1
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
2
|
Lawson CD, Peel S, Jayo A, Corrigan A, Iyer P, Baxter Dalrymple M, Marsh RJ, Cox S, Van Audenhove I, Gettemans J, Parsons M. Nuclear fascin regulates cancer cell survival. eLife 2022; 11:e79283. [PMID: 36039640 PMCID: PMC9427113 DOI: 10.7554/elife.79283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Fascin is an important regulator of F-actin bundling leading to enhanced filopodia assembly. Fascin is also overexpressed in most solid tumours where it supports invasion through control of F-actin structures at the periphery and nuclear envelope. Recently, fascin has been identified in the nucleus of a broad range of cell types but the contributions of nuclear fascin to cancer cell behaviour remain unknown. Here, we demonstrate that fascin bundles F-actin within the nucleus to support chromatin organisation and efficient DDR. Fascin associates directly with phosphorylated Histone H3 leading to regulated levels of nuclear fascin to support these phenotypes. Forcing nuclear fascin accumulation through the expression of nuclear-targeted fascin-specific nanobodies or inhibition of Histone H3 kinases results in enhanced and sustained nuclear F-actin bundling leading to reduced invasion, viability, and nuclear fascin-specific/driven apoptosis. These findings represent an additional important route through which fascin can support tumourigenesis and provide insight into potential pathways for targeted fascin-dependent cancer cell killing.
Collapse
Affiliation(s)
- Campbell D Lawson
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s CampusLondonUnited Kingdom
| | - Samantha Peel
- Discovery Sciences, R&D, AstraZeneca (United Kingdom)CambridgeUnited Kingdom
| | - Asier Jayo
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s CampusLondonUnited Kingdom
| | - Adam Corrigan
- Discovery Sciences, R&D, AstraZeneca (United Kingdom)CambridgeUnited Kingdom
| | - Preeti Iyer
- Molecular AI, Discovery Sciences, R&D, AstraZeneca (Sweden)MölndalSweden
| | - Mabel Baxter Dalrymple
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s CampusLondonUnited Kingdom
| | - Richard J Marsh
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s CampusLondonUnited Kingdom
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s CampusLondonUnited Kingdom
| | - Isabel Van Audenhove
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent UniversityGhentBelgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent UniversityGhentBelgium
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s CampusLondonUnited Kingdom
| |
Collapse
|
3
|
Kumar N, Rath PP, Aggarwal P, Maiti S, Bhavesh NS, Gourinath S. Unravelling the Biology of EhActo as the First Cofilin From Entamoeba histolytica. Front Cell Dev Biol 2022; 10:785680. [PMID: 35281106 PMCID: PMC8914023 DOI: 10.3389/fcell.2022.785680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Actin-depolymerising factors (ADF) are a known family of proteins that regulate actin dynamics. Actin regulation is critical for primitive eukaryotes since it drives their key cellular processes. Entamoeba histolytica, a protist human pathogen harbours eleven proteins within this family, however, with no actin depolymerising protein reported to date. We present here the NMR model of EhActo, the first Cofilin from E. histolytica that severs actin filaments and also participates in cellular events like phagocytosis and pseudopod formation. The model typically represents the ADF-homology domain compared to other cofilins. Uniquely, EhActo lacks the critical Serine3 residue present in all known actophorins mediating its phospho-regulation. The second mode of regulation that cofilin’s are subjected to is via their interaction with 14-3-3 proteins through the phosphorylated Serine residue and a consensus binding motif. We found a unique interaction between EhActo and 14-3-3 without the presence of the consensus motif or the phosphorylated Serine. These interesting results present unexplored newer mechanisms functional in this pathogen to regulate actophorin. Through our structural and biochemical studies we have deciphered the mechanism of action of EhActo, implicating its role in amoebic biology.
Collapse
Affiliation(s)
- Nitesh Kumar
- Department of Pathology, Indira Gandhi Institute of Medical Sciences, Patna, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- *Correspondence: Nitesh Kumar, ; Samudrala Gourinath,
| | | | - Priyanka Aggarwal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sankar Maiti
- Indian Institute of Science, Education and Research, Kolkata, India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Nitesh Kumar, ; Samudrala Gourinath,
| |
Collapse
|
4
|
Abstract
Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.
Collapse
Affiliation(s)
- Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Amaroli A, Sabbieti MG, Marchetti L, Zekiy AO, Utyuzh AS, Marchegiani A, Laus F, Cuteri V, Benedicenti S, Agas D. The effects of 808-nm near-infrared laser light irradiation on actin cytoskeleton reorganization in bone marrow mesenchymal stem cells. Cell Tissue Res 2020; 383:1003-1016. [PMID: 33159579 DOI: 10.1007/s00441-020-03306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022]
Abstract
Tailoring the cell organelles and thus changing cell homeostatic behavior has permitted the discovery of fascinating metabolic features enabling enhanced viability, differentiation, or quenching inflammation. Recently, photobiomodulation (PBM) has been accredited as an effective cell manipulation technique with promising therapeutic potential. In this prospective, in vitro results revealed that 808-nm laser light emitted by a hand-piece with a flat-top profile at an irradiation set up of 60 J/cm2 (1 W, 1 W/cm2; 60 s, continuous wave) regulates bone marrow stromal cell (BMSC) differentiation toward osteogenesis. Considering the importance of actin cytoskeleton reorganization, which controls a range of cell metabolic activities, comprising shape change, proliferation and differentiation, the aim of the current work is to assess whether PBM therapy, using a flat-top hand-piece at higher-fluence irradiation on BMSCs, is able to switch photon signals into the stimulation of biochemical/differentiating pathways involving key activators that regulate de novo actin polymerization. Namely, for the first time, we unearthed the role of the flat-top hand-piece at higher-fluence irradiation on cytoskeletal characteristics of BMSCs. These novel findings meet the needs of novel therapeutically protocols provided by laser treatment and the manipulation of BMSCs as anti-inflammatory, osteo-inductive platforms.
Collapse
Affiliation(s)
- Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C.), University of Genova, Genova, Italy
- Department of Orthopaedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991, Moscow, Russian Federation
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (Macerata), Italy
| | - Luigi Marchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (Macerata), Italy
| | - Angelina O Zekiy
- Department of Orthopaedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991, Moscow, Russian Federation
| | - Anatoliy S Utyuzh
- Department of Orthopaedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991, Moscow, Russian Federation
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (Macerata), Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (Macerata), Italy
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (Macerata), Italy
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C.), University of Genova, Genova, Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (Macerata), Italy.
| |
Collapse
|
6
|
Jacob JT, Nair RR, Poll BG, Pineda CM, Hobbs RP, Matunis MJ, Coulombe PA. Keratin 17 regulates nuclear morphology and chromatin organization. J Cell Sci 2020; 133:jcs254094. [PMID: 33008845 PMCID: PMC7648610 DOI: 10.1242/jcs.254094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Keratin 17 (KRT17; K17), a non-lamin intermediate filament protein, was recently found to occur in the nucleus. We report here on K17-dependent differences in nuclear morphology, chromatin organization, and cell proliferation. Human tumor keratinocyte cell lines lacking K17 exhibit flatter nuclei relative to normal. Re-expression of wild-type K17, but not a mutant form lacking an intact nuclear localization signal (NLS), rescues nuclear morphology in KRT17-null cells. Analyses of primary cultures of skin keratinocytes from a mouse strain expressing K17 with a mutated NLS corroborated these findings. Proteomics screens identified K17-interacting nuclear proteins with known roles in gene expression, chromatin organization and RNA processing. Key histone modifications and LAP2β (an isoform encoded by TMPO) localization within the nucleus are altered in the absence of K17, correlating with decreased cell proliferation and suppression of GLI1 target genes. Nuclear K17 thus impacts nuclear morphology with an associated impact on chromatin organization, gene expression, and proliferation in epithelial cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Justin T Jacob
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Raji R Nair
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian G Poll
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christopher M Pineda
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan P Hobbs
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Ortega FJ, Moreno-Navarrete JM, Mercader JM, Gómez-Serrano M, García-Santos E, Latorre J, Lluch A, Sabater M, Caballano-Infantes E, Guzmán R, Macías-González M, Buxo M, Gironés J, Vilallonga R, Naon D, Botas P, Delgado E, Corella D, Burcelin R, Frühbeck G, Ricart W, Simó R, Castrillon-Rodríguez I, Tinahones FJ, Bosch F, Vidal-Puig A, Malagón MM, Peral B, Zorzano A, Fernández-Real JM. Cytoskeletal transgelin 2 contributes to gender-dependent adipose tissue expandability and immune function. FASEB J 2019; 33:9656-9671. [PMID: 31145872 DOI: 10.1096/fj.201900479r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During adipogenesis, preadipocytes' cytoskeleton reorganizes in parallel with lipid accumulation. Failure to do so may impact the ability of adipose tissue (AT) to shift between lipid storage and mobilization. Here, we identify cytoskeletal transgelin 2 (TAGLN2) as a protein expressed in AT and associated with obesity and inflammation, being normalized upon weight loss. TAGLN2 was primarily found in the adipose stromovascular cell fraction, but inflammation, TGF-β, and estradiol also prompted increased expression in human adipocytes. Tagln2 knockdown revealed a key functional role, being required for proliferation and differentiation of fat cells, whereas transgenic mice overexpressing Tagln2 using the adipocyte protein 2 promoter disclosed remarkable sex-dependent variations, in which females displayed "healthy" obesity and hypertrophied adipocytes but preserved insulin sensitivity, and males exhibited physiologic changes suggestive of defective AT expandability, including increased number of small adipocytes, activation of immune cells, mitochondrial dysfunction, and impaired metabolism together with decreased insulin sensitivity. The metabolic relevance and sexual dimorphism of TAGLN2 was also outlined by genetic variants that may modulate its expression and are associated with obesity and the risk of ischemic heart disease in men. Collectively, current findings highlight the contribution of cytoskeletal TAGLN2 to the obese phenotype in a gender-dependent manner.-Ortega, F. J., Moreno-Navarrete, J. M., Mercader, J. M., Gómez-Serrano, M., García-Santos, E., Latorre, J., Lluch, A., Sabater, M., Caballano-Infantes, E., Guzmán, R., Macías-González, M., Buxo, M., Gironés, J., Vilallonga, R., Naon, D., Botas, P., Delgado, E., Corella, D., Burcelin, R., Frühbeck, G., Ricart, W., Simó, R., Castrillon-Rodríguez, I., Tinahones, F. J., Bosch, F., Vidal-Puig, A., Malagón, M. M., Peral, B., Zorzano, A., Fernández-Real, J. M. Cytoskeletal transgelin 2 contributes to gender-dependent adipose tissue expandability and immune function.
Collapse
Affiliation(s)
- Francisco J Ortega
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - José M Moreno-Navarrete
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Josep M Mercader
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain
| | - María Gómez-Serrano
- Department of Endocrinology, Physiopathology, and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Eva García-Santos
- Department of Endocrinology, Physiopathology, and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Aina Lluch
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Mònica Sabater
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Estefanía Caballano-Infantes
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Rocío Guzmán
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-University of Cordoba-Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel Macías-González
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Service of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria de Malaga, Málaga, Spain
| | - Maria Buxo
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Jordi Gironés
- Department of Surgery, Institut d'Investigació Biomédica de Girona (IdIBGi), Girona, Spain
| | - Ramon Vilallonga
- Servicio de Cirugía General, Unidad de Cirugía Endocrina, Bariátrica y Metabólica, Hospital Universitario Vall d'Hebron, European Center of Excellence (EAC-BS), Barcelona, Spain
| | - Deborah Naon
- Departament de Bioquímica i Biología Molecular, Facultat de Biología, Institute for Research in Biomedicine (IRB Barcelona), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Patricia Botas
- Department of Medicine, University of Oviedo Endocrinology and Nutrition Service, Hospital Universitario Central de Asturias (HUCA) and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elias Delgado
- Department of Medicine, University of Oviedo Endocrinology and Nutrition Service, Hospital Universitario Central de Asturias (HUCA) and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Preventive Medicine and Public Health, Genetic and Molecular Epidemiology Unit, School of Medicine, University of Valencia, Valencia, Spain
| | - Remy Burcelin
- INSERM Unité 858, IFR31, Institut de Médecine Moléculaire de Rangueil, Université Paul Sabatier, Toulouse, France
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology and Nutrition, Clínica Universidad de Navarra (IdiSNA), Pamplona, Spain
| | - Wifredo Ricart
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Rafael Simó
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Ignacio Castrillon-Rodríguez
- Departament de Bioquímica i Biología Molecular, Facultat de Biología, Institute for Research in Biomedicine (IRB Barcelona), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Service of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria de Malaga, Málaga, Spain
| | - Fátima Bosch
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Centre of Animal Biotechnology and Gene Therapy, School of Veterinary Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - María M Malagón
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-University of Cordoba-Reina Sofia University Hospital, Córdoba, Spain
| | - Belén Peral
- Department of Endocrinology, Physiopathology, and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biología Molecular, Facultat de Biología, Institute for Research in Biomedicine (IRB Barcelona), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José M Fernández-Real
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| |
Collapse
|
9
|
Kovaleva TF, Maksimova NS, Zhukov IY, Pershin VI, Mukhina IV, Gainullin MR. Cofilin: Molecular and Cellular Functions and Its Role in the Functioning of the Nervous System. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Knöll B, Beck H. The cytoskeleton and nucleus: the role of actin as a modulator of neuronal gene expression. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13295-010-0013-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Actin, arranged for example in stress fibres, provides a fundamental cytoskeletal framework function to all cell types. Notably, there is now mounting evidence that, in addition to cytoplasmic cytoskeletal regulation, actin treadmilling provides a signal modulating nuclear gene expression. In altering gene regulation, cytoplasmic and most likely also a nucleus-resident actin provides an additional (gene) regulatory twist to cell motility. So far, the transcription factor serum response factor (SRF) alongside its myocardin-related transcription factor (MRTF) cofactors has emerged as the main target of actin dynamics. In this review, we discuss the impact of actin signalling on nuclear gene expression in the nervous system, where the actin-MRTF-SRF module contributes to various processes including neuronal motility.
Collapse
Affiliation(s)
- B. Knöll
- Institute for Physiological Chemistry, University of Ulm Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - H. Beck
- Institute for Physiological Chemistry, University of Ulm Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
11
|
Tormos AM, Rius-Pérez S, Jorques M, Rada P, Ramirez L, Valverde ÁM, Nebreda ÁR, Sastre J, Taléns-Visconti R. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS One 2017; 12:e0171738. [PMID: 28166285 PMCID: PMC5293263 DOI: 10.1371/journal.pone.0171738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. Methods Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. Results We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M transition- was significantly overexpressed in p38α knock out mice. Our findings suggest that hepatocytes do enter into S phase but they do not complete cell division upon p38α deficiency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42 GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number and length of actin filaments in isolated hepatocytes. Conclusions p38α MAPK is essential for actin dynamics with age in hepatocytes.
Collapse
Affiliation(s)
- Ana M. Tormos
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - María Jorques
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain
| | - Lorena Ramirez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain
| | - Ángel R. Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Juan Sastre
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia. Burjassot, Valencia, Spain
- * E-mail:
| |
Collapse
|
12
|
Abstract
The regulation of nuclear shape and deformability is a key factor in controlling diverse events from embryonic development to cancer cell metastasis, but the mechanisms governing this process are still unclear. Our recent study demonstrated an unexpected role for the F-actin bundling protein fascin in controlling nuclear plasticity through a direct interaction with Nesprin-2. Nesprin-2 is a component of the LINC complex that is known to couple the F-actin cytoskeleton to the nuclear envelope. We demonstrated that fascin, which is predominantly associated with peripheral F-actin rich filopodia, binds directly to Nesprin-2 at the nuclear envelope in a range of cell types. Depleting fascin or specifically blocking the fascin-Nesprin-2 complex leads to defects in nuclear polarization, movement and cell invasion. These studies reveal a novel role for an F-actin bundling protein in control of nuclear plasticity and underline the importance of defining nuclear-associated roles for F-actin binding proteins in future.
Collapse
Affiliation(s)
- Karin Pfisterer
- a Randall Division of Cell and Molecular Biophysics , King's College London, New Hunts House , Guys Campus, London , UK
| | - Asier Jayo
- a Randall Division of Cell and Molecular Biophysics , King's College London, New Hunts House , Guys Campus, London , UK.,b Department of Basic Sciences , Physiology Unit, San Pablo CEU University , Monteprincipe Campus, Madrid , Spain
| | - Maddy Parsons
- a Randall Division of Cell and Molecular Biophysics , King's College London, New Hunts House , Guys Campus, London , UK
| |
Collapse
|
13
|
Pederson T, King MC, Marko JF. Forces, fluctuations, and self-organization in the nucleus. Mol Biol Cell 2016; 26:3915-9. [PMID: 26543199 PMCID: PMC4710223 DOI: 10.1091/mbc.e15-06-0357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We address several processes and domains in the nucleus wherein holding the perspective of physics either reveals a conundrum or is likely to enable progress.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - John F Marko
- Department of Molecular Biosciences and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
14
|
Gao J, Fu S, Zeng Z, Li F, Niu Q, Jing D, Feng X. Cyclic stretch promotes osteogenesis-related gene expression in osteoblast-like cells through a cofilin-associated mechanism. Mol Med Rep 2016; 14:218-24. [PMID: 27177232 PMCID: PMC4918615 DOI: 10.3892/mmr.2016.5239] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/11/2016] [Indexed: 11/06/2022] Open
Abstract
Osteoblasts have the capacity to perceive and transduce mechanical signals, and thus, regulate the mRNA and protein expression of a variety of genes associated with osteogenesis. Cytoskeletal reconstruction, as one of the earliest perception events for external mechanical stimulation, has previously been demonstrated to be essential for mechanotransduction in bone cells. However, the mechanism by which mechanical signals induce cytoskeletal deformation remains poorly understood. The actin‑binding protein, cofilin, promotes the depolymerization of actin and is understood to be important in the regulation of activities in various cell types, including endothelial, neuronal and muscle cells. However, to the best of our knowledge, the importance of cofilin in osteoblastic mechanotransduction has not been previously investigated. In the present study, osteoblast‑like MG‑63 cells were subjected to physiological cyclic stretch stimulation (12% elongation) for 1, 4, 8, 12 and 24 h, and the expression levels of cofilin and osteogenesis-associated genes were quantified with reverse transcription‑quantitative polymerase chain reaction, immunofluorescence staining and western blotting analyses. Additionally, knockdown of cofilin using RNA interference was conducted, and the mRNA levels of osteogenesis‑associated genes were compared between osteoblast‑like cells in the presence and absence of cofilin gene knockdown. The results of the present study demonstrated that cyclic stretch stimulates the expression of genes associated with osteoblastic activities in MG‑63 cells, including alkaline phosphatase (ALP), osteocalcin (OCN), runt‑related transcription factor 2 (Runx2) and collagen‑1 (COL‑1). Cyclic stretch also regulates the mRNA and protein expression of cofilin in MG‑63 cells. Furthermore, stretch‑induced increases in the levels of osteogenesis-associated genes, including ALP, OCN, Runx2 and COL‑1, were reduced following cofilin gene knockdown. Together, these results demonstrate that cofilin is involved in the regulation of mechanical load‑induced osteogenesis and, to the best of our knowledge, provides the first evidence demonstrating the importance of cofilin in osteoblastic mechanotransduction.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shanmin Fu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhaobin Zeng
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110084, P.R. China
| | - Feifei Li
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiannan Niu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Feng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
15
|
Abstract
The nucleus is physically distinct from the cytoplasm in ways that suggest new ideas and approaches for interrogating the operation of this organelle. Chemical bond formation and breakage underlie the lives of cells, but as this special issue of Molecular Biology of the Cell attests, the nonchemical aspects of cell nuclei present a new frontier to biologists and biophysicists.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - John F Marko
- Department of Molecular Biosciences and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
16
|
Navarro-Lérida I, Pellinen T, Sanchez SA, Guadamillas MC, Wang Y, Mirtti T, Calvo E, Del Pozo MA. Rac1 nucleocytoplasmic shuttling drives nuclear shape changes and tumor invasion. Dev Cell 2015; 32:318-34. [PMID: 25640224 DOI: 10.1016/j.devcel.2014.12.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 08/06/2014] [Accepted: 12/19/2014] [Indexed: 11/26/2022]
Abstract
Nuclear membrane microdomains are proposed to act as platforms for regulation of nuclear function, but little is known about the mechanisms controlling their formation. Organization of the plasma membrane is regulated by actin polymerization, and the existence of an actin pool in the nucleus suggests that a similar mechanism might operate here. We show that nuclear membrane organization and morphology are regulated by the nuclear level of active Rac1 through actin polymerization-dependent mechanisms. Rac1 nuclear export is mediated by two internal nuclear export signals and through its interaction with nucleophosmin-1 (B23), which acts as a Rac1 chaperone inside the nucleus. Rac1 nuclear accumulation alters the balance between cytosolic Rac1 and Rho, increasing RhoA signaling in the cytoplasm and promoting a highly invasive phenotype. Nuclear Rac1 shuttling is a finely tuned mechanism for controlling nuclear shape and organization and cell invasiveness.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Integrin Signaling Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Teijo Pellinen
- Integrin Signaling Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, P.O. Box 20, 00014 Helsinki, Finland
| | - Susana A Sanchez
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; Facultad de Ciencias Químicas, Universidad de Concepción, 4070371 Concepción, Chile
| | - Marta C Guadamillas
- Integrin Signaling Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Yinhai Wang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, P.O. Box 20, 00014 Helsinki, Finland
| | - Tuomas Mirtti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, P.O. Box 20, 00014 Helsinki, Finland; HUSLAB, Department of Pathology, Haartman Institute, Helsinki University Central Hospital, Haartmaninkatu 3 C, P.O. Box 400, 00029 HUS Helsinki, Finland
| | - Enrique Calvo
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miguel A Del Pozo
- Integrin Signaling Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
17
|
Strickfaden H, Zunhammer A, van Koningsbruggen S, Köhler D, Cremer T. 4D Chromatin dynamics in cycling cells. Nucleus 2014. [DOI: 10.4161/nucl.11969] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Niedenberger BA, Chappell VA, Otey CA, Geyer CB. Actin dynamics regulate subcellular localization of the F-actin-binding protein PALLD in mouse Sertoli cells. Reproduction 2014; 148:333-41. [PMID: 24989903 DOI: 10.1530/rep-14-0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sertoli cells undergo terminal differentiation at puberty to support all phases of germ cell development, which occurs in the mouse beginning in the second week of life. By ∼18 days postpartum (dpp), nearly all Sertoli cells have ceased proliferation. This terminal differentiation is accompanied by the development of unique and regionally concentrated filamentous actin (F-actin) structures at the basal and apical aspects of the seminiferous epithelium, and this reorganization is likely to involve the action of actin-binding proteins. Palladin (PALLD) is a widely expressed F-actin-binding and bundling protein recently shown to regulate these structures, yet it is predominantly nuclear in Sertoli cells at puberty. We found that PALLD localized within nuclei of primary Sertoli cells grown in serum-free media but relocalized to the cytoplasm upon serum stimulation. We utilized this system with in vivo relevance to Sertoli cell development to investigate mechanisms regulating nuclear localization of this F-actin-binding protein. Our results indicate that PALLD can be shuttled from the nucleus to the cytoplasm, and that this relocalization occurred following depolymerization of the F-actin cytoskeleton in response to cAMP signaling. Nuclear localization was reduced in Hpg-mutant testes, suggesting the involvement of gonadotropin signaling. We found that PALLD nuclear localization was unaffected in testis tissues from LH receptor and androgen receptor-mutant mice. However, PALLD nuclear localization was reduced in the testes of FSH receptor-mutant mice, suggesting that FSH signaling during Sertoli cell maturation regulates this subcellular localization.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actins/metabolism
- Active Transport, Cell Nucleus
- Animals
- Cells, Cultured
- Cyclic AMP/metabolism
- Cytoplasm/metabolism
- Cytoskeletal Proteins/metabolism
- Follicle Stimulating Hormone/metabolism
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Humans
- Karyopherins/metabolism
- Luteinizing Hormone/metabolism
- Male
- Mice
- Mice, Knockout
- Phosphoproteins/metabolism
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Sertoli Cells/metabolism
- rho GTP-Binding Proteins/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Bryan A Niedenberger
- Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vesna A Chappell
- Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carol A Otey
- Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher B Geyer
- Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Department of Anatomy and Cell BiologyBrody School of Medicine, Greenville, North Carolina 27834, USAEast Carolina Diabetes and Obesity InstituteGreenville, North Carolina 27834, USADepartment of Cell Biology and PhysiologyUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
The stress-inducible actin-interacting protein DRR1 shapes social behavior. Psychoneuroendocrinology 2014; 48:98-110. [PMID: 24998413 DOI: 10.1016/j.psyneuen.2014.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 01/18/2023]
Abstract
Understanding the molecular mechanisms by which stress is translated into changes in complex behavior may help to identify novel treatment strategies for stress-associated psychiatric disorders. The tumor suppressor gene down-regulated in renal cell carcinoma 1 (DRR1) was recently characterized as a new molecular link between stress, synaptic efficacy and behavioral performance, most likely through its ability to modulate actin dynamics. The lateral septum is one of the brain regions prominently involved in the stress response. This brain region features high DRR1 expression in adult mice, even under basal conditions. We therefore aimed to characterize and dissect the functional role of septal DRR1 in modulating complex behavior. DRR1 protein expression was shown to be expressed in both neurons and astrocytes of the lateral septum of adult mice. Septal DRR1 mRNA expression increased after acute defeat stress and glucocorticoid receptor activation. To mimic the stress-induced DRR1 increase in the lateral septum of mice, we performed adenovirus-mediated region-specific overexpression of DRR1 and characterized the behavior of these mice. Overexpression of DRR1 in the septal region increased sociability, but did not change cognitive, anxiety-like or anhedonic behavior. The observed changes in social behavior did not involve alterations of the expression of vasopressin or oxytocin receptors, the canonical social neuropeptidergic circuits of the lateral septum. In summary, our data suggest that the stress-induced increase of DRR1 expression in the lateral septum could be a protective mechanism to buffer or counterbalance negative consequences of stress exposure on social behavior.
Collapse
|
20
|
Li X, Zhang X, Li X, Wang X, Wang S, Ding J. Cyclosporine A protects podocytes via stabilization of cofilin-1 expression in the unphosphorylated state. Exp Biol Med (Maywood) 2014; 239:922-936. [PMID: 24737737 DOI: 10.1177/1535370214530365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Podocyte foot process (FP) is dysregulated in nephrotic syndrome. The effacement of podocyte FPs typically arises following perturbations in the actin cytoskeleton. Recent data suggest that the effects of calcineurin (CaN) inhibitor cyclosporine A (CsA) are independent of its effects on T-cells, and CsA has been identified as stabilizing the actin cytoskeleton through stabilizing synaptopodin in podocytes, and thereby directly reducing proteinuria. Other studies showed that CsA could regulate cofilin-1 directly within tubular epithelial cells. However, whether synaptopodin is the only target of CsA or whether the antiproteinuric role of CsA is played by regulating cofilin-1 in podocytes has not been studied. In the present study, changes in the expression and distribution of nephrin, synaptopodin, cofilin-1 and phosphorylated cofilin-1 (pho-cofilin-1) were detected in both puromycin aminonucleoside (PAN) induced nephrotic rats treated with CsA and cultured podocytes exposed to PAN with/without CsA. Cofilin-1, synaptopodin mRNA was knocked down or combined by siRNA to investigate whether cofilin-1 was critical for the protective effect of CsA and whether the effect of CsA on cofilin-1 was independent of its effect on synaptopodin. We found that CsA reduced proteinuria and repaired FP effacement of PAN-induced nephropathy, restored expression of nephrin, synaptopodin, cofilin-1, pho-cofilin-1 both in vivo and in vitro. CsA also repaired actin cytoskeleton impaired by PAN in vitro. The protective effect of CsA was diminished when cofilin-1 was knocked down compared to negative control. Synaptopodin knocked down had no effect on cofilin-1. The protective effect of CsA decreased significantly when cofilin-1 and synaptopodin were simultaneously knocked down compared to only cofilin-1 knock down. In conclusion, the antiproteinuric effect of CsA is derived from the stabilization of the podocyte actin cytoskeleton by upregulating expression of cofilin-1, which was independent of its effect on synaptopodin.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xiaoyan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xuejuan Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xuejing Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Suxia Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
21
|
The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 2014; 4:2267. [PMID: 23925298 DOI: 10.1038/ncomms3267] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a cellular recycling process that has an important anti-aging role, but the underlying molecular mechanism is not well understood. The mammalian transcription factor EB (TFEB) was recently shown to regulate multiple genes in the autophagy process. Here we show that the predicted TFEB orthologue HLH-30 regulates autophagy in Caenorhabditis elegans and, in addition, has a key role in lifespan determination. We demonstrate that hlh-30 is essential for the extended lifespan of Caenorhabditis elegans in six mechanistically distinct longevity models, and overexpression of HLH-30 extends lifespan. Nuclear localization of HLH-30 is increased in all six Caenorhabditis elegans models and, notably, nuclear TFEB levels are augmented in the livers of mice subjected to dietary restriction, a known longevity-extending regimen. Collectively, our results demonstrate a conserved role for HLH-30 and TFEB in autophagy, and possibly longevity, and identify HLH-30 as a uniquely important transcription factor for lifespan modulation in Caenorhabditis elegans.
Collapse
|
22
|
Abstract
This volume brings together a number of perspectives on how certain physical phenomena contribute to the functional design and operation of the nucleus. This collection could not be more timely, resonating with an increasing awareness of the opportunities that lie at the interface of cell biology and the physical sciences. For example, this was a major theme in the 2012 and 2013 annual meetings of the American Society for Cell Biology, and one that the Society aims to emphasize even further going forward. In addition, the emerging canonical relevance of the physical sciences to cell biology has in recent summers made a most conspicuous appearance in the curriculum (lectures and intense labs) of the famed Physiology Course at the Marine Biological Laboratory in Woods Hole. So, much credit is due to Ronald Hancock and Kwang Jeon, the coeditors of this volume, and all the authors for creating a work that is so au courant.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
23
|
Abstract
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics.
Collapse
Affiliation(s)
- Jan Lammerding
- Brigham and Women's Hospital/Harvard Medical School, Cambridge, Massachusetts, USA.
| |
Collapse
|
24
|
Analysis of nuclear actin by overexpression of wild-type and actin mutant proteins. Histochem Cell Biol 2013; 141:123-35. [PMID: 24091797 DOI: 10.1007/s00418-013-1151-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 01/14/2023]
Abstract
Compared to the cytoplasmic F-actin abundance in cells, nuclear F-actin levels are generally quite low. However, nuclear actin is present in certain cell types including oocytes and under certain cellular conditions including stress or serum stimulation. Currently, the architecture and polymerization status of nuclear actin networks has not been analyzed in great detail. In this study, we investigated the architecture and functions of such nuclear actin networks. We generated nuclear actin polymers by overexpression of actin proteins fused to a nuclear localization signal (NLS). Raising nuclear abundance of a NLS wild-type actin, we observed phalloidin- and LifeAct-positive actin bundles forming a nuclear cytoskeletal network consisting of curved F-actin. In contrast, a polymer-stabilizing actin mutant (NLS-G15S-actin) deficient in interacting with the actin-binding protein cofilin generated a nuclear actin network reminiscent of straight stress fiber-like microfilaments in the cytoplasm. We provide a first electron microscopic description of such nuclear actin polymers suggesting bundling of actin filaments. Employing different cell types from various species including neurons, we show that the morphology of and potential to generate nuclear actin are conserved. Finally, we demonstrate that nuclear actin affects cell function including morphology, serum response factor-mediated gene expression, and herpes simplex virus infection. Our data suggest that actin is able to form filamentous structures inside the nucleus, which share architectural and functional similarities with the cytoplasmic F-actin.
Collapse
|
25
|
Slee JB, Lowe-Krentz LJ. Actin realignment and cofilin regulation are essential for barrier integrity during shear stress. J Cell Biochem 2013; 114:782-95. [PMID: 23060131 DOI: 10.1002/jcb.24416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 12/12/2022]
Abstract
Vascular endothelial cells and their actin microfilaments align in the direction of fluid shear stress (FSS) in vitro and in vivo. To determine whether cofilin, an actin severing protein, is required in this process, the levels of phospho-cofilin (serine-3) were evaluated in cells exposed to FSS. Phospho-cofilin levels decreased in the cytoplasm and increased in the nucleus during FSS exposure. This was accompanied by increased nuclear staining for activated LIMK, a cofilin kinase. Blocking stress kinases JNK and p38, known to play roles in actin realignment during FSS, decreased cofilin phosphorylation under static conditions, and JNK inhibition also resulted in decreased phospho-cofilin during FSS exposure. Inhibition of dynamic changes in cofilin phosphorylation through cofilin mutants decreased correct actin realignment. The mutants also decreased barrier integrity as did inhibition of the stress kinases. These results identify the importance of cofilin in the process of actin alignment and the requirement for actin realignment in endothelial barrier integrity during FSS.
Collapse
Affiliation(s)
- Joshua B Slee
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
26
|
Miyamoto K, Gurdon JB. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci 2013; 70:3289-302. [PMID: 23275942 PMCID: PMC3753470 DOI: 10.1007/s00018-012-1235-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Proper regulation of transcription is essential for cells to acquire and maintain cell identity. Transcriptional activation plays a central role in gene regulation and can be modulated by introducing transcriptional activators such as transcription factors. Activators act on their specific target genes to induce transcription. Reprogramming experiments have revealed that as cells become differentiated, some genes are highly silenced and even introduction of activators that target these silenced genes does not induce transcription. This can be explained by chromatin-based repression that restricts access of transcriptional activators to silenced genes. Transcriptional activation from these genes can be accomplished by opening chromatin, in addition to providing activators. Once a de novo transcription network is established, cells are differentiated or reprogrammed to a new cell type. Emerging evidence suggests that actin in the nucleus (nuclear actin) and nuclear actin-binding proteins are implicated in these transcriptional regulatory processes. This review summarizes roles of nuclear actin and actin-binding proteins in transcriptional regulation. We also discuss possible functions of nuclear actin during reprogramming in the context of transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Kei Miyamoto
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | | |
Collapse
|
27
|
Oyedele OO, Kramer B. Nuanced but significant: how ethanol perturbs avian cranial neural crest cell actin cytoskeleton, migration and proliferation. Alcohol 2013; 47:417-26. [PMID: 23731693 DOI: 10.1016/j.alcohol.2013.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022]
Abstract
Children with fetal alcohol syndrome (FAS) display striking craniofacial abnormalities. These features are proposed to result from perturbations in the morphology and function of cranial neural crest cells (cNCCs), which contribute significantly to the craniofacial complex. While certain pathways by which this may occur have been suggested, precise teratogenic mechanisms remain intensely investigated, as does the question of the teratogenic dose. The present study focused on examining how avian cNCC actin cytoskeleton, migratory distance, and proliferation are affected ex vivo by exposure to ethanol concentrations that simulate maternal intoxication. Chick cNCCs were cultured in 0.2% and 0.4% v/v ethanol. Distances migrated by both ethanol-treated and control cells at 24 and 48 h were recorded. Following phalloidin immunocytochemistry, treated and control cNCCs were compared morphologically and quantitatively. Apoptosis and proliferation in control versus treated cNCCs were also studied. Chick cNCCs cultured in ethanol lost their spindle-like shapes and their ordered cytoskeleton. There was a significant stage-dependent effect on cNCC migration at 24 h (p = 0.035), which was greatest at stage 10 (HH). Ethanol treatment for 48 h revealed a significant main effect for ethanol, chiefly at the 0.4% level. There was also an interaction effect between ethanol dose and stage of development (stage 9 HH). Actin microfilament disruption was quantitatively increased by ethanol at the doses studied while cNCC proliferation was increased but not significantly. Ethanol had no effect on cNCC apoptosis. At ethanol levels likely to induce human FAS, avian cNCCs exhibit various subtle, potentially significant changes in morphology, migration, and proliferation, with possible consequences for fated structures.
Collapse
Affiliation(s)
- Olusegun O Oyedele
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | | |
Collapse
|
28
|
Jiao B, Taniguchi-Ishigaki N, Güngör C, Peters MA, Chen YW, Riethdorf S, Drung A, Ahronian LG, Shin J, Pagnis R, Pantel K, Tachibana T, Lewis BC, Johnsen SA, Bach I. Functional activity of RLIM/Rnf12 is regulated by phosphorylation-dependent nucleocytoplasmic shuttling. Mol Biol Cell 2013; 24:3085-96. [PMID: 23904271 PMCID: PMC3784382 DOI: 10.1091/mbc.e13-05-0239] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In mice, the ubiquitin ligase RLIM/Rnf12 is a critical survival factor for mammary milk-producing alveolar cells, but little is known about how its activity is regulated. It is shown here that RLIM shuttles between the nucleus and cytoplasm in a phosphorylation-dependent manner, and shuttling is important for its alveolar survival function. The X-linked gene Rnf12 encodes the ubiquitin ligase really interesting new gene (RING) finger LIM domain–interacting protein (RLIM)/RING finger protein 12 (Rnf12), which serves as a major sex-specific epigenetic regulator of female mouse nurturing tissues. Early during embryogenesis, RLIM/Rnf12 expressed from the maternal allele is crucial for the development of extraembryonic trophoblast cells. In contrast, in mammary glands of pregnant and lactating adult females RLIM/Rnf12 expressed from the paternal allele functions as a critical survival factor for milk-producing alveolar cells. Although RLIM/Rnf12 is detected mostly in the nucleus, little is known about how and in which cellular compartment(s) RLIM/Rnf12 mediates its biological functions. Here we demonstrate that RLIM/Rnf12 protein shuttles between nucleus and cytoplasm and this is regulated by phosphorylation of serine S214 located within its nuclear localization sequence. We show that shuttling is important for RLIM to exert its biological functions, as alveolar cell survival activity is inhibited in cells expressing shuttling-deficient nuclear or cytoplasmic RLIM/Rnf12. Thus regulated nucleocytoplasmic shuttling of RLIM/Rnf12 coordinates cellular compartments during mammary alveolar cell survival.
Collapse
Affiliation(s)
- Baowei Jiao
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2324 Centre for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ritland Politz JC, Scalzo D, Groudine M. Something silent this way forms: the functional organization of the repressive nuclear compartment. Annu Rev Cell Dev Biol 2013; 29:241-70. [PMID: 23834025 PMCID: PMC3999972 DOI: 10.1146/annurev-cellbio-101512-122317] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The repressive compartment of the nucleus is comprised primarily of telomeric and centromeric regions, the silent portion of ribosomal RNA genes, the majority of transposable element repeats, and facultatively repressed genes specific to different cell types. This compartment localizes into three main regions: the peripheral heterochromatin, perinucleolar heterochromatin, and pericentromeric heterochromatin. Both chromatin remodeling proteins and transcription of noncoding RNAs are involved in maintenance of repression in these compartments. Global reorganization of the repressive compartment occurs at each cell division, during early development, and during terminal differentiation. Differential action of chromatin remodeling complexes and boundary element looping activities are involved in mediating these organizational changes. We discuss the evidence that heterochromatin formation and compartmentalization may drive nuclear organization.
Collapse
Affiliation(s)
| | - David Scalzo
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Groudine
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
30
|
Cameron RS, Liu C, Pihkala JPS. Myosin 16 levels fluctuate during the cell cycle and are downregulated in response to DNA replication stress. Cytoskeleton (Hoboken) 2013; 70:328-48. [PMID: 23596177 DOI: 10.1002/cm.21109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 03/27/2013] [Indexed: 01/03/2023]
Abstract
Myosins comprise a highly conserved superfamily of eukaryotic actin-dependent motor proteins implicated in a large repertoire of functions in both the cytoplasm and the nucleus. Class XVI myosin, MYO16, reveals expression in most somatic as well as meiotic cells with prominent localization in the nucleus, excepting the nucleolus; however, the role(s) of Myo16 in the nucleus remain unknown. In this report, we investigated Myo16 abundance during transit through the cell cycle. Immunolocalization, immunoblot, flow cytometric and quantitative RT-PCR studies performed in Rat2 cells indicate that Myo16 mRNA and protein abundance are cell cycle regulated: in the unperturbed cell cycle, each rises to peak levels in late G1 and thereon through S-phase and each decays as cells enter M-phase. Notably, RNA interference-induced Myo16 depletion results in altered cell cycle distribution as well as in large-scale cell death. In response to DNA replication stress (impaired replication fork progression as a consequence of DNA damage, lack of sufficient deoxynucleotides, or inhibition of DNA polymerases), Myo16 protein shows substantial loss. Attenuation of replication stress (aphidicolin or hydroxyurea) is followed by a recovery of Myo16 expression and resumption of S-phase progression. Collectively, these observations suggest that Myo16 may play a regulatory role in cell cycle progression.
Collapse
Affiliation(s)
- Richard S Cameron
- Institute of Molecular Medicine and Genetics, Department of Medicine, Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | |
Collapse
|
31
|
Abstract
Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified.
Collapse
|
32
|
Izdebska M, Grzanka D, Gagat M, Gackowska L, Grzanka A. The effect of G-CSF on F-actin reorganization in HL-60 and K562 cell lines. Oncol Rep 2012; 28:2138-48. [PMID: 23023325 DOI: 10.3892/or.2012.2061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/06/2012] [Indexed: 11/05/2022] Open
Abstract
The aim of this investigation was to show the influence of G-CSF (G-CSF) on the F-actin cytoskeleton and the morphology of G-CSFR-proficient HL-60 and G-CSFR-deficient K562 cell lines. In the present study, we show changes in F-actin distribution in HL-60 cells after treatment with 5 and 10 ng/ml concentration of G-CSF but also changes in the organization and fluorescence intensity of F-actin in the K562 cell line. After treatment of HL-60 cells with 5 ng/ml concentration of G-CSF we observed an increase in F-actin levels. Additionally, a higher labeling of nuclear F-actin under TEM was observed. Moreover, changes in the cell cycle indicate cell differentiation. On the other hand, in the K562 cell line we observed an increase in the percentage sub-G1 cells following treatment with both concentration of G-CSF. Furthermore, an increase in the percentage of late apoptotic cells after G-CSF treatment was observed. A statistically significant difference in the cytoplasmic F-actin levels was not detected, but nuclear levels were decreased. In conclusion, we suggest that the G-CSF-based reorganization of actin filaments in HL-60 cells is involved in the differentiation process. Moreover, we suggest that the G-CSF-induced changes observed in K562 cells are associated with a G-CSF receptor-independent pathway or its binding to other similar receptors.
Collapse
Affiliation(s)
- Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | | | | | | | | |
Collapse
|
33
|
Andrin C, McDonald D, Attwood KM, Rodrigue A, Ghosh S, Mirzayans R, Masson JY, Dellaire G, Hendzel MJ. A requirement for polymerized actin in DNA double-strand break repair. Nucleus 2012; 3:384-95. [PMID: 22688650 DOI: 10.4161/nucl.21055] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear actin is involved in several nuclear processes from chromatin remodeling to transcription. Here we examined the requirement for actin polymerization in DNA double-strand break repair. Double-strand breaks are considered the most dangerous type of DNA lesion. Double-strand break repair consists of a complex set of events that are tightly regulated. Failure at any step can have catastrophic consequences such as genomic instability, oncogenesis or cell death. Many proteins involved in this repair process have been identified and their roles characterized. We discovered that some DNA double-strand break repair factors are capable of associating with polymeric actin in vitro and specifically, that purified Ku70/80 interacts with polymerized actin under these conditions. We find that the disruption of polymeric actin inhibits DNA double strand break repair both in vitro and in vivo. Introduction of nuclear targeted mutant actin that cannot polymerize, or the depolymerization of endogenous actin filaments by the addition of cytochalasin D, alters the retention of Ku80 at sites of DNA damage in live cells. Our results suggest that polymeric actin is required for proper DNA double-strand break repair and may function through the stabilization of the Ku heterodimer at the DNA damage site.
Collapse
Affiliation(s)
- Christi Andrin
- Department of Oncology, University of Alberta, Edmonton, AB Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling and cAMP response element-binding protein activation. J Neurosci 2012; 32:143-50. [PMID: 22219277 DOI: 10.1523/jneurosci.4266-11.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human immunodeficiency virus (HIV)-specific protein trans-activator of transcription (Tat) can contribute to the dysfunction of brain endothelial cells and HIV trafficking into the brain by disrupting tight junction (TJ) integrity at the blood-brain barrier (BBB) level. Specific TJ proteins, such as zonula occludens (ZO) proteins, localize not only at the cell-cell borders but are also present in the nuclei. The objective of the present study was to evaluate the mechanisms and significance of Tat-induced nuclear localization of ZO-1. Treatment of a brain endothelial cell line (hCMEC/D3 cells) with Tat resulted in a decrease in total levels of ZO-1 but significantly upregulated ZO-1 protein expression in the nuclei. In addition, exposure to Tat stimulated Rho signaling and induced phosphorylation and activity of transcription factor cAMP response element-binding protein (CREB), binding sites that have been identified in the proximal region of the ZO-1 promoter. Interestingly, inhibition of the Rho cascade protected against Tat-induced upregulation of ZO-1 in the nuclei and activation of CREB. Depletion of CREB by infection of cells with specific shRNA lentiviral particles attenuated both Tat-induced Rho signaling and nuclear targeting of ZO-1. A decrease in CREB levels also attenuated Tat-induced endothelial and BBB hyperpermeability as well as transendothelial migration of monocytic cells. The role of CREB in Tat-mediated alterations of ZO-1 was confirmed in brain microvessels in mice with CREB shRNA lentiviral particles injected into the cerebral circulation. The present results indicate the crucial role of Rho signaling and CREB in modulation of nuclear localization of ZO-1 and maintaining the integrity of endothelial monolayers.
Collapse
|
35
|
Fugelstad J, Brown C, Hukasova E, Sundqvist G, Lindqvist A, Bulone V. Functional characterization of the pleckstrin homology domain of a cellulose synthase from the oomycete Saprolegnia monoica. Biochem Biophys Res Commun 2012; 417:1248-53. [DOI: 10.1016/j.bbrc.2011.12.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/23/2011] [Indexed: 01/06/2023]
|
36
|
Asumda FZ, Chase PB. Nuclear cardiac troponin and tropomyosin are expressed early in cardiac differentiation of rat mesenchymal stem cells. Differentiation 2011; 83:106-15. [PMID: 22364878 DOI: 10.1016/j.diff.2011.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 08/31/2011] [Accepted: 10/10/2011] [Indexed: 01/22/2023]
Abstract
Nuclear actin - which is immunologically distinct from cytoplasmic actin - has been documented in a number of differentiated cell types, and cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) have been detected in association with nuclei of adult human cardiac myocytes. It is not known whether these and related proteins are present in undifferentiated stem cells, or when they appear in cardiomyogenic cells following differentiation. We first tested the hypothesis that nuclear actin and cardiac isoforms of troponin C (cTnC) and tropomyosin (cTm) are present along with cTnI and cTnT in nuclei of isolated, neonatal rat cardiomyocytes in culture. We also tested the hypothesis that of these five proteins, only actin is present in nuclei of multipotent, bone marrow-derived mesenchymal stem cells (BM-MSCs) from adult rats in culture, but that cTnC, cTnI, cTnT and cTm appear early and uniquely following cardiomyogenic differentiation. Here we show that nuclear actin is present within nuclei of both ventricular cardiomyocytes and undifferentiated, multipotent BM-MSCs. We furthermore show that cTnC, cTnI, cTnT and cTm are not only present in myofilaments of ventricular cardiomyocytes in culture but are also within their nuclei; significantly, these four proteins appear between days 3 and 5 in both myofilaments and nuclei of BM-MSCs treated to differentiate into cardiomyogenic cells. These observations indicate that cardiac troponin and tropomyosin could have important cellular function(s) beyond Ca(2+)-regulation of contraction. While the roles of nuclear-associated actin, troponin subunits and tropomyosin in cardiomyocytes are not known, we anticipate that the BM-MSC culture system described here will be useful for elucidating their function(s), which likely involve cardiac-specific, Ca(2+)-dependent signaling in the nucleus.
Collapse
Affiliation(s)
- Faizal Z Asumda
- Department of Biological Science and Program in Molecular Biophysics, Florida State University, FL 32306-4295, USA.
| | | |
Collapse
|
37
|
de Lanerolle P, Serebryannyy L. Nuclear actin and myosins: life without filaments. Nat Cell Biol 2011; 13:1282-8. [PMID: 22048410 DOI: 10.1038/ncb2364] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and myosin are major components of the cell cytoskeleton, with structural and regulatory functions that affect many essential cellular processes. Although they were traditionally thought to function only in the cytoplasm, it is now well accepted that actin and multiple myosins are found in the nucleus. Increasing evidence on their functional roles has highlighted the importance of these proteins in the nuclear compartment.
Collapse
Affiliation(s)
- Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
38
|
Benken KA, Sabaneyeva EV. Fibrillar actin in nuclear apparatus of ciliate Paramecium Caudatum. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1990519x11050026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Mao YS, Zhang B, Spector DL. Biogenesis and function of nuclear bodies. Trends Genet 2011; 27:295-306. [PMID: 21680045 DOI: 10.1016/j.tig.2011.05.006] [Citation(s) in RCA: 516] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 12/17/2022]
Abstract
Nuclear bodies including nucleoli, Cajal bodies, nuclear speckles, Polycomb bodies, and paraspeckles are membraneless subnuclear organelles. They are present at steady-state and dynamically respond to basic physiological processes as well as to various forms of stress, altered metabolic conditions and alterations in cellular signaling. The formation of a specific nuclear body has been suggested to follow a stochastic or ordered assembly model. In addition, a seeding mechanism has been proposed to assemble, maintain, and regulate particular nuclear bodies. In coordination with noncoding RNAs, chromatin modifiers and other machineries, various nuclear bodies have been shown to sequester and modify proteins, process RNAs and assemble ribonucleoprotein complexes, as well as epigenetically regulate gene expression. Understanding the functional relationships between the 3D organization of the genome and nuclear bodies is essential to fully uncover the regulation of gene expression and its implications for human disease.
Collapse
Affiliation(s)
- Yuntao S Mao
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
40
|
Radulovic M, Godovac-Zimmermann J. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms. Expert Rev Proteomics 2011; 8:117-26. [PMID: 21329431 DOI: 10.1586/epr.10.91] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms.
Collapse
Affiliation(s)
- Marko Radulovic
- Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK.
| | | |
Collapse
|
41
|
Abstract
Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals. PLoS One 2011; 6:e17380. [PMID: 21390328 PMCID: PMC3044755 DOI: 10.1371/journal.pone.0017380] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/01/2011] [Indexed: 12/22/2022] Open
Abstract
Background Rho GTPases control many cellular processes, including cell survival, gene expression and migration. Rho proteins reside mainly in the cytosol and are targeted to the plasma membrane (PM) upon specific activation by guanine nucleotide exchange factors (GEFs). Accordingly, most GEFs are also cytosolic or associated with the PM. However, Net1, a RhoA-specific GEF predominantly localizes to the cell nucleus at steady-state. Nuclear localization for Net1 has been seen as a mechanism for sequestering the GEF away from RhoA, effectively rendering the protein inactive. However, considering the prominence of nuclear Net1 and the fact that a biological stimulus that promotes Net1 translocation out the nucleus to the cytosol has yet to be discovered, we hypothesized that Net1 might have a previously unidentified function in the nucleus of cells. Principal Findings Using an affinity precipitation method to pulldown the active form of Rho GEFs from different cellular fractions, we show here that nuclear Net1 does in fact exist in an active form, contrary to previous expectations. We further demonstrate that a fraction of RhoA resides in the nucleus, and can also be found in a GTP-bound active form and that Net1 plays a role in the activation of nuclear RhoA. In addition, we show that ionizing radiation (IR) specifically promotes the activation of the nuclear pool of RhoA in a Net1-dependent manner, while the cytoplasmic activity remains unchanged. Surprisingly, irradiating isolated nuclei alone also increases nuclear RhoA activity via Net1, suggesting that all the signals required for IR-induced nuclear RhoA signaling are contained within the nucleus. Conclusions/Significance These results demonstrate the existence of a functional Net1/RhoA signaling pathway within the nucleus of the cell and implicate them in the DNA damage response.
Collapse
|
43
|
Grzanka D, Marszałek A, Izdebska M, Gackowska L, Andrzej Szczepanski M, Grzanka A. Actin Cytoskeleton Reorganization Correlates with Cofilin Nuclear Expression and Ultrastructural Changes in CHO AA8 Cell Line after Apoptosis and Mitotic Catastrophe Induction by Doxorubicin. Ultrastruct Pathol 2011; 35:130-8. [DOI: 10.3109/01913123.2010.548113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Seebart C, Prenni J, Tomschik M, Zlatanova J. New nuclear partners for nucleosome assembly protein 1: unexpected associations. Biochem Cell Biol 2011; 88:927-36. [PMID: 21102655 DOI: 10.1139/o10-115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Histone chaperones are important players in chromatin dynamics. They are instrumental in nucleosome assembly and disassembly and in histone variant exchange reactions that occur during DNA transactions. The molecular mechanisms of their action are not well understood and may involve interactions with various protein partners in the context of the nucleus. In an attempt to further elucidate nuclear roles of histone chaperones, we performed a proteomic search for nuclear partners of a particular histone chaperone, nucleosome assembly protein 1 (Nap1). Proteins recognized as Nap1 partners by immuno-affinity capture and Far Western blots were identified by mass spectrometry. The identified partners are known to participate in a number of nuclear processes, including DNA replication, recombination, and repair as well as RNA transcription and splicing. Finding nuclear actin among the Nap1 partners may be of particular significance, in view of actin's role in transcription, transcription regulation, and RNA splicing. We are proposing a model of how actin-Nap1 interaction may be involved in transcription elongation through chromatin. In addition, awareness of the interactions between Nap1 and Hsp70, another identified partner, may help to understand nucleosome dynamics around sites of single-strand DNA break repair. These studies represent a starting point for further investigation of Nap1 associations in human cells.
Collapse
Affiliation(s)
- Corrine Seebart
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | |
Collapse
|
45
|
Hubert T, Vandekerckhove J, Gettemans J. Unconventional actin conformations localize on intermediate filaments in mitosis. Biochem Biophys Res Commun 2011; 406:101-6. [PMID: 21295548 DOI: 10.1016/j.bbrc.2011.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/26/2022]
Abstract
Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel "lower dimer" actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.
Collapse
Affiliation(s)
- Thomas Hubert
- Department of Medical Protein Research, VIB, Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
46
|
Kandasamy MK, McKinney EC, Meagher RB. Differential sublocalization of actin variants within the nucleus. Cytoskeleton (Hoboken) 2011; 67:729-43. [PMID: 20862689 DOI: 10.1002/cm.20484] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conventional actin has been implicated in various nuclear processes including chromatin remodeling, transcription, nuclear transport, and overall nuclear structure. Moreover, actin has been identified as a component of several chromatin remodeling complexes present in the nucleus. In animal cells, nuclear actin exists as a dynamic equilibrium of monomers and polymers. Actin-binding proteins (ABPs) such as ADF/cofilin and profilin play a role in actin import and export, respectively. However, very little is known about the localization and roles of nuclear actin in plants. In multicellular plants and animals, actin is comprised of an ancient and divergent family of protein variants. Here, we have investigated the presence and differential localization of two ancient subclasses of actin in isolated Arabidopsis nuclei. Although the subclass 1 variants ACT2 and ACT8 and subclass 2 variant ACT7 were found distributed throughout the nucleoplasm, ACT7 was often found more concentrated in nuclear speckles than subclass 1 variants. The nuclei from the act2-1/act8-2 double null mutant and the act7-5 null mutant lacked their corresponding actin variants. In addition, serial sectioning of several independent nuclei revealed that ACT7 was notably more abundant in the nucleolus than the subclass 1 actins. Profilin and ADF proteins were also found in significant levels in plant nuclei. The possible functions of differentially localized nuclear actin variants are discussed.
Collapse
Affiliation(s)
- Muthugapatti K Kandasamy
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
47
|
Mengistu M, Brotzman H, Ghadiali S, Lowe-Krentz L. Fluid shear stress-induced JNK activity leads to actin remodeling for cell alignment. J Cell Physiol 2010; 226:110-21. [PMID: 20626006 DOI: 10.1002/jcp.22311] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluid shear stress (FSS) exerted on endothelial cell (EC) surfaces induces actin cytoskeleton remodeling through mechanotransduction. This study was designed to determine whether FSS activates Jun N-terminal kinase (JNK), to examine the spatial and temporal distribution of active JNK relative to the actin cytoskeleton in ECs exposed to different FSS conditions, and to evaluate the effects of active JNK on actin realignment. Exposure to 15 and 20 dyn/cm(2) FSS induced higher activity levels of JNK than the lower 2 and 4 dyn/cm(2) flow conditions. At the higher FSS treatments, JNK activity increased with increasing exposure time, peaking 30 min after flow onset with an eightfold activity increase compared to cells in static culture. FSS-induced phospho-JNK co-localized with actin filaments at cell peripheries, as well as with stress fibers. Pharmacologically blocking JNK activity altered FSS-induced actin structure and distribution as a response to FSS. Our results indicate that FSS-induced actin remodeling occurs in three phases, and that JNK plays a role in at least one, suggesting that this kinase activity is involved in mechanotransduction from the apical surface to the actin cytoskeleton in ECs.
Collapse
Affiliation(s)
- Meron Mengistu
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | | | |
Collapse
|
48
|
Hubert T, Vandekerckhove J, Gettemans J. Actin and Arp2/3 localize at the centrosome of interphase cells. Biochem Biophys Res Commun 2010; 404:153-8. [PMID: 21108927 DOI: 10.1016/j.bbrc.2010.11.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ("lower dimer") actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.
Collapse
Affiliation(s)
- Thomas Hubert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
49
|
Doxorubicin-induced F-actin reorganization in cofilin-1 (nonmuscle) down-regulated CHO AA8 cells. Folia Histochem Cytobiol 2010; 48:377-86. [DOI: 10.2478/v10042-010-0072-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Abstract
The traditional view of cellular actin is a rather autarkic cytoskeletal framework function confined to the cytoplasm. However, there is now evidence that alterations in actin dynamics are sensed by the nucleus and subsequently modulate gene expression. In communicating with the nucleus, cytoplasmic, and most likely also nucleus-resident actin, provides a further (gene) regulatory loop to cell motility. A transcription module composed of MRTF (myocardin-related transcription factor) and SRF (serum response factor) emerges as prime target of such actin signaling. Here, I focus on the nervous system, where the actin-MRTF-SRF entity governs multiple aspects of neuronal motility.
Collapse
Affiliation(s)
- Bernd Knöll
- Interfaculty Institute for Cell Biology, Department of Molecular Biology, Neuronal Gene Expression Laboratory, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany.
| |
Collapse
|