1
|
Zhang J, Kwan HLR, Chan CB, Lee CW. Localized release of muscle-generated BDNF regulates the initial formation of postsynaptic apparatus at neuromuscular synapses. Cell Death Differ 2025; 32:546-560. [PMID: 39511403 PMCID: PMC11893767 DOI: 10.1038/s41418-024-01404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Growing evidence indicates that brain-derived neurotrophic factor (BDNF) is produced in contracting skeletal muscles and is secreted as a myokine that plays an important role in muscle metabolism. However, the involvement of muscle-generated BDNF and the regulation of its vesicular trafficking, localization, proteolytic processing, and spatially restricted release during the development of vertebrate neuromuscular junctions (NMJs) remain largely unknown. In this study, we first reported that BDNF is spatially associated with the actin-rich core domain of podosome-like structures (PLSs) at topologically complex acetylcholine receptor (AChR) clusters in cultured Xenopus muscle cells. The release of spatially localized BDNF is tightly controlled by activity-regulated mechanisms in a calcium-dependent manner. Live-cell time-lapse imaging further showed that BDNF-containing vesicles are transported to and captured at PLSs in both aneural and synaptic AChR clusters for spatially restricted release. Functionally, BDNF knockdown or furin-mediated endoproteolytic activity inhibition significantly suppresses aneural AChR cluster formation, which in turn affects synaptic AChR clustering induced by nerve innervation or agrin-coated beads. Lastly, skeletal muscle-specific BDNF knockout (MBKO) mice exhibit structural defects in the formation of aneural AChR clusters and their subsequent recruitment to nerve-induced synaptic AChR clusters during the initial stages of NMJ development in vivo. Together, this study demonstrated the regulatory roles of PLSs in the intracellular trafficking, spatial localization, and activity-dependent release of BDNF in muscle cells and revealed the involvement of muscle-generated BDNF and its proteolytic conversion in regulating the initial formation of aneural and synaptic AChR clusters during early NMJ development in vitro and in vivo.
Collapse
Affiliation(s)
- Jinkai Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Lee
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China.
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
2
|
Brockmöller S, Worek F, Rothmiller S. Protein networking: nicotinic acetylcholine receptors and their protein-protein-associations. Mol Cell Biochem 2024; 479:1627-1642. [PMID: 38771378 DOI: 10.1007/s11010-024-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.
Collapse
Affiliation(s)
- Sabrina Brockmöller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| |
Collapse
|
3
|
Couturier N, Hörner SJ, Nürnberg E, Joazeiro C, Hafner M, Rudolf R. Aberrant evoked calcium signaling and nAChR cluster morphology in a SOD1 D90A hiPSC-derived neuromuscular model. Front Cell Dev Biol 2024; 12:1429759. [PMID: 38966427 PMCID: PMC11222430 DOI: 10.3389/fcell.2024.1429759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder that is due to mutations in one of several target genes, including SOD1. So far, clinical records, rodent studies, and in vitro models have yielded arguments for either a primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse models lack the human origin, in vitro models using human induced pluripotent stem cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite of improvements regarding the generation of muscle cells from hiPSC, the degree of maturation of muscle cells resulting from these protocols has remained limited. To fill these shortcomings, we here present a new protocol for an enhanced myotube differentiation from hiPSC with the option of further maturation upon coculture with hiPSC-derived motor neurons. The described model is the first to yield a combination of key myogenic maturation features that are consistent sarcomeric organization in association with complex nAChR clusters in myotubes derived from control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1 D90A mutation had reduced expression of myogenic markers, lack of sarcomeres, morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+ response compared to control myotubes. Notably, trophic support provided by control hiPSC-derived motor neurons reduced nAChR cluster differences between control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived neuromuscular model yields evidence for both muscle-intrinsic and nerve-dependent aspects of neuromuscular dysfunction in SOD1-based ALS.
Collapse
Affiliation(s)
- Nathalie Couturier
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Elina Nürnberg
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Claudio Joazeiro
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
De Cicco T, Pęziński M, Wójcicka O, Pradhan BS, Jabłońska M, Rottner K, Prószyński TJ. Cortactin interacts with αDystrobrevin-1 and regulates murine neuromuscular junction morphology. Eur J Cell Biol 2024; 103:151409. [PMID: 38579603 DOI: 10.1016/j.ejcb.2024.151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
Neuromuscular junctions transmit signals from the nervous system to skeletal muscles, triggering their contraction, and their proper organization is essential for breathing and voluntary movements. αDystrobrevin-1 is a cytoplasmic component of the dystrophin-glycoprotein complex and has pivotal functions in regulating the integrity of muscle fibers and neuromuscular junctions. Previous studies identified that αDystrobrevin-1 functions in the organization of the neuromuscular junction and that its phosphorylation in the C-terminus is required in this process. Our proteomic screen identified several putative αDystrobrevin-1 interactors recruited to the Y730 site in phosphorylated and unphosphorylated states. Amongst various actin-modulating proteins, we identified the Arp2/3 complex regulator cortactin. We showed that similarly to αDystrobrevin-1, cortactin is strongly enriched at the neuromuscular postsynaptic machinery and obtained results suggesting that these two proteins interact in cell homogenates and at the neuromuscular junctions. Analysis of synaptic morphology in cortactin knockout mice showed abnormalities in the slow-twitching soleus muscle and not in the fast-twitching tibialis anterior. However, muscle strength examination did not reveal apparent deficits in knockout animals.
Collapse
Affiliation(s)
- Teresa De Cicco
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw 02-093, Poland
| | - Marcin Pęziński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw 02-093, Poland
| | - Olga Wójcicka
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Bhola Shankar Pradhan
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Margareta Jabłońska
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig 38124, Germany
| | - Tomasz J Prószyński
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw 02-093, Poland.
| |
Collapse
|
5
|
Jühlen R, Grauer L, Martinelli V, Rencurel C, Fahrenkrog B. Alteration of actin cytoskeletal organisation in fetal akinesia deformation sequence. Sci Rep 2024; 14:1742. [PMID: 38242956 PMCID: PMC10799014 DOI: 10.1038/s41598-023-50615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Fetal akinesia deformation sequence (FADS) represents the severest form of congenital myasthenic syndrome (CMS), a diverse group of inherited disorders characterised by impaired neuromuscular transmission. Most CMS originate from defects in the muscle nicotinic acetylcholine receptor, but the underlying molecular pathogenesis is only poorly understood. Here we show that RNAi-mediated silencing of FADS-related proteins rapsyn and NUP88 in foetal fibroblasts alters organisation of the actin cytoskeleton. We show that fibroblasts from two independent FADS individuals have enhanced and shorter actin stress fibre bundles, alongside with an increased number and size of focal adhesions, with an otherwise normal overall connectivity and integrity of the actin-myosin cytoskeleton network. By proximity ligation assays and bimolecular fluorescence complementation, we show that rapsyn and NUP88 localise nearby adhesion plaques and that they interact with the focal adhesion protein paxillin. Based on these findings we propose that a respective deficiency in rapsyn and NUP88 in FADS alters the regulation of actin dynamics at focal adhesions, and thereby may also plausibly dictate myofibril contraction in skeletal muscle of FADS individuals.
Collapse
Affiliation(s)
- Ramona Jühlen
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Lukas Grauer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
- Laboratory of Neurovascular Signaling, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | - Birthe Fahrenkrog
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
6
|
Medina‐Moreno A, Henríquez JP. Maturation of a postsynaptic domain: Role of small Rho GTPases in organising nicotinic acetylcholine receptor aggregates at the vertebrate neuromuscular junction. J Anat 2022; 241:1148-1156. [PMID: 34342888 PMCID: PMC9558164 DOI: 10.1111/joa.13526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor axon and a skeletal muscle fibre that allows muscle contraction and the coordinated movement in many species. A main hallmark of the mature NMJ is the assembly of nicotinic acetylcholine receptor (nAChR) aggregates in the muscle postsynaptic domain, that distributes in perfect apposition to presynaptic motor terminals. To assemble its unique functional architecture, initial embryonic NMJs undergo an early postnatal maturation process characterised by the transformation of homogenous nAChR-containing plaques to elaborate and branched pretzel-like structures. In spite of a detailed morphological characterisation, the molecular mechanisms controlling the intracellular scaffolding that organises a postsynaptic domain at the mature NMJ have not been fully elucidated. In this review, we integrate evidence of key processes and molecules that have shed light on our current understanding of the NMJ maturation process. On the one hand, we consider in vitro studies revealing the potential role of podosome-like structures to define discrete low nAChR-containing regions to consolidate a plaque-to-pretzel transition at the NMJ. On the other hand, we focus on in vitro and in vivo evidence demonstrating that members of the Ras homologous (Rho) protein family of small GTPases (small Rho GTPases) play indispensable roles on NMJ maturation by regulating the stability of nAChR aggregates. We combine this evidence to propose that small Rho GTPases are key players in the assembly of podosome-like structures that drive the postsynaptic maturation of vertebrate NMJs.
Collapse
Affiliation(s)
- Angelymar Medina‐Moreno
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| | - Juan Pablo Henríquez
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| |
Collapse
|
7
|
Protein Tyrosine Phosphatase Receptor Type R (PTPRR) Reduces AChR Clustering by Dephosphorylating MuSK. DISEASE MARKERS 2022; 2022:5160624. [PMID: 36105254 PMCID: PMC9467777 DOI: 10.1155/2022/5160624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Neuromuscular junction (NMJ) formation and maintenance depend on the proper localization and concentration of various molecules at synaptic contact sites. Acetylcholine receptor (AChR) clustering on the postsynaptic membrane is a cardinal event in NMJ formation. Muscle-specific tyrosine kinase (MuSK), which functions depending on its phosphorylation, plays an essential role in AChR clustering. In the present study, we used plasmid-based biochemical screening and determined that protein tyrosine phosphatase receptor type R (PTPRR) is responsible for dephosphorylating MuSK on tyrosine residue 754. Furthermore, we showed that PTPRR significantly reduced MuSK-dependent AChR clustering in C2C12 myotubes. Collectively, these data illustrate a negative regulation function of PTPRR in AChR clustering.
Collapse
|
8
|
Gemza A, Barresi C, Proemer J, Hatami J, Lazaridis M, Herbst R. Internalization of Muscle-Specific Kinase Is Increased by Agrin and Independent of Kinase-Activity, Lrp4 and Dynamin. Front Mol Neurosci 2022; 15:780659. [PMID: 35370548 PMCID: PMC8965242 DOI: 10.3389/fnmol.2022.780659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase absolutely required for neuromuscular junction formation. MuSK is activated by binding of motor neuron-derived Agrin to low-density lipoprotein receptor related protein 4 (Lrp4), which forms a complex with MuSK. MuSK activation and downstream signaling are critical events during the development of the neuromuscular junction. Receptor tyrosine kinases are commonly internalized upon ligand binding and crosstalk between endocytosis and signaling has been implicated. To extend our knowledge about endocytosis of synaptic proteins and its role during postsynaptic differentiation at the neuromuscular junction, we studied the stability and internalization of Lrp4, MuSK and acetylcholine receptors (AChRs) in response to Agrin. We provide evidence that MuSK but not Lrp4 internalization is increased by Agrin stimulation. MuSK kinase-activity is not sufficient to induce MuSK internalization and the absence of Lrp4 has no effect on MuSK endocytosis. Moreover, MuSK internalization and signaling are unaffected by the inhibition of Dynamin suggesting that MuSK endocytosis uses a non-conventional pathway and is not required for MuSK-dependent downstream signaling.
Collapse
Affiliation(s)
- Anna Gemza
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jakob Proemer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Hatami
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarita Lazaridis
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Alvarez-Suarez P, Nowak N, Protasiuk-Filipunas A, Yamazaki H, Prószyński TJ, Gawor M. Drebrin Regulates Acetylcholine Receptor Clustering and Organization of Microtubules at the Postsynaptic Machinery. Int J Mol Sci 2021; 22:9387. [PMID: 34502296 PMCID: PMC8430516 DOI: 10.3390/ijms22179387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023] Open
Abstract
Proper muscle function depends on the neuromuscular junctions (NMJs), which mature postnatally to complex "pretzel-like" structures, allowing for effective synaptic transmission. Postsynaptic acetylcholine receptors (AChRs) at NMJs are anchored in the actin cytoskeleton and clustered by the scaffold protein rapsyn, recruiting various actin-organizing proteins. Mechanisms driving the maturation of the postsynaptic machinery and regulating rapsyn interactions with the cytoskeleton are still poorly understood. Drebrin is an actin and microtubule cross-linker essential for the functioning of the synapses in the brain, but its role at NMJs remains elusive. We used immunohistochemistry, RNA interference, drebrin inhibitor 3,5-bis-trifluoromethyl pyrazole (BTP2) and co-immunopreciptation to explore the role of this protein at the postsynaptic machinery. We identify drebrin as a postsynaptic protein colocalizing with the AChRs both in vitro and in vivo. We also show that drebrin is enriched at synaptic podosomes. Downregulation of drebrin or blocking its interaction with actin in cultured myotubes impairs the organization of AChR clusters and the cluster-associated microtubule network. Finally, we demonstrate that drebrin interacts with rapsyn and a drebrin interactor, plus-end-tracking protein EB3. Our results reveal an interplay between drebrin and cluster-stabilizing machinery involving rapsyn, actin cytoskeleton, and microtubules.
Collapse
Affiliation(s)
- Paloma Alvarez-Suarez
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Natalia Nowak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Anna Protasiuk-Filipunas
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Hiroyuki Yamazaki
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan;
| | - Tomasz J. Prószyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Marta Gawor
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| |
Collapse
|
10
|
Wiche G. Plectin-Mediated Intermediate Filament Functions: Why Isoforms Matter. Cells 2021; 10:cells10082154. [PMID: 34440923 PMCID: PMC8391331 DOI: 10.3390/cells10082154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022] Open
Abstract
This essay focuses on the role of plectin and its various isoforms in mediating intermediate filament (IF) network functions. It is based on previous studies that provided comprehensive evidence for a concept where plectin acts as an IF recruiter, and plectin-mediated IF networking and anchoring are key elements in IF function execution. Here, plectin’s global role as modulator of IF functionality is viewed from different perspectives, including the mechanical stabilization of IF networks and their docking platforms, contribution to cellular viscoelasticity and mechanotransduction, compartmentalization and control of the actomyosin machinery, connections to the microtubule system, and mechanisms and specificity of isoform targeting. Arguments for IF networks and plectin acting as mutually dependent partners are also given. Lastly, a working model is presented that describes a unifying mechanism underlying how plectin–IF networks mechanically control and propagate actomyosin-generated forces, affect microtubule dynamics, and contribute to mechanotransduction.
Collapse
Affiliation(s)
- Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
11
|
Osseni A, Ravel-Chapuis A, Thomas JL, Gache V, Schaeffer L, Jasmin BJ. HDAC6 regulates microtubule stability and clustering of AChRs at neuromuscular junctions. J Cell Biol 2021; 219:151966. [PMID: 32697819 PMCID: PMC7401804 DOI: 10.1083/jcb.201901099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Microtubules (MTs) are known to be post-translationally modified at the neuromuscular junction (NMJ), hence increasing their stability. To date however, the function(s) of the dynamic MT network and its relative stability in the formation and maintenance of NMJs remain poorly described. Stabilization of the MT is dependent in part on its acetylation status, and HDAC6 is capable of reversing this post-translational modification. Here, we report that HDAC6 preferentially accumulates at NMJs and that it contributes to the organization and the stability of NMJs. Indeed, pharmacological inhibition of HDAC6 protects against MT disorganization and reduces the size of acetylcholine receptor (AChR) clusters. Moreover, the endogenous HDAC6 inhibitor paxillin interacts with HDAC6 in skeletal muscle cells, colocalizes with AChR aggregates, and regulates the formation of AChR. Our findings indicate that the focal insertion of AChRs into the postsynaptic membrane is regulated by stable MTs and highlight how an MT/HDAC6/paxillin axis participates in the regulation of AChR insertion and removal to control the structure of NMJs.
Collapse
Affiliation(s)
- Alexis Osseni
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Éric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Éric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Luc Thomas
- Institut NeuroMyoGene, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale Unité 1217, Université de Lyon, Lyon, France
| | - Vincent Gache
- Institut NeuroMyoGene, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale Unité 1217, Université de Lyon, Lyon, France
| | - Laurent Schaeffer
- Institut NeuroMyoGene, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale Unité 1217, Université de Lyon, Lyon, France.,Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Éric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 2020; 13:610964. [PMID: 33343299 PMCID: PMC7744297 DOI: 10.3389/fnmol.2020.610964] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
The neuromuscular junction (NMJ) is a highly specialized synapse between a motor neuron nerve terminal and its muscle fiber that are responsible for converting electrical impulses generated by the motor neuron into electrical activity in the muscle fibers. On arrival of the motor nerve action potential, calcium enters the presynaptic terminal, which leads to the release of the neurotransmitter acetylcholine (ACh). ACh crosses the synaptic gap and binds to ACh receptors (AChRs) tightly clustered on the surface of the muscle fiber; this leads to the endplate potential which initiates the muscle action potential that results in muscle contraction. This is a simplified version of the events in neuromuscular transmission that take place within milliseconds, and are dependent on a tiny but highly structured NMJ. Much of this review is devoted to describing in more detail the development, maturation, maintenance and regeneration of the NMJ, but first we describe briefly the most important molecules involved and the conditions that affect their numbers and function. Most important clinically worldwide, are myasthenia gravis (MG), the Lambert-Eaton myasthenic syndrome (LEMS) and congenital myasthenic syndromes (CMS), each of which causes specific molecular defects. In addition, we mention the neurotoxins from bacteria, snakes and many other species that interfere with neuromuscular transmission and cause potentially fatal diseases, but have also provided useful probes for investigating neuromuscular transmission. There are also changes in NMJ structure and function in motor neuron disease, spinal muscle atrophy and sarcopenia that are likely to be secondary but might provide treatment targets. The NMJ is one of the best studied and most disease-prone synapses in the nervous system and it is amenable to in vivo and ex vivo investigation and to systemic therapies that can help restore normal function.
Collapse
Affiliation(s)
- Pedro M. Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Judith Cossins
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
13
|
Jin F, Guo Y, Wang Z, Badughaish A, Pan X, Zhang L, Qi F. The pathophysiological nature of sarcomeres in trigger points in patients with myofascial pain syndrome: A preliminary study. Eur J Pain 2020; 24:1968-1978. [PMID: 32841448 PMCID: PMC7693045 DOI: 10.1002/ejp.1647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Myofascial pain syndrome (MPS) has a high global prevalence and is associated with myofascial trigger points (MTrPs) in taut bands or nodules. Little is known about the aetiology. The current study assessed the pathophysiological characteristics of MTrPs in MPS patients. METHODS Biopsies of the trapezius muscle were collected from the MTrPs of MPS patients (MTrP group; n = 29) and from healthy controls (control group; n = 24), and their morphologies were analysed via haematoxylin-eosin (H&E) and Masson staining. A protein microarray was used to detect the receptor tyrosine kinase (RTK) family proteins. mRNA and long non-coding RNA (lncRNA) sequencing and analysis were conducted, and immunohistochemistry and Western blotting were used to examine the expression of EphB and Rho family proteins. RESULTS Abnormally contracted sarcomeres showed enlarged, round fibres without inflammation or fibrosis. An lncRNA-mRNA network analysis revealed activation of muscle contraction signalling pathways in MTrP regions. Among RTK family proteins, 15 exhibited increased phosphorylation, and two exhibited decreased phosphorylation in the MTrP regions relative to control levels. In particular, EphB1/EphB2 phosphorylation was increased on the muscle cell membranes of abnormal sarcomeres. RhoA and Rac1, but not cell division control protein 42 (Cdc42), were activated in the abnormal sarcomeres. CONCLUSIONS EphB1/EphB2 and RhoA/Rac1 might play roles in the aetiology of abnormally contracted sarcomeres in MTrPs without inflammatory cell infiltration and fibrotic adhesion. SIGNIFICANCE Contracted sarcomeres were found in MTrP regions, which is consistent with the MTrP formation hypothesis. EphB1/EphB2 and RhoA/Rac1 might play roles in the sarcomere contractile sites of MTrPs, which may be promising therapeutic targets.
Collapse
Affiliation(s)
- Feihong Jin
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| | - Yaqiu Guo
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
- Department of AnesthesiologyJinan Maternity and Child Care HospitalJi’nanChina
| | - Zi Wang
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
- Department of AnesthesiologyFirst Affiliated Hospital of Shandong TCM UniversityJi’nanChina
| | - Ahmed Badughaish
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| | - Xin Pan
- Department of OrthopedicsQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| | - Li Zhang
- Department of OrthopedicsQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| | - Feng Qi
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| |
Collapse
|
14
|
Zhao Y, Peng HB. Roles of tyrosine kinases and phosphatases in the formation and dispersal of acetylcholine receptor clusters. Neurosci Lett 2020; 733:135054. [PMID: 32428606 DOI: 10.1016/j.neulet.2020.135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
The formation of acetylcholine receptor (AChR) clusters at the postsynaptic muscle membrane in response to motor innervation is a key event in the development of the neuromuscular junction. The synaptic AChR clustering process is initiated by motor axon-released agrin, which activates a tyrosine kinase-based signaling pathway to cause AChR aggregation. In cultured muscle cells, AChR clustering is elicited by diverse nonneural signals, and this process is also mediated by tyrosine kinases. Conversely, the formation of new AChR clusters induced by innervation or nonneural stimuli is unfailingly associated with the dispersal of pre-existing AChR clusters, and this process is mediated by tyrosine phosphatases. In this review, we address how local kinase activation leads to global phosphatase action in muscle. More specifically, we discuss the roles of Src kinase and the SH2 domain-containing tyrosine phosphatase Shp-2 in establishing a regenerative mechanism to propagate the AChR cluster dispersing signal extrasynaptically and in defining the boundary of cluster formation subsynaptically.
Collapse
Affiliation(s)
- Yang Zhao
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region.
| | - H Benjamin Peng
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region; College of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
15
|
Grp94 Regulates the Recruitment of Aneural AChR Clusters for the Assembly of Postsynaptic Specializations by Modulating ADF/Cofilin Activity and Turnover. eNeuro 2020; 7:ENEURO.0025-20.2020. [PMID: 32747457 PMCID: PMC7540925 DOI: 10.1523/eneuro.0025-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Temperature is a physiological factor that affects neuronal growth and synaptic homeostasis at the invertebrate neuromuscular junctions (NMJs); however, whether temperature stress could also regulate the structure and function of the vertebrate NMJs remains unclear. In this study, we use Xenopus laevis primary cultures as a vertebrate model system for investigating the involvement of heat shock protein 90 (HSP90) family of stress proteins in NMJ development. First, cold temperature treatment or HSP90 inhibition attenuates the formation of aneural acetylcholine receptor (AChR) clusters, but increases their stability after they are formed, in cultured muscles. HSP90 inhibition specifically affects the stability of aneural AChR clusters and their associated intracellular scaffolding protein rapsyn, instead of causing a global change in cell metabolism and protein expression in Xenopus muscle cultures. Upon synaptogenic stimulation, a specific HSP90 family member, glucose-regulated protein 94 (Grp94), modulates the phosphorylation and dynamic turnover of actin depolymerizing factor (ADF)/cofilin at aneural AChR clusters, leading to the recruitment of AChR molecules from aneural clusters to the assembly of agrin-induced postsynaptic specializations. Finally, postsynaptic Grp94 knock-down significantly inhibits nerve-induced AChR clustering and postsynaptic activity in nerve-muscle co-cultures as demonstrated by live-cell imaging and electrophysiological recording, respectively. Collectively, this study suggests that temperature-dependent alteration in Grp94 expression and activity inhibits the assembly of postsynaptic specializations through modulating ADF/cofilin phosphorylation and activity at aneural AChR clusters, which prevents AChR molecules from being recruited to the postsynaptic sites via actin-dependent vesicular trafficking, at developing vertebrate NMJs.
Collapse
|
16
|
Xing G, Xiong WC, Mei L. Rapsyn as a signaling and scaffolding molecule in neuromuscular junction formation and maintenance. Neurosci Lett 2020; 731:135013. [DOI: 10.1016/j.neulet.2020.135013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
|
17
|
Bernadzki KM, Daszczuk P, Rojek KO, Pęziński M, Gawor M, Pradhan BS, de Cicco T, Bijata M, Bijata K, Włodarczyk J, Prószyński TJ, Niewiadomski P. Arhgef5 Binds α-Dystrobrevin 1 and Regulates Neuromuscular Junction Integrity. Front Mol Neurosci 2020; 13:104. [PMID: 32587503 PMCID: PMC7299196 DOI: 10.3389/fnmol.2020.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
The neuromuscular junctions (NMJs) connect muscle fibers with motor neurons and enable the coordinated contraction of skeletal muscles. The dystrophin-associated glycoprotein complex (DGC) is an essential component of the postsynaptic machinery of the NMJ and is important for the maintenance of NMJ structural integrity. To identify novel proteins that are important for NMJ organization, we performed a mass spectrometry-based screen for interactors of α-dystrobrevin 1 (aDB1), one of the components of the DGC. The guanidine nucleotide exchange factor (GEF) Arhgef5 was found to be one of the aDB1 binding partners that is recruited to Tyr-713 in a phospho-dependent manner. We show here that Arhgef5 localizes to the NMJ and that its genetic depletion in the muscle causes the fragmentation of the synapses in conditional knockout mice. Arhgef5 loss in vivo is associated with a reduction in the levels of active GTP-bound RhoA and Cdc42 GTPases, highlighting the importance of actin dynamics regulation for the maintenance of NMJ integrity.
Collapse
Affiliation(s)
- Krzysztof M Bernadzki
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Patrycja Daszczuk
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna O Rojek
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Pęziński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Gawor
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bhola S Pradhan
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Teresa de Cicco
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Krystian Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Tomasz J Prószyński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Paweł Niewiadomski
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Laboratory of Molecular and Cellular Signaling, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Abstract
Thirty to fifty percent of patients with acetylcholine receptor (AChR) antibody (Ab)-negative myasthenia gravis (MG) have Abs to muscle specific kinase (MuSK) and are referred to as having MuSK-MG. MuSK is a 100 kD single-pass post-synaptic transmembrane receptor tyrosine kinase crucial to the development and maintenance of the neuromuscular junction. The Abs in MuSK-MG are predominantly of the IgG4 immunoglobulin subclass. MuSK-MG differs from AChR-MG, in exhibiting more focal muscle involvement, including neck, shoulder, facial and bulbar-innervated muscles, as well as wasting of the involved muscles. MuSK-MG is highly associated with the HLA DR14-DQ5 haplotype and occurs predominantly in females with onset in the fourth decade of life. Some of the standard treatments of AChR-MG have been found to have limited effectiveness in MuSK-MG, including thymectomy and cholinesterase inhibitors. Therefore, current treatment involves immunosuppression, primarily by corticosteroids. In addition, patients respond especially well to B cell depletion agents, e.g., rituximab, with long-term remissions. Future treatments will likely derive from the ongoing analysis of the pathogenic mechanisms underlying this disease, including histologic and physiologic studies of the neuromuscular junction in patients as well as information derived from the development and study of animal models of the disease.
Collapse
Affiliation(s)
| | - David P. Richman
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Wang B, Li Y, Sui M, Qi Q, Wang T, Liu D, Zhou M, Zheng Y, Zhu LQ, Zhang B. Identification of the downstream molecules of agrin/Dok-7 signaling in muscle. FASEB J 2020; 34:5144-5161. [PMID: 32043676 DOI: 10.1096/fj.201901693rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/11/2022]
Abstract
The development of the neuromuscular junction depends on signaling processes that involve protein phosphorylation. Motor neuron releases agrin to activate muscle protein Dok-7, a key tyrosine kinase essential for the formation of a mature and functional neuromuscular junction. However, the signaling cascade downstream of Dok-7 remains poorly understood. In this study, we combined the clustered regularly interspaced short palindromic repeats/Cas9 technique and quantitative phosphoproteomics analysis to study the tyrosine phosphorylation events triggered by agrin/Dok-7. We found tyrosine phosphorylation level of 36 proteins increased specifically by agrin stimulation. In Dok-7 mutant myotubes, however, 13 of the 36 proteins failed to be enhanced by agrin stimulation, suggesting that these 13 proteins are Dok-7-dependent tyrosine-phosphorylated proteins, could work as downstream molecules of agrin/Dok-7 signaling. We validated one of the proteins, Anxa3, by in vitro and in vivo assays. Knocking down of Anxa3 in the cultured myotubes inhibited agrin-induced AChR clustering, whereas reduction of Anxa3 in mouse muscles induced abnormal postsynaptic development. Collectively, our phosphoproteomics analysis provides novel insights into the complicated signaling network downstream of agrin/Dok-7.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Sui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Qi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Meiling Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjie Zheng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Herbst R. MuSk function during health and disease. Neurosci Lett 2019; 716:134676. [PMID: 31811897 DOI: 10.1016/j.neulet.2019.134676] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MuSK (muscle-specific kinase) is the key signaling molecule during the formation of a mature and functional neuromuscular junction (NMJ). Signal transduction events downstream of MuSK activation induce both pre- and postsynaptic differentiation, which, most prominently, includes the clustering of acetylcholine receptors (AChRs) at synaptic sites. MuSK activation requires a complex interplay between its co-receptor Lrp4 (low-density lipoprotein receptor-related protein-4), the motor neuron-derived heparan-sulfate proteoglycan Agrin and the intracellular adaptor protein Dok-7. A tight regulation of MuSK kinase activity is crucial for proper NMJ development. Defects in MuSK signaling are the cause of muscle weakness as reported in congenital myasthenic syndromes and myasthenia gravis. This review focuses on recent structure-based analyses of MuSK, Agrin, Lrp4 and Dok-7 interactions and their function during MuSK activation. Conclusions about the regulation of the MuSK kinase that were derived from molecular structures will be highlighted. In addition, the role of MuSK during development and disease will be discussed.
Collapse
Affiliation(s)
- Ruth Herbst
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Kinderspitalgasse 15, 1090 Vienna, Austria.
| |
Collapse
|
21
|
Rodríguez Cruz PM, Cossins J, Cheung J, Maxwell S, Jayawant S, Herbst R, Waithe D, Kornev AP, Palace J, Beeson D. Congenital myasthenic syndrome due to mutations in MUSK suggests that the level of MuSK phosphorylation is crucial for governing synaptic structure. Hum Mutat 2019; 41:619-631. [PMID: 31765060 PMCID: PMC7028094 DOI: 10.1002/humu.23949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/08/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022]
Abstract
MUSK encodes the muscle‐specific receptor tyrosine kinase (MuSK), a key component of the agrin‐LRP4‐MuSK‐DOK7 signaling pathway, which is essential for the formation and maintenance of highly specialized synapses between motor neurons and muscle fibers. We report a patient with severe early‐onset congenital myasthenic syndrome and two novel missense mutations in MUSK (p.C317R and p.A617V). Functional studies show that MUSK p.C317R, located at the frizzled‐like cysteine‐rich domain of MuSK, disrupts an integral part of MuSK architecture resulting in ablated MuSK phosphorylation and acetylcholine receptor (AChR) cluster formation. MUSK p.A617V, located at the kinase domain of MuSK, enhances MuSK phosphorylation resulting in anomalous AChR cluster formation. The identification and evidence for pathogenicity of MUSK mutations supported the initiation of treatment with β2‐adrenergic agonists with a dramatic improvement of muscle strength in the patient. This work suggests uncharacterized mechanisms in which control of the precise level of MuSK phosphorylation is crucial in governing synaptic structure.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Judith Cossins
- Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jonathan Cheung
- Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Susan Maxwell
- Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sandeep Jayawant
- Department of Paediatric Neurology, Children's Hospital, John Radcliffe Hospital, Oxford, UK
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical Science Divisions, Medical University of Vienna, Vienna, Austria
| | - Dominic Waithe
- MRC Centre for Computational Biology and Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, California
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Neurosciences Group, The John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Blondelle J, Tallapaka K, Seto JT, Ghassemian M, Clark M, Laitila JM, Bournazos A, Singer JD, Lange S. Cullin-3 dependent deregulation of ACTN1 represents a new pathogenic mechanism in nemaline myopathy. JCI Insight 2019; 5:125665. [PMID: 30990797 PMCID: PMC6542616 DOI: 10.1172/jci.insight.125665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Nemaline myopathy is a congenital neuromuscular disorder characterized by muscle weakness, fiber atrophy and presence of nemaline bodies within myofibers. However, the understanding of underlying pathomechanisms is lacking. Recently, mutations in KBTBD13, KLHL40 and KLHL41, three substrate adaptors for the E3-ubiquitin ligase Cullin-3, have been associated with early-onset nemaline myopathies. We hypothesized that deregulation of Cullin-3 and its muscle protein substrates may be responsible for the disease development. Using Cullin-3 knockout mice, we identified accumulation of non-muscle alpha-Actinins (ACTN1 and ACTN4) in muscles of these mice, which we also observed in KBTBD13 patients. Our data reveal that proper regulation of Cullin-3 activity and ACTN1 levels is essential for normal muscle and neuromuscular junction development. While ACTN1 is naturally downregulated during myogenesis, its overexpression in C2C12 myoblasts triggered defects in fusion, myogenesis and acetylcholine receptor clustering; features that we characterized in Cullin-3 deficient mice. Taken together, our data highlight the importance for Cullin-3 mediated degradation of ACTN1 for muscle development, and indicate a new pathomechanism for the etiology of myopathies seen in Cullin-3 knockout mice and nemaline myopathy patients.
Collapse
Affiliation(s)
- Jordan Blondelle
- Division of Cardiology, School of Medicine, UCSD, La Jolla, California, USA
| | - Kavya Tallapaka
- Division of Cardiology, School of Medicine, UCSD, La Jolla, California, USA
| | - Jane T. Seto
- Neuromuscular Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry. UCSD, La Jolla, California, USA
| | - Madison Clark
- Division of Cardiology, School of Medicine, UCSD, La Jolla, California, USA
| | - Jenni M. Laitila
- Folkhälsan Research Center and Medicum, University of Helsinki, Helsinki, Finland
| | - Adam Bournazos
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UCSD, La Jolla, California, USA
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Bai Y, Guo D, Sun X, Tang G, Liao T, Peng Y, Xu J, Shi L. Balanced Rac1 activity controls formation and maintenance of neuromuscular acetylcholine receptor clusters. J Cell Sci 2018; 131:jcs.215251. [PMID: 30012833 DOI: 10.1242/jcs.215251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022] Open
Abstract
Rac1, an important Rho GTPase that regulates the actin cytoskeleton, has long been suggested to participate in acetylcholine receptor (AChR) clustering at the postsynaptic neuromuscular junction. However, how Rac1 is regulated and how it influences AChR clusters have remained unexplored. This study shows that breaking the balance of Rac1 regulation, by either increasing or decreasing its activity, led to impaired formation and maintenance of AChR clusters. By manipulating Rac1 activity at different stages of AChR clustering in cultured myotubes, we show that Rac1 activation was required for the initial formation of AChR clusters, but its persistent activation led to AChR destabilization, and uncontrolled hyperactivation of Rac1 even caused excessive myotube fusion. Both AChR dispersal and myotube fusion induced by Rac1 were dependent on its downstream effector Pak1. Two Rac1 GAPs and six Rac1 GEFs were screened and found to be important for normal AChR clustering. This study reveals that, although general Rac1 activity remains at low levels during terminal differentiation of myotubes and AChR cluster maintenance, tightly regulated Rac1 activity controls normal AChR clustering.
Collapse
Affiliation(s)
- Yanyang Bai
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Daji Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaoyu Sun
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Genyun Tang
- Department of Medical Genetics, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Tailin Liao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Junyu Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
24
|
Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. Int J Mol Sci 2018; 19:ijms19020490. [PMID: 29415504 PMCID: PMC5855712 DOI: 10.3390/ijms19020490] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance.
Collapse
|
25
|
Preventing Illegitimate Extrasynaptic Acetylcholine Receptor Clustering Requires the RSU-1 Protein. J Neurosci 2017; 36:6525-37. [PMID: 27307240 DOI: 10.1523/jneurosci.3733-15.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/06/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Diffuse extrasynaptic neurotransmitter receptors constitute an abundant pool of receptors that can be recruited to modulate synaptic strength. Whether the diffuse distribution of receptors in extrasynaptic membranes is a default state or is actively controlled remains essentially unknown. Here we show that RSU-1 (Ras Suppressor-1) is required for the proper distribution of extrasynaptic acetylcholine receptors (AChRs) in Caenorhabditis elegans muscle cells. RSU-1 is an evolutionary conserved cytoplasmic protein that contains multiple leucine-rich repeats (LRRs) and interacts with integrin-dependent adhesion complexes. In rsu-1 mutants, neuromuscular junctions differentiate as in the wild type, but AChRs assemble into ectopic clusters that progressively enlarge during development. As a consequence, the synaptic content of AChRs is reduced. Our study provides the first evidence that an RSU-1-dependent active mechanism maintains extrasynaptic receptors dispersed and indirectly regulates synapse maturation. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans neuromuscular junction as a model synapse, we uncovered a novel mechanism that regulates the distribution of acetylcholine receptors (AChRs). In an unbiased visual screen for mutants with abnormal AChR distribution, we isolated the ras suppressor 1 (rsu-1) mutant based on the presence of large extrasynaptic clusters. We show that disrupting rsu-1 causes spontaneous clustering of extrasynaptic receptors that are normally dispersed, independently of synaptic cues. These clusters outcompete synaptic domains and cause a decrease of synaptic receptor content. These results indicate that the diffuse state of extrasynaptic receptors is not a default state that is simply explained by the lack of synaptic cues but necessitates additional proteins to prevent spontaneous clustering, a concept that is relevant for developmental and pathological situations.
Collapse
|
26
|
Blondelle J, Shapiro P, Domenighetti AA, Lange S. Cullin E3 Ligase Activity Is Required for Myoblast Differentiation. J Mol Biol 2017; 429:1045-1066. [PMID: 28238764 DOI: 10.1016/j.jmb.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 01/06/2023]
Abstract
The role of cullin E3-ubiquitin ligases for muscle homeostasis is best known during muscle atrophy, as the cullin-1 substrate adaptor atrogin-1 is among the most well-characterized muscle atrogins. We investigated whether cullin activity was also crucial during terminal myoblast differentiation and aggregation of acetylcholine receptors for the establishment of neuromuscular junctions in vitro. The activity of cullin E3-ligases is modulated through post-translational modification with the small ubiquitin-like modifier nedd8. Using either the Nae1 inhibitor MLN4924 (Pevonedistat) or siRNA against nedd8 in early or late stages of differentiation on C2C12 myoblasts, and primary satellite cells from mouse and human, we show that cullin E3-ligase activity is necessary for each step of the muscle cell differentiation program in vitro. We further investigate known transcriptional repressors for terminal muscle differentiation, namely ZBTB38, Bhlhe41, and Id1. Due to their identified roles for terminal muscle differentiation, we hypothesize that the accumulation of these potential cullin E3-ligase substrates may be partially responsible for the observed phenotype. MLN4924 is currently undergoing clinical trials in cancer patients, and our experiments highlight concerns on the homeostasis and regenerative capacity of muscles in these patients who often experience cachexia.
Collapse
Affiliation(s)
- Jordan Blondelle
- Division of Cardiology, University of California San Diego, La Jolla, CA-92093 USA
| | - Paige Shapiro
- Division of Cardiology, University of California San Diego, La Jolla, CA-92093 USA
| | - Andrea A Domenighetti
- Rehabilitation Institute of Chicago, Chicago, IL-60611 USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL-60611, USA
| | - Stephan Lange
- Division of Cardiology, University of California San Diego, La Jolla, CA-92093 USA.
| |
Collapse
|
27
|
Xenopus Nerve-Muscle Cultures: a Novel Cell-Based Assay for Serological Diagnosis and Pathological Research of Myasthenia Gravis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0126-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
The Matrix Proteins Hasp and Hig Exhibit Segregated Distribution within Synaptic Clefts and Play Distinct Roles in Synaptogenesis. J Neurosci 2016; 36:590-606. [PMID: 26758847 DOI: 10.1523/jneurosci.2300-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED The synaptic cleft is the space through which neurotransmitters convey neural information between two synaptic terminals. This space is presumably filled with extracellular matrix molecules involved in synaptic function or differentiation. However, little is known about the identities of the matrix components, and it remains unclear how these molecules organize the matrix in synaptic clefts. In this study, we identified Hasp, a Drosophila secretory protein containing CCP and WAP domains. Molecular genetic analysis revealed that Hasp diffuses extracellularly and is predominantly captured at synaptic clefts of cholinergic synapses. Furthermore, Hasp regulates levels of DLG and the nAChR subunits Dα6 and Dα7 at postsynaptic terminals. Hasp is required for trapping of another matrix protein, Hig, which is also secreted and diffused in the brain, at synaptic clefts of cholinergic synapses; however, Hig is dispensable for localization of Hasp at synaptic clefts. In addition, in the brains of triple mutants for the nAChR subunits Dα5, Dα6, and Dα7, the level of Hig, but not Hasp, was markedly reduced in synaptic regions, indicating that these nAChR subunits are required to anchor Hig to synaptic clefts. High-resolution microscopy revealed that Hasp and Hig exhibit segregated distribution within individual synaptic clefts, reflecting their differing roles in synaptogenesis. These data provide insight into how Hasp and Hig construct the synaptic cleft matrix and regulate the differentiation of cholinergic synapses, and also illuminate a previously unidentified architecture within synaptic clefts. SIGNIFICANCE STATEMENT The synapse has been extensively studied because it is essential for neurotransmission. By contrast, the space between the synaptic terminals, the synaptic cleft, is still an undeveloped research area despite its ubiquity in synapses. In fruit fly brains, we obtained evidence that the matrix protein Hasp and the previously identified Hig, both of which are secreted extracellularly, localize predominantly to synaptic clefts of cholinergic synapses, and modulate the levels of nAChR subunits on postsynaptic membranes. However, Hasp and Hig play differential roles in matrix formation and exhibit segregated distribution within synaptic clefts. These results reveal the molecular mechanisms of synaptic matrix construction and illuminate a molecular architecture within synaptic clefts previously unrevealed in any animal species.
Collapse
|
29
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
30
|
C. elegans Punctin Clusters GABAA Receptors via Neuroligin Binding and UNC-40/DCC Recruitment. Neuron 2015; 86:1407-19. [DOI: 10.1016/j.neuron.2015.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/13/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022]
|
31
|
Basu S, Sladecek S, Martinez de la Peña y Valenzuela I, Akaaboune M, Smal I, Martin K, Galjart N, Brenner HR. CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5β and actin for focal delivery of acetylcholine receptor vesicles. Mol Biol Cell 2015; 26:938-51. [PMID: 25589673 PMCID: PMC4342029 DOI: 10.1091/mbc.e14-06-1158] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A novel mechanism is described for the agrin-mediated focal delivery of acetylcholine receptors (AChRs) to the postsynaptic membrane of the neuromuscular junction. Microtubule capture mediated by CLASP2 and its interaction partner, LL5β, and an intact subsynaptic actin cytoskeleton are both required for focal AChR transport to the synaptic membrane. A hallmark of the neuromuscular junction (NMJ) is the high density of acetylcholine receptors (AChRs) in the postsynaptic muscle membrane. The postsynaptic apparatus of the NMJ is organized by agrin secreted from motor neurons. The mechanisms that underlie the focal delivery of AChRs to the adult NMJ are not yet understood in detail. We previously showed that microtubule (MT) capture by the plus end–tracking protein CLASP2 regulates AChR density at agrin-induced AChR clusters in cultured myotubes via PI3 kinase acting through GSK3β. Here we show that knockdown of the CLASP2-interaction partner LL5β by RNAi and forced expression of a CLASP2 fragment blocking the CLASP2/LL5β interaction inhibit microtubule capture. The same treatments impair focal vesicle delivery to the clusters. Consistent with these findings, knockdown of LL5β at the NMJ in vivo reduces the density and insertion of AChRs into the postsynaptic membrane. MT capture and focal vesicle delivery to agrin-induced AChR clusters are also inhibited by microtubule- and actin-depolymerizing drugs, invoking both cytoskeletal systems in MT capture and in the fusion of AChR vesicles with the cluster membrane. Combined our data identify a transport system, organized by agrin through PI3 kinase, GSK3β, CLASP2, and LL5β, for precise delivery of AChR vesicles from the subsynaptic nuclei to the overlying synaptic membrane.
Collapse
Affiliation(s)
- Sreya Basu
- Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland Department of Cell Biology, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Stefan Sladecek
- Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | | | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology and Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109
| | - Ihor Smal
- Biomedical Imaging Group, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Katrin Martin
- Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Niels Galjart
- Department of Cell Biology, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | | |
Collapse
|
32
|
Abstract
Approximately 95% of statin-treated patients tolerate this form of cholesterol management without any adverse effects. However, given their efficacy in reducing low density lipoproteins and cardiovascular events large numbers of patients are selected for statin therapy. Therefore muscle complications are, in fact, quite common. Limited understanding of the underlying pathophysiology has hampered physicians' ability to identify patients at risk for developing statin myotoxicity. A growing number of published case reports/series have implicated statins in the exacerbation of both acquired and genetic myopathies. A clinical management algorithm is presented which outlines a variety of co-morbidities which can potentiate the adverse effects of statins on muscle. In addition, a rational approach to the selection of those patients most likely to benefit from skeletal muscle biopsy is discussed. Ongoing work will define the extent to which statin-intolerant patients represent carriers of recessive metabolic myopathies or pre-symptomatic acquired myopathies. The expanding importance of pharmacogenomics will undoubtedly be realized in the field of statin myopathy research within the next few years. Such critical information is needed to establish more definitive management and diagnostic strategies.
Collapse
|
33
|
Barrantes FJ. Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front Synaptic Neurosci 2014; 6:25. [PMID: 25414663 PMCID: PMC4220116 DOI: 10.3389/fnsyn.2014.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research, Faculty of Medical Sciences, Pontifical Catholic University of Argentina-National Scientific and Technical Research Council Buenos Aires, Argentina
| |
Collapse
|
34
|
Mihailovska E, Raith M, Valencia RG, Fischer I, Al Banchaabouchi M, Herbst R, Wiche G. Neuromuscular synapse integrity requires linkage of acetylcholine receptors to postsynaptic intermediate filament networks via rapsyn-plectin 1f complexes. Mol Biol Cell 2014; 25:4130-49. [PMID: 25318670 PMCID: PMC4263455 DOI: 10.1091/mbc.e14-06-1174] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
P1f, a specific isoform of the cytolinker protein plectin, bridges AChRs to the desmin IF network of myofibers via direct interaction with the AChR-scaffolding protein rapsyn. P1f-mediated IF linkage is crucial for the formation and maintenance of AChR clusters, postsynaptic organization of the NMJ, and body locomotion. Mutations in the cytolinker protein plectin lead to grossly distorted morphology of neuromuscular junctions (NMJs) in patients suffering from epidermolysis bullosa simplex (EBS)-muscular dystrophy (MS) with myasthenic syndrome (MyS). Here we investigated whether plectin contributes to the structural integrity of NMJs by linking them to the postsynaptic intermediate filament (IF) network. Live imaging of acetylcholine receptors (AChRs) in cultured myotubes differentiated ex vivo from immortalized plectin-deficient myoblasts revealed them to be highly mobile and unable to coalesce into stable clusters, in contrast to wild-type cells. We found plectin isoform 1f (P1f) to bridge AChRs and IFs via direct interaction with the AChR-scaffolding protein rapsyn in an isoform-specific manner; forced expression of P1f in plectin-deficient cells rescued both compromised AChR clustering and IF network anchoring. In conditional plectin knockout mice with gene disruption in muscle precursor/satellite cells (Pax7-Cre/cKO), uncoupling of AChRs from IFs was shown to lead to loss of postsynaptic membrane infoldings and disorganization of the NMJ microenvironment, including its invasion by microtubules. In their phenotypic behavior, mutant mice closely mimicked EBS-MD-MyS patients, including impaired body balance, severe muscle weakness, and reduced life span. Our study demonstrates that linkage to desmin IF networks via plectin is crucial for formation and maintenance of AChR clusters, postsynaptic NMJ organization, and body locomotion.
Collapse
Affiliation(s)
- Eva Mihailovska
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Marianne Raith
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Rocio G Valencia
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Irmgard Fischer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Mumna Al Banchaabouchi
- Preclinical Phenotyping Facility, Campus Science Support Facilities, 1030 Vienna, Austria
| | - Ruth Herbst
- Center for Brain Research and Institute of Immunology, Medical University of Vienna, 1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
35
|
Basu S, Sladecek S, Pemble H, Wittmann T, Slotman JA, van Cappellen W, Brenner HR, Galjart N. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends. J Biol Chem 2014; 289:30857-30867. [PMID: 25231989 DOI: 10.1074/jbc.m114.589457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3β-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3β-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends.
Collapse
Affiliation(s)
- Sreya Basu
- Institute of Physiology, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland,; Department of Cell Biology, Erasmus Medical Center, 3015 GE, Rotterdam, Netherlands
| | - Stefan Sladecek
- Institute of Physiology, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Hayley Pemble
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143, and
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143, and
| | - Johan A Slotman
- Optical Imaging Center, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | | | - Hans-Rudolf Brenner
- Institute of Physiology, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland,.
| | - Niels Galjart
- Department of Cell Biology, Erasmus Medical Center, 3015 GE, Rotterdam, Netherlands,.
| |
Collapse
|
36
|
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness, fatigability, and autoantibodies against protein antigens of the muscle endplate. Antibodies against acetylcholine receptor (AChR), and less frequently against muscle-Specific Kinase (MuSK) or lipoprotein related protein 4 (LRP4) occur in patients with seropositive MG (SPMG). However, about 10% of patients do not have detectable autoantibodies despite evidence suggesting that the disorder is immune mediated; this disorder is known as seronegative MG (SNMG). Using a protein array approach we identified cortactin (a protein that acts downstream from agrin/MuSK promoting AChR clustering) as potential new target antigen in SNMG. We set up an ELISA assay and screened sera from patients with SPMG, SNMG, other autoimmune diseases and controls. Results were validated by immunoblot. We found that 19.7% of patients with SNMG had antibodies against cortactin whereas only 4.8% of patients with SPMG were positive. Cortactin antibodies were also found in 12.5% of patients with other autoimmune disorders but only in 5.2% of healthy controls. We conclude that the finding of cortactin antibodies in patients with SNMG, suggests an underlying autoimmune mechanism, supporting the use of immune therapy.
Collapse
|
37
|
Almarza G, Sánchez F, Barrantes FJ. Transient cholesterol effects on nicotinic acetylcholine receptor cell-surface mobility. PLoS One 2014; 9:e100346. [PMID: 24971757 PMCID: PMC4074099 DOI: 10.1371/journal.pone.0100346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/24/2014] [Indexed: 11/23/2022] Open
Abstract
To what extent do cholesterol-rich lipid platforms modulate the supramolecular organization of the nicotinic acetylcholine receptor (AChR)? To address this question, the dynamics of AChR particles at high density and its cholesterol dependence at the surface of mammalian cells were studied by combining total internal reflection fluorescence microscopy and single-particle tracking. AChR particles tagged with a monovalent ligand, fluorescent α-bungarotoxin (αBTX), exhibited two mobile pools: i) a highly mobile one undergoing simple Brownian motion (16%) and ii) one with restricted motion (∼50%), the rest being relatively immobile (∼44%). Depletion of membrane cholesterol by methyl-α-cyclodextrin increased the fraction of the first pool to 22% and 33% after 15 and 40 min, respectively; the pool undergoing restricted motion diminished from 50% to 44% and 37%, respectively. Monoclonal antibody binding results in AChR crosslinking-internalization after 2 h; here, antibody binding immobilized within minutes ∼20% of the totally mobile AChR. This proportion dramatically increased upon cholesterol depletion, especially during the initial 10 min (83.3%). Thus, antibody crosslinking and cholesterol depletion exhibited a mutually synergistic effect, increasing the average lifetime of cell-surface AChRs∼10 s to ∼20 s. The instantaneous (microscopic) diffusion coefficient D2-4 of the AChR obtained from the MSD analysis diminished from ∼0.001 µm2 s(-1) to ∼0.0001-0.00033 µm2 s(-1) upon cholesterol depletion, ∼30% of all particles falling into the stationary mode. Thus, muscle-type AChR exhibits heterogeneous motional regimes at the cell surface, modulated by the combination of intrinsic (its supramolecular organization) and extrinsic (membrane cholesterol content) factors.
Collapse
Affiliation(s)
- Gonzalo Almarza
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Francisco Sánchez
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
38
|
Dürnberger G, Camurdanoglu BZ, Tomschik M, Schutzbier M, Roitinger E, Hudecz O, Mechtler K, Herbst R. Global analysis of muscle-specific kinase signaling by quantitative phosphoproteomics. Mol Cell Proteomics 2014; 13:1993-2003. [PMID: 24899341 DOI: 10.1074/mcp.m113.036087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The development of the neuromuscular synapse depends on signaling processes that involve protein phosphorylation as a crucial regulatory event. Muscle-specific kinase (MuSK) is the key signaling molecule at the neuromuscular synapse whose activity is required for the formation of a mature and functional synapse. However, the signaling cascade downstream of MuSK and the regulation of the different components are still poorly understood. In this study we used a quantitative phosphoproteomics approach to study the phosphorylation events and their temporal regulation downstream of MuSK. We identified a total of 10,183 phosphopeptides, of which 203 were significantly up- or down-regulated. Regulated phosphopeptides were classified into four different clusters according to their temporal profiles. Within these clusters we found an overrepresentation of specific protein classes associated with different cellular functions. In particular, we found an enrichment of regulated phosphoproteins involved in posttranscriptional mechanisms and in cytoskeletal organization. These findings provide novel insights into the complex signaling network downstream of MuSK and form the basis for future mechanistic studies.
Collapse
Affiliation(s)
- Gerhard Dürnberger
- From the ‡Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bahar Z Camurdanoglu
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Matthias Tomschik
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael Schutzbier
- From the ‡Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Elisabeth Roitinger
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Otto Hudecz
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ruth Herbst
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria; ‡‡Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| |
Collapse
|
39
|
Coronin 6 regulates acetylcholine receptor clustering through modulating receptor anchorage to actin cytoskeleton. J Neurosci 2014; 34:2413-21. [PMID: 24523531 DOI: 10.1523/jneurosci.3226-13.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The maintenance of a high density of neurotransmitter receptors at the postsynaptic apparatus is critical for efficient neurotransmission. Acetylcholine receptors (AChRs) are neurotransmitter receptors densely packed on the postsynaptic muscle membrane at the neuromuscular junction (NMJ) via anchoring onto the actin cytoskeletal network. However, how the receptor-associated actin is coordinately regulated is not fully understood. We report here that Coronin 6, a newly identified member of the coronin family, is highly enriched at adult NMJs and regulates AChR clustering through modulating the interaction between receptors and the actin cytoskeletal network. Experiments with cultured myotubes reveal that Coronin 6 is important for both agrin- and laminin-induced AChR clustering. Furthermore, Coronin 6 forms a complex with AChRs and actin in a manner dependent on its C-terminal region and a conserved Arg(29) residue at the N terminus, both of which are critical for the cytoskeletal anchorage of AChRs. Importantly, in vivo knockdown of Coronin 6 in mouse skeletal muscle fibers leads to destabilization of AChR clusters. Together, these findings demonstrate that Coronin 6 is a critical regulator of AChR clustering at the postsynaptic region of the NMJs through modulating the receptor-anchored actin cytoskeleton.
Collapse
|
40
|
Lee CW, Zhang H, Geng L, Peng HB. Crosslinking-induced endocytosis of acetylcholine receptors by quantum dots. PLoS One 2014; 9:e90187. [PMID: 24587270 PMCID: PMC3934987 DOI: 10.1371/journal.pone.0090187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/31/2014] [Indexed: 12/22/2022] Open
Abstract
In a majority of patients with myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies target postsynaptic AChR clusters and thus compromise the membrane integrity of neuromuscular junctions (NMJs) and lead to muscle weakness. Antibody-induced endocytosis of AChRs in the postsynaptic membrane represents the initial step in the pathogenesis of MG; however, the molecular mechanisms underlying AChR endocytosis remain largely unknown. Here, we developed an approach to mimic the pathogenic antibodies for inducing the crosslinking and internalization of AChRs from the postsynaptic membrane. Using biotin-α-bungarotoxin and quantum dot (QD)-streptavidin, cell-surface and internalized AChRs could be readily distinguished by comparing the size, fluorescence intensity, trajectory, and subcellular localization of the QD signals. QD-induced AChR endocytosis was mediated by clathrin-dependent and caveolin-independent mechanisms, and the trafficking of internalized AChRs in the early endosomes required the integrity of microtubule structures. Furthermore, activation of the agrin/MuSK (muscle-specific kinase) signaling pathway strongly suppressed QD-induced internalization of AChRs. Lastly, QD-induced AChR crosslinking potentiated the dispersal of aneural AChR clusters upon synaptic induction. Taken together, our results identify a novel approach to study the mechanisms of AChR trafficking upon receptor crosslinking and endocytosis, and demonstrate that agrin-MuSK signaling pathways protect against crosslinking-induced endocytosis of AChRs.
Collapse
Affiliation(s)
- Chi Wai Lee
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail: (CWL); (HBP)
| | - Hailong Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - Lin Geng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - H. Benjamin Peng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
- * E-mail: (CWL); (HBP)
| |
Collapse
|
41
|
Hong S, Troyanovsky RB, Troyanovsky SM. Binding to F-actin guides cadherin cluster assembly, stability, and movement. ACTA ACUST UNITED AC 2013; 201:131-43. [PMID: 23547031 PMCID: PMC3613698 DOI: 10.1083/jcb.201211054] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Binding of cadherin to F-actin cooperates with the cadherin cis-interface to stabilize cadherin adhesion clusters and is required for their directional movement. The cadherin extracellular region produces intercellular adhesion clusters through trans- and cis-intercadherin bonds, and the intracellular region connects these clusters to the cytoskeleton. To elucidate the interdependence of these binding events, cadherin adhesion was reconstructed from the minimal number of structural elements. F-actin–uncoupled adhesive clusters displayed high instability and random motion. Their assembly required a cadherin cis-binding interface. Coupling these clusters with F-actin through an α-catenin actin-binding domain (αABD) dramatically extended cluster lifetime and conferred direction to cluster motility. In addition, αABD partially lifted the requirement for the cis-interface for cluster assembly. Even more dramatic enhancement of cadherin clustering was observed if αABD was joined with cadherin through a flexible linker or if it was replaced with an actin-binding domain of utrophin. These data present direct evidence that binding to F-actin stabilizes cadherin clusters and cooperates with the cis-interface in cadherin clustering. Such cooperation apparently synchronizes extracellular and intracellular binding events in the process of adherens junction assembly.
Collapse
Affiliation(s)
- Soonjin Hong
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
42
|
Abstract
Muscle-specific kinase (MuSK) is essential for each step in neuromuscular synapse formation. Before innervation, MuSK initiates postsynaptic differentiation, priming the muscle for synapse formation. Approaching motor axons recognize the primed, or prepatterned, region of muscle, causing motor axons to stop growing and differentiate into specialized nerve terminals. MuSK controls presynaptic differentiation by causing the clustering of Lrp4, which functions as a direct retrograde signal for presynaptic differentiation. Developing synapses are stabilized by neuronal Agrin, which is released by motor nerve terminals and binds to Lrp4, a member of the low-density lipoprotein receptor family, stimulating further association between Lrp4 and MuSK and increasing MuSK kinase activity. In addition, MuSK phosphorylation is stimulated by an inside-out ligand, docking protein-7 (Dok-7), which is recruited to tyrosine-phosphorylated MuSK and increases MuSK kinase activity. Mutations in MuSK and in genes that function in the MuSK signaling pathway, including Dok-7, cause congenital myasthenia, and autoantibodies to MuSK, Lrp4, and acetylcholine receptors are responsible for myasthenia gravis.
Collapse
|
43
|
Ackermann B, Kröber S, Torres-Benito L, Borgmann A, Peters M, Hosseini Barkooie SM, Tejero R, Jakubik M, Schreml J, Milbradt J, Wunderlich TF, Riessland M, Tabares L, Wirth B. Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality. Hum Mol Genet 2012; 22:1328-47. [PMID: 23263861 DOI: 10.1093/hmg/dds540] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.
Collapse
Affiliation(s)
- Bastian Ackermann
- Institute of Human Genetics, University of Cologne, Kerpener Strasse 34, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schmidt N, Basu S, Sladecek S, Gatti S, van Haren J, Treves S, Pielage J, Galjart N, Brenner HR. Agrin regulates CLASP2-mediated capture of microtubules at the neuromuscular junction synaptic membrane. ACTA ACUST UNITED AC 2012; 198:421-37. [PMID: 22851317 PMCID: PMC3413356 DOI: 10.1083/jcb.201111130] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agrin regulates acetylcholine receptors at the neuromuscular junction by locally stabilizing microtubules through the plus end tracking proteins CLASP2 and CLIP-170. Agrin is the major factor mediating the neuronal regulation of postsynaptic structures at the vertebrate neuromuscular junction, but the details of how it orchestrates this unique three-dimensional structure remain unknown. Here, we show that agrin induces the formation of the dense network of microtubules in the subsynaptic cytoplasm and that this, in turn, regulates acetylcholine receptor insertion into the postsynaptic membrane. Agrin acted in part by locally activating phosphatidylinositol 3-kinase and inactivating GSK3β, which led to the local capturing of dynamic microtubules at agrin-induced acetylcholine receptor (AChR) clusters, mediated to a large extent by the microtubule plus-end tracking proteins CLASP2 and CLIP-170. Indeed, in the absence of CLASP2, microtubule plus ends at the subsynaptic muscle membrane, the density of synaptic AChRs, the size of AChR clusters, and the numbers of subsynaptic muscle nuclei with their selective gene expression programs were all reduced. Thus, the cascade linking agrin to CLASP2-mediated microtubule capturing at the synaptic membrane is essential for the maintenance of a normal neuromuscular phenotype.
Collapse
Affiliation(s)
- Nadine Schmidt
- Department of Biomedicine, Institute of Physiology, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In particular, defective neuromuscular transmission associated with structural and molecular abnormalities at the pre- and postsynaptic membranes, as well as at the synaptic cleft, has been reported in these patients. Here, we review recent advances in the understanding of molecular and cellular events that mediate NMJ maturation and maintenance. The underlying regulatory mechanisms, including key molecular regulators at the presynaptic nerve terminal, synaptic cleft, and postsynaptic muscle membrane, are discussed.
Collapse
|
46
|
Gordon LR, Gribble KD, Syrett CM, Granato M. Initiation of synapse formation by Wnt-induced MuSK endocytosis. Development 2012; 139:1023-33. [PMID: 22318632 DOI: 10.1242/dev.071555] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In zebrafish, the MuSK receptor initiates neuromuscular synapse formation by restricting presynaptic growth cones and postsynaptic acetylcholine receptors (AChRs) to the center of skeletal muscle cells. Increasing evidence suggests a role for Wnts in this process, yet how muscle cells respond to Wnt signals is unclear. Here, we show that in vivo, wnt11r and wnt4a initiate MuSK translocation from muscle membranes to recycling endosomes and that this transition is crucial for AChR accumulation at future synaptic sites. Moreover, we demonstrate that components of the planar cell polarity pathway colocalize to recycling endosomes and that this localization is MuSK dependent. Knockdown of several core components disrupts MuSK translocation to endosomes, AChR localization and axonal guidance. We propose that Wnt-induced trafficking of the MuSK receptor to endosomes initiates a signaling cascade to align pre- with postsynaptic elements. Collectively, these findings suggest a general mechanism by which Wnt signals shape synaptic connectivity through localized receptor endocytosis.
Collapse
Affiliation(s)
- Laura R Gordon
- Department of Cell and Developmental Biology, University of Pennsylvania. Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
47
|
The formation of complex acetylcholine receptor clusters requires MuSK kinase activity and structural information from the MuSK extracellular domain. Mol Cell Neurosci 2011; 49:475-86. [PMID: 22210232 PMCID: PMC3359500 DOI: 10.1016/j.mcn.2011.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 01/05/2023] Open
Abstract
Efficient synaptic transmission at the neuromuscular junction (NMJ) requires the topological maturation of the postsynaptic apparatus from an oval acetylcholine receptor (AChR)-rich plaque into a complex pretzel-shaped array of branches. However, compared to NMJ formation very little is known about the mechanisms that regulate NMJ maturation. Recently the process of in vivo transformation from plaque into pretzel has been reproduced in vitro by culturing myotubes aneurally on laminin-coated substrate. It was proposed that the formation of complex AChR clusters is regulated by a MuSK-dependent muscle intrinsic program. To elucidate the structure–function role of MuSK in the aneural maturation of AChR pretzels, we used muscle cell lines expressing MuSK mutant and chimeric proteins. Here we report, that besides its role during agrin-induced AChR clustering, MuSK kinase activity is also necessary for substrate-dependent cluster formation. Constitutive-active MuSK induces larger AChR clusters, a faster cluster maturation on laminin and increases the anchorage of AChRs to the cytoskeleton compared to MuSK wild-type. In addition, we find that the juxtamembrane region of MuSK, which has previously been shown to regulate agrin-induced AChR clustering, is unable to induce complex AChR clusters on laminin substrate. Most interestingly, MuSK kinase activity is not sufficient for laminin-dependent AChR cluster formation since the MuSK ectodomain is also required suggesting a so far undiscovered instructive role for the extracellular domain of MuSK.
Collapse
|
48
|
Zhang HL, Peng HB. Mechanism of acetylcholine receptor cluster formation induced by DC electric field. PLoS One 2011; 6:e26805. [PMID: 22046365 PMCID: PMC3201969 DOI: 10.1371/journal.pone.0026805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background The formation of acetylcholine receptor (AChR) cluster is a key event during the development of the neuromuscular junction. It is induced through the activation of muscle-specific kinase (MuSK) by the heparan-sulfate proteoglycan agrin released from the motor axon. On the other hand, DC electric field, a non-neuronal stimulus, is also highly effective in causing AChRs to cluster along the cathode-facing edge of muscle cells. Methodology/Principal Findings To understand its molecular mechanism, quantum dots (QDs) were used to follow the movement of AChRs as they became clustered under the influence of electric field. From analyses of trajectories of AChR movement in the membrane, it was concluded that diffuse receptors underwent Brownian motion until they were immobilized at sites of cluster formation. This supports the diffusion-mediated trapping model in explaining AChR clustering under the influence of this stimulus. Disrupting F-actin cytoskeleton assembly and interfering with rapsyn-AChR interaction suppressed this phenomenon, suggesting that these are integral components of the trapping mechanism induced by the electric field. Consistent with the idea that signaling pathways are activated by this stimulus, the localization of tyrosine-phosphorylated forms of AChR β-subunit and Src was observed at cathodal AChR clusters. Furthermore, disrupting MuSK activity through the expression of a kinase-dead form of this enzyme abolished electric field-induced AChR clustering. Conclusions These results suggest that DC electric field as a physical stimulus elicits molecular reactions in muscle cells in the form of cathodal MuSK activation in a ligand-free manner to trigger a signaling pathway that leads to cytoskeletal assembly and AChR clustering.
Collapse
Affiliation(s)
- Hailong Luke Zhang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - H. Benjamin Peng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- * E-mail:
| |
Collapse
|
49
|
Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization. Biol Cell 2011; 103:287-301. [PMID: 21524273 DOI: 10.1042/bc20110018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND INFORMATION Cholesterol/sphingolipid-rich membrane microdomains or membrane rafts have been implicated in various aspects of receptor function such as activation, trafficking and synapse localization. More specifically in muscle, membrane rafts are involved in AChR (acetylcholine receptor) clustering triggered by the neural factor agrin, a mechanism considered integral to NMJ (neuromuscular junction) formation. In addition, actin polymerization is required for the formation and stabilization of AChR clusters in muscle fibres. Since membrane rafts are platforms sustaining actin nucleation, we hypothesize that these microdomains provide the suitable microenvironment favouring agrin/MuSK (muscle-specific kinase) signalling, eliciting in turn actin cytoskeleton reorganization and AChR clustering. However, the identity of the signalling pathways operating through these microdomains still remains unclear. RESULTS In this work, we attempted to identify the interactions between membrane raft components and cortical skeleton that regulate, upon signalling by agrin, the assembly and stabilization of synaptic proteins of the postsynaptic membrane domain at the NMJ. We provide evidence that in C2C12 myotubes, agrin triggers the association of a subset of membrane rafts enriched in AChR, the -MuSK and Cdc42 (cell division cycle 42) to the actin cytoskeleton. Disruption of the liquid-ordered phase by methyl-β-cyclodextrin abolished this association. We further show that actin and the actin-nucleation factors, N-WASP (neuronal Wiscott-Aldrich syndrome protein) and Arp2/3 (actin-related protein 2/3) are transiently associated with rafts on agrin engagement. Consistent with these observations, pharmacological inhibition of N-WASP activity perturbed agrin-elicited AChR clustering. Finally, immunoelectron microscopic analyses of myotube membrane uncovered that AChRs were constitutively associated with raft nanodomains at steady state that progressively coalesced on agrin activation. These rearrangements of membrane domains correlated with the reorganization of cortical actin cytoskeleton through concomitant and transient recruitment of the Arp2/3 complex to AChR-enriched rafts. CONCLUSIONS The present observations support the notion that membrane rafts are involved in AChR clustering by promoting local actin cytoskeleton reorganization through the recruitment of effectors of the agrin/MuSK signalling cascade. These mechanisms are believed to play an important role in vivo in the formation of the NMJ.
Collapse
|
50
|
Jayakar SS, Margiotta JF. Abelson family tyrosine kinases regulate the function of nicotinic acetylcholine receptors and nicotinic synapses on autonomic neurons. Mol Pharmacol 2011; 80:97-109. [PMID: 21502378 PMCID: PMC3127535 DOI: 10.1124/mol.111.071308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/18/2011] [Indexed: 01/28/2023] Open
Abstract
Abelson family kinases (AFKs; Abl1, Abl2) are non-receptor tyrosine kinases (NRTKs) implicated in cancer, but they also have important physiological roles that include regulating synaptic structure and function. Recent studies using Abl-deficient mice and the antileukemia drug STI571 [imatinib mesylate (Gleevec); Novartis], which potently and selectively blocks Abl kinase activity, implicate AFKs in regulating presynaptic neurotransmitter release in hippocampus and postsynaptic clustering of nicotinic acetylcholine receptors (nAChRs) in muscle. Here, we tested whether AFKs are relevant for regulating nAChRs and nAChR-mediated synapses on autonomic neurons. AFK immunoreactivity was detected in ciliary ganglion (CG) lysates and neurons, and STI571 application blocked endogenous Abl tyrosine kinase activity. With similar potency, STI571 specifically reduced whole-cell current responses generated by both nicotinic receptor subtypes present on CG neurons (α3*- and α7-nAChRs) and lowered the frequency and amplitude of α3*-nAChR-mediated excitatory postsynaptic currents. Quantal analysis indicated that the synaptic perturbations were postsynaptic in origin, and confocal imaging experiments revealed they were unaccompanied by changes in nAChR clustering or alignment with presynaptic terminals. The results indicate that in autonomic neurons, Abl kinase activity normally supports postsynaptic nAChR function to sustain nAChR-mediated neurotransmission. Such consequences contrast with the influence of Abl kinase activity on presynaptic function and synaptic structure in hippocampus and muscle, respectively, demonstrating a cell-specific mechanism of action. Finally, because STI571 potently inhibits Abl kinase activity, the autonomic dysfunction side effects associated with its use as a chemotherapeutic agent may result from perturbed α3*- and/or α7-nAChR function.
Collapse
Affiliation(s)
- Selwyn S Jayakar
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614-5804, USA
| | | |
Collapse
|