1
|
Benedetti MC, D'andrea T, Colantoni A, Silachev D, de Turris V, Boussadia Z, Babenko VA, Volovikov EA, Belikova L, Bogomazova AN, Pepponi R, Whye D, Buttermore ED, Tartaglia GG, Lagarkova MA, Katanaev VL, Musayev I, Martinelli S, Fucile S, Rosa A. Cortical neurons obtained from patient-derived iPSCs with GNAO1 p.G203R variant show altered differentiation and functional properties. Heliyon 2024; 10:e26656. [PMID: 38434323 PMCID: PMC10907651 DOI: 10.1016/j.heliyon.2024.e26656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Pathogenic variants in the GNAO1 gene, encoding the alpha subunit of an inhibitory heterotrimeric guanine nucleotide-binding protein (Go) highly expressed in the mammalian brain, have been linked to encephalopathy characterized by different combinations of neurological symptoms, including developmental delay, hypotonia, epilepsy and hyperkinetic movement disorder with life-threatening paroxysmal exacerbations. Currently, there are only symptomatic treatments, and little is known about the pathophysiology of GNAO1-related disorders. Here, we report the characterization of a new in vitro model system based on patient-derived induced pluripotent stem cells (hiPSCs) carrying the recurrent p.G203R amino acid substitution in Gαo, and a CRISPR-Cas9-genetically corrected isogenic control line. RNA-Seq analysis highlighted aberrant cell fate commitment in neuronal progenitor cells carrying the p.G203R pathogenic variant. Upon differentiation into cortical neurons, patients' cells showed reduced expression of early neural genes and increased expression of astrocyte markers, as well as premature and defective differentiation processes leading to aberrant formation of neuronal rosettes. Of note, comparable defects in gene expression and in the morphology of neural rosettes were observed in hiPSCs from an unrelated individual harboring the same GNAO1 variant. Functional characterization showed lower basal intracellular free calcium concentration ([Ca2+]i), reduced frequency of spontaneous activity, and a smaller response to several neurotransmitters in 40- and 50-days differentiated p.G203R neurons compared to control cells. These findings suggest that the GNAO1 pathogenic variant causes a neurodevelopmental phenotype characterized by aberrant differentiation of both neuronal and glial populations leading to a significant alteration of neuronal communication and signal transduction.
Collapse
Affiliation(s)
- Maria Cristina Benedetti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Tiziano D'andrea
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Denis Silachev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690090, Vladivostok, Russia
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Valeria de Turris
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Egor A. Volovikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Lilia Belikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Alexandra N. Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Rita Pepponi
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center and F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Elizabeth D. Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center and F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Gian Gaetano Tartaglia
- Center for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Maria A. Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Vladimir L. Katanaev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690090, Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | | | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| |
Collapse
|
2
|
Larasati YA, Savitsky M, Koval A, Solis GP, Valnohova J, Katanaev VL. Restoration of the GTPase activity and cellular interactions of Gα o mutants by Zn 2+ in GNAO1 encephalopathy models. SCIENCE ADVANCES 2022; 8:eabn9350. [PMID: 36206333 PMCID: PMC9544338 DOI: 10.1126/sciadv.abn9350] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
De novo point mutations in GNAO1, gene encoding the major neuronal G protein Gαo, have recently emerged in patients with pediatric encephalopathy having motor, developmental, and epileptic dysfunctions. Half of clinical cases affect codons Gly203, Arg209, or Glu246; we show that these mutations accelerate GTP uptake and inactivate GTP hydrolysis through displacement Gln205 critical for GTP hydrolysis, resulting in constitutive GTP binding by Gαo. However, the mutants fail to adopt the activated conformation and display aberrant interactions with signaling partners. Through high-throughput screening of approved drugs, we identify zinc pyrithione and Zn2+ as agents restoring active conformation, GTPase activity, and cellular interactions of the encephalopathy mutants, with negligible effects on wild-type Gαo. We describe a Drosophila model of GNAO1 encephalopathy where dietary zinc restores the motor function and longevity of the mutant flies. Zinc supplements are approved for diverse human neurological conditions. Our work provides insights into the molecular etiology of GNAO1 encephalopathy and defines a potential therapy for the patients.
Collapse
Affiliation(s)
- Yonika A. Larasati
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Mikhail Savitsky
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gonzalo P. Solis
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jana Valnohova
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vladimir L. Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia
| |
Collapse
|
3
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
4
|
Scepanovic G, Florea A, Fernandez-Gonzalez R. Multiscale In Vivo Imaging of Collective Cell Migration in Drosophila Embryos. Methods Mol Biol 2021; 2179:199-224. [PMID: 32939723 DOI: 10.1007/978-1-0716-0779-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Coordinated cell movements drive embryonic development and tissue repair, and can also spread disease. Time-lapse microscopy is an integral part in the study of the cell biology of collective cell movements. Advances in imaging techniques enable monitoring dynamic cellular and molecular events in real time within living animals. Here, we demonstrate the use of spinning disk confocal microscopy to investigate coordinated cell movements and epithelial-to-mesenchymal-like transitions during embryonic wound closure in Drosophila. We describe image-based metrics to quantify the efficiency of collective cell migration. Finally, we show the application of super-resolution radial fluctuation microscopy to obtain multidimensional, super-resolution images of protrusive activity in collectively moving cells in vivo. Together, the methods presented here constitute a toolkit for the modern analysis of collective cell migration in living animals.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Alexandru Florea
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada. .,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
5
|
Savitsky M, Solis GP, Kryuchkov M, Katanaev VL. Humanization of Drosophila Gαo to Model GNAO1 Paediatric Encephalopathies. Biomedicines 2020; 8:E395. [PMID: 33036271 PMCID: PMC7599900 DOI: 10.3390/biomedicines8100395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Several hundred genes have been identified to contribute to epilepsy-the disease affecting 65 million people worldwide. One of these genes is GNAO1 encoding Gαo, the major neuronal α-subunit of heterotrimeric G proteins. An avalanche of dominant de novo mutations in GNAO1 have been recently described in paediatric epileptic patients, suffering, in addition to epilepsy, from motor dysfunction and developmental delay. Although occurring in amino acids conserved from humans to Drosophila, these mutations and their functional consequences have only been poorly analysed at the biochemical or neuronal levels. Adequate animal models to study the molecular aetiology of GNAO1 encephalopathies have also so far been lacking. As the first step towards modeling the disease in Drosophila, we here describe the humanization of the Gαo locus in the fruit fly. A two-step CRISPR/Cas9-mediated replacement was conducted, first substituting the coding exons 2-3 of Gαo with respective human GNAO1 sequences. At the next step, the remaining exons 4-7 were similarly replaced, keeping intact the gene Cyp49a1 embedded in between, as well as the non-coding exons, exon 1 and the surrounding regulatory sequences. The resulting flies, homozygous for the humanized GNAO1 loci, are viable and fertile without any visible phenotypes; their body weight, locomotion, and longevity are also normal. Human Gαo-specific antibodies confirm the endogenous-level expression of the humanized Gαo, which fully replaces the Drosophila functions. The genetic model we established will make it easy to incorporate encephalopathic GNAO1 mutations and will permit intensive investigations into the molecular aetiology of the human disease through the powerful toolkit of Drosophila genetics.
Collapse
Affiliation(s)
- Mikhail Savitsky
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.S.); (G.P.S.); (M.K.)
| | - Gonzalo P. Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.S.); (G.P.S.); (M.K.)
| | - Mikhail Kryuchkov
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.S.); (G.P.S.); (M.K.)
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.S.); (G.P.S.); (M.K.)
- School of Biomedicine, Far Eastern Federal University, 690690 Vladivostok, Russia
| |
Collapse
|
6
|
Riddle NC. Variation in the response to exercise stimulation in Drosophila: marathon runner versus sprinter genotypes. J Exp Biol 2020; 223:jeb229997. [PMID: 32737212 DOI: 10.1242/jeb.229997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Animals' behaviors vary in response to their environment, both biotic and abiotic. These behavioral responses have significant impacts on animal survival and fitness, and thus, many behavioral responses are at least partially under genetic control. In Drosophila, for example, genes impacting aggression, courtship behavior, circadian rhythms and sleep have been identified. Animal activity also is influenced strongly by genetics. My lab previously has used the Drosophila melanogaster Genetics Reference Panel (DGRP) to investigate activity levels and identified over 100 genes linked to activity. Here, I re-examined these data to determine whether Drosophila strains differ in their response to rotational exercise stimulation, not simply in the amount of activity, but in activity patterns and timing of activity. Specifically, I asked whether there are fly strains exhibiting either a 'marathoner' pattern of activity, i.e. remaining active throughout the 2 h exercise period, or a 'sprinter' pattern, i.e. carrying out most of the activity early in the exercise period. The DGRP strains examined differ significantly in how much activity is carried out at the beginning of the exercise period, and this pattern is influenced by both sex and genotype. Interestingly, there was no clear link between the activity response pattern and lifespan of the animals. Using genome-wide association studies (GWAS), I identified 10 high confidence candidate genes that control the degree to which Drosophila exercise behaviors fit a marathoner or sprinter activity pattern. This finding suggests that, similar to other aspects of locomotor behavior, the timing of activity patterns in response to exercise stimulation is under genetic control.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Jammrath J, Reim I, Saumweber H. Cbl-Associated Protein CAP contributes to correct formation and robust function of the Drosophila heart tube. PLoS One 2020; 15:e0233719. [PMID: 32469960 PMCID: PMC7259718 DOI: 10.1371/journal.pone.0233719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
The formation of a tube-like structure is a basic step in the making of functional hearts in vertebrates and invertebrates and therefore, its understanding provides important information on heart development and function. In Drosophila, the cardiac tube originates from two bilateral rows of dorsally migrating cells. On meeting at the dorsal midline, coordinated changes in cell shape and adhesive properties transform the two sheets of cells into a linear tube. ECM and transmembrane proteins linked to the cytoskeleton play an important role during these dynamic processes. Here we characterize the requirement of Cbl-Associated Protein (CAP) in Drosophila heart formation. In embryos, CAP is expressed in late migrating cardioblasts and is located preferentially at their luminal and abluminal periphery. CAP mutations result in irregular cardioblast alignment and imprecisely controlled cardioblast numbers. Furthermore, CAP mutant embryos show a strongly reduced heart lumen and an aberrant shape of lumen forming cardioblasts. Analysis of double heterozygous animals reveals a genetic interaction of CAP with Integrin- and Talin-encoding genes. In post-embryonic stages, CAP closely colocalizes with Integrin near Z-bands and at cell-cell contact sites. CAP mutants exhibit a reduced contractility in larval hearts and show a locally disrupted morphology, which correlates with a reduced pumping efficiency. Our observations imply a function of CAP in linking Integrin signaling with the actin cytoskeleton. As a modulator of the cytoskeleton, CAP is involved in the establishment of proper cell shapes during cardioblast alignment and cardiac lumen formation in the Drosophila embryo. Furthermore, CAP is required for correct heart function throughout development.
Collapse
Affiliation(s)
- Jennifer Jammrath
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Ingolf Reim
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Harald Saumweber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
8
|
Katanaev VL, Egger-Adam D, Tomlinson A. Antagonistic PCP Signaling Pathways in the developing Drosophila eye. Sci Rep 2018; 8:5741. [PMID: 29636485 PMCID: PMC5893544 DOI: 10.1038/s41598-018-24053-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/26/2018] [Indexed: 01/23/2023] Open
Abstract
In Planar cell polarity (PCP), cells coordinately polarize their cytoskeletons within the plane of the epithelium in which they lie. In most insect epithelia this is indicated by the coordinated projections of the hairs secreted by the ectodermal cells. PCP of this form has been effectively studied in Drosophila, but it has proven difficult to achieve an integrated description of the roles played by the various proteins. In the insect eye, PCP is not evident as the polarization of individual cells, but as the asymmetric arrangements of the cells of the ommatidia. This different form of PCP allows different studies to be performed, and using this system we have detected the action of two antagonistic signaling pathways. Even though antagonistic, the two pathways synergize and cooperate to ensure that the correct arrangement of the cells is achieved. The cooperative use of antagonistic signaling pathways occurs in the polarization of chemotacting cells, and we discuss the possibility that a similar molecular principle may underlie PCP.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th St #1120, New York, NY, 10032, USA.,Department of Biology, University of Konstanz, Universitätsstrasse, 10, Box M643, 78467, Konstanz, Germany.,Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005, Lausanne, Switzerland
| | - Diane Egger-Adam
- Department of Biology, University of Konstanz, Universitätsstrasse, 10, Box M643, 78467, Konstanz, Germany
| | - Andrew Tomlinson
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th St #1120, New York, NY, 10032, USA. .,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, Jerome L. Greene Science Center, MC9892, Level 9 Room 028, 3227 Broadway, New York, NY, 10027, USA.
| |
Collapse
|
9
|
Solis GP, Bilousov O, Koval A, Lüchtenborg AM, Lin C, Katanaev VL. Golgi-Resident Gαo Promotes Protrusive Membrane Dynamics. Cell 2017; 170:939-955.e24. [PMID: 28803726 DOI: 10.1016/j.cell.2017.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/30/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
To form protrusions like neurites, cells must coordinate their induction and growth. The first requires cytoskeletal rearrangements at the plasma membrane (PM), the second requires directed material delivery from cell's insides. We find that the Gαo-subunit of heterotrimeric G proteins localizes dually to PM and Golgi across phyla and cell types. The PM pool of Gαo induces, and the Golgi pool feeds, the growing protrusions by stimulated trafficking. Golgi-residing KDELR binds and activates monomeric Gαo, atypically for G protein-coupled receptors that normally act on heterotrimeric G proteins. Through multidimensional screenings identifying > 250 Gαo interactors, we pinpoint several basic cellular activities, including vesicular trafficking, as being regulated by Gαo. We further find small Golgi-residing GTPases Rab1 and Rab3 as direct effectors of Gαo. This KDELR → Gαo → Rab1/3 signaling axis is conserved from insects to mammals and controls material delivery from Golgi to PM in various cells and tissues.
Collapse
Affiliation(s)
- Gonzalo P Solis
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland.
| | - Oleksii Bilousov
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Anne-Marie Lüchtenborg
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Chen Lin
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland; School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russian Federation.
| |
Collapse
|
10
|
Talin is required to position and expand the luminal domain of the Drosophila heart tube. Dev Biol 2015; 405:189-201. [DOI: 10.1016/j.ydbio.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
|
11
|
Haussmann IU, Hemani Y, Wijesekera T, Dauwalder B, Soller M. Multiple pathways mediate the sex-peptide-regulated switch in female Drosophila reproductive behaviours. Proc Biol Sci 2013; 280:20131938. [PMID: 24089336 DOI: 10.1098/rspb.2013.1938] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Male-derived sex-peptide (SP) induces profound changes in the behaviour of Drosophila females, resulting in decreased receptivity to further mating and increased egg laying. SP can mediate the switch in female reproductive behaviours via a G protein-coupled receptor, SPR, in neurons expressing fruitless, doublesex and pickpocket. Whether SPR is the sole receptor and whether SP induces the postmating switch in a single pathway has not, to our knowledge been tested. Here we report that the SP response can be induced in the absence of SPR when SP is ectopically expressed in neurons or when SP, transferred by mating, can access neurons through a leaky blood brain barrier. Membrane-tethered SP can induce oviposition via doublesex, but not fruitless and pickpocket neurons in SPR mutant females. Although pickpocket and doublesex neurons rely on G(o) signalling to reduce receptivity and induce oviposition, G(o) signalling in fruitless neurons is required only to induce oviposition, but not to reduce receptivity. Our results show that SP's action in reducing receptivity and inducing oviposition can be separated in fruitless and doublesex neurons. Hence, the SP-induced postmating switch incorporates shared, but also distinct circuitry of fruitless, doublesex and pickpocket neurons and additional receptors.
Collapse
Affiliation(s)
- Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, , Birmingham B15 2TT, UK, Department of Biology and Biochemistry, University of Houston, , Houston, TX, USA
| | | | | | | | | |
Collapse
|
12
|
Amyloid precursor proteins interact with the heterotrimeric G protein Go in the control of neuronal migration. J Neurosci 2013; 33:10165-81. [PMID: 23761911 DOI: 10.1523/jneurosci.1146-13.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid precursor protein (APP) belongs to a family of evolutionarily conserved transmembrane glycoproteins that has been proposed to regulate multiple aspects of cell motility in the nervous system. Although APP is best known as the source of β-amyloid fragments (Aβ) that accumulate in Alzheimer's disease, perturbations affecting normal APP signaling events may also contribute to disease progression. Previous in vitro studies showed that interactions between APP and the heterotrimeric G protein Goα-regulated Goα activity and Go-dependent apoptotic responses, independent of Aβ. However, evidence for authentic APP-Go interactions within the healthy nervous system has been lacking. To address this issue, we have used a combination of in vitro and in vivo strategies to show that endogenously expressed APP family proteins colocalize with Goα in both insect and mammalian nervous systems, including human brain. Using biochemical, pharmacological, and Bimolecular Fluorescence Complementation assays, we have shown that insect APP (APPL) directly interacts with Goα in cell culture and at synaptic terminals within the insect brain, and that this interaction is regulated by Goα activity. We have also adapted a well characterized assay of neuronal migration in the hawkmoth Manduca to show that perturbations affecting APPL and Goα signaling induce the same unique pattern of ectopic, inappropriate growth and migration, analogous to defective migration patterns seen in mice lacking all APP family proteins. These results support the model that APP and its orthologs regulate conserved aspects of neuronal migration and outgrowth in the nervous system by functioning as unconventional Goα-coupled receptors.
Collapse
|
13
|
Abstract
Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating behavior and synaptic functions. We previously uncovered an octopaminergic positive-feedback mechanism to regulate structural synaptic plasticity during development and in response to starvation. Under this mechanism, activation of Octß2R autoreceptors by octopamine at octopaminergic neurons initiated a cAMP-dependent cascade that stimulated the development of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). However, the regulatory mechanisms that served to brake such positive feedback were not known. Here, we report the presence of an alternative octopamine autoreceptor, Octß1R, with antagonistic functions on synaptic growth. Mutations in octß1r result in the overgrowth of both glutamatergic and octopaminergic NMJs, suggesting that Octß1R is a negative regulator of synaptic expansion. As Octß2R, Octß1R functioned in a cell-autonomous manner at presynaptic motorneurons. However, unlike Octß2R, which activated a cAMP pathway, Octß1R likely inhibited cAMP production through inhibitory Goα. Despite its inhibitory role, Octß1R was required for acute changes in synaptic structure in response to octopamine and for starvation-induced increase in locomotor speed. These results demonstrate the dual action of octopamine on synaptic growth and behavioral plasticity, and highlight the important role of inhibitory influences for normal responses to physiological stimuli.
Collapse
|
14
|
Tauc HM, Mann T, Werner K, Pandur P. A role for Drosophila Wnt-4 in heart development. Genesis 2012; 50:466-81. [DOI: 10.1002/dvg.22021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 01/09/2023]
|
15
|
Madalan A, Yang X, Ferris J, Zhang S, Roman G. G(o) activation is required for both appetitive and aversive memory acquisition in Drosophila. Learn Mem 2011; 19:26-34. [PMID: 22190729 DOI: 10.1101/lm.024802.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterotrimeric G(o) is an abundant brain protein required for negatively reinforced short-term associative olfactory memory in Drosophila. G(o) is the only known substrate of the S1 subunit of pertussis toxin (PTX) in fly, and acute expression of PTX within the mushroom body neurons (MB) induces a reversible deficit in associative olfactory memory. We demonstrate here that the induction of PTX within the α/β and γ lobe MB neurons leads to impaired memory acquisition without affecting memory stability. The induction of PTX within these MB neurons also leads to a significant defect in an optimized positively reinforced short-term memory paradigm; however, this PTX-induced learning deficit is noticeably less severe than found with the negatively reinforced paradigm. Both negatively and positively reinforced memory phenotypes are rescued by the constitutive expression of G(o)α transgenes bearing the Cys(351)Ile mutation. Since this mutation renders the G(o) molecule insensitive to PTX, the results isolate the effect of PTX on both forms of olfactory associative learning to the inhibition of the G(o) activation.
Collapse
Affiliation(s)
- Adrian Madalan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | | | | | | | |
Collapse
|
16
|
Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets. Biochem Pharmacol 2011; 82:1311-9. [PMID: 21689640 DOI: 10.1016/j.bcp.2011.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
The Wnt/Frizzled signaling pathway plays multiple functions in animal development and, when deregulated, in human disease. The G-protein coupled receptor (GPCR) Frizzled and its cognate heterotrimeric Gi/o proteins initiate the intracellular signaling cascades resulting in cell fate determination and polarization. In this review, we summarize the knowledge on the ligand recognition, biochemistry, modifications and interacting partners of the Frizzled proteins viewed as GPCRs. We also discuss the effectors of the heterotrimeric Go protein in Frizzled signaling. One group of these effectors is represented by small GTPases of the Rab family, which amplify the initial Wnt/Frizzled signal. Another effector is the negative regulator of Wnt signaling Axin, which becomes deactivated in response to Go action. The discovery of the GPCR properties of Frizzled receptors not only provides mechanistic understanding to their signaling pathways, but also paves new avenues for the drug discovery efforts.
Collapse
|
17
|
Abstract
STUDY OBJECTIVES Sleep is a fundamental physiological process and its biological mechanisms are poorly understood. In Drosophila melanogaster, heterotrimeric Go protein is abundantly expressed in the brain. However, its post-developmental function has not been extensively explored. DESIGN Locomotor activity was measured using the Drosophila Activity Monitoring System under a 12:12 LD cycle. Sleep was defined as periods of 5 min with no recorded activity. RESULTS Pan-neuronal elevation of Go signaling induced quiescence accompanied by an increased arousal threshold in flies. By screening region-specific GAL4 lines, we mapped the sleep-regulatory function of Go signaling to mushroom bodies (MBs), a central brain region which modulates memory, decision making, and sleep in Drosophila. Up-regulation of Go activity in these neurons consolidated sleep while inhibition of endogenous Go via expression of Go RNAi or pertussis toxin reduced and fragmented sleep, indicating that the Drosophila sleep requirement is affected by levels of Go activity in the MBs. Genetic interaction results showed that Go signaling serves as a neuronal transmission inhibitor in a cAMP-independent pathway. CONCLUSION Go signaling is a novel signaling pathway in MBs that regulates sleep in Drosophila.
Collapse
Affiliation(s)
- Fang Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
18
|
Piazza N, Wessells RJ. Drosophila models of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:155-210. [PMID: 21377627 PMCID: PMC3551295 DOI: 10.1016/b978-0-12-384878-9.00005-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance.
Collapse
Affiliation(s)
- Nicole Piazza
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
19
|
Albrecht S, Altenhein B, Paululat A. The transmembrane receptor Uncoordinated5 (Unc5) is essential for heart lumen formation in Drosophila melanogaster. Dev Biol 2010; 350:89-100. [PMID: 21094637 DOI: 10.1016/j.ydbio.2010.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 11/17/2022]
Abstract
Transport of liquids or gases in biological tubes is fundamental for many physiological processes. Our knowledge on how tubular organs are formed during organogenesis and tissue remodeling has increased dramatically during the last decade. Studies on different animal systems have helped to unravel some of the molecular mechanisms underlying tubulogenesis. Tube architecture varies dramatically in different organs and different species, ranging from tubes formed by several cells constituting the cross section, tubes formed by single cells wrapping an internal luminal space or tubes that are formed within a cell. Some tubes display branching whereas others remain linear without intersections. The modes of shaping, growing and pre-patterning a tube are also different and it is still not known whether these diverse architectures and modes of differentiation are realized by sharing common signaling pathways or regulatory networks. However, several recent investigations provide evidence for the attractive hypothesis that the Drosophila cardiogenesis and heart tube formation shares many similarities with primary angiogenesis in vertebrates. Additionally, another important step to unravel the complex system of lumen formation has been the outcome of recent studies that junctional proteins, matrix components as well as proteins acting as attractant and repellent cues play a role in the formation of the Drosophila heart lumen. In this study we show the requirement for the repulsively active Unc5 transmembrane receptor to facilitate tubulogenesis in the dorsal vessel of Drosophila. Unc5 is localized in the luminal membrane compartment of cardiomyocytes and animals lacking Unc5 fail to form a heart lumen. Our findings support the idea that Unc5 is crucial for lumen formation and thereby represents a repulsive cue acting during Drosophila heart tube formation.
Collapse
Affiliation(s)
- Stefanie Albrecht
- Universität Osnabrück, Fachbereich Biologie/Chemie - Zoologie/Entwicklungsbiologie, Barbarastraße 11, 49069 Osnabrück, Germany
| | | | | |
Collapse
|
20
|
Bredendiek N, Hütte J, Steingräber A, Hatt H, Gisselmann G, Neuhaus EM. Go α is involved in sugar perception in Drosophila. Chem Senses 2010; 36:69-81. [PMID: 20940344 DOI: 10.1093/chemse/bjq100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Detection of chemical compounds in food sources is based on the activation of 7 transmembrane gustatory receptors (GRs) in mammals and in insects such as Drosophila, although the receptors are not conserved between the classes. Different combinations of Drosophila GRs are involved in the detection of sugars, but the activated signaling cascades are largely unknown. Because 7 transmembrane receptors usually couple to G-proteins, we tried to unravel the intracellular signaling cascade in taste neurons by screening heterotrimeric G-protein mutant flies for gustatory deficits. We found the subunit Goα to be involved in feeding behavior and cell excitability by different transgenic and pharmacological approaches. Goα is involved in the detection of sucrose, glucose, and fructose, but not with trehalose and maltose. Our studies reveal that Goα plays an important role in the perception of some sweet tastants. Because the perception of other sweet stimuli was not affected by mutations in Goα, we also found strong indication for the existence of multiple signaling pathways in the insect gustatory system.
Collapse
Affiliation(s)
- Nico Bredendiek
- Cell Physiology, Ruhr-Universitaet Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Visbal AP, Lewis MT. Hedgehog signaling in the normal and neoplastic mammary gland. Curr Drug Targets 2010; 11:1103-11. [PMID: 20545610 PMCID: PMC5499530 DOI: 10.2174/138945010792006753] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/04/2010] [Indexed: 02/07/2023]
Abstract
The hedgehog signal transduction network is a critical regulator of metazoan development. Inappropriate activation of this network is implicated in several different cancers, including breast. Genetic evidence in mice as well as molecular biological studies in human cells clearly indicate that activated signaling can lead to mammary hyperplasia and, in some cases, tumor formation. However, the exact role(s) activated hedgehog signaling plays in the development or progression of breast cancer also remain unclear. In this review, we have discussed recent data regarding the mechanism(s) by which the hedgehog network may signal in the mammary gland, as well as the data implicating activated signaling as a contributing factor to breast cancer development. Finally, we provide a brief update on the available hedgehog signaling inhibitors with respect to ongoing clinical trials, some of which will include locally advanced or metastatic breast cancers. Given the growing intensity with which the hedgehog signaling network is being studied in the normal and neoplastic mammary gland, a more complete understanding of this network should allow more effective targeting of its activities in breast cancer treatment or prevention.
Collapse
Affiliation(s)
- Adriana P. Visbal
- The Lester and Sue Smith Breast Center, Baylor College of Medicine,
One Baylor Plaza, BCM600; Room N1210, Houston TX 77030, TEL: 713-798-3296, FAX:
713-798-1659
- Program in Developmental Biology
| | - Michael T. Lewis
- The Lester and Sue Smith Breast Center, Baylor College of Medicine,
One Baylor Plaza, BCM600; Room N1210, Houston TX 77030, TEL: 713-798-3296, FAX:
713-798-1659
- Departments of Molecular and Cellular Biology and Radiology
| |
Collapse
|
22
|
Purvanov V, Koval A, Katanaev VL. A Direct and Functional Interaction Between Go and Rab5 During G Protein-Coupled Receptor Signaling. Sci Signal 2010; 3:ra65. [DOI: 10.1126/scisignal.2000877] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Katanayeva N, Kopein D, Portmann R, Hess D, Katanaev VL. Competing activities of heterotrimeric G proteins in Drosophila wing maturation. PLoS One 2010; 5:e12331. [PMID: 20808795 PMCID: PMC2925898 DOI: 10.1371/journal.pone.0012331] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/29/2010] [Indexed: 02/03/2023] Open
Abstract
Drosophila genome encodes six alpha-subunits of heterotrimeric G proteins. The Galphas alpha-subunit is involved in the post-eclosion wing maturation, which consists of the epithelial-mesenchymal transition and cell death, accompanied by unfolding of the pupal wing into the firm adult flight organ. Here we show that another alpha-subunit Galphao can specifically antagonize the Galphas activities by competing for the Gbeta13F/Ggamma1 subunits of the heterotrimeric Gs protein complex. Loss of Gbeta13F, Ggamma1, or Galphas, but not any other G protein subunit, results in prevention of post-eclosion cell death and failure of the wing expansion. However, cell death prevention alone is not sufficient to induce the expansion defect, suggesting that the failure of epithelial-mesenchymal transition is key to the folded wing phenotypes. Overactivation of Galphas with cholera toxin mimics expression of constitutively activated Galphas and promotes wing blistering due to precocious cell death. In contrast, co-overexpression of Gbeta13F and Ggamma1 does not produce wing blistering, revealing the passive role of the Gbetagamma in the Galphas-mediated activation of apoptosis, but hinting at the possible function of Gbetagamma in the epithelial-mesenchymal transition. Our results provide a comprehensive functional analysis of the heterotrimeric G protein proteome in the late stages of Drosophila wing development.
Collapse
Affiliation(s)
| | - Damir Kopein
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Reto Portmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vladimir L. Katanaev
- Department of Biology, University of Konstanz, Konstanz, Germany
- Institute of Protein Research, Russian Academy of Science, Pushchino, Russia
- * E-mail:
| |
Collapse
|
24
|
Chatterjee A, Roman G, Hardin PE. Go contributes to olfactory reception in Drosophila melanogaster. BMC PHYSIOLOGY 2009; 9:22. [PMID: 19943954 PMCID: PMC2789035 DOI: 10.1186/1472-6793-9-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 11/28/2009] [Indexed: 11/11/2022]
Abstract
Background Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology and function as ligand-gated cation channels. Consequently, the involvement of cyclic nucleotides and G proteins in insect odor reception is controversial. Since the heterotrimeric Goα subunit is expressed in Drosophila olfactory receptor neurons, we reasoned that Go acts together with insect odorant receptor cation channels to mediate odor-induced physiological responses. Results To test whether Go dependent signaling is involved in mediating olfactory responses in Drosophila, we analyzed electroantennogram and single-sensillum recording from flies that conditionally express pertussis toxin, a specific inhibitor of Go in Drosophila. Pertussis toxin expression in olfactory receptor neurons reversibly reduced the amplitude and hastened the termination of electroantennogram responses induced by ethyl acetate. The frequency of odor-induced spike firing from individual sensory neurons was also reduced by pertussis toxin. These results demonstrate that Go signaling is involved in increasing sensitivity of olfactory physiology in Drosophila. The effect of pertussis toxin was independent of odorant identity and intensity, indicating a generalized involvement of Go in olfactory reception. Conclusion These results demonstrate that Go is required for maximal physiological responses to multiple odorants in Drosophila, and suggest that OR channel function and G-protein signaling are required for optimal physiological responses to odors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Biology and Center for Biological Clock Research, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
25
|
Medioni C, Sénatore S, Salmand PA, Lalevée N, Perrin L, Sémériva M. The fabulous destiny of the Drosophila heart. Curr Opin Genet Dev 2009; 19:518-25. [PMID: 19717296 DOI: 10.1016/j.gde.2009.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/22/2009] [Indexed: 01/08/2023]
Abstract
For the last 15 years the fly cardiovascular system has attracted developmental geneticists for its potential as a model system of organogenesis. Heart development in Drosophila indeed provides a remarkable system for elucidating the basic molecular and cellular mechanisms of morphogenesis and, more recently, for understanding the genetic control of cardiac physiology. The success of these studies can in part be attributed to multidisciplinary approaches, the multiplicity of existing genetic tools, and a detailed knowledge of the system. Striking similarities with vertebrate cardiogenesis have long been stressed, in particular concerning the conservation of key molecular regulators of cardiogenesis and the new data presented here confirm Drosophila cardiogenesis as a model not only for organogenesis but also for the study of molecular mechanisms of human cardiac disease.
Collapse
Affiliation(s)
- Caroline Medioni
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR 6216 CNRS-Université de la Méditerranée, Campus de Luminy, Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
26
|
Kopein D, Katanaev VL. Drosophila GoLoco-protein Pins is a target of Galpha(o)-mediated G protein-coupled receptor signaling. Mol Biol Cell 2009; 20:3865-77. [PMID: 19570914 DOI: 10.1091/mbc.e09-01-0021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) transduce their signals through trimeric G proteins, inducing guanine nucleotide exchange on their Galpha-subunits; the resulting Galpha-GTP transmits the signal further inside the cell. GoLoco domains present in many proteins play important roles in multiple trimeric G protein-dependent activities, physically binding Galpha-subunits of the Galpha(i/o) class. In most cases GoLoco binds exclusively to the GDP-loaded form of the Galpha-subunits. Here we demonstrate that the poly-GoLoco-containing protein Pins of Drosophila can bind to both GDP- and GTP-forms of Drosophila Galpha(o). We identify Pins GoLoco domain 1 as necessary and sufficient for this unusual interaction with Galpha(o)-GTP. We further pinpoint a lysine residue located centrally in this domain as necessary for the interaction. Our studies thus identify Drosophila Pins as a target of Galpha(o)-mediated GPCR receptor signaling, e.g., in the context of the nervous system development, where Galpha(o) acts downstream from Frizzled and redundantly with Galpha(i) to control the asymmetry of cell divisions.
Collapse
Affiliation(s)
- Damir Kopein
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
27
|
Yi P, Johnson AN, Han Z, Wu J, Olson EN. Heterotrimeric G proteins regulate a noncanonical function of septate junction proteins to maintain cardiac integrity in Drosophila. Dev Cell 2008; 15:704-13. [PMID: 19000835 PMCID: PMC2736786 DOI: 10.1016/j.devcel.2008.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 06/10/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
The gene networks regulating heart morphology and cardiac integrity are largely unknown. We previously reported a role for the heterotrimeric G protein gamma subunit 1 (Ggamma1) in mediating cardial-pericardial cell adhesion in Drosophila. Here we show G-oalpha47A and Gbeta13F cooperate with Ggamma1 to maintain cardiac integrity. Cardial-pericardial cell adhesion also relies on the septate junction (SJ) proteins Neurexin-IV (Nrx-IV), Sinuous, Coracle, and Nervana2, which together function in a common pathway with Ggamma1. Furthermore, Ggamma1 signaling is required for proper SJ protein localization, and loss of at least one SJ protein, Nrx-IV, induces cardiac lumen collapse. These results are surprising because the embryonic heart lacks SJs and suggest that SJ proteins perform noncanonical functions to maintain cardiac integrity in Drosophila. Our findings unveil the components of a previously unrecognized network of genes that couple G protein signaling with structural constituents of the heart.
Collapse
Affiliation(s)
- Peng Yi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390–9148, USA
| | - Aaron N. Johnson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390–9148, USA
| | - Zhe Han
- Department of Internal Medicine, Division of Molecular Medicine and genetics, University of Michigan, 107 Zina Pitcher, Ann Arbor, MI 48109, USA
| | - Jiang Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390–9148, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390–9148, USA
| |
Collapse
|
28
|
Strub BR, Parkes TL, Mukai ST, Bahadorani S, Coulthard AB, Hall N, Phillips JP, Hilliker AJ. Mutations of the withered (whd) gene in Drosophila melanogaster confer hypersensitivity to oxidative stress and are lesions of the carnitine palmitoyltransferase I (CPT I) gene. Genome 2008; 51:409-20. [PMID: 18521119 DOI: 10.1139/g08-023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Since some oxygen defense mutants of Drosophila melanogaster exhibit a crinkled wing phenotype, a screen was performed on strains bearing mutant alleles conferring a visible wing phenotype to determine whether any were hypersensitive to oxidative stress. One mutant, withered (whd), was found to be sensitive to both dietary paraquat and hyperoxia. New alleles of whd were induced on a defined genetic background and strains carrying these alleles were also found to be sensitive to oxidative stress. To identify the product of the whd gene we used a sequence-based positional candidate approach and by this method we determined that whd encodes carnitine palmitoyltransferase I (CPT I), an enzyme of the outer mitochondrial membrane that is required for the import of long-chain fatty acids into the mitochondria for beta-oxidation. Although this function is not vital under laboratory conditions, whd adults were found to be highly sensitive to starvation and to heavy metal toxicity relative to controls. This work uncovers a novel relationship between fatty acid metabolism and reactive oxygen metabolism. Further, these results in conjunction with past research on whd and on mammalian CPT I support the hypothesis that CPT I serves a vital function in the response to thymine supplementation.
Collapse
Affiliation(s)
- Benjamin R Strub
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Medioni C, Astier M, Zmojdzian M, Jagla K, Sémériva M. Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation. J Cell Biol 2008; 182:249-61. [PMID: 18663140 PMCID: PMC2483531 DOI: 10.1083/jcb.200801100] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 06/23/2008] [Indexed: 01/04/2023] Open
Abstract
Tubulogenesis is an essential component of organ development, yet the underlying cellular mechanisms are poorly understood. We analyze here the formation of the Drosophila melanogaster cardiac lumen that arises from the migration and subsequent coalescence of bilateral rows of cardioblasts. Our study of cell behavior using three-dimensional and time-lapse imaging and the distribution of cell polarity markers reveals a new mechanism of tubulogenesis in which repulsion of prepatterned luminal domains with basal membrane properties and cell shape remodeling constitute the main driving forces. Furthermore, we identify a genetic pathway in which roundabout, slit, held out wings, and dystroglycan control cardiac lumen formation by establishing nonadherent luminal membranes and regulating cell shape changes. From these data we propose a model for D. melanogaster cardiac lumen formation, which differs, both at a cellular and molecular level, from current models of epithelial tubulogenesis. We suggest that this new example of tube formation may be helpful in studying vertebrate heart tube formation and primary vasculogenesis.
Collapse
Affiliation(s)
- Caroline Medioni
- Institut de Biologie du Développement de Marseille-Luminy, Centre National de la Recherche Scientifique UMR 6216, Université de la Méditerranée, 13288 Marseille, Cedex 9, France
| | | | | | | | | |
Collapse
|
30
|
Santiago-Martínez E, Soplop NH, Patel R, Kramer SG. Repulsion by Slit and Roundabout prevents Shotgun/E-cadherin-mediated cell adhesion during Drosophila heart tube lumen formation. J Cell Biol 2008; 182:241-8. [PMID: 18663139 PMCID: PMC2483515 DOI: 10.1083/jcb.200804120] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/11/2008] [Indexed: 11/22/2022] Open
Abstract
During Drosophila melanogaster heart development, a lumen forms between apical surfaces of contralateral cardioblasts (CBs). We show that Slit and its receptor Roundabout (Robo) are required at CB apical domains for lumen formation. Mislocalization of Slit outside the apical domain causes ectopic lumen formation and the mislocalization of cell junction proteins, E-cadherin (E-Cad) and Enabled, without disrupting overall CB cell polarity. Ectopic lumen formation is suppressed in robo mutants, which indicates robo's requirement for this process. Genetic evidence suggests that Robo and Shotgun (Shg)/E-Cad function together in modulating CB adhesion. robo and shg/E-Cad transheterozygotes have lumen defects. In robo loss-of-function or shg/E-Cad gain-of-function embryos, lumen formation is blocked because of inappropriate CB adhesion and an accumulation of E-Cad at the apical membrane. In contrast, shg/E-Cad loss-of-function or robo gain-of-function blocks lumen formation due to a loss of CB adhesion. Our data show that Slit and Robo pathways function in lumen formation as a repulsive signal to antagonize E-Cad-mediated cell adhesion.
Collapse
Affiliation(s)
- Edgardo Santiago-Martínez
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
31
|
McGurk L, Pathirana S, Rothwell K, Trimbuch T, Colombini P, Yu F, Chia W, Bownes M. The RGS gene loco is essential for male reproductive system differentiation in Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2008; 8:37. [PMID: 18387173 PMCID: PMC2324087 DOI: 10.1186/1471-213x-8-37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 04/03/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND The loco gene encodes several different isoforms of a regulator of G-protein signalling. These different isoforms of LOCO are part of a pathway enabling cells to respond to external signals. LOCO is known to be required at various developmental stages including neuroblast division, glial cell formation and oogenesis. Less is known about LOCO and its involvement in male development therefore to gain further insight into the role of LOCO in development we carried out a genetic screen and analysed males with reduced fertility. RESULTS We identified a number of lethal loco mutants and four semi-lethal lines, which generate males with reduced fertility. We have identified a fifth loco transcript and show that it is differentially expressed in developing pupae. We have characterised the expression pattern of all loco transcripts during pupal development in the adult testes, both in wild type and loco mutant strains. In addition we also show that there are various G-protein alpha subunits expressed in the testis all of which may be potential binding partners of LOCO. CONCLUSION We propose that the male sterility in the new loco mutants result from a failure of accurate morphogenesis of the adult reproductive system during metamorphosis, we propose that this is due to a loss of expression of loco c3. Thus, we conclude that specific isoforms of loco are required for the differentiation of the male gonad and genital disc.
Collapse
Affiliation(s)
- Leeanne McGurk
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The Drosophila heart, also called the dorsal vessel, is an organ for hemolymph circulation that resembles the vertebrate heart at its transient linear tube stage. Dorsal vessel morphogenesis shares several similarities with early events of vertebrate heart development and has proven to be an insightful system for the study of cardiogenesis due to its relatively simple structure and the productive use of Drosophila genetic approaches. In this review, we summarize published findings on Drosophila heart development in terms of the regulators and genetic pathways required for cardiac cell specification and differentiation, and organ formation and function. Emerging genome-based strategies should further facilitate the use of Drosophila as an advantageous system in which to identify previously unknown genes and regulatory networks essential for normal cardiac development and function.
Collapse
Affiliation(s)
- Ye Tao
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
33
|
Lewis MT, Visbal AP. The hedgehog signaling network, mammary stem cells, and breast cancer: connections and controversies. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2007:181-217. [PMID: 17939302 DOI: 10.1007/2789_2007_051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several signal transduction networks have been implicated in the regulation of mammary epithelial stem cell self-renewal and maintenance (Kalirai and Clarke 2006; Liu et al. 2005). These signaling networks include those of the Wnt, Notch, TGFO, EGF, FGF, IGF, and most recently, the Hedgehog (Hh) families of secreted ligands. However, we currently know very little about the cellular and molecular mechanisms by which these signaling pathways function to regulate normal epithelial stem/progenitor cells. What is clear is that the regulatory signaling networks thought to control normal stem/progenitor cell self-renewal and maintenance are, with the current sole exception of the hedgehog network, well-documented to have contributory roles in mammary cancer development and disease progression when misregulated. In this review, genetic regulation of mammary gland development by hedgehog network genes is outlined, highlighting a developing controversy as to whether activated hedgehog signaling regulates normal regenerative mammary epithelial stem cells or, indeed, whether activated hedgehog signaling functions at all in ductal development. In addition, the question of whether inappropriate hedgehog network activation influences breast cancer development is addressed, with emphasis on the prospects for using hedgehog signaling antagonists clinically for breast cancer treatment or prevention.
Collapse
Affiliation(s)
- M T Lewis
- Baylor Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Room N1210; MS:BCM600, One Baylor Plaza, 77030 Houston, TX, USA.
| | | |
Collapse
|
34
|
Zaffran S, Reim I, Qian L, Lo PC, Bodmer R, Frasch M. Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development 2006; 133:4073-83. [PMID: 16987868 DOI: 10.1242/dev.02586] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The NK homeobox gene tinman (tin) is required for the specification of the cardiac, visceral muscle and somatic muscle progenitors in the early dorsal mesoderm of Drosophila. Like its vertebrate counterpart Nkx2.5, the expression of tin is maintained in cardiac cells during cardiac maturation and differentiation; however, owing to the complete lack of a dorsal vessel in tin mutant embryos, the function of tin in these cells has not been defined. Here we show that myocardial cells and dorsal vessels can form even though they lack Tin, and that viable adults can develop, as long as Tin is provided in the embryonic precardiac mesoderm. However, embryos in which tin expression is specifically missing from cardial cells show severe disruptions in the normal diversification of the myocardial cells, and adults exhibit severe defects in cardiac remodeling and function. Our study reveals that the normal expression and activity of Tin in four of the six bilateral cardioblasts within each hemisegment of the heart allows these cells to adopt a cell fate as ;working' myocardium, as opposed to a fate as inflow tract (ostial) cells. This function of tin involves the repression of Dorsocross (Doc) T-box genes and, hence, the restriction of Doc to the Tin-negative cells that will form ostia. We conclude that tin has a crucial role within myocardial cells that is required for the proper diversification, differentiation, and post-embryonic maturation of cardiomyocytes, and we present a pathway involving regulatory interactions among seven-up, midline, tinman and Dorsocross that establishes these developmental events upon myocardial cell specification.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Brookdale Department of Molecular, Cell and Developmental Biology, Box 1020, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
35
|
Santiago-Martínez E, Soplop NH, Kramer SG. Lateral positioning at the dorsal midline: Slit and Roundabout receptors guide Drosophila heart cell migration. Proc Natl Acad Sci U S A 2006; 103:12441-6. [PMID: 16888037 PMCID: PMC1567898 DOI: 10.1073/pnas.0605284103] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Indexed: 11/18/2022] Open
Abstract
Heart morphogenesis requires the coordinated regulation of cell movements and cell-cell interactions between distinct populations of cardiac precursor cells. Little is known about the mechanisms that organize cardiac cells into this complex structure. In this study, we analyzed the role of Slit, an extracellular matrix protein and its transmembrane receptors Roundabout (Robo) and Roundabout2 (Robo2) during morphogenesis of the Drosophila heart tube, a process analogous to early heart formation in vertebrates. During heart assembly, two types of progenitor cells align into rows and coordinately migrate to the dorsal midline of the embryo, where they merge to assemble a linear heart tube. Here we show that cardiac-specific expression of Slit is required to maintain adhesion between cells within each row during dorsal migration. Moreover, differential Robo expression determines the relative distance each row is positioned from the dorsal midline. The innermost CBs express only Robo, whereas the flanking pericardial cells express both receptors. Removal of robo2 causes pericardial cells to shift toward the midline, whereas ectopic robo2 in CBs drives them laterally, resulting in an unfused heart tube. We propose a model in which Slit has a dual role during assembly of the linear heart tube, functioning to regulate both cell positioning and adhesive interactions between migrating cardiac precursor cells.
Collapse
Affiliation(s)
- Edgardo Santiago-Martínez
- *Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, and
- Program in Molecular Genetics, Microbiology, and Immunology, Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08854
| | - Nadine H. Soplop
- *Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, and
| | - Sunita G. Kramer
- *Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, and
- Program in Molecular Genetics, Microbiology, and Immunology, Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08854
| |
Collapse
|
36
|
Yi P, Han Z, Li X, Olson EN. The mevalonate pathway controls heart formation in Drosophila by isoprenylation of Ggamma1. Science 2006; 313:1301-3. [PMID: 16857902 DOI: 10.1126/science.1127704] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The early morphogenetic mechanisms involved in heart formation are evolutionarily conserved. A screen for genes that control Drosophila heart development revealed a cardiac defect in which pericardial and cardial cells dissociate, which causes loss of cardiac function and embryonic lethality. This phenotype resulted from mutations in the genes encoding HMG-CoA reductase, downstream enzymes in the mevalonate pathway, and G protein Ggamma1, which is geranylgeranylated, thus representing an end point of isoprenoid biosynthesis. Our findings reveal a cardial cell-autonomous requirement of Ggamma1 geranylgeranylation for heart formation and suggest the involvement of the mevalonate pathway in congenital heart disease.
Collapse
Affiliation(s)
- Peng Yi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | |
Collapse
|
37
|
Ferris J, Ge H, Liu L, Roman G. G(o) signaling is required for Drosophila associative learning. Nat Neurosci 2006; 9:1036-40. [PMID: 16845387 DOI: 10.1038/nn1738] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 06/14/2006] [Indexed: 11/09/2022]
Abstract
Heterotrimeric G(o) is one of the most abundant proteins in the brain, yet relatively little is known of its neural functions in vivo. Here we demonstrate that G(o) signaling is required for the formation of associative memory. In Drosophila melanogaster, pertussis toxin (PTX) is a selective inhibitor of G(o) signaling. The postdevelopmental expression of PTX within mushroom body neurons robustly and reversibly inhibits associative learning. The effect of G(o) inhibition is distributed in both gamma- and alpha/beta-lobe mushroom body neurons. However, the expression of PTX in neurons adjacent to the mushroom bodies does not affect memory. PTX expression also does not interact genetically with a rutabaga adenylyl cyclase loss-of-function mutation. Thus, G(o) defines a new signaling pathway required in mushroom body neurons for the formation of associative memory.
Collapse
Affiliation(s)
- Jacob Ferris
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
38
|
Albrecht S, Wang S, Holz A, Bergter A, Paululat A. The ADAM metalloprotease Kuzbanian is crucial for proper heart formation in Drosophila melanogaster. Mech Dev 2006; 123:372-87. [PMID: 16713197 DOI: 10.1016/j.mod.2006.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/07/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
We have screened a collection of EMS mutagenized fly lines in order to identify genes involved in cardiogenesis. In the present work, we have studied a group of alleles exhibiting a hypertrophic heart. Our analysis revealed that the ADAM protein (A Disintegrin And Metalloprotease) Kuzbanian, which is the functional homologue of the vertebrate ADAM10, is crucial for proper heart formation. ADAMs are a family of transmembrane proteins that play a critical role during the proteolytic conversion (shedding) of membrane bound proteins to soluble forms. Enzymes harboring a sheddase function recently became candidates for causing several congenital diseases, like distinct forms of the Alzheimer disease. ADAMs play also a pivotal role during heart formation and vascularisation in vertebrates, therefore mutations in ADAM genes potentially could cause congenital heart defects in humans. In Drosophila, the zygotic loss of an active form of the Kuzbanian protein results in a dramatic excess of cardiomyocytes, accompanied by a loss of pericardial cells. Our data presented herein suggest that Kuzbanian acts during lateral inhibition within the cardiac primordium. Furthermore we discuss a second function of Kuzbanian in heart cell morphogenesis.
Collapse
Affiliation(s)
- Stefanie Albrecht
- Universität Osnabrück, Fachbereich Biologie/Chemie, Zoologie, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
39
|
Katanaev VL, Tomlinson A. Dual roles for the trimeric G protein Go in asymmetric cell division in Drosophila. Proc Natl Acad Sci U S A 2006; 103:6524-9. [PMID: 16617104 PMCID: PMC1436022 DOI: 10.1073/pnas.0601853103] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During asymmetric division, a cell polarizes and differentially distributes components to its opposite ends. The subsequent division differentially segregates the two component pools to the daughters, which thereby inherit different developmental directives. In Drosophila sensory organ precursor cells, the localization of Numb protein to the cell's anterior cortex is a key patterning event and is achieved by the combined action of many proteins, including Pins, which itself is localized anteriorly. Here, a role is described for the trimeric G protein Go in the anterior localization of Numb and daughter cell fate specification. Go is shown to interact with Pins. In addition to a role in recruiting Numb to an asymmetric location in the cell's cortex, Go transduces a signal from the Frizzled receptor that directs the position in which the complex forms. Thus, Go likely integrates the signaling that directs the formation of the complex with the signaling that directs where the complex forms.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, Suite 1120, New York, NY 10032, USA.
| | | |
Collapse
|
40
|
Qian L, Liu J, Bodmer R. Slit and Robo control cardiac cell polarity and morphogenesis. Curr Biol 2005; 15:2271-8. [PMID: 16360689 DOI: 10.1016/j.cub.2005.10.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/11/2005] [Accepted: 10/14/2005] [Indexed: 01/15/2023]
Abstract
Basic aspects of heart morphogenesis involving migration, cell polarization, tissue alignment, and lumen formation may be conserved between Drosophila and humans, but little is known about the mechanisms that orchestrate the assembly of the heart tube in either organism. The extracellular-matrix molecule Slit and its Robo-family receptors are conserved regulators of axonal guidance. Here, we report a novel role of the Drosophila slit, robo, and robo2 genes in heart morphogenesis. Slit and Robo proteins specifically accumulate at the dorsal midline between the bilateral myocardial progenitors forming a linear tube. Manipulation of Slit localization or its overexpression causes disruption in heart tube alignment and assembly, and slit-deficient hearts show disruptions in cell-polarity marker localization within the myocardium. Similar phenotypes are observed when Robo and Robo2 are manipulated. Rescue experiments suggest that Slit is secreted from the myocardial progenitors and that Robo and Robo2 act in myocardial and pericardial cells, respectively. Genetic interactions suggest a cardiac morphogenesis network involving Slit/Robo, cell-polarity proteins, and other membrane-associated proteins. We conclude that Slit and Robo proteins contribute significantly to Drosophila heart morphogenesis by guiding heart cell alignment and adhesion and/or by inhibiting cell mixing between the bilateral compartments of heart cell progenitors and ensuring proper polarity of the myocardial epithelium.
Collapse
Affiliation(s)
- Li Qian
- The Burnham Institute, Center for Neuroscienes and Aging, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
41
|
Abstract
The focus of developmental biologists has expanded from the analysis of gene expression to include the analysis of cell signalling. Heterotrimeric G proteins (G proteins) mediate signalling from a superfamily of heptahelical receptors (G-protein-coupled receptors) to a smaller number of effector units that include adenylyl cyclases, phospholipase C and various ion channels. The convergence of developmental biology with cell signalling has now revealed overlaps in which G proteins mediate complex pathways in embryonic development.
Collapse
Affiliation(s)
- Craig C Malbon
- Department of Pharmacology, School of Medicine, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA.
| |
Collapse
|
42
|
Reim I, Frasch M. The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila. Development 2005; 132:4911-25. [PMID: 16221729 DOI: 10.1242/dev.02077] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac induction in Drosophila relies on combinatorial Dpp and Wg signaling activities that are derived from the ectoderm. Although some of the actions of Dpp during this process have been clarified, the exact roles of Wg, particularly with respect to myocardial cell specification, have not been well defined. Our present study identifies the Dorsocross T-box genes as key mediators of combined Dpp and Wg signals during this process. The Dorsocross genes are induced within the segmental areas of the dorsal mesoderm that receive intersecting Dpp and Wg inputs. Dorsocross activity is required for the formation of all myocardial and pericardial cell types, with the exception of the Eve-positive pericardial cells. In an early step, the Dorsocross genes act in parallel with tinman to activate the expression of pannier, a cardiogenic gene encoding a Gata factor. Our loss- and gain-of-function studies, as well as the observed genetic interactions among Dorsocross, tinman and pannier, suggest that co-expression of these three genes in the cardiac mesoderm, which also involves cross-regulation, plays a major role in the specification of cardiac progenitors. After cardioblast specification, the Dorsocross genes are re-expressed in a segmental subset of cardioblasts, which in the heart region develop into inflow valves (ostia). The integration of this new information with previous findings has allowed us to draw a more complete pathway of regulatory events during cardiac induction and differentiation in Drosophila.
Collapse
Affiliation(s)
- Ingolf Reim
- Brookdale Department of Molecular, Cell and Developmental Biology, Box 1020, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
43
|
Miura N, Atsumi S, Tabunoki H, Sato R. Expression and localization of three G protein alpha subunits, Go, Gq, and Gs, in adult antennae of the silkmoth (Bombyx mori). J Comp Neurol 2005; 485:143-52. [PMID: 15776452 DOI: 10.1002/cne.20488] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In insect olfactory receptor neurons, rapid and transient increases in inositol triphosphate (IP3) and Ca2+ are detected upon stimulation with pheromone or nonpheromonal odorants. This suggests that heterotrimeric guanine nucleotide binding proteins (G proteins) may transduce some odorant responses in insects. We obtained cDNA clones encoding three classes of G protein alpha subunits, Bm Go, Bm Gq, and Bm Gs, from the antennae of the adult male silkmoth (Bombyx mori). RT-PCR experiments showed that the mRNA of these G protein alpha subunits was also present in the various tissues of adult and larval insects. We used immunocytochemistry to localize these G protein alpha subunits in adult male and female antennae. In the adult male antennae, anti-Go antiserum stained the nerve bundles. In contrast, anti-Gq and anti-Gs antisera stained the inner and outer dendritic segments of the putative olfactory receptor neuron. The localizations of Bm Go, Bm Gq, and Bm Gs in the female antennae were the same as in the male antennae. The localizations of Bm Gq and Bm Gs suggest that each subunit mediates a subset of the odorant response.
Collapse
Affiliation(s)
- Nami Miura
- Laboratory of Molecular Mechanism of Bio-Interaction, Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | | | | | | |
Collapse
|
44
|
Wang J, Tao Y, Reim I, Gajewski K, Frasch M, Schulz RA. Expression, regulation, and requirement of the toll transmembrane protein during dorsal vessel formation in Drosophila melanogaster. Mol Cell Biol 2005; 25:4200-10. [PMID: 15870289 PMCID: PMC1087703 DOI: 10.1128/mcb.25.10.4200-4210.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Early heart development in Drosophila and vertebrates involves the specification of cardiac precursor cells within paired progenitor fields, followed by their movement into a linear heart tube structure. The latter process requires coordinated cell interactions, migration, and differentiation as the primitive heart develops toward status as a functional organ. In the Drosophila embryo, cardioblasts emerge from bilateral dorsal mesoderm primordia, followed by alignment as rows of cells that meet at the midline and morph into a dorsal vessel. Genes that function in coordinating cardioblast organization, migration, and assembly are integral to heart development, and their encoded proteins need to be understood as to their roles in this vital morphogenetic process. Here we prove the Toll transmembrane protein is expressed in a secondary phase of heart formation, at lateral cardioblast surfaces as they align, migrate to the midline, and form the linear tube. The Toll dorsal vessel enhancer has been characterized, with its activity controlled by Dorsocross and Tinman transcription factors. Consistent with the observed protein expression pattern, phenotype analyses demonstrate Toll function is essential for normal dorsal vessel formation. Such findings implicate Toll as a critical cell adhesion molecule in the alignment and migration of cardioblasts during dorsal vessel morphogenesis.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Biochemistry and Molecular Biology, Box 117, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
45
|
Kuzin A, Brody T, Moore AW, Odenwald WF. Nerfin-1 is required for early axon guidance decisions in the developing Drosophila CNS. Dev Biol 2005; 277:347-65. [PMID: 15617679 DOI: 10.1016/j.ydbio.2004.09.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/15/2004] [Accepted: 09/20/2004] [Indexed: 11/25/2022]
Abstract
Many studies have focused on the mechanisms of axon guidance; however, little is known about the transcriptional control of the navigational components that carryout these decisions. This report describes the functional analysis of Nerfin-1, a nuclear regulator of axon guidance required for a subset of early pathfinding events in the developing Drosophila CNS. Nerfin-1 belongs to a highly conserved subfamily of Zn-finger proteins with cognates identified in nematodes and man. We show that the neural precursor gene prospero is essential for nerfin-1 expression. Unlike nerfin-1 mRNA, which is expressed in many neural precursor cells, the encoded Nerfin-1 protein is only detected in the nuclei of neuronal precursors that will divide just once and then transiently in their nascent neurons. Although nerfin-1 null embryos have no discernible alterations in neural lineage development nor in neuronal or glial identities, CNS pioneering neurons require nerfin-1 function for early axon guidance decisions. Furthermore, nerfin-1 is required for the proper development of commissural and connective axon fascicles. Our studies also show that Nerfin-1 is essential for the proper expression of robo2, wnt5, derailed, G-oalpha47A, Lar, and futsch, genes whose encoded proteins participate in these early navigational events.
Collapse
Affiliation(s)
- Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda MD 20892-4160, USA.
| | | | | | | |
Collapse
|
46
|
Qian L, Liu J, Bodmer R. Neuromancer Tbx20-related genes (H15/midline) promote cell fate specification and morphogenesis of the Drosophila heart. Dev Biol 2005; 279:509-24. [PMID: 15733676 DOI: 10.1016/j.ydbio.2005.01.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 01/11/2005] [Indexed: 11/22/2022]
Abstract
The Tbx family of transcription factors are prominently expressed in the early cardiac primordium throughout the animal kingdom. Mutations in Tbx genes result invariably in defective formation and function of the heart, including congenital heart disease in humans. Similar to their vertebrate counterpart, the Drosophila Tbx20 gene pair, neuromancer1 (nmr1, FlyBase:H15) and neuromancer2 (nmr2, Flybase:mid), exhibits a dynamic expression pattern, including in all contractile myocardial cells. Deletion mutants of nmr1 combined with mesoderm-specific knock-down of nmr2 exhibit phenotypes that suggest nmr is critical for correct specification of the cardiac progenitor populations as well as for morphogenesis and assembly of the contractile heart tube. Loss-of-nmr-function causes a switch in cell fates in the cardiogenic region, in that the progenitors expressing the homeobox gene even skipped (eve) are expanded accompanied by a corresponding reduction of the progenitors expressing the homeobox gene ladybird (lbe). As a result, the number of differentiating myocardial cells is severely reduced whereas pericardial cell populations are expanded. Conversely, pan-mesodermal expression of nmr represses eve, while causing an expansion of cardiac lbe expression, as well as ectopic mesodermal expression of the homeobox gene tinman. In addition, nmr mutants with less severe penetrance exhibit cell alignment defects of the myocardium at the dorsal midline, suggesting nmr is also required for cell polarity acquisition of the heart tube. In exploring the regulation of nmr, we find that the GATA factor Pannier is essential for cardiac expression, and acts synergistically with Tinman in promoting nmr expression. Moreover, reducing nmr function in the absence of pannier further aggravates the deficit in cardiac mesoderm specification. Taken together, the data suggest that nmr acts both in concert with and subsequent to pannier and tinman in cardiac specification and differentiation. We propose that nmr is another determinant of cardiogenesis, along with tinman and pannier.
Collapse
Affiliation(s)
- Li Qian
- The Burnham Institute, Center for Neuroscienes and Aging, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
47
|
Katanaev VL, Ponzielli R, Sémériva M, Tomlinson A. Trimeric G Protein-Dependent Frizzled Signaling in Drosophila. Cell 2005; 120:111-22. [PMID: 15652486 DOI: 10.1016/j.cell.2004.11.014] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 10/18/2004] [Accepted: 10/25/2004] [Indexed: 10/25/2022]
Abstract
Frizzled (Fz) proteins are serpentine receptors that transduce critical cellular signals during development. Serpentine receptors usually signal to downstream effectors through an associated trimeric G protein complex. However, clear evidence for the role of trimeric G protein complexes for the Fz family of receptors has hitherto been lacking. Here, we show roles for the Galpha(o) subunit (Go) in mediating the two distinct pathways transduced by Fz receptors in Drosophila: the Wnt and planar polarity pathways. Go is required for transduction of both pathways, and epistasis experiments suggest that it is an immediate transducer of Fz. While overexpression effects of the wild-type form are receptor dependent, the activated form (Go-GTP) can signal when the receptor is removed. Thus, Go is likely part of a trimeric G protein complex that directly transduces Fz signals from the membrane to downstream components.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Department of Genetics and Development, Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, 701 West 168 Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
48
|
Yu F, Cai Y, Kaushik R, Yang X, Chia W. Distinct roles of Galphai and Gbeta13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J Cell Biol 2003; 162:623-33. [PMID: 12925708 PMCID: PMC2173805 DOI: 10.1083/jcb.200303174] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The asymmetric division of Drosophila neuroblasts involves the basal localization of cell fate determinants and the generation of an asymmetric, apicobasally oriented mitotic spindle that leads to the formation of two daughter cells of unequal size. These features are thought to be controlled by an apically localized protein complex comprising of two signaling pathways: Bazooka/Drosophila atypical PKC/Inscuteable/DmPar6 and Partner of inscuteable (Pins)/Galphai; in addition, Gbeta13F is also required. However, the role of Galphai and the hierarchical relationship between the G protein subunits and apical components are not well defined. Here we describe the isolation of Galphai mutants and show that Galphai and Gbeta13F play distinct roles. Galphai is required for Pins to localize to the cortex, and the effects of loss of Galphai or pins are highly similar, supporting the idea that Pins/Galphai act together to mediate various aspects of neuroblast asymmetric division. In contrast, Gbeta13F appears to regulate the asymmetric localization/stability of all apical components, and Gbeta13F loss of function exhibits phenotypes resembling those seen when both apical pathways have been compromised, suggesting that it acts upstream of the apical pathways. Importantly, our results have also revealed a novel aspect of apical complex function, that is, the two apical pathways act redundantly to suppress the formation of basal astral microtubules in neuroblasts.
Collapse
Affiliation(s)
- Fengwei Yu
- MRC Centre for Developmental Neurobiology, 4th Fl., New Hunts House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
49
|
Ponzielli R, Astier M, Chartier A, Gallet A, Thérond P, Sémériva M. Heart tube patterning in Drosophila requires integration of axial and segmental information provided by the Bithorax Complex genes and hedgehog signaling. Development 2002; 129:4509-21. [PMID: 12223408 DOI: 10.1242/dev.129.19.4509] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila larval cardiac tube is composed of 104 cardiomyocytes that exhibit genetic and functional diversity. The tube is divided into the aorta and the heart proper that encompass the anterior and posterior parts of the tube, respectively. Differentiation into aorta and heart cardiomyocytes takes place during embryogenesis. We have observed living embryos to correlate morphological changes occurring during the late phases of cardiogenesis with the acquisition of organ function, including functional inlets, or ostiae.
Cardiac cells diversity originates in response to two types of spatial information such that cells differentiate according to their position, both within a segment and along the anteroposterior axis. Axial patterning is controlled by homeotic genes of the Bithorax Complex (BXC) which are regionally expressed within the cardiac tube in non-overlapping domains. Ultrabithorax (Ubx) is expressed in the aorta whereas abdominal A (abd-A) is expressed in the heart, with the exception of the four most posterior cardiac cells which express Abdominal B (Abd-B). Ubx and abd-A functions are required to confer an aorta or a heart identity on cardiomyocytes, respectively. The anterior limit of the expression domain of Ubx, abd-A and Abd-B is independent of the function of the other genes. In contrast, abd-A represses Ubx expression in the heart and ectopic overexpression of abd-A transforms aorta cells into heart cardiomyocytes. Taken together, these results support the idea that BXC homeotic genes in the cardiac tube conform to the posterior prevalence rule.
The cardiac tube is also segmentally patterned and each metamere contains six pairs of cardioblasts that are genetically diverse. We show that the transcription of seven up (svp), which is expressed in the two most posterior pairs of cardioblasts in each segment, is dependent on hedgehog (hh) signaling from the dorsal ectoderm. In combination with the axial information furnished by abd-A, the segmental hh-dependent information leads to the differentiation of the six pairs of svp-expressing cells into functional ostiae.
Movies available on-line
Collapse
Affiliation(s)
- Romina Ponzielli
- Laboratoire de Génétique et Physiologie du Développement, UMR 6545 CNRS-Université, IBDM-CNRS-INSERM-Université de la Méditerranée, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
50
|
Chartier A, Zaffran S, Astier M, Sémériva M, Gratecos D. Pericardin, aDrosophilatype IV collagen-like protein is involved in the morphogenesis and maintenance of the heart epithelium during dorsal ectoderm closure. Development 2002; 129:3241-53. [PMID: 12070098 DOI: 10.1242/dev.129.13.3241] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The steps that lead to the formation of a single primitive heart tube are highly conserved in vertebrate and invertebrate embryos. Concerted migration of the two lateral cardiogenic regions of the mesoderm and endoderm (or ectoderm in invertebrates) is required for their fusion at the midline of the embryo. Morphogenetic signals are involved in this process and the extracellular matrix has been proposed to serve as a link between the two layers of cells.Pericardin (Prc), a novel Drosophila extracellular matrix protein is a good candidate to participate in heart tube formation. The protein has the hallmarks of a type IV collagen α-chain and is mainly expressed in the pericardial cells at the onset of dorsal closure. As dorsal closure progresses, Pericardin expression becomes concentrated at the basal surface of the cardioblasts and around the pericardial cells, in close proximity to the dorsal ectoderm. Pericardin is absent from the lumen of the dorsal vessel.Genetic evidence suggests that Prc promotes the proper migration and alignment of heart cells. Df(3)vin6 embryos, as well as embryos in which prc has been silenced via RNAi, exhibit similar and significant defects in the formation of the heart epithelium. In these embryos, the heart epithelium appears disorganized during its migration to the dorsal midline. By the end of embryonic development, cardial and pericardial cells are misaligned such that small clusters of both cell types appear in the heart; these clusters of cells are associated with holes in the walls of the heart. A prc transgene can partially rescue each of these phenotypes, suggesting that prc regulates these events. Our results support, for the first time, the function of a collagen-like protein in the coordinated migration of dorsal ectoderm and heart cells.
Collapse
Affiliation(s)
- Aymeric Chartier
- Laboratoire de Génétique et Physiologie du Développement, UMR 6545 CNRS-Université, IBDM-CNRS-INSERM-Université de la Méditerranée, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|