1
|
Castón JR, Luque D. Conventional Electron Microscopy, Cryogenic Electron Microscopy, and Cryogenic Electron Tomography of Viruses. Subcell Biochem 2024; 105:81-134. [PMID: 39738945 DOI: 10.1007/978-3-031-65187-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides three-dimensional maps of these macromolecular complexes from projection images, at atomic or near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce, or transient in their native environments. State-of-the-art techniques in structural virology now extend beyond purified symmetric capsids and focus on the asymmetric elements such as the packaged genome and minor structural proteins that were previously missed. As a tool, cryo-EM also complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryogenic electron tomography (cryo-ET), a variation of cryo-EM, goes further, and allows the study of pleomorphic and complex viruses not only in their physiological state but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels. Cryo-EM and cryo-ET have been applied successfully in basic research, shedding light on fundamental aspects of virus biology and providing insights into threatening viruses, including SARS-CoV-2, responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- José R Castón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Madrid, Spain.
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Nature of the Dative Nitrogen-Coinage Metal Bond in Molecular Motors. Evaluation of NHC-M Pyrazine Bond (M=Cu, Ag, Au) from Relativistic DFT. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
4
|
Degree of Freedom of Gene Expression in Saccharomyces cerevisiae. Microbiol Spectr 2022; 10:e0083821. [PMID: 35230153 PMCID: PMC9045123 DOI: 10.1128/spectrum.00838-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complexity of genome-wide gene expression has not yet been adequately addressed due to a lack of comprehensive statistical analyses. In the present study, we introduce degree of freedom (DOF) as a summary statistic for evaluating gene expression complexity. Because DOF can be interpreted by a state-space representation, application of the DOF is highly useful for understanding gene activities. We used over 11,000 gene expression data sets to reveal that the DOF of gene expression in Saccharomyces cerevisiae is not greater than 450. We further demonstrated that various degrees of freedom of gene expression can be interpreted by different sequence motifs within promoter regions and Gene Ontology (GO) terms. The well-known TATA box is the most significant one among the identified motifs, while the GO term "ribosome genesis" is an associated biological process. On the basis of transcriptional freedom, our findings suggest that the regulation of gene expression can be modeled using only a few state variables. IMPORTANCE Yeast works like a well-organized factory. Each of its components works in its own way, while affecting the activities of others. The order of all activities is largely governed by the regulation of gene expression. In recent decades, biologists have recognized many regulations for yeast genes. However, it is not known how closely the regulation links each gene together to make all components of the cell work as a whole. In other words, biologists are very interested in how many independent control factors are needed to operate an artificial "cell" that works the same as a real one. In this work, we suggested that only 450 control factors were sufficient to represent the regulation of all 5800 yeast genes.
Collapse
|
5
|
Is the cell really a machine? J Theor Biol 2019; 477:108-126. [PMID: 31173758 DOI: 10.1016/j.jtbi.2019.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
It has become customary to conceptualize the living cell as an intricate piece of machinery, different to a man-made machine only in terms of its superior complexity. This familiar understanding grounds the conviction that a cell's organization can be explained reductionistically, as well as the idea that its molecular pathways can be construed as deterministic circuits. The machine conception of the cell owes a great deal of its success to the methods traditionally used in molecular biology. However, the recent introduction of novel experimental techniques capable of tracking individual molecules within cells in real time is leading to the rapid accumulation of data that are inconsistent with an engineering view of the cell. This paper examines four major domains of current research in which the challenges to the machine conception of the cell are particularly pronounced: cellular architecture, protein complexes, intracellular transport, and cellular behaviour. It argues that a new theoretical understanding of the cell is emerging from the study of these phenomena which emphasizes the dynamic, self-organizing nature of its constitution, the fluidity and plasticity of its components, and the stochasticity and non-linearity of its underlying processes.
Collapse
|
6
|
Custer TC, Walter NG. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines. Protein Sci 2017; 26:1363-1379. [PMID: 28028853 PMCID: PMC5477532 DOI: 10.1002/pro.3108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling.
Collapse
Affiliation(s)
- Thomas C Custer
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
7
|
de Jonge MD, Ryan CG, Jacobsen CJ. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1031-47. [PMID: 25177992 PMCID: PMC4151681 DOI: 10.1107/s160057751401621x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/11/2014] [Indexed: 05/22/2023]
Abstract
X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer.
Collapse
Affiliation(s)
- Martin D. de Jonge
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Christopher G. Ryan
- CSIRO Earth Science and Research Engineering, Clayton, Victoria 3168, Australia
| | - Chris J. Jacobsen
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
- Department of Physics, Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Hong YP, Gleber SC, O’Halloran TV, Que EL, Bleher R, Vogt S, Woodruff TK, Jacobsen C. Alignment of low-dose X-ray fluorescence tomography images using differential phase contrast. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:229-34. [PMID: 24365941 PMCID: PMC3874022 DOI: 10.1107/s1600577513029512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/25/2013] [Indexed: 05/09/2023]
Abstract
X-ray fluorescence nanotomography provides unprecedented sensitivity for studies of trace metal distributions in whole biological cells. Dose fractionation, in which one acquires very low dose individual projections and then obtains high statistics reconstructions as signal from a voxel is brought together (Hegerl & Hoppe, 1976), requires accurate alignment of these individual projections so as to correct for rotation stage runout. It is shown here that differential phase contrast at 10.2 keV beam energy offers the potential for accurate cross-correlation alignment of successive projections, by demonstrating that successive low dose, 3 ms per pixel, images acquired at the same specimen position and rotation angle have a narrower and smoother cross-correlation function (1.5 pixels FWHM at 300 nm pixel size) than that obtained from zinc fluorescence images (25 pixels FWHM). The differential phase contrast alignment resolution is thus well below the 700 nm × 500 nm beam spot size used in this demonstration, so that dose fractionation should be possible for reduced-dose, more rapidly acquired, fluorescence nanotomography experiments.
Collapse
Affiliation(s)
- Young Pyo Hong
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Correspondence e-mail:
| | - Sophie-Charlotte Gleber
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Thomas V. O’Halloran
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Emily L. Que
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Reiner Bleher
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Stefan Vogt
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Chris Jacobsen
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
9
|
Conventional electron microscopy, cryo-electron microscopy and cryo-electron tomography of viruses. Subcell Biochem 2013; 68:79-115. [PMID: 23737049 DOI: 10.1007/978-94-007-6552-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryo-electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides 3D maps of these macromolecular complexes from projection images, at subnanometer to near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce or transient in their native environments. As a tool, cryo-EM complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryo-electron tomography goes further, and allows the study of viruses not only in their physiological state, but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels.
Collapse
|
10
|
Atomic model of the type III secretion system needle. Nature 2012; 486:276-9. [PMID: 22699623 DOI: 10.1038/nature11079] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/23/2012] [Indexed: 12/18/2022]
Abstract
Pathogenic bacteria using a type III secretion system (T3SS) to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells. Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies, resulting in low-resolution and medium-resolution models. However, such approaches cannot deliver atomic details, especially of the crucial subunit-subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be α-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.
Collapse
|
11
|
Bouchet-Marquis C, Zuber B, Glynn AM, Eltsov M, Grabenbauer M, Goldie KN, Thomas D, Frangakis AS, Dubochet J, Chrétien D. Visualization of cell microtubules in their native state. Biol Cell 2012; 99:45-53. [PMID: 17049046 DOI: 10.1042/bc20060081] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Over the past decades, cryo-electron microscopy of vitrified specimens has yielded a detailed understanding of the tubulin and microtubule structures of samples reassembled in vitro from purified components. However, our knowledge of microtubule structure in vivo remains limited by the chemical treatments commonly used to observe cellular architecture using electron microscopy. RESULTS We used cryo-electron microscopy and cryo-electron tomography of vitreous sections to investigate the ultrastructure of microtubules in their cellular context. Vitreous sections were obtained from organotypic slices of rat hippocampus and from Chinese-hamster ovary cells in culture. Microtubules revealed their protofilament ultrastructure, polarity and, in the most favourable cases, molecular details comparable with those visualized in three-dimensional reconstructions of microtubules reassembled in vitro from purified tubulin. The resolution of the tomograms was estimated to be approx. 4 nm, which enabled the detection of luminal particles of approx. 6 nm in diameter inside microtubules. CONCLUSIONS The present study provides a first step towards a description of microtubules, in addition to other macromolecular assemblies, in an unperturbed cellular context at the molecular level. As the resolution appears to be similar to that obtainable with plunge-frozen samples, it should allow for the in vivo identification of larger macromolecular assemblies in vitreous sections of whole cells and tissues.
Collapse
Affiliation(s)
- Cédric Bouchet-Marquis
- Laboratory for Ultrastructural Analysis, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging. Int J Mol Sci 2011; 12:2518-42. [PMID: 21731456 PMCID: PMC3127132 DOI: 10.3390/ijms12042518] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
Molecular machines are examples of “pre-established” nanotechnology, driving the basic biochemistry of living cells. They encompass an enormous range of function, including fuel generation for chemical processes, transport of molecular components within the cell, cellular mobility, signal transduction and the replication of the genetic code, amongst many others. Much of our understanding of such nanometer length scale machines has come from in vitro studies performed in isolated, artificial conditions. Researchers are now tackling the challenges of studying nanomachines in their native environments. In this review, we outline recent in vivo investigations on nanomachines in model bacterial systems using state-of-the-art genetics technology combined with cutting-edge single-molecule and super-resolution fluorescence microscopy. We conclude that single-molecule and super-resolution fluorescence imaging provide powerful tools for the biochemical, structural and functional characterization of biological nanomachines. The integrative spatial, temporal, and single-molecule data obtained simultaneously from fluorescence imaging open an avenue for systems-level single-molecule cellular biophysics and in vivo biochemistry.
Collapse
|
13
|
Abstract
![]()
The objective of molecular electron microscopy (EM) is to use electron
microscopes to visualize the structure of biological molecules. This
Review provides a brief overview of the methods used in molecular
EM, their respective strengths and successes, and current developments
that promise an even more exciting future for molecular EM in the
structural investigation of proteins and macromolecular complexes,
studied in isolation or in the context of cells and tissues.
Collapse
Affiliation(s)
- Henning Stahlberg
- Molecular and Cellular Biology,
College of Biological Sciences, University of California at Davis,
Briggs Hall, 1 Shields Avenue, Davis, California 95616
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| |
Collapse
|
14
|
Alber F, Eswar N, Sali A. Structure Determination of Macromolecular Complexes by Experiment and Computation. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-3-540-74268-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Affiliation(s)
- Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, California 94720, USA
| |
Collapse
|
16
|
McDonald KL, Auer M. High-pressure freezing, cellular tomography, and structural cell biology. Biotechniques 2006; 41:137, 139, 141 passim. [PMID: 16925014 DOI: 10.2144/000112226] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Structural cell biology, which we define as electron microscopic analysis of intact cells, suffered a loss of interest and activity following the advances in light microscopy beginning in the 1990s. Interestingly, it is the wealth of detailed observation in the light microscope that is one of the driving forces for the current renewed interest in electron microscopy (EM). A great many cellular details are simply beyond the resolving power of the light microscope. In this article, we describe how electron microscopists are responding to the demands for better preservation of cells and for ways to view cell ultrastructure in three dimensions at high resolution. We discuss how low temperature methods, especially high-pressure freezing and freeze substitution, reduce the artifacts of conventional EM specimen preparation. We also give a brief introduction to cellular electron tomography, a powerful analytical method that can give near-atomic resolution of cell ultrastructure in three-dimensional (3-D) models.
Collapse
Affiliation(s)
- Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, USA
| | | |
Collapse
|
17
|
Sousa D, Grigorieff N. Ab initio resolution measurement for single particle structures. J Struct Biol 2006; 157:201-10. [PMID: 17029845 DOI: 10.1016/j.jsb.2006.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
A computational method is described that allows the measurement of the signal-to-noise ratio and resolution of a three-dimensional structure obtained by single particle electron microscopy and reconstruction. The method does not rely on the availability of the original image data or the calculation of several structures from different parts of the data that are needed for the commonly used Fourier Shell Correlation criterion. Instead, the correlation between neighboring Fourier pixels is calculated and used to distinguish signal from noise. The new method has been conveniently implemented in a computer program called RMEASURE and is available to the microscopy community.
Collapse
Affiliation(s)
- Duncan Sousa
- Howard Hughes Medical Institute and Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
18
|
Abstract
Single-particle electron microscopy has now reached maturity, becoming a commonly used method in the examination of macromolecular structure. Using a small amount of purified protein, isolated molecules are observed under the electron microscope and the data collected can be averaged into a 3D reconstruction. Single-particle electron microscopy is an appropriate tool for the analysis of proteins that can only be obtained in modest quantities, like many of the large complexes currently of interest in biomedicine. Whilst the use of electron microscopy expands, new methods are being developed and improved to deal with further challenges, such as reaching higher resolutions and the combination of information at different levels of structural detail. More importantly, present methodology is still not robust enough when studying certain tricky proteins like those displaying extensive conformational flexibility and a great deal of user expertise is required, posing a threat to the consistency of the final structure. This mini review describes a brief outline of the methods currently used in the 3D analysis of macromolecules using single-particle electron microscopy, intended for those first approaching this field. A summary of methods, techniques, software, and some recent work is presented. The spectacular improvements to the technique in recent years, its advantages and limitations compared to other structural methods, and its future developments are discussed.
Collapse
Affiliation(s)
- Oscar Llorca
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu, 9 Campus Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
19
|
Abstract
BACKGROUND Despite significant analysis of the chromosomal abnormalities associated with neuroblastoma (NB), the role that NB DNA replication may play in the accumulation of genetic damage is poorly understood. For that matter, the mechanisms involved in NB DNA synthesis have yet to be elucidated. In an effort to investigate this process in NB, we have isolated and purified a multiprotein DNA replication complex from human NB cells (IMR-32). METHODS Using a series of subcellular fractionations, ion-exchange chromatography, and gradient sedimentation steps, we have isolated a simian virus 40 replication competent multiprotein complex from IMR-32 NB cells, which has been designated the DNA synthesome. Enzymatic and immunodetection techniques were used to characterize the multiple components of the multiprotein DNA replication complex. RESULTS The NB DNA synthesome was found to remain intact and functional through all the steps of its purification. The proteins and enzymatic activities that were found to copurify with the NB DNA synthesome include: DNA polymerases alpha , delta , and epsilon , proliferating cell nuclear antigen, replication factor A, replication factor C, topoisomerases I and II, flap endonuclease 1, and DNA ligase I. CONCLUSION Although the cooperative integration of a DNA replication macromolecular complex (DNA synthesome) is not new, we extend the view of the DNA synthesome mediating DNA synthesis for human NB. The data reported here characterize the human NB DNA synthesome for the first time and provide the groundwork for investigating whether the NB DNA synthesome contributes to faulty DNA replication and tumor pathogenesis for this childhood malignancy.
Collapse
Affiliation(s)
- John A Sandoval
- Department of Surgery and Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
20
|
Saugar I, Luque D, Oña A, Rodríguez JF, Carrascosa JL, Trus BL, Castón JR. Structural Polymorphism of the Major Capsid Protein of a Double-Stranded RNA Virus: An Amphipathic α Helix as a Molecular Switch. Structure 2005; 13:1007-17. [PMID: 16004873 DOI: 10.1016/j.str.2005.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/05/2005] [Accepted: 04/05/2005] [Indexed: 11/26/2022]
Abstract
The infectious bursal disease virus T=13 viral particle is composed of two major proteins, VP2 and VP3. Here, we show that the molecular basis of the conformational flexibility of the major capsid protein precursor, pVP2, is an amphipatic alpha helix formed by the sequence GFKDIIRAIR. VP2 containing this alpha helix is able to assemble into the T=13 capsid only when expressed as a chimeric protein with an N-terminal His tag. An amphiphilic alpha helix, which acts as a conformational switch, is thus responsible for the inherent structural polymorphism of VP2. The His tag mimics the VP3 C-terminal region closely and acts as a molecular triggering factor. Using cryo-electron microscopy difference imaging, both polypeptide elements were detected on the capsid inner surface. We propose that electrostatic interactions between these two morphogenic elements are transmitted to VP2 to acquire the competent conformations for capsid assembly.
Collapse
Affiliation(s)
- Irene Saugar
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Stewart A, Grigorieff N. Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 2005; 102:67-84. [PMID: 15556702 DOI: 10.1016/j.ultramic.2004.08.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Revised: 08/14/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
One of the main goals in the determination of three-dimensional macromolecular structures from electron microscope images of individual molecules and complexes (single particles) is a sufficiently high spatial resolution, about 4 A, at which the interpretation with an atomic model becomes possible. To reach high resolution, an iterative refinement procedure using an expectation maximization algorithm is often used that leads to a more accurate alignment of the positional and orientational parameters for each particle. We show here the results of refinement algorithms that use a phase residual, a linear correlation coefficient, or a weighted correlation coefficient to align individual particles. The algorithms were applied to computer-generated data sets that contained projections from model structures, as well as noise. The algorithms show different degrees of over-fitting, especially at high resolution where the signal is weak. We demonstrate that the degree of over-fitting is reduced with a weighting scheme that depends on the signal-to-noise ratio in the data. The weighting also improves the accuracy of resolution measurement by the commonly used Fourier shell correlation. The performance of the refinement algorithms is compared to that using a maximum likelihood approach. The weighted correlation coefficient was implemented in the computer program FREALIGN.
Collapse
Affiliation(s)
- Alex Stewart
- Howard Hughes Medical Institute and Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | | |
Collapse
|
22
|
Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf M, Sali A. A structural perspective on protein-protein interactions. Curr Opin Struct Biol 2004; 14:313-24. [PMID: 15193311 DOI: 10.1016/j.sbi.2004.04.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structures of macromolecular complexes are necessary for a mechanistic description of biochemical and cellular processes. They can be solved by experimental methods, such as X-ray crystallography, NMR spectroscopy and electron microscopy, as well as by computational protein structure prediction, docking and bioinformatics. Recent advances and applications of these methods emphasize the need for hybrid approaches that combine a variety of data to achieve better efficiency, accuracy, resolution and completeness.
Collapse
|
23
|
Chen Y, Cai J, Zhao T, Wang C, Dong S, Luo S, Chen ZW. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures. Ultramicroscopy 2004; 103:173-82. [PMID: 15850704 PMCID: PMC2873076 DOI: 10.1016/j.ultramic.2004.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 10/26/2004] [Accepted: 11/23/2004] [Indexed: 11/18/2022]
Abstract
The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60 nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale.
Collapse
Affiliation(s)
- Yong Chen
- College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Llorca O, Pearl LH. Electron microscopy studies on DNA recognition by DNA-PK. Micron 2004; 35:625-33. [PMID: 15288642 DOI: 10.1016/j.micron.2004.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 05/20/2004] [Accepted: 05/24/2004] [Indexed: 02/05/2023]
Abstract
Advances in transmission electron microscopy coupled to increasingly powerful biocomputing techniques are opening enormous possibilities to understand the structure and function of complex biological processes performed by large multi-protein assemblies. This is an exciting time for electron microscopists because we can combine our efforts with X-ray crystallographers and NMR spectroscopists to reach the prospect of studying the structure and dynamics of the so-called 'molecular machines'. One of these fascinating systems is the macromolecular complex formed around double-stranded DNA breaks (DSBs). Non-homologous end-joining (NHEJ) is the main DSBs repair pathway in mammalian cells, where a collection of proteins interact to rejoin two broken DNA ends. During NHEJ, DNA-dependent protein kinase (DNA-PK) binds damaged DNA with high affinity and acts as the main scaffold for other repair factors. Several studies have made use of the electron microscope to reveal the three-dimensional architecture of DNA-PK and the structural basis for the recognition of damaged DNA and the activation of DNA-PK's kinase activity.
Collapse
Affiliation(s)
- Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Campus Universidad Complutense, Madrid 28040, Spain.
| | | |
Collapse
|
25
|
Knight JL, Mekler V, Mukhopadhyay J, Ebright RH, Levy RM. Distance-restrained docking of rifampicin and rifamycin SV to RNA polymerase using systematic FRET measurements: developing benchmarks of model quality and reliability. Biophys J 2004; 88:925-38. [PMID: 15542547 PMCID: PMC1305165 DOI: 10.1529/biophysj.104.050187] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We are developing distance-restrained docking strategies for modeling macromolecular complexes that combine available high-resolution structures of the components and intercomponent distance restraints derived from systematic fluorescence resonance energy transfer (FRET) measurements. In this article, we consider the problem of docking small-molecule ligands within macromolecular complexes. Using simulated FRET data, we have generated a series of benchmarks that permit estimation of model accuracy based on the quantity and quality of FRET-derived distance restraints, including the number, random error, systematic error, distance distribution, and radial distribution of FRET-derived distance restraints. We find that expected model accuracy is 10 A or better for models based on: i), > or =20 restraints with up to 15% random error and no systematic error, or ii), > or =20 restraints with up to 15% random error, up to 10% systematic error, and a symmetric radial distribution of restraints. Model accuracies can be improved to 5 A or better by increasing the number of restraints to > or =40 and/or by optimizing the distance distribution of restraints. Using experimental FRET data, we have defined the positions of the binding sites within bacterial RNA polymerase of the small-molecule inhibitors rifampicin (Rif) and rifamycin SV (Rif SV). The inferred binding sites for Rif and Rif SV were located with accuracies of, respectively, 7 and 10 A relative to the crystallographically defined binding site for Rif. These accuracies agree with expectations from the benchmark simulations and suffice to indicate that the binding sites for Rif and Rif SV are located within the RNA polymerase active-center cleft, overlapping the binding site for the RNA-DNA hybrid.
Collapse
Affiliation(s)
- Jennifer L Knight
- Department of Chemistry and Chemical Biology and the BioMaPS Institute for Quantitative Biology, and Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
The phenomenon of allostery is conventionally described for small symmetrical oligomeric proteins such as hemoglobin. Here we review experimental evidence from a variety of systems-including bacterial chemotaxis receptors, muscle ryanodine receptors, and actin filaments-showing that conformational changes can also propagate through extended lattices of protein molecules. We explore the statistical mechanics of idealized linear and two-dimensional arrays of allosteric proteins and show that, as in the analogous Ising models, arrays of closely packed units can show large-scale integrated behavior. We also discuss proteins that undergo conformational changes driven by the hydrolysis of ATP and give examples in which these changes propagate through linear chains of molecules. We suggest that conformational spread could provide the basis of a solid-state "circuitry" in a living cell, able to integrate biochemical and biophysical events over hundreds of protein molecules.
Collapse
Affiliation(s)
- Dennis Bray
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.
| | | |
Collapse
|
27
|
Singh V, Marinescu DC, Baker TS. Image segmentation for automatic particle identification in electron micrographs based on hidden Markov random field models and expectation maximization. J Struct Biol 2004; 145:123-41. [PMID: 15065680 PMCID: PMC4167639 DOI: 10.1016/j.jsb.2003.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-dimensional reconstruction of large macromolecules like viruses at resolutions below 10 A requires a large set of projection images. Several automatic and semi-automatic particle detection algorithms have been developed along the years. Here we present a general technique designed to automatically identify the projection images of particles. The method is based on Markov random field modelling of the projected images and involves a pre-processing of electron micrographs followed by image segmentation and post-processing. The image is modelled as a coupling of two fields--a Markovian and a non-Markovian. The Markovian field represents the segmented image. The micrograph is the non-Markovian field. The image segmentation step involves an estimation of coupling parameters and the maximum á posteriori estimate of the realization of the Markovian field i.e, segmented image. Unlike most current methods, no bootstrapping with an initial selection of particles is required.
Collapse
Affiliation(s)
- Vivek Singh
- School of Computer Science, University of Central Florida, Orlando, FL 32816, USA.
| | | | | |
Collapse
|
28
|
Fernandez MI, Prevost MC, Sansonetti PJ, Griffiths G. Applications of Cryo- and Transmission Electron Microscopy in the Study of Microbial Macromolecular Structure and Bacterial–Host Cell Interactions. METHODS IN MICROBIOLOGY 2004. [DOI: 10.1016/s0580-9517(04)34005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Jiménez-Lozano N, Chagoyen M, Cuenca-Alba J, Carazo JM. FEMME database: topologic and geometric information of macromolecules. J Struct Biol 2003; 144:104-13. [PMID: 14643213 DOI: 10.1016/j.jsb.2003.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FEMME (Feature Extraction in a Multi-resolution Macromolecular Environment: http://www.biocomp.cnb.uam.es/FEMME/) database version 1.0 is a new bioinformatics data resource that collects topologic and geometric information obtained from macromolecular structures solved by three-dimensional electron microscopy (3D-EM). Although the FEMME database is focused on medium resolution data, the methodology employed (based on the so-called alpha-shape theory) is applicable to atomic resolution data as well. The alpha-shape representation allows the automatic extraction of structural features from 3D-EM volumes and their subsequent characterisation. FEMME is being populated with 3D-EM data stored in the electron microscopy database EMD-DB (http://www.ebi.ac.uk/msd/). However, and since the number of entries in EMD-DB is still relatively small, FEMME is also being populated in this initial phase with structural data from PDB and PQS databases (http://www.rcsb.org/pdb/ and pqs.ebi.ac.uk/, respectively) whose resolution has been lowered accordingly. Each FEMME entry contains macromolecular geometry and topology information with a detailed description of its structural features. Moreover, FEMME data have facilitated the study and development of a method to retrieve macromolecular structures by their structural content based on the combined use of spin images and neural networks with encouraging results. Therefore, the FEMME database constitutes a powerful tool that provides a uniform and automatic way of analysing volumes coming from 3D-EM that will hopefully help the scientific community to perform wide structural comparisons.
Collapse
Affiliation(s)
- N Jiménez-Lozano
- Unidad de Biocomputación, Centro Nacional de Biotecnologi;a (CNB), Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Zhu Y, Carragher B, Mouche F, Potter CS. Automatic particle detection through efficient Hough transforms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2003; 22:1053-1062. [PMID: 12956261 DOI: 10.1109/tmi.2003.816947] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Manual selection of single particles in images acquired using cryo-electron microscopy (cryoEM) will become a significant bottleneck when a very large number of images are required to achieve three-dimensional reconstructions at near atomic resolution. Investigation of fast, accurate approaches for automatic particle detection has become one of the current challenges in the cryoEM community. At the same time, the investigation is hampered by the fact that few benchmark particles or image datasets exist in the community. The unavailability of such data makes it difficult to evaluate newly developed algorithms and to leverage expertise from other disciplines. The paper presents our recent contribution to this effort. It also describes our newly developed computational framework for particle detection, through the application of edge detection and a sequence of ordered Hough transforms. Experimental results using keyhole limpet hemocyanin (KLH) as a model particle are very promising. In addition, it introduces a newly established web site, designed to support the investigation of automatic particle detection by providing an annotated image dataset of KLH available to the general scientific community.
Collapse
Affiliation(s)
- Yuanxin Zhu
- The Scripps Research Institute, Mail Code CB129, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
31
|
Hanin L, Green B, Zal F, Vinogradov S. Mass distributions of a macromolecular assembly based on electrospray ionization mass spectrometric masses of the constituent subunits. J Biosci 2003; 28:557-68. [PMID: 14517359 DOI: 10.1007/bf02703331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Macromolecular assemblies containing multiple protein subunits and having masses in the megadalton (MDa) range are involved in most of the functions of a living cell. Because of variation in the number and masses of subunits, macromolecular assemblies do not have a unique mass, but rather a mass distribution. The giant extracellular erythrocruorins (Ers), approximately 3.5 MDa, comprised of at least 180 polypeptide chains, are one of the best characterized assemblies. Three-dimensional reconstructions from cryoelectron microscopic images show them to be hexagonal bilayer complexes of 12 subassemblies, each comprised of 12 globin chains, anchored to a subassembly of 36 nonglobin linker chains. We have calculated the most probable mass distributions for Lumbricus and Riftia assemblies and their globin and linker subassemblies, based on the Lumbricus Er stoichiometry and using accurate subunit masses obtained by electrospray ionization mass spectrometry. The expected masses of Lumbricus and Riftia Ers are 3.517 MDa and 3.284 MDa, respectively, with a possible variation of approximately 9% due to the breadth of the mass distributions. The Lumbricus Er mass is in astonishingly good agreement with the mean of 23 known masses, 3.524 +/- 0.481 MDa.
Collapse
Affiliation(s)
- Leonid Hanin
- Department of Mathematics, Idaho State University, Pocatello, ID 8085, USA
| | | | | | | |
Collapse
|
32
|
Wagenknecht T, Hsieh CE, Rath BK, Fleischer S, Marko M. Electron tomography of frozen-hydrated isolated triad junctions. Biophys J 2002; 83:2491-501. [PMID: 12414683 PMCID: PMC1302335 DOI: 10.1016/s0006-3495(02)75260-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cryoelectron microscopy and tomography have been applied for the first time to isolated, frozen-hydrated skeletal muscle triad junctions (triads) and terminal cisternae (TC) vesicles derived from sarcoplasmic reticulum. Isolated triads were selected on the basis of their appearance as two spherical TC vesicles attached to opposite sides of a flattened vesicle derived from a transverse tubule (TT). Foot structures (ryanodine receptors) were resolved within the gap between the TC vesicles and TT vesicles, and some residual ordering of the receptors into arrays was apparent. Organized dense layers, apparently containing the calcium-binding protein calsequestrin, were found in the lumen of TC vesicles underlying the foot structures. The lamellar regions did not directly contact the sarcoplasmic reticulum membrane, thereby creating an approximately 5-nm-thick zone that potentially constitutes a subcompartment for achieving locally elevated [Ca(2+) ] in the immediate vicinity of the Ca(2+)-conducting ryanodine receptors. The lumen of the TT vesicles contained globular mass densities of unknown origin, some of which form cross-bridges that may be responsible for the flattened appearance of the transverse tubules when viewed in cross-section. The spatial relationships among the TT membrane, ryanodine receptors, and calsequestrin-containing assemblage are revealed under conditions that do not use dehydration, heavy-metal staining, or chemical fixation, thus exemplifying the potential of cryoelectron microscopy and tomography to reveal structural detail of complex subcellular structures.
Collapse
Affiliation(s)
- T Wagenknecht
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | | | | | | | |
Collapse
|
33
|
Frank J. Single-particle imaging of macromolecules by cryo-electron microscopy. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:303-19. [PMID: 11988472 DOI: 10.1146/annurev.biophys.31.082901.134202] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryo-electron microscopy (cryo-EM) of biological molecules in single-particle (i.e., unordered, nonaggregated) form is a new approach to the study of molecular assemblies, which are often too large and flexible to be amenable to X-ray crystallography. New insights into biological function on the molecular level are expected from cryo-EM applied to the study of such complexes "trapped" at different stages of their conformational changes and dynamical interactions. Important molecular machines involved in the fundamental processes of transcription, mRNA splicing, and translation are examples for successful applications of the new technique, combined with structural knowledge gained by conventional techniques of structure determination, such as X-ray crystallography and NMR.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Health Research Inc at the Wadsworth Center, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA.
| |
Collapse
|
34
|
Abstract
There has been some progress (but not much) in simulating supramolecular assemblages in the past year. The two main technical advances have been, firstly, the establishment of a protocol for extracting equilibrium thermodynamic data from forced (i.e. nonequilibrium) simulations and experiments, and, secondly, the development of a method for accurately calculating the electrostatics of enormous systems. Some recent applications have demonstrated the increasing feasibility of performing meaningful simulations of very large systems.
Collapse
Affiliation(s)
- Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
35
|
Brink J, Ludtke SJ, Yang CY, Gu ZW, Wakil SJ, Chiu W. Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proc Natl Acad Sci U S A 2002; 99:138-43. [PMID: 11756679 PMCID: PMC117528 DOI: 10.1073/pnas.012589499] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the first three-dimensional reconstruction of human fatty acid synthase obtained by electron cryomicroscopy and single-particle image processing. The structure shows that the synthase is composed of two monomers, arranged in an antiparallel orientation, which is consistent with biochemical data. The monomers are connected to each other at their middle by a bridge of density, a site proposed to be the combination of the interdomain regions of the two monomers. Each monomer subunit appears to be subdivided into three structural domains. With this reconstruction of the synthase, we propose a location for the enzyme's two fatty acid synthesis sites.
Collapse
Affiliation(s)
- Jacob Brink
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and National Center for Macromolecular Imaging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ludtke SJ, Jakana J, Song JL, Chuang DT, Chiu W. A 11.5 A single particle reconstruction of GroEL using EMAN. J Mol Biol 2001; 314:253-62. [PMID: 11718559 DOI: 10.1006/jmbi.2001.5133] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single-particle analysis has become an increasingly important method for structural determination of large macromolecular assemblies. GroEL is an 800 kDa molecular chaperone, which, along with its co-chaperonin GroES, promotes protein folding both in vitro and in the bacterial cell. EMAN is a single-particle analysis software package, which was first publicly distributed in 2000. We present a three-dimensional reconstruction of native naked GroEL to approximately 11.5 A performed entirely with EMAN. We demonstrate that the single-particle reconstruction, X-ray scattering data and X-ray crystal structure all agree well at this resolution. These results validate the specific methods of image restoration, reconstruction and evaluation techniques implemented in EMAN. It also demonstrates that the single-particle reconstruction technique and X-ray crystallography will yield consistent structure factors, even at low resolution, when image restoration is performed correctly. A detailed comparison of the single-particle and X-ray structures exhibits some small variations in the equatorial domain of the molecule, likely due to the absence of crystal packing forces in the single-particle reconstruction.
Collapse
Affiliation(s)
- S J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Two new methods, single-particle cryo-electron microscopy reconstruction and electron tomography, are increasingly used to visualize molecular machines in vitro and in the cellular context, respectively. Current efforts focus on the development of methods capable of visualizing molecular signatures in the cell, and first progress in this direction has now been made.
Collapse
|
38
|
Abstract
Electron cryomicroscopy methods comprise a rapidly expanding field providing insights into the structure and function of biological macromolecules and their supramolecular assemblies. The 3.8 A resolution structure of the membrane protein aquaporin, a view of the herpesvirus capsid at 8.5 A and the 10 A resolution structure of the spliceosomal U1 small nuclear ribonucleoprotein complex are three outstanding examples emphasizing the versatility of this technique.
Collapse
Affiliation(s)
- V M Unger
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8024, USA.
| |
Collapse
|
39
|
Zhu Y, Carragher B, Kriegman DJ, Milligan RA, Potter CS. Automated identification of filaments in cryoelectron microscopy images. J Struct Biol 2001; 135:302-12. [PMID: 11722170 DOI: 10.1006/jsbi.2001.4415] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the foundation for the three-dimensional image reconstruction of helical objects from electron micrographs was laid more than 30 years ago, there have been sustained developments in specimen preparation, data acquisition, image analysis, and interpretation of results. However, the boxing of filaments in large numbers of images--one of the critical steps toward the reconstruction at high resolution--is still constrained by manual processing even though interactive interfaces have been built to aid the tedious and sometimes inaccurate boxing process. This article describes an accurate approach for automated detection of filamentous structures in low-contrast images acquired in defocus pairs using cryoelectron microscopy. The performance of the approach has been evaluated across various magnifications and at a series of defocus values using tobacco mosaic virus (TMV) preserved in vitreous ice as a test specimen. By integrating the proposed approach into our automated data acquisition and reconstruction system, we are now able to generate a three-dimensional map of TMV to approximately 10-A resolution within 24 h of inserting the specimen grid into the microscope.
Collapse
Affiliation(s)
- Y Zhu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The fission yeast, Schizosaccharomyces pombe, has been used as a model eukaryote to study processes such as the cell cycle and cell morphology. In this single-celled organism, growing in a straight line and maintaining the nucleus in the centre of the cell depend on intracellular positional information. Microtubules and microtubular transport are important for generating positional information within the fission yeast cell, and these molecular mechanisms are also probably relevant for generating positional information in other eukaryotic cells.
Collapse
Affiliation(s)
- J Hayles
- Cell Cycle Laboratory, Imperial Cancer Research Fund, PO Box 123, Lincoln's Inn Fields, London, WC2A 3PX, UK.
| | | |
Collapse
|
41
|
McIntosh JR. Electron microscopy of cells: a new beginning for a new century. J Cell Biol 2001; 153:F25-32. [PMID: 11402057 PMCID: PMC2192021 DOI: 10.1083/jcb.153.6.f25] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2001] [Accepted: 05/07/2001] [Indexed: 12/31/2022] Open
Affiliation(s)
- J R McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
42
|
Abstract
The linear array of nucleosomes that comprises the primary structure of chromatin is folded and condensed to varying degrees in nuclei and chromosomes forming 'higher order structures'. We discuss the recent findings from novel experimental approaches that have yielded significant new information on the different hierarchical levels of chromatin folding and their functional significance.
Collapse
Affiliation(s)
- C L Woodcock
- Biology Department, University of Massachusetts, Amherst 01003, USA.
| | | |
Collapse
|