally with the redistribution of cyclin B1 to the nucleus. Moreover, a constitutively nuclear cyclin B1 rescued chromatin condensation in cyclin A2 knockdown cells. On the other hand, knocking down cyclin B1 delayed chromatin condensation by only about one hour. Our working hypothesis is that active, nuclear cyclin B1-Cdk1 normally cooperates with cyclin A2 to bring about early mitotic events. Because cyclin A2 is present only during the early stages of mitosis, we asked whether cyclin B knockdown might have more dramatic defects on late mitotic events. Consistent with this possibility, we found that cyclin B1- and cyclin B1/B2-knockdown cells had difficulty in maintaining a mitotic arrest in the presence of nocodazole. Taken together, these data suggest that cyclin A2 helps initiate mitosis, in part through its effects on cyclin B1, and that cyclins B1 and B2 are particularly critical for the maintenance of the mitotic state.
Collapse
Affiliation(s)
- Delquin Gong
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
12
|
RSK2 is a kinetochore-associated protein that participates in the spindle assembly checkpoint. Oncogene 2010; 29:3566-74. [DOI: 10.1038/onc.2010.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Cui Y, Borysova MK, Johnson JO, Guadagno TM. Oncogenic B-RafV600E Induces Spindle Abnormalities, Supernumerary Centrosomes, and Aneuploidy in Human Melanocytic Cells. Cancer Res 2010; 70:675-84. [DOI: 10.1158/0008-5472.can-09-1491] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Nguyen NT, Lin DPC, Yen SY, Tseng JK, Chuang JF, Chen BY, Lin TA, Chang HH, Ju JC. Sonic hedgehog promotes porcine oocyte maturation and early embryo development. Reprod Fertil Dev 2009; 21:805-15. [DOI: 10.1071/rd08277] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 05/13/2009] [Indexed: 12/28/2022] Open
Abstract
In the present study, we investigated the effects of the Sonic hedgehog (Shh) protein on porcine oocyte maturation and early embryo development. Immunohistochemistry showed activation of Shh signalling in cumulus–oocyte complexes (COCs), as reflected by Patched (Ptc), Smoothened (Smo) and Gli1 expression in oocytes, cumulus cells and granulosa cells, particularly those of small follicles (<2 mm in diameter). Western blot analysis showed Smo expression in COCs and in denuded oocytes derived from small and medium (3–7 mm)-sized follicles. Small follicles contained the highest concentration of Shh in follicular fluid compared with medium-sized and large (>7 mm in diameter) follicles. Supplementation with Shh (0.5 or 1 μg mL–1) enhanced oocyte maturation compared with the control group (92.4% and 90.4% v. 81.9%, respectively; P < 0.05). This effect was reversed by the simultaneous addition of cyclopamine (1–2 μm), an Shh inhibitor. Similar to intact COCs, denuded COCs showed enhanced maturation following Shh supplementation. Furthermore, cyclin B1 content, extracellular signal-regulated kinase 1/2 phosphorylation, intracellular calcium release, blastocyst rate and total cell numbers were greater (P < 0.05) in oocytes matured in the presence of 0.5 and 1 μg mL–1 Shh compared with control oocytes. The findings of the present study provide the first evidence that the Shh signalling pathway is active, or at least partially activated, in the porcine ovary and is likely to promote oocyte cytoplasmic and nuclear maturation, as well as subsequent in vitro development, although the underlying mechanisms remain to be elucidated.
Collapse
|
15
|
Borysov SI, Guadagno TM. A novel role for Cdk1/cyclin B in regulating B-raf activation at mitosis. Mol Biol Cell 2008; 19:2907-15. [PMID: 18434602 DOI: 10.1091/mbc.e07-07-0679] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
MAPK activity is important during mitosis for spindle assembly and maintenance of the spindle checkpoint arrest. We previously identified B-Raf as a critical activator of the MAPK cascade during mitosis in Xenopus egg extracts and showed that B-Raf activation is regulated in an M-phase-dependent manner. The mechanism that mediates B-Raf activation at mitosis has not been elucidated. Interestingly, activation of 95-kDa B-Raf at mitosis does not require phosphorylation of Thr-599 and Ser-602 residues (Thr-633 and Ser-636 in Xenopus B-Raf), previously shown to be essential for B-Raf activation by Ras. Instead, we provide evidence for Cdk1/cyclin B in mediating mitotic activation of B-Raf. In particular, Cdk1/cyclin B complexes associate with B-Raf at mitosis in Xenopus egg extracts and contribute to its phosphorylation. Mutagenesis and in vitro kinase assays demonstrated that Cdk1/cyclin B directly phosphorylates B-Raf at Serine-144, which is part of a conserved Cdk1 preferential consensus site (S(144)PQK). Importantly, phosphorylation of Ser-144 is absolutely required for mitotic activation of B-Raf and subsequent activation of the MAPK cascade. However, substitution of a phospho-mimicking amino acid at Ser-144 failed to produce a constitutive active B-Raf indicating that, in addition of Ser-144 phosphorylation, other regulatory events may be needed to activate B-Raf at mitosis. Taken together, our data reveal a novel cell cycle mechanism for activating the B-Raf/MEK/MAPK cascade.
Collapse
Affiliation(s)
- Sergiy I Borysov
- Molecular Oncology Program, H. Lee Moffitt Cancer and Research Institute, Tampa, FL 33612, USA
| | | |
Collapse
|
16
|
Kubiak JZ, Chesnel F, Richard-Parpaillon L, Bazile F, Pascal A, Polanski Z, Sikora-Polaczek M, Maciejewska Z, Ciemerych MA. Temporal regulation of the first mitosis in Xenopus and mouse embryos. Mol Cell Endocrinol 2008; 282:63-9. [PMID: 18178304 DOI: 10.1016/j.mce.2007.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cell cycle regulation in Eukaryotes is based on common molecular actors and mechanisms. However, the canonical cell cycle is modified in certain cells. Such modifications play a key role in oocyte maturation and embryonic development. They can be achieved either by introduction of new components, pathways, substrates, changed interactions between them, or by elimination of some factors inherited by the cells from previous developmental stages. Here we discuss a particular temporal regulation of the first embryonic M-phase of Xenopus and mouse embryos. These two examples help to understand better the general regulation of M-phase of the cell cycle.
Collapse
Affiliation(s)
- Jacek Z Kubiak
- CNRS/University of Rennes 1, Institute of Genetics & Development, UMR 6061, Mitosis & Meiosis Group, Faculty of Medicine, 2 Ave. Prof. Léon Bernard, CS 34317, 35043 Rennes Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tae JC, Kim EY, Jeon K, Lee KS, Lee CH, Kim YO, Park SP, Kim NH. A MAPK pathway is involved in the control of cortical granule reaction and mitosis during bovine fertilization. Mol Reprod Dev 2008; 75:1300-6. [DOI: 10.1002/mrd.20777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
B-RafV600E signaling deregulates the mitotic spindle checkpoint through stabilizing Mps1 levels in melanoma cells. Oncogene 2007; 27:3122-33. [DOI: 10.1038/sj.onc.1210972] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007; 8:379-93. [PMID: 17426725 DOI: 10.1038/nrm2163] [Citation(s) in RCA: 1692] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, the spindle-assembly checkpoint (SAC) is a ubiquitous safety device that ensures the fidelity of chromosome segregation in mitosis. The SAC prevents chromosome mis-segregation and aneuploidy, and its dysfunction is implicated in tumorigenesis. Recent molecular analyses have begun to shed light on the complex interaction of the checkpoint proteins with kinetochores--structures that mediate the binding of spindle microtubules to chromosomes in mitosis. These studies are finally starting to reveal the mechanisms of checkpoint activation and silencing during mitotic progression.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| | | |
Collapse
|
20
|
Shinohara M, Mikhailov AV, Aguirre-Ghiso JA, Rieder CL. Extracellular signal-regulated kinase 1/2 activity is not required in mammalian cells during late G2 for timely entry into or exit from mitosis. Mol Biol Cell 2006; 17:5227-40. [PMID: 17035635 PMCID: PMC1679686 DOI: 10.1091/mbc.e06-04-0284] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK)1/2 activity is reported to be required in mammalian cells for timely entry into and exit from mitosis (i.e., the G2-mitosis [G2/M] and metaphase-anaphase [M/A] transitions). However, it is unclear whether this involvement reflects a direct requirement for ERK1/2 activity during these transitions or for activating gene transcription programs at earlier stages of the cell cycle. To examine these possibilities, we followed live cells in which ERK1/2 activity was inhibited through late G2 and mitosis. We find that acute inhibition of ERK1/2 during late G2 and through mitosis does not affect the timing of the G2/M or M/A transitions in normal or transformed human cells, nor does it impede spindle assembly, inactivate the p38 stress-activated checkpoint during late G2 or the spindle assembly checkpoint during mitosis. Using CENP-F as a marker for progress through G2, we also show that sustained inhibition of ERK1/2 transiently delays the cell cycle in early/mid-G2 via a p53-dependent mechanism. Together, our data reveal that ERK1/2 activity is required in early G2 for a timely entry into mitosis but that it does not directly regulate cell cycle progression from late G2 through mitosis in normal or transformed mammalian cells.
Collapse
Affiliation(s)
- Mio Shinohara
- *Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201
- Department of Biomedical Sciences, School of Public Health, and
| | - Alexei V. Mikhailov
- *Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201
- Department of Biomedical Sciences, School of Public Health, and
| | - Julio A. Aguirre-Ghiso
- Department of Biomedical Sciences, School of Public Health, and
- Gen*NY*Sis Center for Excellence in Cancer Genomics, State University of New York, Albany, NY 12144; and
| | - Conly L. Rieder
- *Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201
- Department of Biomedical Sciences, School of Public Health, and
- Marine Biology Laboratory, Woods Hole, MA 02543
| |
Collapse
|
21
|
Roberts EC, Hammond K, Traish AM, Resing KA, Ahn NG. Identification of G2/M targets for the MAP kinase pathway by functional proteomics. Proteomics 2006; 6:4541-53. [PMID: 16858730 DOI: 10.1002/pmic.200600365] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the importance of the extracellular signal-regulated kinase (ERK) pathway in regulating the transition from G1 to S has been extensively studied, its role during the G2/M transition is less well understood. Previous reports have shown that inhibition of the ERK pathway in mammalian cells delays entry as well as progression through mitosis, suggesting the existence of molecular targets of this pathway in M phase. In this report we employed 2-DE and MS to survey proteins and PTMs in the presence versus absence of MKK1/2 inhibitor. Targets of the ERK pathway in G2/M were identified as elongation factor 2 (EF2) and nuclear matrix protein, 55 kDa (Nmt55). Phosphorylation of each protein increased under conditions of ERK pathway inhibition, suggesting indirect control of these targets; regulation of EF2 was ascribed to phosphorylation and inactivation of upstream EF2 kinase, whereas regulation of Nmt55 was ascribed to a delay in normal mitotic phosphorylation and dephosphorylation. 2-DE Western blots probed using anti-phospho-Thr-Pro antibody demonstrated that the effect of ERK inhibition is not to delay the onset of phosphorylation controlled by cdc2 and other mitotic kinases, but rather to regulate a small subset of targets in M phase in a nonoverlapping manner with cdc2.
Collapse
Affiliation(s)
- Elisabeth C Roberts
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0215, USA
| | | | | | | | | |
Collapse
|
22
|
Eves EM, Shapiro P, Naik K, Klein UR, Trakul N, Rosner MR. Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint. Mol Cell 2006; 23:561-74. [PMID: 16916643 PMCID: PMC1626587 DOI: 10.1016/j.molcel.2006.07.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 04/19/2006] [Accepted: 07/17/2006] [Indexed: 02/07/2023]
Abstract
Raf kinase inhibitory protein (RKIP or PEBP) is an inhibitor of the Raf/MEK/MAP kinase signaling cascade and a suppressor of cancer metastasis. We now show that RKIP associates with centrosomes and kinetochores and regulates the spindle checkpoint in mammalian cells. RKIP depletion causes decreases in the mitotic index, the number of metaphase cells, and traversal times from nuclear envelope breakdown to anaphase, and an override of mitotic checkpoints induced by spindle poisons. Raf-1 depletion or MEK inhibition reverses the reduction in the mitotic index, whereas hyperactivation of Raf mimics the RKIP-depletion phenotype. Finally, RKIP depletion or Raf hyperactivation reduces kinetochore localization and kinase activity of Aurora B, a regulator of the spindle checkpoint. These results indicate that RKIP regulates Aurora B kinase and the spindle checkpoint via the Raf-1/MEK/ERK cascade and demonstrate that small changes in the MAP kinase (MAPK) pathway can profoundly impact the fidelity of the cell cycle.
Collapse
Affiliation(s)
- Eva M Eves
- Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zhao Y, Chen RH. Mps1 Phosphorylation by MAP Kinase Is Required for Kinetochore Localization of Spindle-Checkpoint Proteins. Curr Biol 2006; 16:1764-9. [PMID: 16950116 DOI: 10.1016/j.cub.2006.07.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/01/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
The spindle checkpoint delays anaphase onset until all chromosomes have achieved bipolar attachment to the spindle microtubules. Unattached kinetochores activate the spindle checkpoint by recruiting several spindle-checkpoint proteins, including Mps1, Mad1, Mad2, Bub1, Bub3, and BubR1 (Mad3 in yeast). In vertebrate cells, active MAP kinase (MAPK) is also enriched at unattached kinetochores and is required for the spindle checkpoint. It has been shown that the kinase activity of Mps1 is required for the spindle checkpoint and for kinetochore localization of Bub1, Bub3, Mad1, and Mad2 . We herein demonstrate that MAPK phosphorylates Mps1 at S844 in Xenopus egg extracts. Interestingly, changing S844 to unphosphorylatable alanine (S844A) has no effect on the kinase activity of Mps1, although it abolishes the checkpoint function of Mps1. Biochemical and immunofluorescence studies show that S844A mutation perturbs kinetochore localization of Mps1 and other spindle-checkpoint proteins, whereas the phosphorylation-mimicking S844D mutant restores their functions. Our studies suggest that Mps1 phosphorylation by MAPK at S844 might create a phosphoepitope that allows Mps1 to interact with kinetochores. In addition, our results indicate that active Mps1 must localize to kinetochores in order to execute its checkpoint function.
Collapse
Affiliation(s)
- Yong Zhao
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
24
|
Borysov SI, Cheng AWM, Guadagno TM. B-Raf Is Critical For MAPK Activation during Mitosis and Is Regulated in an M Phase-dependent Manner in Xenopus Egg Extracts. J Biol Chem 2006; 281:22586-96. [PMID: 16762920 DOI: 10.1074/jbc.m601432200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of the MAPK cascade during mitosis is critical for spindle assembly and normal mitotic progression. The underlying regulatory mechanisms that control activation of the MEK/MAPK cascade during mitosis are poorly understood. Here we purified and characterized the MEK kinase activity present in Xenopus M phase-arrested egg extracts. Our results show that B-Raf was the critical MEK kinase required for M phase activation of the MAPK pathway. Consistent with this, B-Raf was activated and underwent hyperphosphorylation in an M phase-dependent manner. Interestingly B-Raf hyperphosphorylation at mitosis occurred, at least in part, as a consequence of a feedback loop involving MAPK-mediated phosphorylation within a conserved C-terminal SPKTP motif. The kinase activity of a B-Raf mutant defective at both phosphorylation sites was substantially greater than its wild type counterpart when incubated in Xenopus M phase egg extracts. Furthermore suppression of MAPK feedback at mitosis enhanced B-Raf activity, whereas constitutive activation of MAPK at mitosis strongly suppressed B-Raf activity. These results suggest that feedback phosphorylation by MAPK negatively regulates B-Raf activity at mitosis. Collectively our data demonstrate for the first time a role for B-Raf at mitosis and provide new insight into understanding the regulation and function of B-Raf during cell proliferation.
Collapse
Affiliation(s)
- Sergiy I Borysov
- Molecular Oncology Program, Department of Interdisciplinary Oncology, H. Lee Moffitt Comprehensive Cancer Center and Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | |
Collapse
|
25
|
Yue J, Xiong W, Ferrell JE. B-Raf and C-Raf are required for Ras-stimulated p42 MAP kinase activation in Xenopus egg extracts. Oncogene 2006; 25:3307-3315. [PMID: 16434971 DOI: 10.1038/sj.onc.1209354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/25/2005] [Accepted: 11/10/2005] [Indexed: 11/09/2022]
Abstract
During mitosis, a select pool of MEK1 and p42/p44 MAPK becomes activated at the kinetochores and spindle poles, without substantial activation of the bulk of the cytoplasmic p42/p44 MAPK. Recently, we set out to identify the MAP kinase kinase kinase (MAPKKK) responsible for this mitotic activation, using cyclin-treated Xenopus egg extracts as a model system, and presented evidence that Mos was the relevant MAPKKK . However, a second MAPKKK distinct from Mos was readily detectable as well. Here, we partially purify this second MAPKKK and identify it as B-Raf. No changes in the activity of B-Raf were detectable during progesterone-induced oocyte maturation, after egg fertilization, or during the early embryonic cell cycle, arguing against a role for B-Raf in the mitotic activation of MEK1 and p42 MAPK. Ras proteins can bring about activation of MEK1 and p42 MAPK in extracts, and Ras may contribute to signaling from the classical progesterone receptor during oocyte maturation and from receptor tyrosine kinases during early embryogenesis. We found that both B-Raf and C-Raf, but not Mos, are required for Ras-induced MEK1 and p42 MAPK activation. These data indicate that two upstream stimuli, active Ras and active Cdc2, utilize different MAPKKKs to activate MEK1 and p42 MAPK.
Collapse
Affiliation(s)
- J Yue
- Department of Molecular Pharmacology, Stanford University, CA 94305-5174, USA.
| | | | | |
Collapse
|
26
|
Bergstralh DT, Ting JPY. Microtubule stabilizing agents: Their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev 2006; 32:166-79. [PMID: 16527420 DOI: 10.1016/j.ctrv.2006.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/28/2022]
Abstract
Microtubule stabilization by chemotherapy is a powerful weapon in the war against cancer. Disruption of the mitotic spindle activates a number of signaling pathways, with consequences that may protect the cell or lead to its death via apoptosis. Taxol, the first microtubule stabilizing drug to be identified, has been utilized successfully in the treatment of solid tumors for two decades. Several features, however, make this drug less than ideal, and the search for next generation stabilizing drugs with increased efficacy has been intense and fruitful. Microtubule stabilizing agents (MSAs), including the taxanes, the epothilones, discodermolide, laulimalide, and eleutherobin, form an important and expanding family of chemotherapeutic agents. A strong understanding of their molecular signaling consequences is essential to their value, particularly in regard to their potential for combinatorial chemotherapy - the use of multiple agents to enhance the efficacy of cancer treatment. Here we present a critical review of research on the signaling mechanisms induced by MSAs, their relevance to apoptosis, and their potential for exploitation by combinatorial therapy.
Collapse
Affiliation(s)
- Daniel T Bergstralh
- Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, Campus Box #7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
27
|
Kuo HC, Lee HJ, Hu CC, Shun HI, Tseng TH. Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells. Toxicol Appl Pharmacol 2006; 210:55-62. [PMID: 16051289 DOI: 10.1016/j.taap.2005.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/14/2005] [Accepted: 06/21/2005] [Indexed: 11/16/2022]
Abstract
The potential use of low dose chemotherapy has been appealing since lower dosages are more attainable during cancer therapy and cause less toxicity in patients. Combination therapy of Taxol, a promising frontline chemotherapy agent, with natural anti-tumor agents that are considerably less toxic with a capability of activating additional apoptotic signals or inhibiting survival signals may provide a rational molecular basis for novel chemotherapeutic strategies. Esculetin, a well-known lipoxygenase inhibitor, showed an inhibitory effect on the cell cycle progression of HL-60 cells in our previous study. In this report, the effects of a concomitant administration of esculetin and Taxol were investigated in human hepatoma HepG2 cells. Firstly, esculetin alone could exert an antiproliferation effect together with an inhibitory effect on the activation of ERKs and p38 MAPK. As compared to the treatment with Taxol only, a co-administration with esculetin and Taxol could result in a further enhancement of apoptosis as revealed by DNA fragmentation assay and Annexin-V-based assay. Meanwhile, immunoblotting analysis also showed that the co-administration of esculetin and Taxol could increase the expression of Bax and the cytosolic release of cytochrome C and enhance the expression of Fas and Fas ligand while the activation of caspase-8 and caspase-3 was also increased. Finally, the ERK cascade was proven to be involved in the enhancement of esculetin on the Taxol-induced apoptosis.
Collapse
Affiliation(s)
- Hsing-Chun Kuo
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Chien Kuo N. Road, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Takakura I, Naito K, Iwamori N, Yamashita M, Kume S, Tojo H. Inhibition of mitogen activated protein kinase activity induces parthenogenetic activation and increases cyclin B accumulation during porcine oocyte maturation. J Reprod Dev 2005; 51:617-26. [PMID: 16034193 DOI: 10.1262/jrd.17034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibition of mitogen activated protein kinase (MAPK) activation during porcine oocyte maturation leads to decreased maturation promoting factor (MPF) activity and to the induction of parthenogenetic activation. In the present study, in order to analyze the mechanism underlying the suppression of MPF activity in MAPK-inhibited porcine oocytes, we injected mRNA of SASA-MEK, a dominant negative MAPK kinase, or antisense RNA of c-mos, a MAPK kinase kinase, into immature porcine oocyte cytoplasm. The injection of SASA-MEK mRNA or c-mos antisense RNA inhibited the MAPK activity partially or completely, respectively, decreased the MPF activity slightly or significantly, respectively, and induced parthenogenetic activation in 17.1% or 96.6% of mature oocytes, respectively, although no parthenogenetic activation was observed in the control oocytes. Immunoblotting experiments revealed that cyclin B accumulation in these MAPK-suppressed porcine oocytes was increased significantly after 50 h of culture and that a considerable amount of MPF was converted into inactive pre-MPF by hyperphosphorylation. These results indicate that the inhibition of MAPK activity in porcine oocytes did not promote cyclin B degradation but rather suppressed it; also the decrease in MPF activity in MAPK-suppressed porcine oocytes correlated with the conversion of active MPF into inactive pre-MPF.
Collapse
Affiliation(s)
- Ikuko Takakura
- Department of Applied Genetics, Graduate School of Agriculture and Life Science University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Philipova R, Larman MG, Leckie CP, Harrison PK, Groigno L, Whitaker M. Inhibiting MAP kinase activity prevents calcium transients and mitosis entry in early sea urchin embryos. J Biol Chem 2005; 280:24957-67. [PMID: 15843380 PMCID: PMC3292879 DOI: 10.1074/jbc.m414437200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently, MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos, both kinases show a similar activation profile, peaking at the time of mitosis entry. We tested whether the activity of both kinases is required for mitosis entry and whether either kinase controls mitotic calcium signals. We found that reducing the activity of either mitotic kinase prevents nuclear envelope breakdown, despite the presence of a calcium transient, when cdk1/cyclin B kinase activity is alone inhibited. When MAP kinase activity alone was inhibited, the calcium signal was absent, suggesting that MAP kinase activity is required to generate the calcium transient that triggers nuclear envelope breakdown. However, increasing intracellular free calcium by microinjection of calcium buffers or InsP(3) while MAP kinase was inhibited did not itself induce nuclear envelope breakdown, indicating that additional MAP kinase-regulated events are necessary. After MAP kinase inhibition early in the cell cycle, the early events of the cell cycle (pronuclear migration/fusion and DNA synthesis) were unaffected, but chromosome condensation and spindle assembly are prevented. These data indicate that in sea urchin embryos, MAP kinase activity is part of a signaling complex alongside two components previously shown to be essential for entry into mitosis: the calcium transient and the increase in cdk1/cyclinB kinase activity.
Collapse
Affiliation(s)
- Rada Philipova
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Mark G. Larman
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Calum P. Leckie
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Patrick K. Harrison
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Laurence Groigno
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Michael Whitaker
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
30
|
Zhang WL, Huitorel P, Glass R, Fernandez-Serra M, Arnone MI, Chiri S, Picard A, Ciapa B. A MAPK pathway is involved in the control of mitosis after fertilization of the sea urchin egg. Dev Biol 2005; 282:192-206. [PMID: 15936340 DOI: 10.1016/j.ydbio.2005.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 01/26/2005] [Accepted: 03/12/2005] [Indexed: 11/28/2022]
Abstract
Activation and role of mitogen-activated protein (MAP) kinase (MAPK) during mitosis are still matters of controversy in early embryos. We report here that an ERK-like protein is present and highly phosphorylated in unfertilized sea urchin eggs. This MAPK becomes dephosphorylated after fertilization and a small pool of it is transiently reactivated during mitosis. The phosphorylated ERK-like protein is localized to the nuclear region and then to the mitotic poles and the mitotic spindle. Treatment of eggs after fertilization with two different MEK inhibitors, PD 98059 and U0126, at low concentrations capable to selectively induce dephosphorylation of this ERK-like protein, or expression of a dominant-negative MEK1/2, perturbed mitotic progression. Our results suggest that an ERK-like cascade is part of a control mechanism that regulates mitotic spindle formation and the attachment of chromosomes to the spindle during the first mitosis of the sea urchin embryo.
Collapse
Affiliation(s)
- Wen Ling Zhang
- UMR 7622 CNRS, Université Paris 6, 9 Quai St Bernard, Bât C, 5(e) étage, case 24, 75252 Paris cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
How cells behave as they divide in the presence of chromosome (DNA) damage is only just beginning to be explored. It appears to depend on the cell type and organism, the stage of development, how extensive the damage is and when it occurs. The existing data support the conclusion that vertebrate somatic cells lack a conventional DNA damage checkpoint during mitosis, and that when damaged DNA does prolong mitosis it is mediated by the spindle assembly checkpoint. As a rule, in the presence of DNA damage cells ultimately undergo an aberrant mitosis and enter the ensuing G1. They then either die, via apoptosis or mitotic catastrophe, or survive with an altered genome. To avoid these outcomes, cells with DNA damage are normally prevented from entering mitosis by a number of G2 checkpoint control pathways.
Collapse
Affiliation(s)
- Ciaran Morrison
- Department of Biochemistry/NCBES, National University of Ireland-Galway, University Road, Galway, Ireland.
| | | |
Collapse
|
32
|
Philipova R, Kisielewska J, Lu P, Larman M, Huang JY, Whitaker M. ERK1 activation is required for S-phase onset and cell cycle progression after fertilization in sea urchin embryos. Development 2005; 132:579-89. [PMID: 15634691 DOI: 10.1242/dev.01607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fertilization of sea urchin eggs results in a large, transient increase in intracellular free Ca2+ concentration that is responsible for re-initiation of the cell division cycle. We show that activation of ERK1, a Ca2+-dependent MAP kinase response, is required for both DNA synthesis and cell cycle progression after fertilization. We combine experiments on populations of cells with analysis at the single cell level, and develop a proxy assay for DNA synthesis in single embryos, using GFP-PCNA. We compare the effects of low molecular weight inhibitors with a recombinant approach targeting the same signalling pathway. We find that inhibition of the ERK pathway at fertilization using either recombinant ERK phosphatase or U0126, a MEK inhibitor, prevents accumulation of GFP-PCNA in the zygote nucleus and that U0126 prevents incorporation of [3H]-thymidine into DNA. Abrogation of the ERK1 signalling pathway also prevents chromatin decondensation of the sperm chromatin after pronuclear fusion, nuclear envelope breakdown and formation of a bipolar spindle.
Collapse
Affiliation(s)
- Rada Philipova
- University of Newcastle upon Tyne, Institute of Cell and Molecular Biosciences, Medical School, Framlington Place, Newcastle NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
33
|
Rieder CL, Maiato H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 2004; 7:637-51. [PMID: 15525526 DOI: 10.1016/j.devcel.2004.09.002] [Citation(s) in RCA: 509] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cells that cannot satisfy the spindle assembly checkpoint (SAC) are delayed in mitosis (D-mitosis), a fact that has useful clinical ramifications. However, this delay is seldom permanent, and in the presence of an active SAC most cells ultimately escape mitosis and enter the next G1 as tetraploid cells. This review defines and discusses the various factors that determine how long a cell remains in mitosis when it cannot satisfy the SAC and also discusses the cell's subsequent fate.
Collapse
Affiliation(s)
- Conly L Rieder
- Division of Molecular Medicine, New York State Department of Health, Wadsworth Center, Albany, NY 12201, USA.
| | | |
Collapse
|
34
|
Yue J, Ferrell JE. Mos mediates the mitotic activation of p42 MAPK in Xenopus egg extracts. Curr Biol 2004; 14:1581-1586. [PMID: 15341746 DOI: 10.1016/j.cub.2004.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/15/2004] [Accepted: 07/15/2004] [Indexed: 11/24/2022]
Abstract
The ERK1/ERK2 MAP kinases (MAPKs) are transiently activated during mitosis, and MAPK activation has been implicated in the spindle assembly checkpoint and in establishing the timing of an unperturbed mitosis. The MAPK activator MEK1 is required for mitotic activation of p42 MAPK in Xenopus egg extracts; however, the identity of the kinase that activates MEK1 is unknown. Here we have partially purified a Cdc2-cyclin B-induced MEK-activating protein kinase from mitotic Xenopus egg extracts and identified it as the Mos protooncoprotein, a MAP kinase kinase kinase present at low levels in mitotic egg extracts, early embryos, and somatic cells. Immunodepletion of Mos from interphase egg extracts was found to abolish Delta90 cyclin B-Cdc2-stimulated p42 MAPK activation. In contrast, immunodepletion of Raf-1 and B-Raf, two other MEK-activating kinases present in Xenopus egg extracts, had little effect on cyclin-stimulated p42 MAPK activation. Immunodepletion of Mos also abolished the transient activation of p42 MAPK in cycling egg extracts. Taken together, these data demonstrate that Mos is responsible for the mitotic activation of the p42 MAPK pathway in Xenopus egg extracts.
Collapse
Affiliation(s)
- Jianbo Yue
- Department of Molecular Pharmacology, Stanford University, Stanford, CA 94305-5174, USA.
| | | |
Collapse
|
35
|
Chen RH. Phosphorylation and activation of Bub1 on unattached chromosomes facilitate the spindle checkpoint. EMBO J 2004; 23:3113-21. [PMID: 15241477 PMCID: PMC514925 DOI: 10.1038/sj.emboj.7600308] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 06/14/2004] [Indexed: 11/09/2022] Open
Abstract
The spindle checkpoint inhibits anaphase until all kinetochores have attached properly to spindle microtubules. The protein kinase Bub1 is an essential checkpoint component that resides at kinetochores during mitosis. It is shown herein that Xenopus Bub1 becomes hyperphosphorylated and the kinase is activated on unattached chromosomes. MAP kinase (MAPK) contributes to this phosphorylation, as inhibiting MAPK or altering MAPK consensus sites in Bub1 to alanine or valine (Bub1(5AV)) abolishes the phosphorylation and activation on chromosomes. Both Bub1 and Bub1(5AV) support the checkpoint under an optimal condition for spindle checkpoint activation. However, Bub1, but not Bub1(5AV), supports the checkpoint at a relatively low concentration of nuclei or the microtubule inhibitor nocodazole. Similar to Bub1(5AV), Bub1 without the kinase domain (Bub1(deltaKD)) is also partially compromised in its checkpoint function and in its ability to recruit other checkpoint proteins to kinetochores. This study suggests that activation of Bub1 at kinetochores enhances the efficiency of the spindle checkpoint and is probably important in maintaining the checkpoint toward late prometaphase when the cell contains only a few or a single unattached kinetochore.
Collapse
Affiliation(s)
- Rey-Huei Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
36
|
Tunquist BJ, Eyers PA, Chen LG, Lewellyn AL, Maller JL. Spindle checkpoint proteins Mad1 and Mad2 are required for cytostatic factor-mediated metaphase arrest. ACTA ACUST UNITED AC 2004; 163:1231-42. [PMID: 14691134 PMCID: PMC2173727 DOI: 10.1083/jcb.200306153] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cells containing disrupted spindles, the spindle assembly checkpoint arrests the cell cycle in metaphase. The budding uninhibited by benzimidazole (Bub) 1, mitotic arrest-deficient (Mad) 1, and Mad2 proteins promote this checkpoint through sustained inhibition of the anaphase-promoting complex/cyclosome. Vertebrate oocytes undergoing meiotic maturation arrest in metaphase of meiosis II due to a cytoplasmic activity termed cytostatic factor (CSF), which appears not to be regulated by spindle dynamics. Here, we show that microinjection of Mad1 or Mad2 protein into early Xenopus laevis embryos causes metaphase arrest like that caused by Mos. Microinjection of antibodies to either Mad1 or Mad2 into maturing oocytes blocks the establishment of CSF arrest in meiosis II, and immunodepletion of either protein blocked the establishment of CSF arrest by Mos in egg extracts. A Mad2 mutant unable to oligomerize (Mad2 R133A) did not cause cell cycle arrest in blastomeres or in egg extracts. Once CSF arrest has been established, maintenance of metaphase arrest requires Mad1, but not Mad2 or Bub1. These results suggest a model in which CSF arrest by Mos is mediated by the Mad1 and Mad2 proteins in a manner distinct from the spindle checkpoint.
Collapse
Affiliation(s)
- Brian J Tunquist
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, 4200 E. 9th Avenue, Campus Box C236, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
37
|
Knowles LM, Milner JA. Diallyl disulfide induces ERK phosphorylation and alters gene expression profiles in human colon tumor cells. J Nutr 2003; 133:2901-6. [PMID: 12949385 DOI: 10.1093/jn/133.9.2901] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Diallyl disulfide (DADS), a compound found in processed garlic, has been shown to arrest unsynchronized human colon tumor cells (HCT-15) in the G(2)/M phase of the cell cycle. The present studies were designed to examine whether this cell cycle block related to alterations in protein kinase C (PKC), Ca(2+)/calmodulin-dependent protein kinase II (CAMK II) or extracellular signal-regulated kinase (ERK) activity. Exposing double thymidine synchronized HCT-15 cells to DADS (25, 50 and 100 micromol/L) for 4 h increased the G(2)/M population by 30, 31 and 63%, respectively, compared with controls (P < 0.05). PKC and CAM KII activities were not influenced by increasing DADS exposure and thus did not correlate with the block of cells in the G(2)/M phase. Although ERK activity increased by 44 and 60% after treatment with 100 and 500 micromol/L DADS (P < 0.05), it was not influenced by exposure to 25 or 50 micromol/L DADS. Western blot analysis revealed that although DADS (25, 50, 100 and 500 micromol/L) did not influence the quantity of ERK protein expressed, it did increase its phosphorylation by 39, 52, 73 and 61%, respectively, compared with controls (P < 0.05). These studies provide evidence that early alterations in ERK pathway signaling may contribute to the G(2)/M arrest observed after DADS exposure. Preliminary data generated using the Clonetech Atlas Human Cancer cDNA Expression Array suggest that alterations in cell cycle, DNA repair and cellular adhesion factors accompany DADS exposure and may also be involved in mediating the block in G(2)/M progression.
Collapse
Affiliation(s)
- L M Knowles
- Graduate Program in Nutrition and the Nutrition Department, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
38
|
Chung E, Chen RH. Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat Cell Biol 2003; 5:748-53. [PMID: 12855955 DOI: 10.1038/ncb1022] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2002] [Accepted: 05/09/2003] [Indexed: 11/08/2022]
Abstract
The spindle checkpoint delays anaphase until all chromosomes are properly attached to spindle microtubules. When the spindle checkpoint is activated at unattached kinetochores, the checkpoint proteins BubR1, Bub3 and Mad2 bind and inhibit Cdc20, an activator of the anaphase-promoting complex (APC). Here, we show that Xenopus laevis Cdc20 is phosphorylated at Ser 50, Thr 64, Thr 68 and Thr 79 during mitosis and that mitogen-activated protein kinase (MAPK) contributes to the phosphorylation at Thr 64 or Thr 68. Cdc20 mutants that are phosphorylation-deficient are able to activate the APC in X. laevis egg extracts. However, Cdc20 mutants in which any of the four phosphorylation sites were altered to Ala or Val failed to respond to the spindle checkpoint signal, owing to their reduced affinity for the spindle checkpoint proteins. This study demonstrates that the spindle checkpoint stops anaphase by inhibiting fully-phosphorylated Cdc20. Our results also have implications for the spindle checkpoint silencing mechanism.
Collapse
Affiliation(s)
- Eunah Chung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
39
|
Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y. NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 2003. [PMID: 12704083 DOI: 10.1101/gad.107110317/8/1055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The tobacco protein kinase NPK1 is a MAPKKK that regulates formation of the cell plate during cytokinesis. In the present study, we have identified tobacco NQK1/NtMEK1 and NRK1 as a MAPKK and a MAPK, respectively, downstream of NPK1. NQK1/NtMEK1 complements the mutation in the PBS2 MAPKK gene of yeast in a manner that depends on both NPK1 and its activator, NACK1, a kinesin-like protein. Active NPK1 and NQK1/NtMEK1 phosphorylate and activate NQK1/NtMEK1 and NRK1, respectively. Both NQK1/NtMEK1 and NRK1, as well as NPK1, are activated at the late M phase of the cell cycle in tobacco cells, and they are rapidly inactivated by depolymerization of phragmoplast microtubules. These results suggest the existence of a MAPK cascade that consists of NPK1, NQK1/NtMEK1, and NRK1 and functions in a process related to the architecture of phragmoplasts at the late M phase of the cell cycle. Overexpression of kinase-negative NQK1/NtMEK1 in tobacco cells generates multinucleate cells with incomplete cross-walls. Arabidopsis plants with a mutation in the ANQ1 gene, an ortholog of NQK1/NtMEK1, display a dwarf phenotype, with unusually large cells that contain multiple nuclei and cell-wall stubs in various organs. In addition, anq1 homozygotes set fewer flowers and produce large and malformed pollen grains with a tetrad structure. Thus, NQK1/NtMEK1 (ANQ1) MAPKK appears to be a positive regulator of plant cytokinesis during meiosis as well as mitosis.
Collapse
Affiliation(s)
- Takashi Soyano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Japan
| | | | | | | | | |
Collapse
|
40
|
Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y. NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 2003; 17:1055-67. [PMID: 12704083 PMCID: PMC196038 DOI: 10.1101/gad.1071103] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Accepted: 02/21/2003] [Indexed: 12/30/2022]
Abstract
The tobacco protein kinase NPK1 is a MAPKKK that regulates formation of the cell plate during cytokinesis. In the present study, we have identified tobacco NQK1/NtMEK1 and NRK1 as a MAPKK and a MAPK, respectively, downstream of NPK1. NQK1/NtMEK1 complements the mutation in the PBS2 MAPKK gene of yeast in a manner that depends on both NPK1 and its activator, NACK1, a kinesin-like protein. Active NPK1 and NQK1/NtMEK1 phosphorylate and activate NQK1/NtMEK1 and NRK1, respectively. Both NQK1/NtMEK1 and NRK1, as well as NPK1, are activated at the late M phase of the cell cycle in tobacco cells, and they are rapidly inactivated by depolymerization of phragmoplast microtubules. These results suggest the existence of a MAPK cascade that consists of NPK1, NQK1/NtMEK1, and NRK1 and functions in a process related to the architecture of phragmoplasts at the late M phase of the cell cycle. Overexpression of kinase-negative NQK1/NtMEK1 in tobacco cells generates multinucleate cells with incomplete cross-walls. Arabidopsis plants with a mutation in the ANQ1 gene, an ortholog of NQK1/NtMEK1, display a dwarf phenotype, with unusually large cells that contain multiple nuclei and cell-wall stubs in various organs. In addition, anq1 homozygotes set fewer flowers and produce large and malformed pollen grains with a tetrad structure. Thus, NQK1/NtMEK1 (ANQ1) MAPKK appears to be a positive regulator of plant cytokinesis during meiosis as well as mitosis.
Collapse
Affiliation(s)
- Takashi Soyano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Japan
| | | | | | | | | |
Collapse
|
41
|
Tunquist BJ, Maller JL. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 2003; 17:683-710. [PMID: 12651887 DOI: 10.1101/gad.1071303] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Brian J Tunquist
- The Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
42
|
Ellis JG, Davila M, Chakrabarti R. Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specific activation and intracellular localization. J Biol Chem 2003; 278:1936-45. [PMID: 12397063 DOI: 10.1074/jbc.m209274200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are major signaling systems by which eukaryotic cells convert environmental cues to intracellular events such as proliferation and differentiation. We have identified Giardia lamblia homologues of two members of the MAPK family ERK1 and ERK2. Functional characterization of giardial ERK1 and ERK2 revealed that both kinases were expressed in trophozoites and encysting cells as 44- and 41-kDa polypeptides, respectively, and were catalytically active. Analysis of the kinetic parameters of the recombinant proteins showed that ERK2 is approximately 5 times more efficient than ERK1 in phosphorylating myelin basic protein as a substrate, although the phosphorylating efficiency of the native ERK1 and ERK2 appeared to be the same. Immunofluorescence analysis of the subcellular localization of ERK1 and ERK2 in trophozoites showed ERK1 staining mostly in the median body and in the outer edges of the adhesive disc and ERK2 staining in the nuclei and in the caudal flagella. Our study also showed a noticeable change in the subcellular distribution of ERK2 during encystation, which became more punctate and mostly cytoplasmic, but no significant change in the ERK1 localization at any time during encystation. Interestingly, both ERK1 and ERK2 enzymes exhibited a significantly reduced kinase activity during encystation reaching a minimum at 24 h, except for an initial approximately 2.5-fold increase in the ERK1 activity at 2 h, which resumed back to the normal levels at 48 h despite no apparent change in the expression level of either one of these kinases in encysting cells. A reduced concentration of the phosphorylated ERK1 and ERK2 was also evident in these cells at 24 h. Our study suggests a functional distinction between ERK1 and ERK2 and that these kinases may play a critical role in trophozoite differentiation into cysts.
Collapse
Affiliation(s)
- John G Ellis
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32826-2362, USA
| | | | | |
Collapse
|
43
|
Wang X, Jin DY, Wong HL, Feng H, Wong YC, Tsao SW. MAD2-induced sensitization to vincristine is associated with mitotic arrest and Raf/Bcl-2 phosphorylation in nasopharyngeal carcinoma cells. Oncogene 2003; 22:109-16. [PMID: 12527913 DOI: 10.1038/sj.onc.1206069] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitotic arrest deficient 2 (MAD2) is thought to be a key component of the mitotic checkpoint, which ensures accurate chromosome segregation. Reduced expression of MAD2 protein is associated with mitotic checkpoint abrogation and chromosomal instability in certain types of human cancers. To explore the possibility of developing a novel strategy for the treatment of cancer based on selective killing of mitotic checkpoint-defective or -competent cells, here we have investigated the effect of MAD2 expression on cellular sensitivity to checkpoint-targeting anticancer drugs. We reintroduced MAD2 protein in a mitotic checkpoint-defective nasopharyngeal carcinoma cell line, CNE2, using an inducible expression vector. We found that overexpression of MAD2 led to an increased sensitivity to vincristine, which was accompanied by increased mitotic index and G2/M cell cycle arrest. In addition, increased phosphorylation of Raf, MEK1/2 and Bcl-2 was observed in MAD2-overexpressing cells in response to vincristine. Furthermore, inhibition of phosphorylation of MEK1/2 by its inhibitor PD098059 led to reduced sensitivity to vincristine, which was associated with decreased Bcl-2 phosphorylation. Our data suggest a role for MAD2 in the sensitization of cancer cells to certain mitotic checkpoint-targeting anticancer drugs.
Collapse
|
44
|
Roberts EC, Shapiro PS, Nahreini TS, Pages G, Pouyssegur J, Ahn NG. Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol Cell Biol 2002; 22:7226-41. [PMID: 12242299 PMCID: PMC139798 DOI: 10.1128/mcb.22.20.7226-7241.2002] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase (PI3K) pathways are necessary for cell cycle progression into S phase; however the importance of these pathways after the restriction point is poorly understood. In this study, we examined the regulation and function of extracellular signal-regulated kinase (ERK) and PI3K during G(2)/M in synchronized HeLa and NIH 3T3 cells. Phosphorylation and activation of both the MAP kinase kinase/ERK and PI3K/Akt pathways occur in late S and persist until the end of mitosis. Signaling was rapidly reversed by cell-permeable inhibitors, indicating that both pathways are continuously activated and rapidly cycle between active and inactive states during G(2)/M. The serum-dependent behavior of PI3K/Akt versus ERK pathway activation indicates that their mechanisms of regulation differ during G(2)/M. Effects of cell-permeable inhibitors and dominant-negative mutants show that both pathways are needed for mitotic progression. However, inhibiting the PI3K pathway interferes with cdc2 activation, cyclin B1 expression, and mitotic entry, whereas inhibiting the ERK pathway interferes with mitotic entry but has little effect on cdc2 activation and cyclin B1 and retards progression from metaphase to anaphase. Thus, our study provides novel evidence that ERK and PI3K pathways both promote cell cycle progression during G(2)/M but have different regulatory mechanisms and function at distinct times.
Collapse
Affiliation(s)
- Elisabeth C Roberts
- Departments of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309,USA
| | | | | | | | | | | |
Collapse
|
45
|
Tunquist BJ, Schwab MS, Chen LG, Maller JL. The spindle checkpoint kinase bub1 and cyclin e/cdk2 both contribute to the establishment of meiotic metaphase arrest by cytostatic factor. Curr Biol 2002; 12:1027-33. [PMID: 12123578 DOI: 10.1016/s0960-9822(02)00894-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrate unfertilized eggs, metaphase arrest in Meiosis II is mediated by an activity known as cytostatic factor (CSF). CSF arrest is dependent upon Mos-dependent activation of the MAPK/Rsk pathway, and Rsk activates the spindle checkpoint kinase Bub1, leading to inhibition of the anaphase-promoting complex (APC), an E3 ubiquitin ligase required for the metaphase/anaphase transition. However, it is not known whether Bub1 is required for the establishment of CSF arrest or whether other pathways also contribute. Here, we show that immunodepletion of Bub1 from egg extracts blocks the ability of Mos to establish CSF arrest, and arrest can be restored by the addition of wild-type, but not kinase-dead, Bub1. The appearance of CSF arrest at Meiosis II may result from coexpression of cyclin E/Cdk2 with the MAPK/Bub1 pathway. Cyclin E/Cdk2 was able to cause metaphase arrest in egg extracts even in the absence of Mos and could also inhibit cyclin B degradation in oocytes when expressed at anaphase of Meiosis I. Once it has been established, metaphase arrest can be maintained in the absence of MAPK, Bub1, or cyclin E/Cdk2 activity. Both pathways are independent of each other, but each appears to block activation of the APC, which is required for cyclin B degradation and the metaphase/anaphase transition.
Collapse
Affiliation(s)
- Brian J Tunquist
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | |
Collapse
|
46
|
Ferrell JE. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 2002; 14:140-8. [PMID: 11891111 DOI: 10.1016/s0955-0674(02)00314-9] [Citation(s) in RCA: 768] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cell signaling systems that contain positive-feedback loops or double-negative feedback loops can, in principle, convert graded inputs into switch-like, irreversible responses. Systems of this sort are termed "bistable". Recently, several groups have engineered artificial bistable systems into Escherichia coli and Saccharomyces cerevisiae, and have shown that the systems exhibit interesting and potentially useful properties. In addition, two naturally occurring signaling systems, the p42 mitogen-activated protein kinase and c-Jun amino-terminal kinase pathways in Xenopus oocytes, have been shown to exhibit bistable responses. Here we review the basic properties of bistable circuits, the requirements for construction of a satisfactory bistable switch, and the recent progress towards constructing and analysing bistable signaling systems.
Collapse
Affiliation(s)
- James E Ferrell
- Department of Molecular Pharmacology, CCSR, 269 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.
| |
Collapse
|
47
|
Sohaskey ML, Ferrell JE. Activation of p42 mitogen-activated protein kinase (MAPK), but not c-Jun NH(2)-terminal kinase, induces phosphorylation and stabilization of MAPK phosphatase XCL100 in Xenopus oocytes. Mol Biol Cell 2002; 13:454-68. [PMID: 11854404 PMCID: PMC65641 DOI: 10.1091/mbc.01-11-0553] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dual-specificity protein phosphatases are implicated in the direct down-regulation of mitogen-activated protein kinase (MAPK) activity in vivo. Accumulating evidence suggests that these phosphatases are components of negative feedback loops that restore MAPK activity to low levels after diverse physiological responses. Limited information exists, however, regarding their posttranscriptional regulation. We cloned two Xenopus homologs of the mammalian dual-specificity MAPK phosphatases MKP-1/CL100 and found that overexpression of XCL100 in G2-arrested oocytes delayed or prevented progesterone-induced meiotic maturation. Epitope-tagged XCL100 was phosphorylated on serine during G2 phase, and on serine and threonine in a p42 MAPK-dependent manner during M phase. Threonine phosphorylation mapped to a single residue, threonine 168. Phosphorylation of XCL100 had no measurable effect on its ability to dephosphorylate p42 MAPK. Similarly, mutation of threonine 168 to either valine or glutamate did not significantly alter the binding affinity of a catalytically inactive XCL100 protein for active p42 MAPK in vivo. XCL100 was a labile protein in G2-arrested and progesterone-stimulated oocytes; surprisingly, its degradation rate was increased more than twofold after exposure to hyperosmolar sorbitol. In sorbitol-treated oocytes expressing a conditionally active DeltaRaf-DD:ER chimera, activation of the p42 MAPK cascade led to phosphorylation of XCL100 and a pronounced decrease in the rate of its degradation. Our results provide mechanistic insight into the regulation of a dual-specificity MAPK phosphatase during meiotic maturation and the adaptation to cellular stress.
Collapse
Affiliation(s)
- Michael L Sohaskey
- Department of Molecular Pharmacology and Program in Cancer Biology, Stanford University School of Medicine, Stanford, California 94305-5174, USA.
| | | |
Collapse
|
48
|
Jullien D, Vagnarelli P, Earnshaw WC, Adachi Y. Kinetochore localisation of the DNA damage response component 53BP1 during mitosis. J Cell Sci 2002; 115:71-9. [PMID: 11801725 DOI: 10.1242/jcs.115.1.71] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
53BP1 is a vertebrate BRCT motif protein, originally described as a direct interactor of p53, which has recently been shown to be implicated in the early response to DNA damage. Upon DNA damage, 53BP1 re-localises to discrete nuclear foci that are thought to represent sites of DNA lesions and becomes hyperphosphorylated. Several observations suggest that 53BP1 is a direct substrate for the ataxia telangiectasia mutated (ATM) kinase. So far, 53BP1 behaviour during mitosis has not been reported in detail. We have examined 53BP1 subcellular distribution in mitotic cells using several antibodies against 53BP1, and ectopic expression of GFP-tagged 53BP1. We found that 53BP1 significantly colocalised with CENP-E to kinetochores. 53BP1 is loaded to kinetochores in prophase, before CENP-E, and is released by mid-anaphase. By expressing various GFP-tagged 53BP1 truncations, the kinetochore binding domain has been mapped to a 380 residue portion of the protein that excludes the nuclear localisation signal and the BRCT motifs. Like many kinetochore-associated proteins involved in mitotic checkpoint signalling, more 53BP1 appears to accumulate on the kinetochores of chromosomes not aligned on the metaphase plate. Finally, we show that 53BP1 is hyperphosphorylated in mitotic cells, and undergoes an even higher level of phosphorylation in response to spindle disruption with colcemid. Our data suggest that 53BP1 may have a role in checkpoint signalling during mitosis and provide the evidence that DNA damage response machinery and mitotic checkpoint may share common molecular components.
Collapse
Affiliation(s)
- Denis Jullien
- The Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, The University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
49
|
Abstract
Separation of sister chromatids in anaphase is mediated by separase, an endopeptidase that cleaves the chromosomal cohesin SCC1. Separase is inhibited by securin, which is degraded at the metaphase-anaphase transition. Using Xenopus egg extracts, we demonstrate that high CDC2 activity inhibits anaphase but not securin degradation. We show that separase is kept inactive under these conditions by a mechanism independent of binding to securin. Mutation of a single phosphorylation site on separase relieves the inhibition and rescues chromatid separation in extracts with high CDC2 activity. Using quantitative mass spectrometry, we show that, in intact cells, there is complete phosphorylation of this site in metaphase and significant dephosphorylation in anaphase. We propose that separase activation at the metaphase-anaphase transition requires the removal of both securin and an inhibitory phosphate.
Collapse
Affiliation(s)
- O Stemmann
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
50
|
Sun QY, Lai L, Wu GM, Park KW, Day BN, Prather RS, Schatten H. Microtubule assembly after treatment of pig oocytes with taxol: correlation with chromosomes, gamma-tubulin, and MAP kinase. Mol Reprod Dev 2001; 60:481-90. [PMID: 11746959 DOI: 10.1002/mrd.1113] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, taxol was used as a tool to study the correlation of microtubule assembly with chromosomes, gamma-tubulin and phosphorylated mitogen-activated protein (MAP) kinase in pig oocytes at different maturational stages. Taxol treatment did not affect meiotic resumption and chromosome condensation but inhibited/disrupted chromosome alignment at the metaphase plate and bipolar spindle formation and thus meiotic progression. Microtubules were co-localized with chromosomes and were found to emanate from the chromosomes in taxol-treated oocytes, suggesting that chromosomes may serve as a source of microtubule organization. In addition, the concentric emanation of microtubules within the chromosome-surrounded area in taxol-treated oocytes suggests that microtubule emanation from the chromosomes may be directed by other microtubule-organizing material. The formation of one large spindle or >/=2 spindles in oocytes after taxol removal shows that minus end microtubule-organizing material can be normally located on both sides of chromosomes only when the chromosomes are aligned on the metaphase plate. The co-localization of gamma-tubulin and phosphorylated MAP kinase with microtubule assembly in both control and taxol-treated oocytes suggests that these two proteins are associated microtubule-nucleating material in pig oocytes. However, Western blot analysis showed that neither cytoplasmic microtubule aster formation nor extensive microtubule assembly in the chromosome region induced by taxol was caused by super-activation of MAP kinase. Taxol also induced microtubule assembly depending on chromosome distribution in the first polar body. The results suggest that chromosomes are always co-localized with microtubules and that emanation of microtubules from the chromosomes may be regulated/directed by microtubule-organizing material including gamma-tubulin and phosphorylated MAP kinase in pig oocytes.
Collapse
Affiliation(s)
- Q Y Sun
- Department of Veterinary Pathobiology, W123 Veterinary Medicine Building, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|