1
|
Saadh MJ, Allela OQB, Kareem RA, Baldaniya L, Ballal S, Vashishth R, Parmar M, Sameer HN, Hamad AK, Athab ZH, Adil M. Prognostic gene expression profile of colorectal cancer. Gene 2025; 955:149433. [PMID: 40122415 DOI: 10.1016/j.gene.2025.149433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer is a major global health burden, with significant heterogeneity in clinical outcomes among patients. Identifying robust prognostic gene expression signatures can help stratify patients, guide treatment decisions, and improve clinical management. This review provides an overview of current prognostic gene expression profiles in colorectal cancer research. We have synthesized evidence from numerous published studies investigating the association between tumor gene expression patterns and patient survival outcomes. The reviewed literature reveals several promising gene signatures that have demonstrated the ability to predict disease-free survival and overall survival in CRC patients, independent of standard clinicopathological risk factors. These genes are crucial in fundamental biological processes, including cell cycle control, epithelial-mesenchymal transition, and immune regulation. The implementation of prognostic gene expression tests in clinical practice holds great potential for enabling more personalized management strategies for colorectal cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Manisha Parmar
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India.
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | | |
Collapse
|
2
|
Nie YM, Zhou WQ, Niu T, Mao MF, Zhan YX, Li Y, Wang KP, Li MX, Ding K. Peptidoglycan isolated from the fruit of Lycium barbarum alleviates liver fibrosis in mice by regulating the TGF-β/Smad7 signaling and gut microbiota. Acta Pharmacol Sin 2025; 46:1329-1344. [PMID: 39833303 PMCID: PMC12032012 DOI: 10.1038/s41401-024-01454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
The hepatoprotective effect of the fruit of Lycium barbarum has been documented in China over millennia. Lycium barbarum polysaccharides (LBPs) were the first macromolecules reported to mitigate liver fibrosis in carbon tetrachloride (CCl4)-treated mice. Herein, a neutral peptidoglycan, named as LBPW, was extracted from the fruit of Lycium barbarum. In this study, we investigated the hepatoprotective mechanisms of LBPW. CCl4-induced liver fibrosis mice were administered LBPW (50, 100, 200 mg ·kg-1 ·d-1, i.p.) or (100, 200, 300 mg· kg-1 ·d-1, i.g.) for 6 weeks. We showed that either i.p. or i.g. administration of LBPW dose-dependently attenuated liver damage and fibrosis in CCl4-treated mice. Pharmacokinetic analysis showed that cyanine 5.5 amine (Cy5.5)-labeled LBPW (Cy5.5-LBPW) could be detected in the liver through i.p. and i.g. administration with i.g.-administered Cy5.5-LBPW mainly accumulating in the intestine. In TGF-β1-stimulated LX-2 cells as well as in the liver of CCl4-treated mice, we demonstrated that LBPW significantly upregulated Smad7, a negative regulator of TGF-β/Smad signaling, to retard the activation of hepatic stellate cells (HSCs) and prevent liver fibrosis. On the other hand, LBPW significantly boosted the abundance of Akkermansia muciniphila (A. muciniphila) and fortified gut barrier function. We demonstrated that A. muciniphila might be responsible for the efficacy of LBPW since decreasing the abundance of this bacterium by antibiotics (Abs) blocked the effectiveness of LBPW. Overall, our results show that LBPW may exert the hepatoprotective effect via rebalancing TGF-β/Smad7 signaling and propagating gut commensal A. muciniphila, suggesting that LBPW could be leading components to be developed as new drug candidates or nutraceuticals against liver fibrosis.
Collapse
Affiliation(s)
- Ying-Min Nie
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Qi Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 201203, China
| | - Ting Niu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Meng-Fei Mao
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xue Zhan
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai-Ping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mei-Xia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Lingang Laboratory, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, 528400, China.
| |
Collapse
|
3
|
Liu Y, Xia F, Zhu C, Song J, Tang B, Zhang B, Huang Z. Protein serine/threonine phosphatases in tumor microenvironment: a vital player and a promising therapeutic target. Theranostics 2025; 15:1164-1184. [PMID: 39776803 PMCID: PMC11700861 DOI: 10.7150/thno.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is involved in cancer initiation and progression. With advances in the TME field, numerous therapeutic approaches, such as antiangiogenic treatment and immune checkpoint inhibitors, have been inspired and developed. Nevertheless, the sophisticated regulatory effects on the biological balance of the TME remain unclear. Decoding the pathological features of the TME is urgently needed to understand the tumor ecosystem and develop novel antitumor treatments. Protein serine/threonine phosphatases (PSPs) are responsible for inverse protein phosphorylation processes. Aberrant expression and dysfunction of PSPs disturb cellular homeostasis, reprogram metabolic processes and reshape the immune landscape, thereby contributing to cancer progression. Some therapeutic implications, such as the use of PSPs as targets, have drawn the attention of researchers and clinicians. To date, the effects of PSP inhibitors are less satisfactory in real-world practice. With breakthroughs in sequencing technologies, scientists can decipher TME investigations via multiomics and higher resolution. These benefits provide an opportunity to explore the TME in a more comprehensive manner and inspire more findings concerning PSPs in the TME. The current review starts by introducing the canonical knowledge of PSPs, including their members, structures and posttranslational modifications for activities. We then summarize the functions of PSPs in regulating cellular homeostasis. In particular, we specified the up-to-date roles of PSPs in modulating the immune microenvironment, adopting hypoxia, reprogramming metabolic processes, and responding to extracellular matrix remodeling. Finally, we introduce preclinical PSP inhibitors with translational value and conclude with clinical trials of PSP inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Cruz DF, Donovan J, Hejenkowska ED, Mu F, Banerjee I, Köhn M, Farinha CM, Swiatecka-Urban A. LMTK2 switches on canonical TGF-β1 signaling in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2024; 327:L769-L782. [PMID: 39316683 PMCID: PMC11560069 DOI: 10.1152/ajplung.00034.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Transforming growth factor (TGF-β1) is a critical profibrotic mediator in chronic lung disease, and there are no specific strategies to mitigate its adverse effects. Activation of TGF-β1 signaling is a multipart process involving ligands, transmembrane receptors, and transcription factors. In addition, an intricate network of adaptor proteins fine-tunes the signaling strength, duration, and activity. Namely, Smad7 recruits growth arrest and DNA damage (GADD34) protein that then interacts with the catalytic subunit of phosphoprotein phosphatase 1 (PP1c) to inactivate TGF-β receptor (TβR)-I and downregulate TGF-β1 signaling. Little is known about how TGF-β1 releases TβR-I from the GADD34-PP1c inhibition to activate its signaling. Transmembrane lemur tyrosine kinase 2 (LMTK2) is a PP1c inhibitor, and our published data showed that TGF-β1 recruits LMTK2 to the cell surface. Here, we tested the hypothesis that TGF-β1 recruits LMTK2 to inhibit PP1c, allowing activation of TβR-I. First, LMTK2 interacted with the TGF-β1 pathway in the human bronchial epithelium at multiple checkpoints. Second, TGF-β1 inhibited PP1c by an LMTK2-dependent mechanism. Third, TGF-β1 used LMTK2 to activate canonical Smad3-mediated signaling. We propose a model whereby the LMTK2-PP1c and Smad7-GADD34-PP1c complexes serve as on-and-off switches in the TGF-β1 signaling in human bronchial epithelium.NEW & NOTEWORTHY Activation of the transforming growth factor (TGF)-β1 signaling pathway is complex, involving many ligands, transmembrane receptors, transcription factors, and modulating proteins. The mechanisms of TGF-β1 signaling activation/inactivation are not fully understood. We propose for the first time a model by which transmembrane lemur tyrosine kinase 2 (LMTK2) forms a complex with phosphoprotein phosphatase 1 (PP1c) to activate TGF-β1 signaling and Smad7, growth arrest and DNA damage (GADD34), and PP1C form a complex to inactivate TGF-β1 signaling in human bronchial epithelium.
Collapse
Affiliation(s)
- Daniel F Cruz
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Joshua Donovan
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Ewelina D Hejenkowska
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ipsita Banerjee
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maja Köhn
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
5
|
Voytyuk O, Ohata Y, Moustakas A, Ten Dijke P, Heldin CH. Smad7 palmitoylation by the S-acyltransferase zDHHC17 enhances its inhibitory effect on TGF-β/Smad signaling. J Biol Chem 2024; 300:107462. [PMID: 38876303 PMCID: PMC11277750 DOI: 10.1016/j.jbc.2024.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Intracellular signaling by the pleiotropic cytokine transforming growth factor-β (TGF-β) is inhibited by Smad7 in a feedback control mechanism. The activity of Smad7 is tightly regulated by multiple post-translational modifications. Using resin-assisted capture and metabolic labeling methods, we show here that Smad7 is S-palmitoylated in mammary epithelial cell models that are widely studied because of their strong responses to TGF-β and their biological relevance to mammary development and tumor progression. S-palmitoylation of Smad7 is mediated by zDHHC17, a member of a family of 23 S-acyltransferase enzymes. Moreover, we identified four cysteine residues (Cys202, Cys225, Cys415, and Cys417) in Smad7 as palmitoylation acceptor sites. S-palmitoylation of Smad7 on Cys415 and Cys417 promoted the translocation of Smad7 from the nucleus to the cytoplasm, enhanced the stability of the Smad7 protein, and enforced its inhibitory effect on TGF-β-induced Smad transcriptional response. Thus, our findings reveal a new post-translational modification of Smad7, and highlight an important role of S-palmitoylation to enhance inhibition of TGF-β/Smad signaling by Smad7.
Collapse
Affiliation(s)
- Oleksandr Voytyuk
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden.
| | - Yae Ohata
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Yan Y, Shetty M, Harding HP, George G, Zyryanova A, Labbé K, Mafi A, Hao Q, Sidrauski C, Ron D. Substrate recruitment via eIF2γ enhances catalytic efficiency of a holophosphatase that terminates the integrated stress response. Proc Natl Acad Sci U S A 2024; 121:e2320013121. [PMID: 38547060 PMCID: PMC10998612 DOI: 10.1073/pnas.2320013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024] Open
Abstract
Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.
Collapse
Affiliation(s)
- Yahui Yan
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Maithili Shetty
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Heather P. Harding
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Ginto George
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Alisa Zyryanova
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | | | | | - Qi Hao
- Calico Life Sciences, South San Francisco, CA94080
| | | | - David Ron
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| |
Collapse
|
7
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Liu C, Chen L, Cong Y, Cheng L, Shuai Y, Lv F, Chen K, Song Y, Xing Y. Protein phosphatase 1 regulatory subunit 15 A promotes translation initiation and induces G2M phase arrest during cuproptosis in cancers. Cell Death Dis 2024; 15:149. [PMID: 38365764 PMCID: PMC10873343 DOI: 10.1038/s41419-024-06489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Copper ions play a crucial role as cofactors for essential enzymes in cellular processes. However, when the intracellular concentration of copper ions exceeds the homeostatic threshold, they become toxic to cells. In our study, we demonstrated that elesclomol, as a carrier of copper ions, caused an upregulation of protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), which plays a role in regulating substrate selectivity of protein phosphatase 1 during cuproptosis. Mechanistically, we investigated that PPP1R15A activated translation initiation by dephosphorylating eukaryotic translation initiation factor 2 subunit alpha at the S51 residue through protein phosphatase 1 and phosphorylating eukaryotic translation initiation factor 4E binding protein 1 at the T70 residue. In addition, PPP1R15A reduced H3K4 methylation by altering the phosphorylation of histone methyltransferases, which led to the silencing of MYC and G2M phase arrest.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yukun Cong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yujun Shuai
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Fang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
9
|
Dolliver SM, Galbraith C, Khaperskyy DA. Human Betacoronavirus OC43 Interferes with the Integrated Stress Response Pathway in Infected Cells. Viruses 2024; 16:212. [PMID: 38399988 PMCID: PMC10893100 DOI: 10.3390/v16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.
Collapse
Affiliation(s)
| | | | - Denys A. Khaperskyy
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
10
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
12
|
Monteleone G, Laudisi F, Stolfi C. Smad7 as a positive regulator of intestinal inflammatory diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100055. [PMID: 36714553 PMCID: PMC9881044 DOI: 10.1016/j.crimmu.2023.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
In physiological conditions, the human gut contains more immune cells than the rest of the body, but no overt tissue damage occurs, because several regulatory mechanisms control the activity of such cells thus preventing excessive and detrimental responses. One such mechanism relies on the action of transforming growth factor (TGF)-β1, a cytokine that targets both epithelial cells and many immune cell types. Loss of TGF-β1 function leads to intestinal pathology in both mice and humans. For instance, disruption of TGF-β1 signaling characterizes the destructive immune-inflammatory response in patients with Crohn's disease and patients with ulcerative colitis, the major human inflammatory bowel disease (IBD) entities. In these pathologies, the defective TGF-β1-mediated anti-inflammatory response is associated with elevated intestinal levels of Smad7, an antagonist of TGF-β1 signaling. Consistently, knockdown of Smad7 restores TGF-β1 function thereby attenuating intestinal inflammation in patients with IBD as well as in mice with IBD-like colitis. Up-regulation of Smad7 and reduced TGF-β1 signaling occurs also in necrotizing enterocolitis, environmental enteropathy, refractory celiac disease, and cytomegalovirus-induced colitis. In this article, we review the available data supporting the pathogenic role of Smad7 in the gastrointestinal tract and discuss whether and how targeting Smad7 can help attenuate detrimental immuno-inflammatory responses in the gut.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Corresponding author. Dipartimento di Medicina dei Sistemi, Università di Roma “Tor Vergata”, Via Montpellier 1, 00133, Rome, Italy.
| | | | | |
Collapse
|
13
|
Chojnacki JE, Scheinost L, Wang Y, Köhn M. Membrane targeting with palmitoylated lysine added to PP1-disrupting peptide induces PP1-independent signaling. J Pept Sci 2022; 29:e3469. [PMID: 36525306 DOI: 10.1002/psc.3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Protein phosphatase-1 (PP1) is a ubiquitous enzyme involved in multiple processes inside cells. PP1-disrupting peptides (PDPs) are chemical tools that selectively bind to PP1 and release its activity. To restrict the activity of PDPs to a cellular compartment, we developed PDP-Mem, a cell membrane-targeting PDP. The membrane localization was achieved through the introduction of a palmitoylated lysine. PDP-Mem was shown to activate PP1α in vitro and to localize to the membrane of HeLa Kyoto and U2OS cells. However, in cells, the combination of the polybasic sequence for cell penetration and the membrane targeting palmitoylated lysine activates the MAPK signaling pathway and induces cytoplasmic calcium release independently of PP1 activation. Therefore, when targeting peptides to cellular membranes, undesired effects induced by the targeting sequence and lipid modification need to be considered.
Collapse
Affiliation(s)
- Jeremy E Chojnacki
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Laura Scheinost
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Yansong Wang
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maja Köhn
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
14
|
Trelford CB, Dagnino L, Di Guglielmo GM. Transforming growth factor-β in tumour development. Front Mol Biosci 2022; 9:991612. [PMID: 36267157 PMCID: PMC9577372 DOI: 10.3389/fmolb.2022.991612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a ubiquitous cytokine essential for embryonic development and postnatal tissue homeostasis. TGFβ signalling regulates several biological processes including cell growth, proliferation, apoptosis, immune function, and tissue repair following injury. Aberrant TGFβ signalling has been implicated in tumour progression and metastasis. Tumour cells, in conjunction with their microenvironment, may augment tumourigenesis using TGFβ to induce epithelial-mesenchymal transition, angiogenesis, lymphangiogenesis, immune suppression, and autophagy. Therapies that target TGFβ synthesis, TGFβ-TGFβ receptor complexes or TGFβ receptor kinase activity have proven successful in tissue culture and in animal models, yet, due to limited understanding of TGFβ biology, the outcomes of clinical trials are poor. Here, we review TGFβ signalling pathways, the biology of TGFβ during tumourigenesis, and how protein quality control pathways contribute to the tumour-promoting outcomes of TGFβ signalling.
Collapse
Affiliation(s)
- Charles B. Trelford
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Children’s Health Research Institute and Lawson Health Research Institute, London, ON, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
15
|
Zhu X, Chen Z, Wang L, Ou Q, Feng Z, Xiao H, Shen Q, Li Y, Jin C, Xu JY, Gao F, Wang J, Zhang J, Zhang J, Xu Z, Xu GT, Lu L, Tian H. Direct conversion of human umbilical cord mesenchymal stem cells into retinal pigment epithelial cells for treatment of retinal degeneration. Cell Death Dis 2022; 13:785. [PMID: 36096985 PMCID: PMC9468174 DOI: 10.1038/s41419-022-05199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Age-related macular degeneration (AMD) is a major vision-threatening disease. Although mesenchymal stem cells (MSCs) exhibit beneficial neural protective effects, their limited differentiation capacity in vivo attenuates their therapeutic function. Therefore, the differentiation of MSCs into retinal pigment epithelial (RPE) cells in vitro and their subsequent transplantation into the subretinal space is expected to improve the outcome of cell therapy. Here, we transdifferentiated human umbilical cord MSCs (hUCMSCs) into induced RPE (iRPE) cells using a cocktail of five transcription factors (TFs): CRX, NR2E1, C-MYC, LHX2, and SIX6. iRPE cells exhibited RPE specific properties, including phagocytic ability, epithelial polarity, and gene expression profile. In addition, high expression of PTPN13 in iRPE cells endows them with an epithelial-to-mesenchymal transition (EMT)-resistant capacity through dephosphorylating syntenin1, and subsequently promoting the internalization and degradation of transforming growth factor-β receptors. After grafting into the subretinal space of the sodium iodate-induced rat AMD model, iRPE cells demonstrated a better therapeutic function than hUCMSCs. These results suggest that hUCMSC-derived iRPE cells may be promising candidates to reverse AMD pathophysiology.
Collapse
Affiliation(s)
- Xiaoman Zhu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhiyang Chen
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Li Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhong Feng
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Honglei Xiao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qi Shen
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yingao Li
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China
| | - Zhiguo Xu
- Huzhou college, Zhejiang, 313000, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
- The collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
16
|
Shen Y, Lu C, Song Z, Qiao C, Wang J, Chen J, Zhang C, Zeng X, Ma Z, Chen T, Li X, Lin A, Guo J, Wang J, Cai Z. Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation. Nat Commun 2022; 13:3419. [PMID: 35701426 PMCID: PMC9198048 DOI: 10.1038/s41467-022-31141-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
TGF-β is essential for inducing systemic tumor immunosuppression; thus, blocking TGF-β can greatly enhance antitumor immunity. However, there are still no effective TGF-β inhibitors in clinical use. Here, we show that the clinically approved compound ursodeoxycholic acid (UDCA), by degrading TGF-β, enhances antitumor immunity through restraining Treg cell differentiation and activation in tumor-bearing mice. Furthermore, UDCA synergizes with anti-PD-1 to enhance antitumor immunity and tumor-specific immune memory in tumor-bearing mice. UDCA phosphorylates TGF-β at T282 site via TGR5-cAMP-PKA axis, causing increased binding of TGF-β to carboxyl terminus of Hsc70-interacting protein (CHIP). Then, CHIP ubiquitinates TGF-β at the K315 site, initiating p62-dependent autophagic sorting and subsequent degradation of TGF-β. Notably, results of retrospective analysis shows that combination therapy with anti-PD-1 or anti-PD-L1 and UDCA has better efficacy in tumor patients than anti-PD-1 or anti-PD-L1 alone. Thus, our results show a mechanism for TGF-β regulation and implicate UDCA as a potential TGF-β inhibitor to enhance antitumor immunity.
Collapse
Affiliation(s)
- Yingying Shen
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Chaojie Lu
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
| | - Chenxiao Qiao
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Jiaoli Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
- Zhejiang University Cancer Centre, 310006, Hangzhou, China
| | - Jinbiao Chen
- Department of Oncology, Hangzhou Xixi Hospital, 310023, Hangzhou, China
| | - Chengyan Zhang
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Xianchang Zeng
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Zeyu Ma
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Xu Li
- School of Life Science, Westlake University, 310024, Hangzhou, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, 310006, Hangzhou, China.
| | - Zhijian Cai
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| |
Collapse
|
17
|
Timmins MA, Ringshausen I. Transforming Growth Factor-Beta Orchestrates Tumour and Bystander Cells in B-Cell Non-Hodgkin Lymphoma. Cancers (Basel) 2022; 14:1772. [PMID: 35406544 PMCID: PMC8996985 DOI: 10.3390/cancers14071772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor-beta (TGFB) is a critical regulator of normal haematopoiesis. Dysregulation of the TGFB pathway is associated with numerous haematological malignancies including myelofibrosis, acute myeloid leukaemia, and lymphoid disorders. TGFB has classically been seen as a negative regulator of proliferation in haematopoiesis whilst stimulating differentiation and apoptosis, as required to maintain homeostasis. Tumours frequently develop intrinsic resistant mechanisms to homeostatic TGFB signalling to antagonise its tumour-suppressive functions. Furthermore, elevated levels of TGFB enhance pathogenesis through modulation of the immune system and tumour microenvironment. Here, we review recent advances in the understanding of TGFB signalling in B-cell malignancies with a focus on the tumour microenvironment. Malignant B-cells harbour subtype-specific alterations in TGFB signalling elements including downregulation of surface receptors, modulation of SMAD signalling proteins, as well as genetic and epigenetic aberrations. Microenvironmental TGFB generates a protumoural niche reprogramming stromal, natural killer (NK), and T-cells. Increasingly, evidence points to complex bi-directional cross-talk between cells of the microenvironment and malignant B-cells. A greater understanding of intercellular communication and the context-specific nature of TGFB signalling may provide further insight into disease pathogenesis and future therapeutic strategies.
Collapse
Affiliation(s)
- Matthew A. Timmins
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospital, Cambridge CB2 0AH, UK
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospital, Cambridge CB2 0AH, UK
| |
Collapse
|
18
|
Monkley S, Overed-Sayer C, Parfrey H, Rassl D, Crowther D, Escudero-Ibarz L, Davis N, Carruthers A, Berks R, Coetzee M, Kolosionek E, Karlsson M, Griffin LR, Clausen M, Belfield G, Hogaboam CM, Murray LA. Sensitization of the UPR by loss of PPP1R15A promotes fibrosis and senescence in IPF. Sci Rep 2021; 11:21584. [PMID: 34732748 PMCID: PMC8566588 DOI: 10.1038/s41598-021-00769-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is a direct consequence of cellular endoplasmic reticulum (ER) stress and a key disease driving mechanism in IPF. The resolution of the UPR is directed by PPP1R15A (GADD34) and leads to the restoration of normal ribosomal activity. While the role of PPP1R15A has been explored in lung epithelial cells, the role of this UPR resolving factor has yet to be explored in lung mesenchymal cells. The objective of the current study was to determine the expression and role of PPP1R15A in IPF fibroblasts and in a bleomycin-induced lung fibrosis model. A survey of IPF lung tissue revealed that PPP1R15A expression was markedly reduced. Targeting PPP1R15A in primary fibroblasts modulated TGF-β-induced fibroblast to myofibroblast differentiation and exacerbated pulmonary fibrosis in bleomycin-challenged mice. Interestingly, the loss of PPP1R15A appeared to promote lung fibroblast senescence. Taken together, our findings demonstrate the major role of PPP1R15A in the regulation of lung mesenchymal cells, and regulation of PPP1R15A may represent a novel therapeutic strategy in IPF.
Collapse
Affiliation(s)
- Susan Monkley
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine Overed-Sayer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Helen Parfrey
- Cambridge Interstitial Lung Disease Service, Royal Papworth Hospital, Cambridge, UK
| | | | - Damian Crowther
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Nicola Davis
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Alan Carruthers
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Richard Berks
- Biological Services Group, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | | | - Ewa Kolosionek
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Karlsson
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leia R Griffin
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Maryam Clausen
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Graham Belfield
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cory M Hogaboam
- Cedars-Sinai Department of Medicine, Los Angeles, CA, 90048, USA
| | - Lynne A Murray
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
19
|
Carlisle RE, Mohammed-Ali Z, Lu C, Yousof T, Tat V, Nademi S, MacDonald ME, Austin RC, Dickhout JG. TDAG51 induces renal interstitial fibrosis through modulation of TGF-β receptor 1 in chronic kidney disease. Cell Death Dis 2021; 12:921. [PMID: 34625532 PMCID: PMC8501078 DOI: 10.1038/s41419-021-04197-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022]
Abstract
Chronic kidney disease (CKD) is characterized by the gradual loss of renal function and is a major public health concern. Risk factors for CKD include hypertension and proteinuria, both of which are associated with endoplasmic reticulum (ER) stress. ER stress-induced TDAG51 protein expression is increased at an early time point in mice with CKD. Based on these findings, wild-type and TDAG51 knock-out (TDKO) mice were used in an angiotensin II/deoxycorticosterone acetate/salt model of CKD. Both wild-type and TDKO mice developed hypertension, increased proteinuria and albuminuria, glomerular injury, and tubular damage. However, TDKO mice were protected from apoptosis and renal interstitial fibrosis. Human proximal tubular cells were used to demonstrate that TDAG51 expression induces apoptosis through a CHOP-dependent mechanism. Further, a mouse model of intrinsic acute kidney injury demonstrated that CHOP is required for ER stress-mediated apoptosis. Renal fibroblasts were used to demonstrate that TGF-β induces collagen production through an IRE1-dependent mechanism; cells treated with a TGF-β receptor 1 inhibitor prevented XBP1 splicing, a downstream consequence of IRE1 activation. Interestingly, TDKO mice express significantly less TGF-β receptor 1, thus, preventing TGF-β-mediated XBP1 splicing. In conclusion, TDAG51 induces apoptosis in the kidney through a CHOP-dependent mechanism, while contributing to renal interstitial fibrosis through a TGF-β-IRE1-XBP1 pathway.
Collapse
Affiliation(s)
- Rachel E Carlisle
- McMaster University and The Research Institute of St. Joe's Hamilton, Department of Medicine, Division of Nephrology, Hamilton, Canada
| | - Zahraa Mohammed-Ali
- McMaster University and The Research Institute of St. Joe's Hamilton, Department of Medicine, Division of Nephrology, Hamilton, Canada
| | - Chao Lu
- McMaster University and The Research Institute of St. Joe's Hamilton, Department of Medicine, Division of Nephrology, Hamilton, Canada
| | - Tamana Yousof
- McMaster University and The Research Institute of St. Joe's Hamilton, Department of Medicine, Division of Nephrology, Hamilton, Canada
| | - Victor Tat
- McMaster University and The Research Institute of St. Joe's Hamilton, Department of Medicine, Division of Nephrology, Hamilton, Canada
| | - Samera Nademi
- McMaster University and The Research Institute of St. Joe's Hamilton, Department of Medicine, Division of Nephrology, Hamilton, Canada
| | - Melissa E MacDonald
- McMaster University and The Research Institute of St. Joe's Hamilton, Department of Medicine, Division of Nephrology, Hamilton, Canada
| | - Richard C Austin
- McMaster University and The Research Institute of St. Joe's Hamilton, Department of Medicine, Division of Nephrology, Hamilton, Canada
| | - Jeffrey G Dickhout
- McMaster University and The Research Institute of St. Joe's Hamilton, Department of Medicine, Division of Nephrology, Hamilton, Canada.
| |
Collapse
|
20
|
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021; 237:59-85. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a proinflammatory cytokine known to control a diverse array of pathological and physiological conditions during normal development and tumorigenesis. TGF-β-mediated physiological effects are heterogeneous and vary among different types of cells and environmental conditions. TGF-β serves as an antiproliferative agent and inhibits tumor development during primary stages of tumor progression; however, during the later stages, it encourages tumor development and mediates metastatic progression and chemoresistance. The fundamental elements of TGF-β signaling have been divulged more than a decade ago; however, the process by which the signals are relayed from cell surface to nucleus is very complex with additional layers added in tumor cell niches. Although the intricate understanding of TGF-β-mediated signaling pathways and their regulation are still evolving, we tried to make an attempt to summarize the TGF-β-mediated SMAD-dependent andSMAD-independent pathways. This manuscript emphasizes the functions of TGF-β as a metastatic promoter and tumor suppressor during the later and initial phases of tumor progression respectively.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| | - Asiya Batool
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, JK, India
| | | | | | | | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| |
Collapse
|
21
|
A cytokine in turmoil: Transforming growth factor beta in cancer. Biomed Pharmacother 2021; 139:111657. [PMID: 34243626 DOI: 10.1016/j.biopha.2021.111657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the debilitating health threats to mankind in view of its incurable nature. Many factors are complicit in the initiation, progression and establishment of cancers. Early detection of cancer is the only window of hope that allows for appreciable management and possible limited survival. However, understanding of cancer biology and knowledge of the key factors that interplay at multi-level in the initiation and progression of cancer may hold possible avenues for cancer treatment and management. In particular, dysregulation of growth factor signaling such as that of transforming growth factor beta (TGF-β) and its downstream mediators play key roles in various cancer subtypes. Expanded understanding of the context/cell type-dependent roles of TGF-β and its downstream signaling mediators in cancer may provide leads for cancer pharmacotherapy. Reliable information contained in original articles, reviews, mini-reviews and expert opinions on TGF-β, cancer and the specific roles of TGF-β signaling in various cancer subtypes were retrieved from major scientific data bases including PubMed, Scopus, Medline, Web of Science core collections just to mention but a sample by using the following search terms: TGF-β in cancer, TGF-β and colorectal cancer, TGF-β and brain cancer, TGF-β in cancer initiation, TGF-β and cell proliferation, TGF-β and cell invasion, and TGF-β-based cancer therapy. Retrieved information and reports were carefully examined, contextualized and synchronized into a coherent scientific content to highlight the multiple roles of TGF-β signaling in normal and cancerous cells. From a conceptual standpoint, development of pharmacologically active agents that exert non-specific inhibitory effects on TGF-β signaling on various cell types will undoubtedly lead to a plethora of serious side effects in view of the multi-functionality and pleiotropic nature of TGF-β. Such non-specific targeting of TGF-β could derail any beneficial therapeutic intention associated with TGF-β-based therapy. However, development of pharmacologically active agents designed specifically to target TGF-β signaling in cancer cells may improve cancer pharmacotherapy. Similarly, specific targeting of downstream mediators of TGF-β such as TGF-β type 1 and II receptors (TβRI and TβRII), receptor-mediated Smads, mitogen activated protein kinase (MAPK) and importing proteins in cancer cells may be crucial for cancer pharmacotherapy.
Collapse
|
22
|
Wan R, Feng J, Tang L. Consequences of Mutations and Abnormal Expression of SMAD4 in Tumors and T Cells. Onco Targets Ther 2021; 14:2531-2540. [PMID: 33888990 PMCID: PMC8054659 DOI: 10.2147/ott.s297855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
SMAD4 is a typical tumor suppressor in the TGF-β signaling pathway. In human cancers, SMAD4 is frequently mutated and inactivated. In recent years, the consequences of mutations and inactivation of SMAD4 are gradually becoming clearer. Most of the mutations have negative consequences and reduce the chances of survival of their carriers. Loss of SMAD4 functions due to mutations or abnormal expression can suppress the inhibition of tumor growth and support the tumor progression. Functions of SMAD4 and its variants in T cells are being studied extensively, to better understand the SMAD4 functions in T cells. In this review, we mainly discuss the recently reported consequences of mutations and abnormal expression of SMAD4 in tumors, and the effects of loss, deficiency or mutation of SMAD4 and its T cells, to show the use of SMAD4 mutations in cancer diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Jianguo Feng
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| |
Collapse
|
23
|
Involvement of Smad7 in Inflammatory Diseases of the Gut and Colon Cancer. Int J Mol Sci 2021; 22:ijms22083922. [PMID: 33920230 PMCID: PMC8069188 DOI: 10.3390/ijms22083922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
In physiological conditions, the human intestinal mucosa is massively infiltrated with various subsets of immune cells, the activity of which is tightly regulated by several counter-regulatory factors. One of these factors is transforming growth factor-β1 (TGF-β1), a cytokine produced by multiple cell types and targeting virtually all the intestinal mucosal cells. Binding of TGF-β1 to its receptors triggers Smad2/3 signaling, thus culminating in the attenuation/suppression of immune–inflammatory responses. In patients with Crohn’s disease and patients with ulcerative colitis, the major human inflammatory bowel diseases (IBD), and in mice with IBD-like colitis, there is defective TGF-β1/Smad signaling due to high levels of the intracellular inhibitor Smad7. Pharmacological inhibition of Smad7 restores TGF-β1 function, thereby reducing inflammatory pathways in patients with IBD and colitic mice. On the other hand, transgenic over-expression of Smad7 in T cells exacerbates colitis in various mouse models of IBD. Smad7 is also over-expressed in other inflammatory disorders of the gut, such as refractory celiac disease, necrotizing enterocolitis and cytomegalovirus-induced colitis, even though evidence is still scarce and mainly descriptive. Furthermore, Smad7 has been involved in colon carcinogenesis through complex and heterogeneous mechanisms, and Smad7 polymorphisms could influence cancer prognosis. In this article, we review the data about the expression and role of Smad7 in intestinal inflammation and cancer.
Collapse
|
24
|
Role of TGF-Beta and Smad7 in Gut Inflammation, Fibrosis and Cancer. Biomolecules 2020; 11:biom11010017. [PMID: 33375423 PMCID: PMC7823508 DOI: 10.3390/biom11010017] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract contains the largest population of immune cells in the body and this is a reflection of the fact that it is continuously exposed to a myriad of dietary and bacterial antigens. Although these cells produce a variety of inflammatory cytokines that could potentially promote tissue damage, in normal conditions the mucosal immune response is tightly controlled by counter-regulatory factors, which help induce and maintain gut homeostasis and tolerance. One such factor is transforming growth factor (TGF)-β1, a cytokine produced by multiple lineages of leukocytes, stromal cells and epithelial cells, and virtually targets all the gut mucosal cell types. Indeed, studies in animals and humans have shown that defects in TGF-β1 production and/or signaling can lead to the development of immune-inflammatory pathologies, fibrosis and cancer in the gut. Here, we review and discuss the available evidence about the role of TGF-β1 and Smad7, an inhibitor of TGF-β1 activity, in gut inflammation, fibrosis and cancer with particular regard to the contribution of these two molecules in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
|
25
|
Frampton G, Reddy P, Jefferson B, Ali M, Khan D, McMillin M. Inhibition of thrombospondin-1 reduces glutathione activity and worsens acute liver injury during acetaminophen hepatotoxicity in mice. Toxicol Appl Pharmacol 2020; 409:115323. [PMID: 33176120 PMCID: PMC8364670 DOI: 10.1016/j.taap.2020.115323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/07/2023]
Abstract
Acetaminophen (N-Acetyl-p-Aminophenol or APAP)-induced hepatotoxicity is the most common cause of acute liver failure in the United States and Western Europe. Previous studies have shown that TGFβ1 is elevated during APAP-induced hepatotoxicity and promotes liver injury by reducing liver regeneration while inducing hepatocyte senescence. At this time, little is known about the role of proteins that activate latent TGFβ1 and their effects during APAP-induced hepatotoxicity. Thrombospondin-1 (TSP1) is a homotrimeric protein that can not only activate latent TGFβ1 but can also interact with other proteins including Nrf2 to induce antioxidant signaling. The aim of the current study was to assess the role of thrombospondin-1 (TSP1) in both TGFβ1 activation and its contribution to APAP-induced liver injury. C57Bl/6 mice or TSP1 null mice (TSP1-/-) were administered 300 mg/kg or 600 mg/kg of APAP. TGFβ1 signaling, TSP1 expression, measures of hepatic injury, Nrf2 expression, measures of oxidative/nitrosative stress and GSH metabolism were assessed. The expression of TGFβ1, TSP1 and phosphorylation of SMAD proteins increased in APAP-treated mice compared to controls. TSP1-/- mice had reduced TGFβ1 expression and phosphorylation of SMAD proteins but increased liver injury. Hepatocyte cell death was increased in TSP1-/- mice and this was associated with decreased Nrf2 activity, decreased GSH levels and increased oxidative stress in comparison to wild-type C57Bl/6 mice. Together, these data demonstrate that elimination of TSP1 protein in APAP-treated mice reduces TGFβ1 signaling but leads to increased liver injury by reducing Nrf2 expression and GSH activity, ultimately resulting in increased cell death.
Collapse
Affiliation(s)
- Gabriel Frampton
- Central Texas Veterans Health Care System, Austin, TX, United States of America; The University of Texas at Austin Dell Medical School, Department of Internal Medicine, Austin, TX, United States of America
| | - Priyanka Reddy
- Central Texas Veterans Health Care System, Austin, TX, United States of America
| | - Brandi Jefferson
- Central Texas Veterans Health Care System, Austin, TX, United States of America
| | - Malaika Ali
- Central Texas Veterans Health Care System, Austin, TX, United States of America
| | - Durreshahwar Khan
- Central Texas Veterans Health Care System, Austin, TX, United States of America
| | - Matthew McMillin
- Central Texas Veterans Health Care System, Austin, TX, United States of America; The University of Texas at Austin Dell Medical School, Department of Internal Medicine, Austin, TX, United States of America.
| |
Collapse
|
26
|
Yuan F, Yin H, Deng Y, Jiao F, Jiang H, Niu Y, Chen S, Ying H, Zhai Q, Chen Y, Guo F. Overexpression of Smad7 in hypothalamic POMC neurons disrupts glucose balance by attenuating central insulin signaling. Mol Metab 2020; 42:101084. [PMID: 32971298 PMCID: PMC7551358 DOI: 10.1016/j.molmet.2020.101084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Although the hypothalamus is crucial for peripheral metabolism control, the signals in specific neurons involved remain poorly understood. The aim of our current study was to explore the role of the hypothalamic gene mothers against decapentaplegic homolog 7 (Smad7) in peripheral glucose disorders. METHODS We studied glucose metabolism in high-fat diet (HFD)-fed mice and middle-aged mice with Cre-mediated recombination causing 1) overexpression of Smad7 in hypothalamic proopiomelanocortin (POMC) neurons, 2) deletion of Smad7 in POMC neurons, and 3) overexpression of protein kinase B (AKT) in arcuate nucleus (ARC) in Smad7 overexpressed mice. Intracerebroventricular (ICV) cannulation of insulin was used to test the hypothalamic insulin sensitivity in the mice. Hypothalamic primary neurons were used to investigate the mechanism of Smad7 regulating hypothalamic insulin signaling. RESULTS We found that Smad7 expression was increased in POMC neurons in the hypothalamic ARC of HFD-fed or middle-aged mice. Furthermore, overexpression of Smad7 in POMC neurons disrupted the glucose balance, and deletion of Smad7 in POMC neurons prevented diet- or age-induced glucose disorders, which was likely to be independent of changes in body weight or food intake. Moreover, the effect of Smad7 was reversed by overexpression of AKT in the ARC. Finally, Smad7 decreased AKT phosphorylation by activating protein phosphatase 1c in hypothalamic primary neurons. CONCLUSIONS Our results demonstrated that an excess of central Smad7 in POMC neurons disrupts glucose balance by attenuating hypothalamic insulin signaling. In addition, we found that this regulation was mediated by the activity of protein phosphatase 1c.
Collapse
Affiliation(s)
- Feixiang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Hanrui Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yalan Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Fuxin Jiao
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Haizhou Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yuguo Niu
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Shanghai Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences.
| |
Collapse
|
27
|
de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020; 55:691-715. [PMID: 33081543 DOI: 10.1080/10409238.2020.1828260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | - Maureen Spit
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
28
|
Rozés-Salvador V, Wilson C, Olmos C, Gonzalez-Billault C, Conde C. Fine-Tuning the TGFβ Signaling Pathway by SARA During Neuronal Development. Front Cell Dev Biol 2020; 8:550267. [PMID: 33015054 PMCID: PMC7494740 DOI: 10.3389/fcell.2020.550267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Neural development is a complex process that involves critical events, including cytoskeleton dynamics and selective trafficking of proteins to defined cellular destinations. In this regard, Smad Anchor for Receptor Activation (SARA) is an early endosome resident protein, where perform trafficking- associated functions. In addition, SARA is also involved in cell signaling, including the TGFβ-dependent pathway. Accordingly, SARA, and TGFβ signaling are required for proper axonal specification and migration of cortical neurons, unveiling a critical role for neuronal development. However, the cooperative action between the TGFβ pathway and SARA to this process has remained understudied. In this work, we show novel evidence suggesting a cross-talk between SARA and TGFβ pathway needed for proper polarization, axonal specification, growth and cortical migration of central neurons both in vitro and in vivo. Using microscopy tools and cultured hippocampal neurons, we show a local interaction between SARA and TβRI (TGFβ I receptor) at endosomes. In addition, SARA loss of function, induced by the expression of the dominant-negative SARA-F728A, over-activates the TGFβ pathway, most likely by preserving phosphorylated TβRI. Consequently, SARA-mediated activation of TGFβ pathway impacts on neuronal development, promoting axonal growth and cortical migration of neurons during brain development. Moreover, our data suggests that SARA basally prevents the activation of TβRI through the recruitment of the inhibitory complex PP1c/GADD34 in polarizing neurons. Together, these results propose that SARA is a negative regulator of the TGFβ pathway, being critical for a proper orchestration for neuronal development.
Collapse
Affiliation(s)
- Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto de Ciencias Básicas, Universidad Nacional de Villa María (UNVM), Córdoba, Argentina
| | - Carlos Wilson
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Cristina Olmos
- Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Cecilia Conde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
29
|
Gorbatyuk MS, Starr CR, Gorbatyuk OS. Endoplasmic reticulum stress: New insights into the pathogenesis and treatment of retinal degenerative diseases. Prog Retin Eye Res 2020; 79:100860. [PMID: 32272207 DOI: 10.1016/j.preteyeres.2020.100860] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Physiological equilibrium in the retina depends on coordinated work between rod and cone photoreceptors and can be compromised by the expression of mutant proteins leading to inherited retinal degeneration (IRD). IRD is a diverse group of retinal dystrophies with multifaceted molecular mechanisms that are not fully understood. In this review, we focus on the contribution of chronically activated unfolded protein response (UPR) to inherited retinal pathogenesis, placing special emphasis on studies employing genetically modified animal models. As constitutively active UPR in degenerating retinas may activate pro-apoptotic programs associated with oxidative stress, pro-inflammatory signaling, dysfunctional autophagy, free cytosolic Ca2+ overload, and altered protein synthesis rate in the retina, we focus on the regulatory mechanisms of translational attenuation and approaches to overcoming translational attenuation in degenerating retinas. We also discuss current research on the role of the UPR mediator PERK and its downstream targets in degenerating retinas and highlight the therapeutic benefits of reprogramming PERK signaling in preclinical animal models of IRD. Finally, we describe pharmacological approaches targeting UPR in ocular diseases and consider their potential applications to IRD.
Collapse
Affiliation(s)
- Marina S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA.
| | - Christopher R Starr
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| | - Oleg S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| |
Collapse
|
30
|
Weidle UH, Birzele F, Nopora A. Pancreatic Ductal Adenocarcinoma: MicroRNAs Affecting Tumor Growth and Metastasis in Preclinical In Vivo Models. Cancer Genomics Proteomics 2020; 16:451-464. [PMID: 31659100 DOI: 10.21873/cgp.20149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma have a dismall prognosis because at the time of diagnosis, in the vast majority of patients the tumor has already disseminated to distant organs and the therapeutic benefit of approved agents such as gemcitabine is limited. Therefore, the identification and preclinical and clinical validation of therapeutic agents covering new targets is of paramount importance. In this review we have summarized microRNAs and corresponding targets which affect growth and metastasis of pancreatic tumors in preclinical mouse in vivo models. We identified four up-regulated and 16 down-regulated miRs in PDAC in comparison to corresponding normal tissues. Three sub-categories of miRs have emerged: miRs affecting tumor growth and miRs with an impact on both, tumor growth and metastasis or metastasis only. Finally, we discuss technical and therapeutic aspects of miR-related therapeutic agents for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
31
|
Zhan J, Tong J, Fu Q. Long non‑coding RNA LINC00858 promotes TP53‑wild‑type colorectal cancer progression by regulating the microRNA‑25‑3p/SMAD7 axis. Oncol Rep 2020; 43:1267-1277. [PMID: 32323793 PMCID: PMC7058075 DOI: 10.3892/or.2020.7506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in colorectal cancer (CRC) progression, however the mechanisms remain largely unknown. The present study aimed to reveal the role and possible molecular mechanisms of a new LNCRNA, LINC00858, in CRC. LINC00858 was increased in CRC tumor tissues, and patients with high LINC00858 expression had a shorter survival time. Knockdown of LINC00858 expression suppressed cell proliferation and induced G0/G1 cell cycle arrest and apoptosis in TP53-wild-type CRC cells. Subsequently, using Starbase v2.0 database, miR-25-3p was confirmed to interact with LINC00858 and was downregulated by LINC00858. Reduction of miR-25-3p expression with an inhibitor significantly attenuated the biological effects of LINC00858 knockdown in CRC cells. Furthermore, using TargetScan, SMAD7 was validated to interact with miR-25-3p and was downregulated by miR-25-3p. Lastly, the ectopic overexpression of SMAD7 rescued the suppressive effects of LINC00858 knockdown in CRC cells. Collectively, the results from the present study, to the best of our knowledge, firstly demonstrated a novel LINC00858/miR-25-3p/SMAD7 regulatory axis that promoted CRC progression, indicating LINC00858 as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Jidong Zhan
- Department of Internal Medicine, The Hospital of University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jin Tong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
32
|
Gao J, Wang Y, Zhang W, Zhang J, Lu S, Meng K, Yin X, Sun Z, He QY. C20orf27 Promotes Cell Growth and Proliferation of Colorectal Cancer via the TGFβR-TAK1-NFĸB Pathway. Cancers (Basel) 2020; 12:cancers12020336. [PMID: 32024300 PMCID: PMC7072304 DOI: 10.3390/cancers12020336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Colorectal cancer (CRC) is a high incidence of malignant tumors that lacks highly effective and targeted drugs and thus it is in urgent need of finding new specific molecular targets. Methods and Results: In this study, by using WST-1 (Highly water-soluble tetrazolium salt-1) and colony formation assays, we found that C20orf27 (chromosome 20 open reading frame 27), a functionally unknown protein, enhanced the growth and proliferation of CRC cells. The nude mouse tumor formation experiments verified that C20orf27 promoted the growth of CRC. Signal pathway analysis identified the TGFβR-TAK1-NFĸB cascade as a mediator in C20orf27-induced CRC progression. Inhibition experiments using NFĸB inhibitors reversed this progression. Co-immunoprecipitation showed that C20orf27 promoted the activation of the TGFβR-TAK1-NFĸB pathway by interacting with PP1c (the catalytic subunit of type 1 phosphatase). Conclusions: Our results firstly characterized the functional role and molecular mechanism of C20orf27 in driving CRC growth and proliferation through the TGFβR-TAK1-NFĸB pathway, suggesting its potential as a novel CRC candidate therapeutic target and tumor marker.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing-Yu He
- Correspondence: ; Tel.: +86-20-85227039; Fax: +86-20-85227039
| |
Collapse
|
33
|
Dewidar B, Meyer C, Dooley S, Meindl-Beinker N. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019; 8:cells8111419. [PMID: 31718044 PMCID: PMC6912224 DOI: 10.3390/cells8111419] [Citation(s) in RCA: 525] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-β is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-β has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-β and its upstream and downstream regulatory mechanisms will help to design better TGF-β based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-β signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-β on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-β. Finally, we discuss new approaches to target the TGF-β pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.
Collapse
Affiliation(s)
- Bedair Dewidar
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31527 Tanta, Egypt
| | - Christoph Meyer
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Nadja Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Correspondence: ; Tel.: +49-621-383-4983; Fax: +49-621-383-1467
| |
Collapse
|
34
|
Contextual Regulation of TGF-β Signaling in Liver Cancer. Cells 2019; 8:cells8101235. [PMID: 31614569 PMCID: PMC6829617 DOI: 10.3390/cells8101235] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is one of the leading causes for cancer-related death worldwide. Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that signals through membrane receptors and intracellular Smad proteins, which enter the nucleus upon receptor activation and act as transcription factors. TGF-β inhibits liver tumorigenesis in the early stage by inducing cytostasis and apoptosis, but promotes malignant progression in more advanced stages by enhancing cancer cell survival, EMT, migration, invasion and finally metastasis. Understanding the molecular mechanisms underpinning the multi-faceted roles of TGF-β in liver cancer has become a persistent pursuit during the last two decades. Contextual regulation fine-tunes the robustness, duration and plasticity of TGF-β signaling, yielding versatile albeit specific responses. This involves multiple feedback and feed-forward regulatory loops and also the interplay between Smad signaling and non-Smad pathways. This review summarizes the known regulatory mechanisms of TGF-β signaling in liver cancer, and how they channel, skew and even switch the actions of TGF-β during cancer progression.
Collapse
|
35
|
Overexpression of ERβ inhibits the proliferation through regulating TNG-β signaling pathway in osteosarcoma. Pathol Res Pract 2019; 215:152568. [PMID: 31383536 DOI: 10.1016/j.prp.2019.152568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
The present study aimed to explore the potential anti-tumor effect of ERβ overexpression and investigate its related mechanism in osteosarcoma. Cell cycle and apoptosis rates were measured by flow cytometry. Cell proliferation and formation of autophagosome were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and dansylcadaverine (MDC) staining assay. Cell migration and invasion were detected by wound healing assay and transwell assay. Western blot analysis was designed to detect the protein expressions of surviving, Bax, LC-3 П, Beclin-1, ERβ, TβRⅠ, TβRⅡ, Smad2, Smad3 and Smad7. Real-Time fluorogenic PCR was designed to examine the mRNA expressions of surviving, Bax, ERβ, TβRⅠ, TβRII, Smad2, Smad3 and Smad7. The results showed that ERβ overexpression inhibited cell proliferation, migration and invasion, blocked cell cycle, and induced apoptosis and autophagy. Additionally, ERβ overexpression significantly inhibited the expression of surviving, TβRⅠ, TβRⅡ, Smad2 and Smad3. Meanwhile, the expressions of Bax, LC-3 П, Beclin-1 and Smad7 were dramatically upregulated by ERβ overexpression. In conclusion, ERβ overexpression could inhibit cell proliferation, migration and invasion, block cell cycle, and promote apoptosis and autophagy in OS by downregulating TNG-β signaling pathway.
Collapse
|
36
|
Yuan B, Liu J, Cao J, Yu Y, Zhang H, Wang F, Zhu Y, Xiao M, Liu S, Ye Y, Ma L, Xu D, Xu N, Li Y, Zhao B, Xu P, Jin J, Xu J, Chen X, Shen L, Lin X, Feng X. PTPN3 acts as a tumor suppressor and boosts TGF-β signaling independent of its phosphatase activity. EMBO J 2019; 38:e99945. [PMID: 31304624 PMCID: PMC6627230 DOI: 10.15252/embj.201899945] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
TGF-β controls a variety of cellular functions during development. Abnormal TGF-β responses are commonly found in human diseases such as cancer, suggesting that TGF-β signaling must be tightly regulated. Here, we report that protein tyrosine phosphatase non-receptor 3 (PTPN3) profoundly potentiates TGF-β signaling independent of its phosphatase activity. PTPN3 stabilizes TGF-β type I receptor (TβRI) through attenuating the interaction between Smurf2 and TβRI. Consequently, PTPN3 facilitates TGF-β-induced R-Smad phosphorylation, transcriptional responses, and subsequent physiological responses. Importantly, the leucine-to-arginine substitution at amino acid residue 232 (L232R) of PTPN3, a frequent mutation found in intrahepatic cholangiocarcinoma (ICC), disables its role in enhancing TGF-β signaling and abolishes its tumor-suppressive function. Our findings have revealed a vital role of PTPN3 in regulating TGF-β signaling during normal physiology and pathogenesis.
Collapse
Affiliation(s)
- Bo Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jinquan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Hanchenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Fei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Mu Xiao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Sisi Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Youqiong Ye
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonTXUSA
| | - Le Ma
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Dewei Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Ningyi Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yi Li
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jianming Xu
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Xi Chen
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonTXUSA
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xia Lin
- Michael DeBakey Department of SurgeryBaylor College of MedicineHoustonTXUSA
| | - Xin‐Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Michael DeBakey Department of SurgeryBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
37
|
Troncone E, Monteleone G. Smad7 and Colorectal Carcinogenesis: A Double-Edged Sword. Cancers (Basel) 2019; 11:cancers11050612. [PMID: 31052449 PMCID: PMC6563107 DOI: 10.3390/cancers11050612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinogenesis is a complex process in which many immune and non-immune cells and a huge number of mediators are involved. Among these latter factors, Smad7, an inhibitor of the transforming growth factor (TGF)-β1 signaling that has been involved in the amplification of the inflammatory process sustaining chronic intestinal inflammation, is supposed to make a valid contribution to the growth and survival of colorectal cancer (CRC) cells. Smad7 is over-expressed by tumoral cells in both sporadic CRC and colitis-associated CRC, where it sustains neoplastic processes through activation of either TGFβ-dependent or non-dependent pathways. Consistently, genome-wide association studies have identified single nucleotide polymorphisms of the Smad7 gene associated with CRC and shown that either amplification or deletion of the Smad7 gene associates with a poor prognosis or better outcome, respectively. On the other hand, there is evidence that over-expression of Smad7 in immune cells infiltrating the inflamed gut of patients with inflammatory bowel disease can elicit anti-tumor responses, with the down-stream effect of attenuating CRC cell growth. Taken together, these observations suggest a double role of Smad7 in colorectal carcinogenesis, which probably depends on the cell subset and the biological context analyzed. In this review, we summarize the available evidences about the role of Smad7 in both sporadic and colitis-associated CRC.
Collapse
Affiliation(s)
- Edoardo Troncone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
38
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 534] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
Kaczorowski M, Biecek P, Donizy P, Pieniazek M, Matkowski R, Halon A. SMAD7 is a novel independent predictor of survival in patients with cutaneous melanoma. Transl Res 2019; 204:72-81. [PMID: 30342000 DOI: 10.1016/j.trsl.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/23/2018] [Indexed: 12/18/2022]
Abstract
Overexpression of SMAD7-a hallmark inhibitor of transforming growth factor β (TGFβ) signaling-has been documented and related with adverse prognosis in a number of epithelial malignancies, suggesting that it may be responsible for resistance to TGFβ-induced growth arrest of cancer cells. The involvement of SMAD7 in development and progression of malignant melanoma is unclear, and its expression has not been characterized so far at the protein level in clinical melanoma tissue samples. We evaluated SMAD7 expression in 205 skin melanoma primary tumors by immunohistochemistry and correlated the findings with clinicopathological profiles of patients. Melanocytic SMAD7 was evidenced in 204 cases, and the expression pattern was predominantly nuclear. High expression of SMAD7 was positively associated with several features of tumor aggressiveness, for example, presence of ulceration (P < 0.001), higher tumor thickness (P < 0.001), and mitotic rate (P < 0.001), but not presence of regional or distant metastases. Moreover, high SMAD7 expression independently predicted unfavorable outcome: melanoma-specific survival (hazard ratio = 3.16, P < 0.001) and recurrence-free survival (hazard ratio = 2.88, P < 0.001). Taken together, our results underline the importance of TGFβ signaling in cancer and define SMAD7 as a marker of aggressive tumor behavior and adverse clinical outcomes in melanoma patients.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland.
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| | - Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology Centre, Opole, Poland
| | - Rafal Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw, Poland; Lower Silesian Oncology Centre, Wroclaw, Poland
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
40
|
Regulatory cytokine function in the respiratory tract. Mucosal Immunol 2019; 12:589-600. [PMID: 30874596 PMCID: PMC7051906 DOI: 10.1038/s41385-019-0158-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/04/2023]
Abstract
The respiratory tract is an important site of immune regulation; required to allow protective immunity against pathogens, while minimizing tissue damage and avoiding aberrant inflammatory responses to inhaled allergens. Several cell types work in concert to control pulmonary immune responses and maintain tolerance in the respiratory tract, including regulatory and effector T cells, airway and interstitial macrophages, dendritic cells and the airway epithelium. The cytokines transforming growth factor β, interleukin (IL-) 10, IL-27, and IL-35 are key coordinators of immune regulation in tissues such as the lung. Here, we discuss the role of these cytokines during respiratory infection and allergic airway disease, highlighting the critical importance of cellular source and immunological context for the effects of these cytokines in vivo.
Collapse
|
41
|
New Player in Endosomal Trafficking: Differential Roles of Smad Anchor for Receptor Activation (SARA) Protein. Mol Cell Biol 2018; 38:MCB.00446-18. [PMID: 30275343 DOI: 10.1128/mcb.00446-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development and maintenance of multicellular organisms require specialized coordination between external cellular signals and the proteins receiving stimuli and regulating responses. A critical role in the proper functioning of these processes is played by endosomal trafficking, which enables the transport of proteins to targeted sites as well as their return to the plasma membrane through its essential components, the endosomes. During this trafficking, signaling pathways controlling functions related to the endosomal system are activated both directly and indirectly. Although there are a considerable number of molecules participating in these processes, some are more known than others for their specific functions. Toward the end of the 1990s, Smad anchor for receptor activation (SARA) protein was described to be controlling and to facilitate the localization of Smads to transforming growth factor β (TGF-β) receptors during TGF-β signaling activation, and, strikingly, SARA was also identified to be one of the proteins that bind to early endosomes (EEs) participating in membrane trafficking in several cell models. The purpose of this review is to analyze the state of the art of the contribution of SARA in different cell types and cellular contexts, focusing on the biological role of SARA in two main processes, trafficking and cellular signaling, both of which are necessary for intercellular coordination, communication, and development.
Collapse
|
42
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|
43
|
Zheng T, Lu M, Wang T, Zhang C, Du X. NRBE3 promotes metastasis of breast cancer by down-regulating E-cadherin expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1869-1877. [PMID: 30262434 DOI: 10.1016/j.bbamcr.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 01/06/2023]
Abstract
NRBE3 acts as an E3 ligase of RB to promote RB's polyubiquitination and degradation. In addition, NRBE3 is up-regulated in human breast cancer (BC) tissues. However, how NRBE3 functions in BC is unknown. Here, we show that up-regulation of NRBE3 is correlated with lymphatic metastasis in human BC tissues. Ectopic expression of NRBE3 promotes migration and invasion in BC cells. Accordingly, knockdown of NRBE3 inhibits migration and invasion in BC cells. Depletion of NRBE3 inhibits lung metastasis of BC cells in vivo. Knock-down of NRBE3 causes increase of E-cadherin protein levels. Interestingly, Flag-NRBE3 decreases E-cadherin level in RB-expressing and RB-null BC cells, demonstrating that there exist RB-independent mechanisms for NRBE3-mediated E-cadherin expression regulation. However, the E3 ligase deficient deletion mutant Flag-NRBE3 (ΔU-box) modestly decreases E-cadherin level in RB-expressing cells, indicating that NRBE3 controls E-cadherin expression mainly through RB-dependent pathways in RB-expressing cells. We further demonstrate that NRBE3 inhibits the transcription of E-cadherin in BC cells. Significantly, NRBE3 expression is negatively correlated with E-cadherin expression in human BC tissues and cell lines. Collectively, we demonstrate that NRBE3 promotes metastasis of BC and possesses the potential as a therapeutic target in BC.
Collapse
Affiliation(s)
- Tong Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Min Lu
- Department of Pathology, Peking University Third Hospital, Beijing 100191, China
| | - Ting Wang
- Department of Internal Medicine, Shanxi Medical University Second Hospital, Taiyuan 030001, China
| | - Chunfeng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
44
|
TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52:112-120. [PMID: 30184463 DOI: 10.1016/j.cellsig.2018.09.002] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.
Collapse
|
45
|
Wu Z, Qiu X, Gao B, Lian C, Peng Y, Liang A, Xu C, Gao W, Zhang L, Su P, Rong L, Huang D. Melatonin-mediated miR-526b-3p and miR-590-5p upregulation promotes chondrogenic differentiation of human mesenchymal stem cells. J Pineal Res 2018; 65:e12483. [PMID: 29498095 DOI: 10.1111/jpi.12483] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs), with inherent chondrogenic differentiation potential appear to be ideally suited for therapeutic use in cartilage regeneration. Accumulating evidence has demonstrated that melatonin can promote chondrogenic differentiation in human BMSCs. However, little is known about the mechanism. MicroRNAs (miRNAs) have been shown to regulate the differentiation of BMSCs, but their roles in melatonin-promoted chondrogenic differentiation have not been characterized. Here, we demonstrate that melatonin promoted chondrogenic differentiation of human BMSCs via upregulation of miR-526b-3p and miR-590-5p. Mechanistically, the elevated miR-526b-3p and miR-590-5p enhanced SMAD1 phosphorylation by targeting SMAD7. Additionally, administration of miR-526b-3p mimics or miR-590-5p mimics successfully promoted the chondrogenic differentiation of human BMSCs. Collectively, our study suggests that modification of BMSCs using melatonin or miRNA transduction could be an effective therapy for cartilage damage and degeneration.
Collapse
Affiliation(s)
- Zizhao Wu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chengjie Lian
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Caixia Xu
- Research Centre for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peiqiang Su
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Troncone E, Marafini I, Stolfi C, Monteleone G. Transforming Growth Factor-β1/Smad7 in Intestinal Immunity, Inflammation, and Cancer. Front Immunol 2018; 9:1407. [PMID: 29973939 PMCID: PMC6019438 DOI: 10.3389/fimmu.2018.01407] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
In physiological conditions, the activity of the intestinal immune system is tightly regulated to prevent tissue-damaging reactions directed against components of the luminal flora. Various factors contribute to maintain immune homeostasis and diminished production and/or function of such molecules trigger and/or propagate detrimental signals, which can eventually lead to chronic colitis and colon cancer. One such a molecule is transforming growth factor-β1 (TGF-β1), a cytokine produced by many inflammatory and non-inflammatory cells and targeting virtually all the intestinal mucosal cell types, with the down-stream effect of activating intracellular Smad2/3 proteins and suppressing immune reactions. In patients with inflammatory bowel diseases (IBD), there is defective TGF-β1/Smad signaling due to high Smad7, an inhibitor of TGF-β1 activity. Indeed, knockdown of Smad7 with a specific antisense oligonucleotide restores endogenous TGF-β1 activity, thereby inhibiting inflammatory pathways in patients with IBD and colitic mice. Consistently, mice over-expressing Smad7 in T cells develop severe intestinal inflammation in various experimental models. Smad7 expression is also upregulated in colon cancer cells, in which such a protein controls positively intracellular pathways that sustain neoplastic cell growth and survival. We here review the role of TGF-β1 and Smad7 in intestinal immunity, inflammation, and cancer.
Collapse
Affiliation(s)
- Edoardo Troncone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
47
|
Verrecchia F, Rédini F. Transforming Growth Factor-β Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment. Front Oncol 2018; 8:133. [PMID: 29761075 PMCID: PMC5937053 DOI: 10.3389/fonc.2018.00133] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcomas are the most frequent form of primary bone tumors and mainly affect children, adolescents, and young adults. Despite encouraging progress in therapeutic management, including the advent of multidrug chemotherapy, the survival rates have remained unchanged for more than four decades: 75% at 5 years for localized disease, but two groups of patients are still at high risk: metastatic at diagnosis (overall survival around 40% at 5 years) and/or poor responders to chemotherapy (20% at 5 years). Because these tumors are classified as “complex genomic,” it is extremely difficult to determine the signaling pathways that might be targeted by specific therapies. A hypothesis has thus emerged, stating that the particular microenvironment of these tumors may interfere with the tumor cells that promote chemoresistance and the dissemination of metastases. The stroma is composed of a large number of cell types (immune cells, endothelial cells, mesenchymal stromal cells, etc.) which secrete growth factors, such as transforming growth factor-β (TGF-β), which favors the development of primary tumors and dissemination of metastases by constituting a permissive niche at primary and distant sites. Rather than targeting the tumor cells themselves, which are very heterogeneous in osteosarcoma, the hypothesis is instead to target the key actors secreted in the microenvironment, such as TGF-βs, which play a part in tumor progression. In the last decade, numerous studies have shown that overexpression of TGF-β is a hallmark of many cancers, including primary bone tumors. In this context, TGF-β signaling has emerged as a crucial factor in the cross talk between tumor cells and stroma cells in poor-prognosis cancers. Secretion of TGF-β by tumor cells or stroma cells can effectively act in a paracrine manner to regulate the phenotype and functions of the microenvironment to stimulate protumorigenic microenvironmental changes. TGF-β can thus exert its protumorigenic function in primary bone tumors by promoting angiogenesis, bone remodeling and cell migration, and by inhibiting immunosurveillance. This review focuses on the involvement of TGF-β signaling in primary bone tumor development, and the related therapeutic options that may be possible for these tumors.
Collapse
Affiliation(s)
- Franck Verrecchia
- UMR1238 INSERM, Université de Nantes, PHY-OS, "Bone Sarcomas and Remodeling of Calcified Tissues", Medical School, Nantes, France
| | - Françoise Rédini
- UMR1238 INSERM, Université de Nantes, PHY-OS, "Bone Sarcomas and Remodeling of Calcified Tissues", Medical School, Nantes, France
| |
Collapse
|
48
|
Rana MK, Aloisio FM, Choi C, Barber DL. Formin-dependent TGF-β signaling for epithelial to mesenchymal transition. Mol Biol Cell 2018; 29:1465-1475. [PMID: 29668357 PMCID: PMC6014098 DOI: 10.1091/mbc.e17-05-0325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of distinct actin filament architectures in epithelial plasticity remains incompletely understood. We therefore determined roles for formins and the Arp2/3 complex, which are actin nucleators generating unbranched and branched actin filaments, respectively, in the process of epithelial to mesenchymal transition (EMT). In clonal lung, mammary, and renal epithelial cells, the formin activity inhibitor SMIFH2 but not the Arp2/3 complex activity inhibitor CK666 blocked EMT induced by TGF-β. SMIFH2 prevented the proximal signal of increased Smad2 phosphorylation and hence also blocked downstream EMT markers, including actin filament remodeling, decreased expression of the adherens junction protein E-cadherin, and increased expression of the matrix protein fibronectin and the transcription factor Snail. The short hairpin RNA silencing of formins DIAPH1 and DIAPH3 but not other formins phenocopied SMIFH2 effects and inhibited Smad2 phosphorylation and changes in Snail and cadherin expression. Formin activity was not necessary for the cell surface expression or dimerization of TGF-β receptors, or for nuclear translocation of TAZ, a transcription cofactor in Hippo signaling also regulated by TGF-β. Our findings reveal a previously unrecognized role for formin-dependent actin architectures in proximal TGF-β signaling that is necessary for Smad2 phosphorylation but not for cross-talk to TAZ.
Collapse
Affiliation(s)
- Manish K Rana
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Francesca M Aloisio
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
49
|
Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:37-50. [PMID: 29228156 DOI: 10.1093/abbs/gmx129] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Goh CW, Lee IC, Sundaram JR, George SE, Yusoff P, Brush MH, Sze NSK, Shenolikar S. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J Biol Chem 2017; 293:163-176. [PMID: 29109149 DOI: 10.1074/jbc.m117.814111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Indexed: 12/28/2022] Open
Abstract
Oxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34, the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34-/- cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Catherine Wenhui Goh
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore
| | - Irene Chengjie Lee
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jeyapriya Rajameenakshi Sundaram
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Simi Elizabeth George
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Permeen Yusoff
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Matthew Hayden Brush
- Ontology Development group, Oregon Health and Science University, Portland, Oregon 97239
| | - Newman Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Shirish Shenolikar
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Psychiatry and Behavioral Sciences and Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
| |
Collapse
|