1
|
Mao H, Wang L, Wang Y, Feng P, Song J, Jia B, Yang S, Zhang W, Wu M, Pei W, Ma J, Zhang B, Yu J. EB1C forms dimer and interacts with protein phosphatase 2A (PP2A) to regulate fiber elongation in upland cotton (Gossypium hirsutum). Int J Biol Macromol 2024; 256:128036. [PMID: 37972829 DOI: 10.1016/j.ijbiomac.2023.128036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Cotton is the most economically important natural fiber crop grown in more than sixty-five countries of the world. Fiber length is the main factor affecting fiber quality, but the existing main varieties are short in length and cannot suit the higher demands of the textile industry. It is necessary to discover functional genes that enable fiber length improvement in cotton through molecular breeding. In this study, overexpression of GhEB1C in Arabidopsis thaliana significantly promotes trichomes, tap roots, and root hairs elongation. The molecular regulation of GhEB1C involves its interactions with itself and GhB'ETA, and the function of GhEB1C regulation mainly depends on the two cysteine residues located at the C-terminal. In particular, the function activity of GhEB1C protein triggered with the regulation of protein phosphatase 2A, while silencing of GhEB1C in cotton significantly influenced the fiber protrusions and elongation mechanisms., Further, influenced the expression of MYB-bHLH-WD40 complex, brassinosteroids, and jasmonic acid-related genes, which showed that transcriptional regulation of GhEB1C is indispensable for cotton fiber formation and elongation processes. Our study analyzed the brief molecular mechanism of GhEB1C regulation. Further elucidated that GhEB1C can be a potential target gene to improve cotton fiber length through transgenic breeding.
Collapse
Affiliation(s)
- Haoming Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Pan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Shuxian Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Mosby LS, Straube A, Polin M. A general model for the motion of multivalent cargo interacting with substrates. J R Soc Interface 2023; 20:20230510. [PMID: 38016636 PMCID: PMC10684343 DOI: 10.1098/rsif.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Multivalent interactions are common in biology at many different length scales, and can result in the directional motion of multivalent cargo along substrates. Here, a general analytical model has been developed that can describe the directional motion of multivalent cargo as a response to position dependence in the binding and unbinding rates exhibited by their interaction sites. Cargo exhibit both an effective velocity, which acts in the direction of increasing cargo-substrate binding rate and decreasing cargo-substrate unbinding rate, and an effective diffusivity. This model can reproduce previously published experimental findings using only the binding and unbinding rate distributions of cargo interaction sites, and without any further parameter fitting. Extension of the cargo binding model to two dimensions reveals an effective velocity with the same properties as that derived for the one-dimensional case.
Collapse
Affiliation(s)
- L. S. Mosby
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry CV4 7AL, UK
- Physics Department, University of Warwick, Coventry CV4 7AL, UK
- Institute of Advanced Study, University of Warwick, Coventry CV4 7AL, UK
| | - A. Straube
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry CV4 7AL, UK
| | - M. Polin
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry CV4 7AL, UK
- Physics Department, University of Warwick, Coventry CV4 7AL, UK
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA, Esporles, Illes Balears 07190, Spain
| |
Collapse
|
3
|
Yang S, Cai M, Huang J, Zhang S, Mo X, Jiang K, Cui H, Yuan J. EB1 decoration of microtubule lattice facilitates spindle-kinetochore lateral attachment in Plasmodium male gametogenesis. Nat Commun 2023; 14:2864. [PMID: 37208365 DOI: 10.1038/s41467-023-38516-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Faithful chromosome segregation of 8 duplicated haploid genomes into 8 daughter gametes is essential for male gametogenesis and mosquito transmission of Plasmodium. Plasmodium undergoes endomitosis in this multinucleated cell division, which is highly reliant on proper spindle-kinetochore attachment. However, the mechanisms underlying the spindle-kinetochore attachment remain elusive. End-binding proteins (EBs) are conserved microtubule (MT) plus-end binding proteins and play an important role in regulating MT plus-end dynamics. Here, we report that the Plasmodium EB1 is an orthologue distinct from the canonical eukaryotic EB1. Both in vitro and in vivo assays reveal that the Plasmodium EB1 losses MT plus-end tracking but possesses MT-lattice affinity. This MT-binding feature of Plasmodium EB1 is contributed by both CH domain and linker region. EB1-deficient parasites produce male gametocytes that develop to the anucleated male gametes, leading to defective mosquito transmission. EB1 is localized at the nucleoplasm of male gametocytes. During the gametogenesis, EB1 decorates the full-length of spindle MTs and regulates spindle structure. The kinetochores attach to spindle MTs laterally throughout endomitosis and this attachment is EB1-dependent. Consequently, impaired spindle-kinetochore attachment is observed in EB1-deficient parasites. These results indicate that a parasite-specific EB1 with MT-lattice binding affinity fulfills the spindle-kinetochore lateral attachment in male gametogenesis.
Collapse
Affiliation(s)
- Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Mengya Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Junjie Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shengnan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xiaoli Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
4
|
Wevers C, Höhler M, Alcázar-Román AR, Hegemann JH, Fleig U. A Functional Yeast-Based Screen Identifies the Host Microtubule Cytoskeleton as a Target of Numerous Chlamydia pneumoniae Proteins. Int J Mol Sci 2023; 24:ijms24087618. [PMID: 37108781 PMCID: PMC10142024 DOI: 10.3390/ijms24087618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial pathogens have evolved intricate ways to manipulate the host to support infection. Here, we systematically assessed the importance of the microtubule cytoskeleton for infection by Chlamydiae, which are obligate intracellular bacteria that are of great importance for human health. The elimination of microtubules in human HEp-2 cells prior to C. pneumoniae infection profoundly attenuated the infection efficiency, demonstrating the need for microtubules for the early infection processes. To identify microtubule-modulating C. pneumoniae proteins, a screen in the model yeast Schizosaccharomyces pombe was performed. Unexpectedly, among 116 selected chlamydial proteins, more than 10%, namely, 13 proteins, massively altered the yeast interphase microtubule cytoskeleton. With two exceptions, these proteins were predicted to be inclusion membrane proteins. As proof of principle, we selected the conserved CPn0443 protein, which caused massive microtubule instability in yeast, for further analysis. CPn0443 bound and bundled microtubules in vitro and co-localized partially with microtubules in vivo in yeast and human cells. Furthermore, CPn0443-transfected U2OS cells had a significantly reduced infection rate by C. pneumoniae EBs. Thus, our yeast screen identified numerous proteins encoded using the highly reduced C. pneumoniae genome that modulated microtubule dynamics. Hijacking of the host microtubule cytoskeleton must be a vital part of chlamydial infection.
Collapse
Affiliation(s)
- Carolin Wevers
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Mona Höhler
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Abel R Alcázar-Román
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Wang X, Zheng F, Yi YY, Wang GY, Hong LX, McCollum D, Fu C, Wang Y, Jin QW. Ubiquitination of CLIP-170 family protein restrains polarized growth upon DNA replication stress. Nat Commun 2022; 13:5565. [PMID: 36138017 PMCID: PMC9499959 DOI: 10.1038/s41467-022-33311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Microtubules play a crucial role during the establishment and maintenance of cell polarity. In fission yeast cells, the microtubule plus-end tracking proteins (+TIPs) (including the CLIP-170 homologue Tip1) regulate microtubule dynamics and also transport polarity factors to the cell cortex. Here, we show that the E3 ubiquitin ligase Dma1 plays an unexpected role in controlling polarized growth through ubiquitinating Tip1. Dma1 colocalizes with Tip1 to cortical sites at cell ends, and is required for ubiquitination of Tip1. Although the absence of dma1+ does not cause apparent polar growth defects in vegetatively growing cells, Dma1-mediated Tip1 ubiquitination is required to restrain polar growth upon DNA replication stress. This mechanism is distinct from the previously recognized calcineurin-dependent inhibition of polarized growth. In this work, we establish a link between Dma1-mediated Tip1 ubiquitination and DNA replication or DNA damage checkpoint-dependent inhibition of polarized growth in fission yeast.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Fan Zheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yuan-Yuan Yi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Gao-Yuan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Li-Xin Hong
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Dannel McCollum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chuanhai Fu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
6
|
García-Ruano D, Venkova L, Jain A, Ryan JC, Balasubramaniam VR, Piel M, Coudreuse D. Fluorescence exclusion: a rapid, accurate and powerful method for measuring yeast cell volume. J Cell Sci 2022; 135:275598. [PMID: 35662333 DOI: 10.1242/jcs.259392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/26/2022] [Indexed: 11/20/2022] Open
Abstract
Cells exist in an astonishing range of volumes across and within species. However, our understanding of cell size control remains limited, due in large part to the challenges associated with accurate determination of cell volume. Much of our comprehension of size regulation derives from yeast models, but even for these morphologically stereotypical cells, assessment of cell volume has mostly relied on proxies and extrapolations from two-dimensional measurements. Recently, the fluorescence exclusion method (FXm) was developed to evaluate the size of mammalian cells, but whether it could be applied to smaller cells remained unknown. Using specifically designed microfluidic chips and an improved data analysis pipeline, we show here that FXm reliably detects subtle differences in the volume of fission yeast cells, even for those with altered shapes. Moreover, it allows for the monitoring of dynamic volume changes at the single-cell level with high time resolution. Collectively, our work highlights how the coupling of FXm with yeast genetics will bring new insights into the complex biology of cell growth.
Collapse
Affiliation(s)
- Daniel García-Ruano
- Institute of Genetics and Development of Rennes, UMR 6290, CNRS - University of Rennes 1, France
| | - Larisa Venkova
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS UMR 144, Paris, France.,Institute of Biochemistry and Cellular Genetics, CNRS UMR 5095, Bordeaux, France
| | - Akanksha Jain
- Institute of Genetics and Development of Rennes, UMR 6290, CNRS - University of Rennes 1, France
| | - Joseph C Ryan
- Institute of Genetics and Development of Rennes, UMR 6290, CNRS - University of Rennes 1, France
| | | | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS UMR 144, Paris, France
| | - Damien Coudreuse
- Institute of Genetics and Development of Rennes, UMR 6290, CNRS - University of Rennes 1, France.,Institute of Biochemistry and Cellular Genetics, CNRS UMR 5095, Bordeaux, France
| |
Collapse
|
7
|
MAPRE2 regulates the first meiotic progression in mouse oocytes. Exp Cell Res 2022; 416:113135. [DOI: 10.1016/j.yexcr.2022.113135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
|
8
|
Gräf R, Grafe M, Meyer I, Mitic K, Pitzen V. The Dictyostelium Centrosome. Cells 2021; 10:cells10102657. [PMID: 34685637 PMCID: PMC8534566 DOI: 10.3390/cells10102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating γ-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.
Collapse
|
9
|
Asthana J, Cade NI, Normanno D, Lim WM, Surrey T. Gradual compaction of the central spindle decreases its dynamicity in PRC1 and EB1 gene-edited cells. Life Sci Alliance 2021; 4:4/12/e202101222. [PMID: 34580180 PMCID: PMC8500333 DOI: 10.26508/lsa.202101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Although different anaphase proteins bind with characteristically different strength to the central spindle, the overall central spindle dynamicity slows down as mitosis proceeds. During mitosis, the spindle undergoes morphological and dynamic changes. It reorganizes at the onset of the anaphase when the antiparallel bundler PRC1 accumulates and recruits central spindle proteins to the midzone. Little is known about how the dynamic properties of the central spindle change during its morphological changes in human cells. Using gene editing, we generated human cells that express from their endogenous locus fluorescent PRC1 and EB1 to quantify their native spindle distribution and binding/unbinding turnover. EB1 plus end tracking revealed a general slowdown of microtubule growth, whereas PRC1, similar to its yeast orthologue Ase1, binds increasingly strongly to compacting antiparallel microtubule overlaps. KIF4A and CLASP1 bind more dynamically to the central spindle, but also show slowing down turnover. These results show that the central spindle gradually becomes more stable during mitosis, in agreement with a recent “bundling, sliding, and compaction” model of antiparallel midzone bundle formation in the central spindle during late mitosis.
Collapse
Affiliation(s)
- Jayant Asthana
- The Francis Crick Institute, London, UK.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Davide Normanno
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Wei Ming Lim
- The Francis Crick Institute, London, UK.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Thomas Surrey
- The Francis Crick Institute, London, UK .,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
10
|
Kuhnert E, Navarro-Muñoz J, Becker K, Stadler M, Collemare J, Cox R. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 2021; 99:100118. [PMID: 34527085 PMCID: PMC8403587 DOI: 10.1016/j.simyco.2021.100118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
Collapse
Affiliation(s)
- E. Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - J.C. Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - K. Becker
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - M. Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R.J. Cox
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
11
|
The Putative RNA-Binding Protein Dri1 Promotes the Loading of Kinesin-14/Klp2 to the Mitotic Spindle and Is Sequestered into Heat-Induced Protein Aggregates in Fission Yeast. Int J Mol Sci 2021; 22:ijms22094795. [PMID: 33946513 PMCID: PMC8125374 DOI: 10.3390/ijms22094795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Cells form a bipolar spindle during mitosis to ensure accurate chromosome segregation. Proper spindle architecture is established by a set of kinesin motors and microtubule-associated proteins. In most eukaryotes, kinesin-5 motors are essential for this process, and genetic or chemical inhibition of their activity leads to the emergence of monopolar spindles and cell death. However, these deficiencies can be rescued by simultaneous inactivation of kinesin-14 motors, as they counteract kinesin-5. We conducted detailed genetic analyses in fission yeast to understand the mechanisms driving spindle assembly in the absence of kinesin-5. Here, we show that deletion of the dri1 gene, which encodes a putative RNA-binding protein, can rescue temperature sensitivity caused by cut7-22, a fission yeast kinesin-5 mutant. Interestingly, kinesin-14/Klp2 levels on the spindles in the cut7 mutants were significantly reduced by the dri1 deletion, although the total levels of Klp2 and the stability of spindle microtubules remained unaffected. Moreover, RNA-binding motifs of Dri1 are essential for its cytoplasmic localization and function. We have also found that a portion of Dri1 is spatially and functionally sequestered by chaperone-based protein aggregates upon mild heat stress and limits cell division at high temperatures. We propose that Dri1 might be involved in post-transcriptional regulation through its RNA-binding ability to promote the loading of Klp2 on the spindle microtubules.
Collapse
|
12
|
Minagawa M, Shirato M, Toya M, Sato M. Dual Impact of a Benzimidazole Resistant β-Tubulin on Microtubule Behavior in Fission Yeast. Cells 2021; 10:1042. [PMID: 33925026 PMCID: PMC8145593 DOI: 10.3390/cells10051042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
The cytoskeleton microtubule consists of polymerized αβ-tubulin dimers and plays essential roles in many cellular events. Reagents that inhibit microtubule behaviors have been developed as antifungal, antiparasitic, and anticancer drugs. Benzimidazole compounds, including thiabendazole (TBZ), carbendazim (MBC), and nocodazole, are prevailing microtubule poisons that target β-tubulin and inhibit microtubule polymerization. The molecular basis, however, as to how the drug acts on β-tubulin remains controversial. Here, we characterize the S. pombe β-tubulin mutant nda3-TB101, which was previously isolated as a mutant resistance to benzimidazole. The mutation site tyrosine at position 50 is located in the interface of two lateral β-tubulin proteins and at the gate of a putative binging pocket for benzimidazole. Our observation revealed two properties of the mutant tubulin. First, the dynamics of cellular microtubules comprising the mutant β-tubulin were stabilized in the absence of benzimidazole. Second, the mutant protein reduced the affinity to benzimidazole in vitro. We therefore conclude that the mutant β-tubulin Nda3-TB101 exerts a dual effect on microtubule behaviors: the mutant β-tubulin stabilizes microtubules and is insensitive to benzimidazole drugs. This notion fine-tunes the current elusive molecular model regarding binding of benzimidazole to β-tubulin.
Collapse
Affiliation(s)
- Mamika Minagawa
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
| | - Minamo Shirato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
- Faculty of Science and Engineering, Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
13
|
Zhou D, Nie ZW, Cui XS. EB1 Is Essential for Spindle Formation and Chromosome Alignment During Oocyte Meiotic Maturation in Mice. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:385-391. [PMID: 33413706 DOI: 10.1017/s1431927620024897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cytoskeleton plays an orchestrating role in polarized cell growth. Microtubules (MTs) not only play critical roles in chromosome alignment and segregation but also control cell shape, division, and motility. A member of the plus-end tracking proteins, end-binding protein 1 (EB1), regulates MT dynamics and plays vital roles in maintaining spindle symmetry and chromosome alignment during mitosis. However, the role of EB1 in mouse oocyte meiosis remains unknown. Here, we examined the localization patterns and expression levels of EB1 at different stages. EB1 protein level was found to be stable during meiosis. EB1 mainly localized along the spindle and had a similar localization pattern as that of α-tubulin. The EB1 protein was degraded with a Trim-Away method, and the results were further confirmed with western blotting and immunofluorescence. At 12 h of culture after EB1 knockdown (KD), a reduced number of mature MII oocytes were observed. EB1 KD led to spindle disorganization, chromosome misalignment, and missegregation; β-catenin protein binds to actin via the adherens junctional complex, which was significantly reduced in the EB1 KD oocytes. Collectively, we propose that the impairment of EB1 function manipulates spindle formation, thereby promoting chromosomal loss, which is expected to fuel aneuploidy and possibly fertilization failure.
Collapse
Affiliation(s)
- Dongjie Zhou
- Department of Animal Science, Chungbuk National University, 356 Room, S21-5 Dong, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk28644, South Korea
| | - Zheng-Wen Nie
- Department of Animal Science, Chungbuk National University, 356 Room, S21-5 Dong, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk28644, South Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, 356 Room, S21-5 Dong, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk28644, South Korea
| |
Collapse
|
14
|
Zhou Z, Duan Y, Zhang J, Lu F, Zhu Y, Shim WB, Zhou M. Microtubule-assisted mechanism for toxisome assembly in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2021; 22:163-174. [PMID: 33201575 PMCID: PMC7814972 DOI: 10.1111/mpp.13015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/25/2020] [Accepted: 10/16/2020] [Indexed: 05/05/2023]
Abstract
In Fusarium graminearum, a trichothecene biosynthetic complex known as the toxisome forms ovoid and spherical structures in the remodelled endoplasmic reticulum (ER) under mycotoxin-inducing conditions. Previous studies also demonstrated that disruption of actin and tubulin results in a significant decrease in deoxynivalenol (DON) biosynthesis in F. graminearum. However, the functional association between the toxisome and microtubule components has not been clearly defined. In this study we tested the hypothesis that the microtubule network provides key support for toxisome assembly and thus facilitates DON biosynthesis. Through fluorescent live cell imaging, knockout mutant generation, and protein-protein interaction assays, we determined that two of the four F. graminearum tubulins, α1 and β2 tubulins, are indispensable for DON production. We also showed that these two tubulins are directly associated. When the α1 -β2 tubulin heterodimer is disrupted, the metabolic activity of the toxisome is significantly suppressed, which leads to significant DON biosynthesis impairment. Similar phenotypic outcomes were shown when F. graminearum wild type was treated with carbendazim, a fungicide that binds to microtubules and disrupts spindle formation. Based on our results, we propose a model where α1 -β2 tubulin heterodimer serves as the scaffold for functional toxisome assembly in F. graminearum.
Collapse
Affiliation(s)
- Zehua Zhou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yabing Duan
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jie Zhang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Fei Lu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yuanye Zhu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Won Bo Shim
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | - Mingguo Zhou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
15
|
Tanabe T, Kawamukai M, Matsuo Y. Glucose limitation and pka1 deletion rescue aberrant mitotic spindle formation induced by Mal3 overexpression in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2020; 84:1667-1680. [PMID: 32441227 DOI: 10.1080/09168451.2020.1763157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, proper chromosome segregation, and stress responses in Schizosaccharomyces pombe. We demonstrated that both the cAMP/PKA pathway and glucose limitation play roles in appropriate spindle formation. Overexpression of Mal3 (1-308), an EB1 family protein, caused growth defects, increased 4C DNA content, and induced monopolar spindle formation. Overproduction of a high-affinity microtubule binding mutant (Q89R) and a recombinant protein possessing the CH and EB1 domains (1-241) both resulted in more severe phenotypes than Mal3 (1-308). Loss of functional Pka1 and glucose limitation rescued the phenotypes of Mal3-overexpressing cells, whereas deletion of Tor1 or Ssp2 did not. Growth defects and monopolar spindle formation in a kinesin-5 mutant, cut7-446, was partially rescued by pka1 deletion or glucose limitation. These findings suggest that Pka1 and glucose limitation regulate proper spindle formation in Mal3-overexpressing cells and the cut7-446 mutant.
Collapse
Affiliation(s)
- Takuma Tanabe
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , Matsue, Japan
| | - Yasuhiro Matsuo
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , Matsue, Japan
| |
Collapse
|
16
|
How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter. Cells 2020; 9:cells9051154. [PMID: 32392819 PMCID: PMC7290485 DOI: 10.3390/cells9051154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The bipolar mitotic spindle drives accurate chromosome segregation by capturing the kinetochore and pulling each set of sister chromatids to the opposite poles. In this review, we describe recent findings on the multiple pathways leading to bipolar spindle formation in fission yeast and discuss these results from a broader perspective. The roles of three mitotic kinesins (Kinesin-5, Kinesin-6 and Kinesin-14) in spindle assembly are depicted, and how a group of microtubule-associated proteins, sister chromatid cohesion and the kinetochore collaborate with these motors is shown. We have paid special attention to the molecular pathways that render otherwise essential Kinesin-5 to become non-essential: how cells build bipolar mitotic spindles without the need for Kinesin-5 and where the alternate forces come from are considered. We highlight the force balance for bipolar spindle assembly and explain how outward and inward forces are generated by various ways, in which the proper fine-tuning of microtubule dynamics plays a crucial role. Overall, these new pathways have illuminated the remarkable plasticity and adaptability of spindle mechanics. Kinesin molecules are regarded as prospective targets for cancer chemotherapy and many specific inhibitors have been developed. However, several hurdles have arisen against their clinical implementation. This review provides insight into possible strategies to overcome these challenges.
Collapse
|
17
|
Ebina H, Ji L, Sato M. CLASP promotes microtubule bundling in metaphase spindle independently of Ase1/PRC1 in fission yeast. Biol Open 2019; 8:bio.045716. [PMID: 31615768 PMCID: PMC6826280 DOI: 10.1242/bio.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Microtubules in the mitotic spindle are organised by microtubule-associated proteins. In the late stage of mitosis, spindle microtubules are robustly organised through bundling by the antiparallel microtubule bundler Ase1/PRC1. In early mitosis, however, it is not well characterised as to whether spindle microtubules are actively bundled, as Ase1 does not particularly localise to the spindle at that stage. Here we show that the conserved microtubule-associated protein CLASP (fission yeast Peg1/Cls1) facilitates bundling of spindle microtubules in early mitosis. The peg1 mutant displayed a fragile spindle with unbundled microtubules, which eventually resulted in collapse of the metaphase spindle and abnormal segregation of chromosomes. Peg1 is known to be recruited to the spindle by Ase1 to stabilise antiparallel microtubules in late mitosis. However, we demonstrate that the function of Peg1 in early mitosis does not rely on Ase1. The unbundled spindle phenotype of the peg1 mutant was not seen in the ase1 mutant, and Peg1 preferentially localised to the spindle even in early mitosis unlike Ase1. Moreover, artificial overexpression of Ase1 in the peg1 mutant partially suppressed unbundled microtubules. We thus conclude that Peg1 bundles microtubules in early mitosis, in a distinct manner from its conventional Ase1-dependent functions in other cell cycle stages.
Collapse
Affiliation(s)
- Hirohisa Ebina
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Liang Ji
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan .,Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Institute for Medical-Oriented Structural Biology Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
18
|
Prelogović M, Winters L, Milas A, Tolić IM, Pavin N. Pivot-and-bond model explains microtubule bundle formation. Phys Rev E 2019; 100:012403. [PMID: 31499770 DOI: 10.1103/physreve.100.012403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 06/10/2023]
Abstract
During mitosis, microtubules form a spindle, which is responsible for proper segregation of the genetic material. A common structural element in a mitotic spindle is a parallel bundle, consisting of two or more microtubules growing from the same origin and held together by cross-linking proteins. An interesting question is what are the physical principles underlying the formation and stability of such microtubule bundles. Here we show, by introducing the pivot-and-bond model, that random angular movement of microtubules around the spindle pole and forces exerted by cross-linking proteins can explain the formation of microtubule bundles as observed in our experiments. The model predicts that stable parallel bundles can form in the presence of either passive crosslinkers or plus-end directed motors, but not minus-end directed motors. In the cases where bundles form, the time needed for their formation depends mainly on the concentration of cross-linking proteins and the angular diffusion of the microtubule. In conclusion, the angular motion drives the alignment of microtubules, which in turn allows the cross-linking proteins to connect the microtubules into a stable bundle.
Collapse
Affiliation(s)
- Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Mal3 is a multi-copy suppressor of the sensitivity to microtubule-depolymerizing drugs and chromosome mis-segregation in a fission yeast pka1 mutant. PLoS One 2019; 14:e0214803. [PMID: 30973898 PMCID: PMC6459531 DOI: 10.1371/journal.pone.0214803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/20/2019] [Indexed: 11/24/2022] Open
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, chronological aging, and stress responses in the fission yeast, Schizosaccharomyces pombe. We demonstrated here that Pka1 is responsible for normal growth in the presence of the microtubule-destabilization drug TBZ and proper chromosome segregation. The deletion of the pka1 gene resulted in the TBZ-sensitive phenotype and chromosome mis-segregation. We isolated the mal3 gene as a multi-copy suppressor of the TBZ-sensitive phenotype in the pka1Δ strains. Overexpression of the CH domain (1–143) or the high-affinity microtubule binding mutant (1–143 Q89R) of Mal3 rescued the TBZ-sensitive phenotype in the pka1Δ and mal3Δ strains, while the EB1 domain (135–308) and the mutants defective in microtubule binding (1–143 Q89E) failed to do so in the same strains. Chromosome mis-segregation caused by TBZ in the pka1Δ or mal3Δ strains was suppressed by the overexpression of the Mal3 CH domain (1–143), Mal3 CH domain with the coiled-coil domain (1–197), or full-length Mal3. Overexpression of EB1 orthologs from Saccharomyces cerevisiae, Arabidopsis thaliana, Mus musculus, or Homo sapiens suppressed the TBZ-sensitive phenotype in the pka1Δ strains, indicating their conserved functions. These findings suggest that Pka1 and the microtubule binding of the Mal3 CH domain play a role in the maintenance of proper chromosome segregation.
Collapse
|
20
|
Suppressor Analysis Uncovers That MAPs and Microtubule Dynamics Balance with the Cut7/Kinesin-5 Motor for Mitotic Spindle Assembly in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2019; 9:269-280. [PMID: 30463883 PMCID: PMC6325904 DOI: 10.1534/g3.118.200896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Kinesin-5 motor Cut7 in Schizosaccharomyces pombe plays essential roles in spindle pole separation, leading to the assembly of bipolar spindle. In many organisms, simultaneous inactivation of Kinesin-14s neutralizes Kinesin-5 deficiency. To uncover the molecular network that counteracts Kinesin-5, we have conducted a genetic screening for suppressors that rescue the cut7-22 temperature sensitive mutation, and identified 10 loci. Next generation sequencing analysis reveals that causative mutations are mapped in genes encoding α-, β-tubulins and the microtubule plus-end tracking protein Mal3/EB1, in addition to the components of the Pkl1/Kinesin-14 complex. Moreover, the deletion of various genes required for microtubule nucleation/polymerization also suppresses the cut7 mutant. Intriguingly, Klp2/Kinesin-14 levels on the spindles are significantly increased in cut7 mutants, whereas these increases are negated by suppressors, which may explain the suppression by these mutations/deletions. Consistent with this notion, mild overproduction of Klp2 in these double mutant cells confers temperature sensitivity. Surprisingly, treatment with a microtubule-destabilizing drug not only suppresses cut7 temperature sensitivity but also rescues the lethality resulting from the deletion of cut7, though a single klp2 deletion per se cannot compensate for the loss of Cut7. We propose that microtubule assembly and/or dynamics antagonize Cut7 functions, and that the orchestration between these two factors is crucial for bipolar spindle assembly.
Collapse
|
21
|
Roth D, Fitton BP, Chmel NP, Wasiluk N, Straube A. Spatial positioning of EB family proteins at microtubule tips involves distinct nucleotide-dependent binding properties. J Cell Sci 2018; 132:jcs.219550. [PMID: 30262468 PMCID: PMC6398475 DOI: 10.1242/jcs.219550] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/20/2018] [Indexed: 12/25/2022] Open
Abstract
EB proteins track the ends of growing microtubules and regulate microtubule dynamics both directly and by acting as the hub of the tip-tracking network. Mammalian cells express cell type-specific combinations of three EB proteins with different cellular roles. Here, we reconstitute EB1, EB2 and EB3 tip tracking in vitro. We find that all three EBs show rapid exchange at the microtubule tip and that their signal correlates to the microtubule assembly rate. However, the three signals differ in their maxima and position from the microtubule tip. Using microtubules built with nucleotide analogues and site-directed mutagenesis, we show that EB2 prefers binding to microtubule lattices containing a 1:1 mixture of different nucleotides and its distinct binding specificity is conferred by amino acid substitutions at the right-hand-side interface of the EB microtubule-binding domain with tubulin. Our data are consistent with the model that all three EB paralogues sense the nucleotide state of both β-tubulins flanking their binding site. Their different profile of preferred binding sites contributes to occupying spatially distinct domains at the temporally evolving microtubule tip structure. Summary:In vitro reconstitution of tip tracking with EB1, EB2 and EB3 shows that these three proteins sense the nucleotide state of both β-tubulins flanking their binding site.
Collapse
Affiliation(s)
- Daniel Roth
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Benjamin P Fitton
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK.,Molecular Organisation and Assembly in Cells (MOAC) Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Nikola P Chmel
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Natalia Wasiluk
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK
| | - Anne Straube
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK .,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
22
|
Meadows JC, Messin LJ, Kamnev A, Lancaster TC, Balasubramanian MK, Cross RA, Millar JB. Opposing kinesin complexes queue at plus tips to ensure microtubule catastrophe at cell ends. EMBO Rep 2018; 19:embr.201846196. [PMID: 30206188 PMCID: PMC6216294 DOI: 10.15252/embr.201846196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022] Open
Abstract
In fission yeast, the lengths of interphase microtubule (iMT) arrays are adapted to cell length to maintain cell polarity and to help centre the nucleus and cell division ring. Here, we show that length regulation of iMTs is dictated by spatially regulated competition between MT‐stabilising Tea2/Tip1/Mal3 (Kinesin‐7) and MT‐destabilising Klp5/Klp6/Mcp1 (Kinesin‐8) complexes at iMT plus ends. During MT growth, the Tea2/Tip1/Mal3 complex remains bound to the plus ends of iMT bundles, thereby restricting access to the plus ends by Klp5/Klp6/Mcp1, which accumulate behind it. At cell ends, Klp5/Klp6/Mcp1 invades the space occupied by the Tea2/Tip1/Tea1 kinesin complex triggering its displacement from iMT plus ends and MT catastrophe. These data show that in vivo, whilst an iMT length‐dependent model for catastrophe factor accumulation has validity, length control of iMTs is an emergent property reflecting spatially regulated competition between distinct kinesin complexes at the MT plus tip.
Collapse
Affiliation(s)
- John C Meadows
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Liam J Messin
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Anton Kamnev
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Theresa C Lancaster
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Robert A Cross
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jonathan Ba Millar
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
23
|
Kume K, Kaneko S, Nishikawa K, Mizunuma M, Hirata D. Role of nucleocytoplasmic transport in interphase microtubule organization in fission yeast. Biochem Biophys Res Commun 2018; 503:1160-1167. [PMID: 29958883 DOI: 10.1016/j.bbrc.2018.06.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 11/25/2022]
Abstract
The proper organization of microtubules is essential for many cellular functions. Microtubule organization and reorganization are highly regulated during the cell cycle, but the underlying mechanisms remain elusive. Here we characterized unusual interphase microtubule organization in fission yeast nuclear export mutant crm1-124. The mutant cells have an intranuclear microtubule bundle during interphase that pushes the nuclear envelope to assume a protruding morphology. We showed that the formation of this protruding microtubule bundle requires the nuclear accumulation of two microtubule-associated proteins (MAPs), Alp14/TOG and Mal3/EB1. Interestingly, the forced accumulation of Alp14 in the nucleus of wild type cells is sufficient to form the intranuclear microtubule bundle. Furthermore, the frequency of the intranuclear microtubule formation by Alp14 accumulated in the nucleus is prominently increased by a reduction in the nucleation activity of interphase cytoplasmic microtubules. We propose that properly regulated nucleocytoplasmic transport and maintained activity of cytoplasmic microtubule nucleation during interphase are important for the proper organization of interphase cytoplasmic microtubules.
Collapse
Affiliation(s)
- Kazunori Kume
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| | - Sayuri Kaneko
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Kenji Nishikawa
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Masaki Mizunuma
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Dai Hirata
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan; Asahi-Shuzo Sake Brewing Co., Ltd., 880-1 Asahi, Nagaoka, 949-5494, Japan
| |
Collapse
|
24
|
Johnson M, Mulvihill DP. Dependency relationships within the fission yeast polarity network. FEBS Lett 2018; 592:2543-2549. [PMID: 29972885 PMCID: PMC6120479 DOI: 10.1002/1873-3468.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/07/2022]
Abstract
The ability to regulate polarised cell growth is crucial to maintain the viability of cells. Growth is modulated to facilitate essential cell functions and respond to the external environment. Failure to do so can lead to numerous developmental and disease states, including cancer. We have undertaken a detailed analysis of the regulatory interplay between molecules involved in the regulation and maintenance of polarised cell growth within fission yeast. Internally controlled live cell imaging was used to examine interactions between 10 key polarity proteins. Analysis reveals interplay between the microtubule and actin cytoskeletons, as well as multiple novel dependency pathways and feedback networks between groups of proteins. This study provides important insights into the conserved regulation of polarised cell growth within eukaryotes.
Collapse
|
25
|
Asp1 Bifunctional Activity Modulates Spindle Function via Controlling Cellular Inositol Pyrophosphate Levels in Schizosaccharomyces pombe. Mol Cell Biol 2018; 38:MCB.00047-18. [PMID: 29440310 DOI: 10.1128/mcb.00047-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/20/2022] Open
Abstract
The generation of two daughter cells with the same genetic information requires error-free chromosome segregation during mitosis. Chromosome transmission fidelity is dependent on spindle structure/function, which requires Asp1 in the fission yeast Schizosaccharomyces pombe Asp1 belongs to the diphosphoinositol pentakisphosphate kinase (PPIP5K)/Vip1 family which generates high-energy inositol pyrophosphate (IPP) molecules. Here, we show that Asp1 is a bifunctional enzyme in vivo: Asp1 kinase generates specific IPPs which are the substrates of the Asp1 pyrophosphatase. Intracellular levels of these IPPs directly correlate with microtubule stability: pyrophosphatase loss-of-function mutants raised Asp1-made IPP levels 2-fold, thus increasing microtubule stability, while overexpression of the pyrophosphatase decreased microtubule stability. Absence of Asp1-generated IPPs resulted in an aberrant, increased spindle association of the S. pombe kinesin-5 family member Cut7, which led to spindle collapse. Thus, chromosome transmission is controlled via intracellular IPP levels. Intriguingly, identification of the mitochondrion-associated Met10 protein as the first pyrophosphatase inhibitor revealed that IPPs also regulate mitochondrial distribution.
Collapse
|
26
|
Takenaka K, Tanabe T, Kawamukai M, Matsuo Y. Overexpression of the transcription factor Rst2 in Schizosaccharomyces pombe indicates growth defect, mitotic defects, and microtubule disorder. Biosci Biotechnol Biochem 2018; 82:247-257. [PMID: 29316864 DOI: 10.1080/09168451.2017.1415126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Schizosaccharomyces pombe, the transcription factor Rst2 regulates ste11 in meiosis and fbp1 in glucogenesis downstream of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) pathway. Here, we demonstrate that Rst2 regulates additional cellular events. Overexpressed Rst2 elevated the frequency of oval, bent, branched, septated, and multi-septated cells. Cells showed normal nuclear divisions but exhibited abnormal nuclear organization at low frequency. In oval cells, microtubules were curved but they were rescued by the deletion of mal3. Since growth defect was not rescued by mal3 deletion, we argue that it is regulated independently. Loss of functional Pka1 exaggerated growth defect upon Rst2 overexpression because its downregulation by Pka1 was lost. Overexpression of Rst2 also caused sensitivity to KCl and CaCl2. These findings suggest that, in addition to meiosis and glucogenesis, Rst2 is involved in cellular events such as regulation of cell growth, cell morphology, mitosis progression, microtubules structure, nuclear structure, and stress response.
Collapse
Affiliation(s)
- Kouhei Takenaka
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Takuma Tanabe
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Makoto Kawamukai
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Yasuhiro Matsuo
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| |
Collapse
|
27
|
Lakshmi RB, Nair VM, Manna TK. Regulators of spindle microtubules and their mechanisms: Living together matters. IUBMB Life 2018; 70:101-111. [DOI: 10.1002/iub.1708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/16/2017] [Indexed: 12/23/2022]
Affiliation(s)
- R. Bhagya Lakshmi
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| | - Vishnu M. Nair
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| | - Tapas K. Manna
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| |
Collapse
|
28
|
Abstract
Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast.
Collapse
Affiliation(s)
- Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| |
Collapse
|
29
|
Vleugel M, Kok M, Dogterom M. Understanding force-generating microtubule systems through in vitro reconstitution. Cell Adh Migr 2017; 10:475-494. [PMID: 27715396 PMCID: PMC5079405 DOI: 10.1080/19336918.2016.1241923] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.
Collapse
Affiliation(s)
- Mathijs Vleugel
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Maurits Kok
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Marileen Dogterom
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| |
Collapse
|
30
|
Mustyatsa VV, Boyakhchyan AV, Ataullakhanov FI, Gudimchuk NB. EB-family proteins: Functions and microtubule interaction mechanisms. BIOCHEMISTRY (MOSCOW) 2017; 82:791-802. [DOI: 10.1134/s0006297917070045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Li T, Mary H, Grosjean M, Fouchard J, Cabello S, Reyes C, Tournier S, Gachet Y. MAARS: a novel high-content acquisition software for the analysis of mitotic defects in fission yeast. Mol Biol Cell 2017; 28:1601-1611. [PMID: 28450455 PMCID: PMC5469604 DOI: 10.1091/mbc.e16-10-0723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/14/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Faithful segregation of chromosomes during cell division relies on multiple processes such as chromosome attachment and correct spindle positioning. Yet mitotic progression is defined by multiple parameters, which need to be quantitatively evaluated. To study the spatiotemporal control of mitotic progression, we developed a high-content analysis (HCA) approach that combines automated fluorescence microscopy with real-time quantitative image analysis and allows the unbiased acquisition of multiparametric data at the single-cell level for hundreds of cells simultaneously. The Mitotic Analysis and Recording System (MAARS) provides automatic and quantitative single-cell analysis of mitotic progression on an open-source platform. It can be used to analyze specific characteristics such as cell shape, cell size, metaphase/anaphase delays, and mitotic abnormalities including spindle mispositioning, spindle elongation defects, and chromosome segregation defects. Using this HCA approach, we were able to visualize rare and unexpected events of error correction during anaphase in wild-type or mutant cells. Our study illustrates that such an expert system of mitotic progression is able to highlight the complexity of the mechanisms required to prevent chromosome loss during cell division.
Collapse
Affiliation(s)
- Tong Li
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Hadrien Mary
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Marie Grosjean
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Jonathan Fouchard
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Simon Cabello
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Céline Reyes
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Sylvie Tournier
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Yannick Gachet
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| |
Collapse
|
32
|
Liu Z, Wu S, Chen Y, Han X, Gu Q, Yin Y, Ma Z. The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarium graminearum. Environ Microbiol 2017; 19:1791-1807. [PMID: 28028881 DOI: 10.1111/1462-2920.13651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
In yeasts, the end-binding protein 1 (EB1) homologs regulate microtubule dynamics, cell polarization, and chromosome stability. However, functions of EB1 orthologs in plant pathogenic fungi have not been characterized yet. Here, we observed that the FgEB1 deletion mutant (ΔFgEB1) of Fusarium graminearum exhibits twisted hyphae, increased hyphal branching and curved conidia, indicating that FgEB1 is involved in the regulation of cellular polarity. Microscopic examination further showed that the microtubules of ΔFgEB1 exhibited less organized in comparison with those of the wild type. In addition, the lack of FgEB1 also altered the distribution of polarity-related class I myosin via the interaction with the actin. On the other hand, we identified four core septins as FgEB1-interacting proteins, and found that FgEB1 and septins regulated conidial polar growth in the opposite orientation. Interestingly, FgEB1 and FgKar9 constituted another complex that modulated the response to carbendazim, a microtubule-damaging agent specifically. In addition, the deletion of FgEB1 led to dramatically decreased deoxynivalenol (DON) biosynthesis. Taken together, results of this study indicate that FgEB1 regulates cellular polarity, fungicide sensitivity and DON biosynthesis via different interactors in F. graminarum, which provides a novel insight into understanding of the biological functions of EB1 in filamentous fungi.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Sisi Wu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xinyue Han
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
33
|
Matsuo Y, Maurer SP, Yukawa M, Zakian S, Singleton MR, Surrey T, Toda T. An unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation. J Cell Sci 2016; 129:4592-4606. [PMID: 27872152 PMCID: PMC5201023 DOI: 10.1242/jcs.197533] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission yeast Dis1, a member of the XMAP215/TOG family, and Mal3, an EB1 protein. Using an in vitro microscopy assay, we find that purified Dis1 autonomously tracks growing microtubule ends and is a bona fide microtubule polymerase. Mal3 recruits additional Dis1 to microtubule ends, explaining the synergistic enhancement of microtubule dynamicity by these proteins. A non-canonical binding motif in Dis1 mediates the interaction with Mal3. X-ray crystallography shows that this new motif interacts in an unconventional configuration with the conserved hydrophobic cavity formed within the Mal3 C-terminal region that typically interacts with the canonical SXIP motif. Selectively perturbing the Mal3-Dis1 interaction in living cells demonstrates that it is important for accurate chromosome segregation. Whereas, in some metazoans, the interaction between EB1 and the XMAP215/TOG family members requires an additional binding partner, fission yeast relies on a direct interaction, indicating evolutionary plasticity of this critical interaction module.
Collapse
Affiliation(s)
- Yuzy Matsuo
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cell Regulation Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Sebastian P Maurer
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cell and Developmental Biology, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Masashi Yukawa
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Silva Zakian
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Martin R Singleton
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Thomas Surrey
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Takashi Toda
- Cell Regulation Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
34
|
Inositol Pyrophosphate Kinase Asp1 Modulates Chromosome Segregation Fidelity and Spindle Function in Schizosaccharomyces pombe. Mol Cell Biol 2016; 36:3128-3140. [PMID: 27697865 DOI: 10.1128/mcb.00330-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
Chromosome transmission fidelity during mitosis is of critical importance for the fitness of an organism, as mistakes will lead to aneuploidy, which has a causative role in numerous severe diseases. Proper segregation of chromosomes depends on interdependent processes at the microtubule-kinetochore interface and the spindle assembly checkpoint. Here we report the discovery of a new element essential for chromosome transmission fidelity that implicates inositol pyrophosphates (IPPs) as playing a key role in this process. The protein is Asp1, the Schizosaccharomyces pombe member of the highly conserved Vip1 family. Vip1 enzymes are bifunctional: they consist of an IPP-generating kinase domain and a pyrophosphatase domain that uses such IPPs as substrates. We show that Asp1 kinase function is required for bipolar spindle formation. The absence of Asp1-generated IPPs resulted in errors in sister chromatid biorientation, a prolonged checkpoint-controlled delay of anaphase onset, and chromosome missegregation. Remarkably, expression of Asp1 variants that generated higher-than-wild-type levels of IPPs led to a faster-than-wild-type entry into anaphase A without an increase in chromosome missegregation. In fact, the chromosome transmission fidelity of a nonessential chromosome was enhanced with increased cellular IPPs. Thus, we identified an element that optimized the wild-type chromosome transmission process.
Collapse
|
35
|
Uz G, Sarikaya AT. The effect of magnesium on mitotic spindle formation in Schizosaccharomyces pombe. Genet Mol Biol 2016; 39:459-64. [PMID: 27560651 PMCID: PMC5004833 DOI: 10.1590/1678-4685-gmb-2015-0239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/26/2015] [Indexed: 11/22/2022] Open
Abstract
Magnesium (Mg2+), an essential ion for cells and biological systems, is involved in a variety of cellular processes, including the formation and breakdown of microtubules. The results of a previous investigation suggested that as cells grow the intracellular Mg2+ concentration falls, thereby stimulating formation of the mitotic spindle. In the present work, we used a Mg2+-deficient Schizosaccharomyces pombe strain GA2, in which two essential membrane Mg2+ transporter genes (homologs of ALR1 and ALR2 in Saccharomyces cerevisae) were deleted, and its parental strain Sp292, to examine the extent to which low Mg2+ concentrations can affect mitotic spindle formation. The two S. pombe strains were transformed with a plasmid carrying a GFP-α2-tubulin construct to fluorescently label microtubules. Using the free Mg2+-specific fluorescent probe mag-fura-2, we confirmed that intracellular free Mg2+ levels were lower in GA2 than in the parental strain. Defects in interphase microtubule organization, a lower percentage of mitotic spindle formation and a reduced mitotic index were also observed in the GA2 strain. Although there was interphase microtubule polymerization, the lower level of mitotic spindle formation in the Mg2+-deficient strain suggested a greater requirement for Mg2+ in this phenomenon than previously thought.
Collapse
Affiliation(s)
- Gulsen Uz
- Department of Molecular Biology and Genetics, Faculty of Arts & Sciences, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Aysegul Topal Sarikaya
- Department of Molecular Biology and Genetics, Faculty of Arts & Sciences, Istanbul Yeni Yuzyil University, Istanbul, Turkey.,Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| |
Collapse
|
36
|
Makushok T, Alves P, Huisman SM, Kijowski AR, Brunner D. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity. Cell 2016; 165:1182-1196. [PMID: 27180904 DOI: 10.1016/j.cell.2016.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/20/2015] [Accepted: 04/13/2016] [Indexed: 12/26/2022]
Abstract
Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.
Collapse
Affiliation(s)
- Tatyana Makushok
- University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94143, USA
| | - Paulo Alves
- IGBMC, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Stephen Michiel Huisman
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Adam Rafal Kijowski
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Damian Brunner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
37
|
Duellberg C, Cade NI, Holmes D, Surrey T. The size of the EB cap determines instantaneous microtubule stability. eLife 2016; 5. [PMID: 27050486 PMCID: PMC4829430 DOI: 10.7554/elife.13470] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/23/2016] [Indexed: 12/24/2022] Open
Abstract
The function of microtubules relies on their ability to switch between phases of growth and shrinkage. A nucleotide-dependent stabilising cap at microtubule ends is thought to be lost before this switch can occur; however, the nature and size of this protective cap are unknown. Using a microfluidics-assisted multi-colour TIRF microscopy assay with close-to-nm and sub-second precision, we measured the sizes of the stabilizing cap of individual microtubules. We find that the protective caps are formed by the extended binding regions of EB proteins. Cap lengths vary considerably and longer caps are more stable. Nevertheless, the trigger of instability lies in a short region at the end of the cap, as a quantitative model of cap stability demonstrates. Our study establishes the spatial and kinetic characteristics of the protective cap and provides an insight into the molecular mechanism by which its loss leads to the switch from microtubule growth to shrinkage. DOI:http://dx.doi.org/10.7554/eLife.13470.001 Much like the skeleton supports the human body, a structure called the cytoskeleton provides support and structure to cells. Part of this cytoskeleton is made up of small tubes called microtubules that – unlike bones – can shrink and grow very quickly. This allows the cell to change shape, move and split into two new cells. Exactly how the microtubules switch between growing and shrinking was not clear. One suggestion is that a protective cap at the end of microtubule allows it to keep growing and prevents it from shrinking. However, the nature and size of this cap have been debated. Now, Duellberg et al. have measured the caps of microtubules with high precision by combining the techniques of microfluidics, TIRF microscopy and recently developed image analysis tools. This revealed that the cap sizes change, with longer caps being more stable. In addition, proteins called end-binding proteins can destabilize the cap by binding to it. This allows microtubules to switch from a growing to a shrinking state more often. Future work could now investigate how changes in cap length cause the microtubules to switch from growing to shrinking. It also remains to be seen whether other proteins also influence the cap to control this switching behaviour. DOI:http://dx.doi.org/10.7554/eLife.13470.002
Collapse
Affiliation(s)
- Christian Duellberg
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicholas I Cade
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David Holmes
- London Centre of Nanotechnology, London, United Kingdom
| | - Thomas Surrey
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
38
|
Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells. Proc Natl Acad Sci U S A 2016; 113:1811-6. [PMID: 26831106 DOI: 10.1073/pnas.1419248113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.
Collapse
|
39
|
Chen CT, Kelly M, Leon JD, Nwagbara B, Ebbert P, Ferguson DJP, Lowery LA, Morrissette N, Gubbels MJ. Compartmentalized Toxoplasma EB1 bundles spindle microtubules to secure accurate chromosome segregation. Mol Biol Cell 2015; 26:4562-76. [PMID: 26466679 PMCID: PMC4678015 DOI: 10.1091/mbc.e15-06-0437] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/02/2015] [Indexed: 11/11/2022] Open
Abstract
The opportunistic apicomplexan parasite Toxoplasma gondii divides by intertwined closed mitosis and internal budding. Centrosome positioning and MT acetylation control spindle dynamics, and the MT-associated protein TgEB1 residing in the nucleus contributes to mitotic fidelity by bundling the spindle MTs. Toxoplasma gondii replicates asexually by a unique internal budding process characterized by interwoven closed mitosis and cytokinesis. Although it is known that the centrosome coordinates these processes, the spatiotemporal organization of mitosis remains poorly defined. Here we demonstrate that centrosome positioning around the nucleus may signal spindle assembly: spindle microtubules (MTs) are first assembled when the centrosome moves to the basal side and become extensively acetylated after the duplicated centrosomes reposition to the apical side. We also tracked the spindle MTs using the MT plus end–binding protein TgEB1. Endowed by a C-terminal NLS, TgEB1 resides in the nucleoplasm in interphase and associates with the spindle MTs during mitosis. TgEB1 also associates with the subpellicular MTs at the growing end of daughter buds toward the completion of karyokinesis. Depletion of TgEB1 results in escalated disintegration of kinetochore clustering. Furthermore, we show that TgEB1’s MT association in Toxoplasma and in a heterologous system (Xenopus) is based on the same principles. Finally, overexpression of a high-MT-affinity TgEB1 mutant promotes the formation of overstabilized MT bundles, resulting in avulsion of otherwise tightly clustered kinetochores. Overall we conclude that centrosome position controls spindle activity and that TgEB1 is critical for mitotic integrity.
Collapse
Affiliation(s)
- Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - Megan Kelly
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - Jessica de Leon
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | | | - Patrick Ebbert
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | - Naomi Morrissette
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|
40
|
Kelkar M, Martin SG. PKA antagonizes CLASP-dependent microtubule stabilization to re-localize Pom1 and buffer cell size upon glucose limitation. Nat Commun 2015; 6:8445. [PMID: 26443240 PMCID: PMC4618306 DOI: 10.1038/ncomms9445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/21/2015] [Indexed: 01/28/2023] Open
Abstract
Cells couple growth with division and regulate size in response to nutrient availability. In rod-shaped fission yeast, cell-size control occurs at mitotic commitment. An important regulator is the DYRK-family kinase Pom1, which forms gradients from cell poles and inhibits the mitotic activator Cdr2, itself localized at the medial cortex. Where and when Pom1 modulates Cdr2 activity is unclear as Pom1 medial cortical levels remain constant during cell elongation. Here we show that Pom1 re-localizes to cell sides upon environmental glucose limitation, where it strongly delays mitosis. This re-localization is caused by severe microtubule destabilization upon glucose starvation, with microtubules undergoing catastrophe and depositing the Pom1 gradient nucleator Tea4 at cell sides. Microtubule destabilization requires PKA/Pka1 activity, which negatively regulates the microtubule rescue factor CLASP/Cls1/Peg1, reducing CLASP's ability to stabilize microtubules. Thus, PKA signalling tunes CLASP's activity to promote Pom1 cell side localization and buffer cell size upon glucose starvation.
Collapse
Affiliation(s)
- Manasi Kelkar
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Laporte D, Courtout F, Pinson B, Dompierre J, Salin B, Brocard L, Sagot I. A stable microtubule array drives fission yeast polarity reestablishment upon quiescence exit. J Cell Biol 2015; 210:99-113. [PMID: 26124291 PMCID: PMC4494004 DOI: 10.1083/jcb.201502025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament-containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Fabien Courtout
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Jim Dompierre
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Bénédicte Salin
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Pôle d'imagerie du végétal, Institut National de la Recherche Agronomique, 33140 Villenave d'Ornon, France
| | - Isabelle Sagot
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
42
|
Scheffler K, Minnes R, Fraisier V, Paoletti A, Tran PT. Microtubule minus end motors kinesin-14 and dynein drive nuclear congression in parallel pathways. ACTA ACUST UNITED AC 2015; 209:47-58. [PMID: 25869666 PMCID: PMC4395489 DOI: 10.1083/jcb.201409087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Long-term imaging via microfluidic chambers shows that two minus end–directed motors, dynein and Klp2, work in parallel at distinct subcellular structures to promote efficient nuclear congression. Microtubules (MTs) and associated motors play a central role in nuclear migration, which is crucial for diverse biological functions including cell division, polarity, and sexual reproduction. In this paper, we report a dual mechanism underlying nuclear congression during fission yeast karyogamy upon mating of haploid cells. Using microfluidic chambers for long-term imaging, we captured the precise timing of nuclear congression and identified two minus end–directed motors operating in parallel in this process. Kinesin-14 Klp2 associated with MTs may cross-link and slide antiparallel MTs emanating from the two nuclei, whereas dynein accumulating at spindle pole bodies (SPBs) may pull MTs nucleated from the opposite SPB. Klp2-dependent nuclear congression proceeds at constant speed, whereas dynein accumulation results in an increase of nuclear velocity over time. Surprisingly, the light intermediate chain Dli1, but not dynactin, is required for this previously unknown function of dynein. We conclude that efficient nuclear congression depends on the cooperation of two minus end–directed motors.
Collapse
Affiliation(s)
- Kathleen Scheffler
- Centre de Recherche and BioImaging Cell and Tissue Core Facility of the Institut Curie (PICT-IBiSA), Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Refael Minnes
- Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Vincent Fraisier
- Centre de Recherche and BioImaging Cell and Tissue Core Facility of the Institut Curie (PICT-IBiSA), Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Anne Paoletti
- Centre de Recherche and BioImaging Cell and Tissue Core Facility of the Institut Curie (PICT-IBiSA), Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Phong T Tran
- Centre de Recherche and BioImaging Cell and Tissue Core Facility of the Institut Curie (PICT-IBiSA), Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
43
|
Liu J, Han R. The Evolution of Microtubule End-Binding Protein 1 (EB1) and Roles in Regulating Microtubule Behavior. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.613212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Oscillatory AAA+ ATPase Knk1 constitutes a novel morphogenetic pathway in fission yeast. Proc Natl Acad Sci U S A 2014; 111:17899-904. [PMID: 25422470 DOI: 10.1073/pnas.1407226111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular morphogenesis relies partly on cell polarization by the cytoskeleton. In the fission yeast Schizosaccharomyces pombe, it is well established that microtubules (MTs) deliver the spatial cue Tea1, a kelch repeat protein, to the tip regions to direct the growth machinery at the cell tips driving the linear extension of the rod-shaped organism to maintain a straight long axis. Here, we report the characterization of Knk1 (kink), a previously unidentified member of the superfamily of ATPases associated with various cellular activities (AAA(+)), whose deletion causes a unique morphological defect characterized by the formation of kinks close to cell tips. Through genetic analysis, we place Knk1 into a novel pathway controlling cell shape independently of MTs and Tea1. Knk1 localizes at cell tips. Its localization is mediated by the Knk1 N terminus and is enhanced upon ATP binding to the C-terminal ATPase domain. Furthermore, Knk1 tip recruitment is regulated by SRC-like adaptor 2 (Sla2) and cell division cycle 42 (Cdc42) independently of Sla2's role in endocytosis. Finally, we discovered that Knk1 shows an anticorrelated oscillatory behavior between the two cell tips at a periodicity that is different from the reported oscillatory Cdc42 dynamics.
Collapse
|
45
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
46
|
Pöhlmann J, Risse C, Seidel C, Pohlmann T, Jakopec V, Walla E, Ramrath P, Takeshita N, Baumann S, Feldbrügge M, Fischer R, Fleig U. The Vip1 inositol polyphosphate kinase family regulates polarized growth and modulates the microtubule cytoskeleton in fungi. PLoS Genet 2014; 10:e1004586. [PMID: 25254656 PMCID: PMC4177672 DOI: 10.1371/journal.pgen.1004586] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Microtubules (MTs) are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family. Inositol pyrophosphates generated by Asp1 modulate MT dynamic parameters independent of the central +TIP EB1 and in a dose-dependent and cellular-context-dependent manner. Importantly, our analysis of the in vitro kinase activities of various S. pombe Asp1 variants demonstrated that the C-terminal phosphatase-like domain of the dual domain Vip1 protein negatively affects the inositol pyrophosphate output of the N-terminal kinase domain. These data suggest that the former domain has phosphatase activity. Remarkably, Vip1 regulation of the MT cytoskeleton is a conserved feature, as Vip1-like proteins of the filamentous ascomycete Aspergillus nidulans and the distantly related pathogenic basidiomycete Ustilago maydis also affect the MT cytoskeleton in these organisms. Consistent with the role of interphase MTs in growth zone selection/maintenance, all 3 fungal systems show aspects of aberrant cell morphogenesis. Thus, for the first time we have identified a conserved biological process for inositol pyrophosphates.
Collapse
Affiliation(s)
- Jennifer Pöhlmann
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Carmen Risse
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Constanze Seidel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Thomas Pohlmann
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Visnja Jakopec
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Eva Walla
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Pascal Ramrath
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Norio Takeshita
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
- University of Tsukuba, Faculty of Life and Environmental Sciences, Ibaraki, Tsukuba, Japan
| | - Sebastian Baumann
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Ursula Fleig
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
47
|
Abenza JF, Chessel A, Raynaud WG, Carazo-Salas RE. Dynamics of cell shape inheritance in fission yeast. PLoS One 2014; 9:e106959. [PMID: 25210736 PMCID: PMC4161360 DOI: 10.1371/journal.pone.0106959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023] Open
Abstract
Every cell has a characteristic shape key to its fate and function. That shape is not only the product of genetic design and of the physical and biochemical environment, but it is also subject to inheritance. However, the nature and contribution of cell shape inheritance to morphogenetic control is mostly ignored. Here, we investigate morphogenetic inheritance in the cylindrically-shaped fission yeast Schizosaccharomyces pombe. Focusing on sixteen different ‘curved’ mutants - a class of mutants which often fail to grow axially straight – we quantitatively characterize their dynamics of cell shape inheritance throughout generations. We show that mutants of similar machineries display similar dynamics of cell shape inheritance, and exploit this feature to show that persistent axial cell growth in S. pombe is secured by multiple, separable molecular pathways. Finally, we find that one of those pathways corresponds to the swc2-swr1-vps71 SWR1/SRCAP chromatin remodelling complex, which acts additively to the known mal3-tip1-mto1-mto2 microtubule and tea1-tea2-tea4-pom1 polarity machineries.
Collapse
Affiliation(s)
- Juan F. Abenza
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JFA); (REC-S)
| | - Anatole Chessel
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - William G. Raynaud
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rafael E. Carazo-Salas
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JFA); (REC-S)
| |
Collapse
|
48
|
Carlier-Grynkorn F, Ji L, Fraisier V, Lombard B, Dingli F, Loew D, Paoletti A, Ronot X, Tran PT. Fission yeast mtr1p regulates interphase microtubule cortical dwell-time. Biol Open 2014; 3:591-6. [PMID: 24928430 PMCID: PMC4154295 DOI: 10.1242/bio.20148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microtubule cytoskeleton plays important roles in cell polarity, motility and division. Microtubules inherently undergo dynamic instability, stochastically switching between phases of growth and shrinkage. In cells, some microtubule-associated proteins (MAPs) and molecular motors can further modulate microtubule dynamics. We present here the fission yeast mtr1(+), a new regulator of microtubule dynamics that appears to be not a MAP or a motor. mtr1-deletion (mtr1Δ) primarily results in longer microtubule dwell-time at the cell tip cortex, suggesting that mtr1p acts directly or indirectly as a destabilizer of microtubules. mtr1p is antagonistic to mal3p, the ortholog of mammalian EB1, which stabilizes microtubules. mal3Δ results in short microtubules, but can be partially rescued by mtr1Δ, as the double mutant mal3Δ mtr1Δ exhibits longer microtubules than mal3Δ single mutant. By sequence homology, mtr1p is predicted to be a component of the ribosomal quality control complex. Intriguingly, deletion of a predicted ribosomal gene, rps1801, also resulted in longer microtubule dwell-time similar to mtr1Δ. The double-mutant mal3Δ rps1801Δ also exhibits longer microtubules than mal3Δ single mutant alone. Our study suggests a possible involvement of mtr1p and the ribosome complex in modulating microtubule dynamics.
Collapse
Affiliation(s)
| | - Liang Ji
- Institut Curie, Paris 75005, France CNRS, UMR 144, Paris 75005, France
| | - Vincent Fraisier
- Institut Curie, Paris 75005, France CNRS, UMR 144, Paris 75005, France
| | | | | | | | - Anne Paoletti
- Institut Curie, Paris 75005, France CNRS, UMR 144, Paris 75005, France
| | - Xavier Ronot
- Laboratoire CaCyS, FRE AGIM 3405 UJF-CNRS-EPHE-UMPF, La Tronche 38700, France
| | - Phong T Tran
- Institut Curie, Paris 75005, France CNRS, UMR 144, Paris 75005, France Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein. PLoS One 2014; 9:e97850. [PMID: 24828878 PMCID: PMC4020936 DOI: 10.1371/journal.pone.0097850] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/25/2014] [Indexed: 12/03/2022] Open
Abstract
End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102–238, but not rGlEB11–184, maintains an MT-binding ability comparable with that of the full length protein, rGlEB11–238. Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia.
Collapse
|
50
|
Pavin N, Tolić-Nørrelykke IM. Swinging a sword: how microtubules search for their targets. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:179-86. [PMID: 25136379 PMCID: PMC4127178 DOI: 10.1007/s11693-014-9134-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
The cell interior is in constant movement, which is to a large extent determined by microtubules, thin and long filaments that permeate the cytoplasm. To move large objects, microtubules need to connect them to the site of their destination. For example, during cell division, microtubules connect chromosomes with the spindle poles via kinetochores, protein complexes on the chromosomes. A general question is how microtubules, while being bound to one structure, find the target that needs to be connected to this structure. Here we review the mechanisms of how microtubules search for kinetochores, with emphasis on the recently discovered microtubule feature to explore space by pivoting around the spindle pole. In addition to accelerating the search for kinetochores, pivoting helps the microtubules to search for cortical anchors, as well as to self-organize into parallel arrays and asters to target specific regions of the cell. Thus, microtubule pivoting constitutes a mechanism by which they locate targets in different cellular contexts.
Collapse
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| | - Iva M Tolić-Nørrelykke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany ; Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|