1
|
Wei R, Hitomi M, Sadler T, Yehia L, Calvetti D, Scott J, Eng C. Quantitative evaluation of DNA damage repair dynamics to elucidate predictors of autism vs. cancer in individuals with germline PTEN variants. PLoS Comput Biol 2024; 20:e1012449. [PMID: 39356721 PMCID: PMC11472915 DOI: 10.1371/journal.pcbi.1012449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/14/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Persons with germline variants in the tumor suppressor gene phosphatase and tensin homolog, PTEN, are molecularly diagnosed with PTEN hamartoma tumor syndrome (PHTS). PHTS confers high risks of specific malignancies, and up to 23% of the patients are diagnosed with autism spectrum disorder (ASD) and/or developmental delay (DD). The accurate prediction of these two seemingly disparate phenotypes (cancer vs. ASD/DD) for PHTS at the individual level remains elusive despite the available statistical prevalence of specific phenotypes of the syndrome at the population level. The pleiotropy of the syndrome may, in part, be due to the alterations of the key multi-functions of PTEN. Maintenance of genome integrity is one of the key biological functions of PTEN, but no integrative studies have been conducted to quantify the DNA damage response (DDR) in individuals with PHTS and to relate to phenotypes and genotypes. In this study, we used 43 PHTS patient-derived lymphoblastoid cell lines (LCLs) to investigate the associations between DDR and PTEN genotypes and/or clinical phenotypes ASD/DD vs. cancer. The dynamics of DDR of γ-irradiated LCLs were analyzed using the exponential decay mathematical model to fit temporal changes in γH2AX levels which report the degree of DNA damage. We found that PTEN nonsense variants are associated with less efficient DNA damage repair ability resulting in higher DNA damage levels at 24 hours after irradiation compared to PTEN missense variants. Regarding PHTS phenotypes, LCLs from PHTS individuals with ASD/DD showed faster DNA damage repairing rate than those from patients without ASD/DD or cancer. We also applied the reaction-diffusion partial differential equation (PDE) mathematical model, a cell growth model with a DNA damage term, to accurately describe the DDR process in the LCLs. For each LCL, we can derive parameters of the PDE. Then we averaged the numerical results by PHTS phenotypes. By performing simple subtraction of two subgroup average results, we found that PHTS-ASD/DD is associated with higher live cell density at lower DNA damage level but lower cell density level at higher DNA damage level compared to LCLs from individuals with PHTS-cancer and PHTS-neither.
Collapse
Affiliation(s)
- Ruipeng Wei
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Nutrition and Systems Biology and Bioinformatics Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Tammy Sadler
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Daniela Calvetti
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University College of Arts and Sciences, Cleveland, Ohio, United States of America
| | - Jacob Scott
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
2
|
Oleksak P, Rysanek D, Vancurova M, Vasicova P, Urbancokova A, Novak J, Maurencova D, Kashmel P, Houserova J, Mikyskova R, Novotny O, Reinis M, Juda P, Hons M, Kroupova J, Sedlak D, Sulimenko T, Draber P, Chlubnova M, Nepovimova E, Kuca K, Lisa M, Andrys R, Kobrlova T, Soukup O, Janousek J, Prchal L, Bartek J, Musilek K, Hodny Z. Discovery of a 6-Aminobenzo[ b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities. ACS Pharmacol Transl Sci 2024; 7:2755-2783. [PMID: 39296273 PMCID: PMC11406704 DOI: 10.1021/acsptsci.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.
Collapse
Affiliation(s)
- Patrik Oleksak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - David Rysanek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Vancurova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Dominika Maurencova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Kashmel
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Houserova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Romana Mikyskova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ondrej Novotny
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milan Reinis
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Juda
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Jirina Kroupova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Draber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Chlubnova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Miroslav Lisa
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Janousek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Danish Cancer Institute, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
3
|
Zhang M, Li X, Herman JG, Gao A, Wang Q, Yao Y, Shen F, He K, Guo M. Methylation of NRIP3 Is a Synthetic Lethal Marker for Combined PI3K and ATR/ATM Inhibitors in Colorectal Cancer. Clin Transl Gastroenterol 2024; 15:e00682. [PMID: 38235705 PMCID: PMC10962901 DOI: 10.14309/ctg.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
INTRODUCTION The aim of this study was to investigate the epigenetic regulation and underlying mechanism of NRIP3 in colorectal cancer (CRC). METHODS Eight cell lines (SW480, SW620, DKO, LOVO, HT29, HCT116, DLD1, and RKO), 187 resected margin samples from colorectal cancer tissue, 146 cases with colorectal adenomatous polyps, and 308 colorectal cancer samples were used. Methylation-specific PCR, Western blotting, RNA interference assay, and a xenograft mouse model were used. RESULTS NRIP3 exhibited methylation in 2.7% (5/187) of resected margin samples from colorectal cancer tissue, 32.2% (47/146) of colorectal adenomatous polyps, and 50.6% (156/308) of CRC samples, and the expression of NRIP3 was regulated by promoter region methylation. The methylation of NRIP3 was found to be significantly associated with late onset (at age 50 years or older), poor tumor differentiation, lymph node metastasis, and poor 5-year overall survival in CRC (all P < 0.05). In addition, NRIP3 methylation was an independent poor prognostic marker ( P < 0.05). NRIP3 inhibited cell proliferation, colony formation, invasion, and migration, while induced G1/S arrest. NRIP3 suppressed CRC growth by inhibiting PI3K-AKT signaling both in vitro and in vivo . Methylation of NRIP3 sensitized CRC cells to combined PI3K and ATR/ATM inhibitors. DISCUSSION NRIP3 was frequently methylated in both colorectal adenomatous polyps and CRC. The methylation of NRIP3 may potentially serve as an early detection, late-onset, and poor prognostic marker in CRC. NRIP3 is a potential tumor suppressor. NRIP3 methylation is a potential synthetic lethal marker for combined PI3K and ATR/ATM inhibitors.
Collapse
Affiliation(s)
- Meiying Zhang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyun Li
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - James G. Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Aiai Gao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanxin Yao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fangfang Shen
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Kunlun He
- Key Laboratory of Ministry of Industry and Information Technology of Biomedical Engineering and Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Xie Q, Liao Q, Wang L, Zhang Y, Chen J, Bai H, Li K, Ai J. The Dominant Mechanism of Cyclophosphamide-Induced Damage to Ovarian Reserve: Premature Activation or Apoptosis of Primordial Follicles? Reprod Sci 2024; 31:30-44. [PMID: 37486531 DOI: 10.1007/s43032-023-01294-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Cyclophosphamide (CPM), a part of most cancer treatment regimens, has demonstrated high gonadal toxicity in females. Initially, CPM is believed to damage the ovarian reserve by premature activation of primordial follicles, for the fact that facing CPM damage, primordial oocytes show the activation of PTEN/PI3K/AKT pathways, accompanied by accelerated activation of follicle developmental waves. Meanwhile, primordial follicles are dormant and not considered the target of CPM. However, many researchers have found DNA DSBs and apoptosis within primordial oocytes under CPM-induced ovarian damage instead of premature accelerated activation. A stricter surveillance system of DNA damage is also thought to be in primordial oocytes. So far, the apoptotic death mechanism is considered well-proved, but the premature activation theory is controversial and unacceptable. The connection between the upregulation of PTEN/PI3K/AKT pathways and DNA DSBs and apoptosis within primordial oocytes is also unclear. This review aims to highlight the flaw and/or support of the disputed premature activation theory and the apoptosis mechanism to identify the underlying mechanism of CPM's injury on ovarian reserve, which is crucial to facilitate the discovery and development of effective ovarian protectants. Ultimately, this review finds no good evidence for follicle activation and strong consistent evidence for apoptosis.
Collapse
Affiliation(s)
- Qin Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Reproductive Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangcheng District, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Qiuyue Liao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hualin Bai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Wörthmüller J, Disler S, Pradervand S, Richard F, Haerri L, Ruiz Buendía GA, Fournier N, Desmedt C, Rüegg C. MAGI1 Prevents Senescence and Promotes the DNA Damage Response in ER + Breast Cancer. Cells 2023; 12:1929. [PMID: 37566008 PMCID: PMC10417439 DOI: 10.3390/cells12151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
MAGI1 acts as a tumor suppressor in estrogen receptor-positive (ER+) breast cancer (BC), and its loss correlates with a more aggressive phenotype. To identify the pathways and events affected by MAGI1 loss, we deleted the MAGI1 gene in the ER+ MCF7 BC cell line and performed RNA sequencing and functional experiments in vitro. Transcriptome analyses revealed gene sets and biological processes related to estrogen signaling, the cell cycle, and DNA damage responses affected by MAGI1 loss. Upon exposure to TNF-α/IFN-γ, MCF7 MAGI1 KO cells entered a deeper level of quiescence/senescence compared with MCF7 control cells and activated the AKT and MAPK signaling pathways. MCF7 MAGI1 KO cells exposed to ionizing radiations or cisplatin had reduced expression of DNA repair proteins and showed increased sensitivity towards PARP1 inhibition using olaparib. Treatment with PI3K and AKT inhibitors (alpelisib and MK-2206) restored the expression of DNA repair proteins and sensitized cells to fulvestrant. An analysis of human BC patients' transcriptomic data revealed that patients with low MAGI1 levels had a higher tumor mutational burden and homologous recombination deficiency. Moreover, MAGI1 expression levels negatively correlated with PI3K/AKT and MAPK signaling, which confirmed our in vitro observations. Pharmacological and genomic evidence indicate HDACs as regulators of MAGI1 expression. Our findings provide a new view on MAGI1 function in cancer and identify potential treatment options to improve the management of ER+ BC patients with low MAGI1 levels.
Collapse
Affiliation(s)
- Janine Wörthmüller
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Simona Disler
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sylvain Pradervand
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, 1015 Lausanne, Switzerland
| | - François Richard
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3000 Leuven, Belgium
| | - Lisa Haerri
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Gustavo A. Ruiz Buendía
- Translational Data Science-Facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Bugnon 25A, 1005 Lausanne, Switzerland
| | - Nadine Fournier
- Translational Data Science-Facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Bugnon 25A, 1005 Lausanne, Switzerland
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3000 Leuven, Belgium
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Abd El-Hafeez AA, Sun N, Chakraborty A, Ear J, Roy S, Chamarthi P, Rajapakse N, Das S, Luker KE, Hazra TK, Luker GD, Ghosh P. Regulation of DNA damage response by trimeric G-proteins. iScience 2023; 26:105973. [PMID: 36756378 PMCID: PMC9900518 DOI: 10.1016/j.isci.2023.105973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/14/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Upon sensing DNA double-strand breaks (DSBs), eukaryotic cells either die or repair DSBs via one of the two competing pathways, i.e., non-homologous end-joining (NHEJ) or homologous recombination (HR). We show that cell fate after DSBs hinges on GIV/Girdin, a guanine nucleotide-exchange modulator of heterotrimeric Giα•βγ protein. GIV suppresses HR by binding and sequestering BRCA1, a key coordinator of multiple steps within the HR pathway, away from DSBs; it does so using a C-terminal motif that binds BRCA1's BRCT-modules via both phospho-dependent and -independent mechanisms. Using another non-overlapping C-terminal motif GIV binds and activates Gi and enhances the "free" Gβγ→PI-3-kinase→Akt pathway, which promotes survival and is known to suppress HR, favor NHEJ. Absence of GIV, or loss of either of its C-terminal motifs enhanced cell death upon genotoxic stress. Because GIV selectively binds other BRCT-containing proteins suggests that G-proteins may fine-tune sensing, repair, and survival after diverse types of DNA damage.
Collapse
Affiliation(s)
- Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nina Sun
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason Ear
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pranavi Chamarthi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Veterans Affairs Medical Center, La Jolla, CA, USA
| |
Collapse
|
7
|
Sudhanva MS, Hariharasudhan G, Jun S, Seo G, Kamalakannan R, Kim HH, Lee JH. MicroRNA-145 Impairs Classical Non-Homologous End-Joining in Response to Ionizing Radiation-Induced DNA Double-Strand Breaks via Targeting DNA-PKcs. Cells 2022; 11:1509. [DOI: https:/doi.org/10.3390/cells11091509 academic] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage due to the fact that unrepaired or mis-repaired DSBs lead to genomic instability or chromosomal aberrations, thereby causing cell death or tumorigenesis. The classical non-homologous end-joining pathway (c-NHEJ) is the major repair mechanism for rejoining DSBs, and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical factor in this pathway; however, regulation of DNA-PKcs expression remains unknown. In this study, we demonstrate that miR-145 directly suppresses DNA-PKcs by binding to the 3′-UTR and inhibiting translation, thereby causing an accumulation of DNA damage, impairing c-NHEJ, and rendering cells hypersensitive to ionizing radiation (IR). Of note, miR-145-mediated suppression of DNA damage repair and enhanced IR sensitivity were both reversed by either inhibiting miR-145 or overexpressing DNA-PKcs. In addition, we show that the levels of Akt1 phosphorylation in cancer cells are correlated with miR-145 suppression and DNA-PKcs upregulation. Furthermore, the overexpression of miR-145 in Akt1-suppressed cells inhibited c-NHEJ by downregulating DNA-PKcs. These results reveal a novel miRNA-mediated regulation of DNA repair and identify miR-145 as an important regulator of c-NHEJ.
Collapse
Affiliation(s)
- Muddenahalli Srinivasa Sudhanva
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Semo Jun
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Gwanwoo Seo
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Radhakrishnan Kamalakannan
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Hyun Hee Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| |
Collapse
|
8
|
MicroRNA-145 Impairs Classical Non-Homologous End-Joining in Response to Ionizing Radiation-Induced DNA Double-Strand Breaks via Targeting DNA-PKcs. Cells 2022; 11:cells11091509. [PMID: 35563814 PMCID: PMC9102532 DOI: 10.3390/cells11091509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage due to the fact that unrepaired or mis-repaired DSBs lead to genomic instability or chromosomal aberrations, thereby causing cell death or tumorigenesis. The classical non-homologous end-joining pathway (c-NHEJ) is the major repair mechanism for rejoining DSBs, and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical factor in this pathway; however, regulation of DNA-PKcs expression remains unknown. In this study, we demonstrate that miR-145 directly suppresses DNA-PKcs by binding to the 3′-UTR and inhibiting translation, thereby causing an accumulation of DNA damage, impairing c-NHEJ, and rendering cells hypersensitive to ionizing radiation (IR). Of note, miR-145-mediated suppression of DNA damage repair and enhanced IR sensitivity were both reversed by either inhibiting miR-145 or overexpressing DNA-PKcs. In addition, we show that the levels of Akt1 phosphorylation in cancer cells are correlated with miR-145 suppression and DNA-PKcs upregulation. Furthermore, the overexpression of miR-145 in Akt1-suppressed cells inhibited c-NHEJ by downregulating DNA-PKcs. These results reveal a novel miRNA-mediated regulation of DNA repair and identify miR-145 as an important regulator of c-NHEJ.
Collapse
|
9
|
Dubich T, Dittrich A, Bousset K, Geffers R, Büsche G, Köster M, Hauser H, Schulz TF, Wirth D. 3D culture conditions support Kaposi's sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells. J Mol Med (Berl) 2021; 99:425-438. [PMID: 33484281 PMCID: PMC7900040 DOI: 10.1007/s00109-020-02020-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus and the etiological agent of an endothelial tumor (Kaposi's sarcoma) and two B cell proliferative diseases (primary effusion lymphoma and multicentric Castleman's disease). While in patients with late stage of Kaposi's sarcoma the majority of spindle cells are KSHV-infected, viral copies are rapidly lost in vitro, both upon culture of tumor-derived cells or from newly infected endothelial cells. We addressed this discrepancy by investigating a KSHV-infected endothelial cell line in various culture conditions and in tumors of xenografted mice. We show that, in contrast to two-dimensional endothelial cell cultures, KSHV genomes are maintained under 3D cell culture conditions and in vivo. Additionally, an increased rate of newly infected cells was detected in 3D cell culture. Furthermore, we show that the PI3K/Akt/mTOR and ATM/γH2AX pathways are modulated and support an improved KSHV persistence in 3D cell culture. These mechanisms may contribute to the persistence of KSHV in tumor tissue in vivo and provide a novel target for KS specific therapeutic interventions. KEY MESSAGES: In vivo maintenance of episomal KSHV can be mimicked in 3D spheroid cultures 3D maintenance of KSHV is associated with an increased de novo infection frequency PI3K/Akt/mTOR and ATM/ γH2AX pathways contribute to viral maintenance.
Collapse
Affiliation(s)
- Tatyana Dubich
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne Dittrich
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kristine Bousset
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Guntram Büsche
- Hematopathology Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hansjörg Hauser
- Staff Unit Scientific Strategy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Cluster of Excellence REBIRTH (EXC 62), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Cai J, Wang N, Lin G, Zhang H, Xie W, Zhang Y, Xu N. MBNL2 Regulates DNA Damage Response via Stabilizing p21. Int J Mol Sci 2021; 22:ijms22020783. [PMID: 33466733 PMCID: PMC7829980 DOI: 10.3390/ijms22020783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
RNA-binding proteins are frequently dysregulated in human cancer and able to modulate tumor cell proliferation as well as tumor metastasis through post-transcriptional regulation on target genes. Abnormal DNA damage response and repair mechanism are closely related to genome instability and cell transformation. Here, we explore the function of the RNA-binding protein muscleblind-like splicing regulator 2 (MBNL2) on tumor cell proliferation and DNA damage response. Transcriptome and gene expression analysis show that the PI3K/AKT pathway is enriched in MBNL2-depleted cells, and the expression of cyclin-dependent kinase inhibitor 1A (p21CDKN1A) is significantly affected after MBNL2 depletion. MBNL2 modulates the mRNA and protein levels of p21, which is independent of its canonical transcription factor p53. Moreover, depletion of MBNL2 increases the phosphorylation levels of checkpoint kinase 1 (Chk1) serine 345 (S345) and DNA damage response, and the effect of MBNL2 on DNA damage response is p21-dependent. MBNL2 would further alter tumor cell fate after DNA damage, MBNL2 knockdown inhibiting DNA damage repair and DNA damage-induced senescence, but promoting DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Jin Cai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ningchao Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guanglan Lin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haowei Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
11
|
Kostaras E, Kaserer T, Lazaro G, Heuss SF, Hussain A, Casado P, Hayes A, Yandim C, Palaskas N, Yu Y, Schwartz B, Raynaud F, Chung YL, Cutillas PR, Vivanco I. A systematic molecular and pharmacologic evaluation of AKT inhibitors reveals new insight into their biological activity. Br J Cancer 2020; 123:542-555. [PMID: 32439931 PMCID: PMC7435276 DOI: 10.1038/s41416-020-0889-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AKT, a critical effector of the phosphoinositide 3-kinase (PI3K) signalling cascade, is an intensely pursued therapeutic target in oncology. Two distinct classes of AKT inhibitors have been in clinical development, ATP-competitive and allosteric. Class-specific differences in drug activity are likely the result of differential structural and conformational requirements governing efficient target binding, which ultimately determine isoform-specific potency, selectivity profiles and activity against clinically relevant AKT mutant variants. METHODS We have carried out a systematic evaluation of clinical AKT inhibitors using in vitro pharmacology, molecular profiling and biochemical assays together with structural modelling to better understand the context of drug-specific and drug-class-specific cell-killing activity. RESULTS Our data demonstrate clear differences between ATP-competitive and allosteric AKT inhibitors, including differential effects on non-catalytic activity as measured by a novel functional readout. Surprisingly, we found that some mutations can cause drug resistance in an isoform-selective manner despite high structural conservation across AKT isoforms. Finally, we have derived drug-class-specific phosphoproteomic signatures and used them to identify effective drug combinations. CONCLUSIONS These findings illustrate the utility of individual AKT inhibitors, both as drugs and as chemical probes, and the benefit of AKT inhibitor pharmacological diversity in providing a repertoire of context-specific therapeutic options.
Collapse
Affiliation(s)
- Eleftherios Kostaras
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, SM2 5NG, London, UK
| | - Teresa Kaserer
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Glorianne Lazaro
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, SM2 5NG, London, UK
| | - Sara Farrah Heuss
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, SM2 5NG, London, UK
| | - Aasia Hussain
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, SM2 5NG, London, UK
| | - Pedro Casado
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Cihangir Yandim
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, SM2 5NG, London, UK
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, 35330, Balçova, Izmir, Turkey
| | - Nicolaos Palaskas
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yi Yu
- ArQule, Inc. (a wholly-owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA), Burlington, MA, 01803, USA
| | - Brian Schwartz
- ArQule, Inc. (a wholly-owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA), Burlington, MA, 01803, USA
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London and Royal Marsden Hospital, London, SW7 3RP, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Igor Vivanco
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, SM2 5NG, London, UK.
| |
Collapse
|
12
|
Blackford AN, Stucki M. How Cells Respond to DNA Breaks in Mitosis. Trends Biochem Sci 2020; 45:321-331. [PMID: 32001093 DOI: 10.1016/j.tibs.2019.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to chromosomal instability if they are not repaired correctly. DSBs are especially dangerous in mitosis when cells go through the complex process of equal chromosome segregation into daughter cells. When cells encounter DSBs in interphase, they are able to arrest the cell cycle until the breaks are repaired before entering mitosis. However, when DSBs occur during mitosis, cells no longer arrest but prioritize completion of cell division over repair of DNA damage. This review focuses on recent progress in our understanding of the mechanisms that allow mitotic cells to postpone DSB repair without accumulating massive chromosomal instability. Additionally, we review possible physiological consequences of failed DSB responses in mitosis.
Collapse
Affiliation(s)
- Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
13
|
Zhu H, Blake S, Kusuma FK, Pearson RB, Kang J, Chan KT. Oncogene-induced senescence: From biology to therapy. Mech Ageing Dev 2020; 187:111229. [PMID: 32171687 DOI: 10.1016/j.mad.2020.111229] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Oncogene-induced senescence (OIS) is a powerful intrinsic tumor-suppressive mechanism, arresting cell cycle progression upon oncogene-activating genomic alterations. The discovery and characterization of the senescence-associated secretome unveiled a rich additional complexity to the senescence phenotype, including extrinsic impacts on the microenvironment and engagement of the immune response. Emerging evidence suggests that senescence phenotypes vary depending on the oncogenic stimulus. Therefore, understanding the mechanisms underlying OIS and how they are subverted in cancer will provide invaluable opportunities to identify alternative strategies for treating oncogene-driven cancers. In this review, we primarily discuss the key mechanisms governing OIS driven by the RAS/MAPK and PI3K/AKT pathways and how understanding the biology of senescent cells has uncovered new therapeutic possibilities to target cancer.
Collapse
Affiliation(s)
- Haoran Zhu
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Shaun Blake
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Frances K Kusuma
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Richard B Pearson
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3168, Australia.
| | - Jian Kang
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Keefe T Chan
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
14
|
Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing. Cells 2020; 9:200. [PMID: 31947601 PMCID: PMC7016612 DOI: 10.3390/cells9010200] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of genome integrity in the mammalian female germline from primordial follicle arrest to activation of growth to oocyte maturation is fundamental to ensure reproductive success. As oocytes are formed before birth and may remain dormant for many years, it is essential that defence mechanisms are monitored and well maintained. The phosphatase and tensin homolog of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) is a major signalling pathway governing primordial follicle recruitment and growth. This pathway also contributes to cell growth, survival and metabolism, and to the maintenance of genomic integrity. Accelerated primordial follicle activation through this pathway may result in a compromised DNA damage response (DDR). Additionally, the distinct DDR mechanisms in oocytes may become less efficient with ageing. This review considers DNA damage surveillance mechanisms and their links to the PTEN/PI3K/Akt signalling pathway, impacting on the DDR during growth activation of primordial follicles, and in ovarian ageing. Targeting DDR mechanisms within oocytes may be of value in developing techniques to protect ovaries against chemotherapy and in advancing clinical approaches to regulate primordial follicle activation.
Collapse
Affiliation(s)
- Mila Maidarti
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
- Obstetrics and Gynaecology Department, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
| | - Evelyn E. Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
15
|
Yao L, Yu F, Xu Y, Wang Y, Zuo Y, Wang C, Ye L. DNA damage response manages cell cycle restriction of senile multipotent mesenchymal stromal cells. Mol Biol Rep 2019; 47:809-818. [PMID: 31664596 DOI: 10.1007/s11033-019-05150-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/18/2019] [Indexed: 02/05/2023]
Abstract
Multipotent mesenchymal stromal cells (MMSCs) are promising to treat a variety of traumatic and degenerative diseases. However, in vitro-passage aging induces cell cycle arrest and a series of genetic and biological changes, which greatly limits ex vivo cell number expansion and further clinical application of MMSCs. In most cases, DNA damage and DNA damage response (DDR) act as the main cause and executor of cellular senescence respectively. Mechanistically, DNA damage signals induce cell cycle arrest and DNA damage repair via DDR. If the DNA damage is indelible, MMSCs would entry into a permanent cell cycle arrest. It should be noted that apart from DDR signaling, certain proliferation or metabolism pathways are also occupied in DNA damage related cell cycle arrest. New findings of these aspects will also be summarized in this study. In summary, we aim to provide a comprehensive review of DDR associated cell cycle regulation and other major molecular signaling in the senescence of MMSCs. Above knowledge could contribute to improve the limited capacity of in vitro expansion of MMSCs, and then promote their clinical applications.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yining Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Sargazi S, Saravani R, Zavar Reza J, Jaliani HZ, Mirinejad S, Rezaei Z, Zarei S. Induction of apoptosis and modulation of homologous recombination DNA repair pathway in prostate cancer cells by the combination of AZD2461 and valproic acid. EXCLI JOURNAL 2019; 18:485-498. [PMID: 31423128 PMCID: PMC6694702 DOI: 10.17179/excli2019-1098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
Cancer therapies using defects in homologous recombination (HR) DNA repair pathway of tumor cells are not yet approved to be applicable in patients with malignancies other than BRCA1/2-mutated tumors. This study was designed to determine the efficacy of combination therapy of a histone deacetylase inhibitor, valproic acid (VPA) and a novel PARP inhibitor AZD2461 in both PC-3 (PTEN-mutated) and DU145 (PTEN-unmutated) prostate cancer cell lines. The Trypan blue dye exclusion assay and the tetrazolium-based colorimetric (MTT) assay were performed to measure the cytotoxicity while combination effects were assessed based on Chou-Talalay's principles. Flow-cytometric assay determined the type of cell death. The real-time PCR analysis was used to evaluate the alterations in mRNA levels of HR-related genes while their protein levels were measured using the ELISA method. γ-H2AX levels were determined as a marker of DNA damage. We observed a synergistic relationship between VPA and AZD2461 in all affected fractions of PC-3 cells (CI<0.9), but not in DU145 cells (CI>1.1). Annexin-V staining analysis revealed a significant induction of apoptosis when PC-3 cells were treated with VPA+AZD2461 (p<0.05). Both mRNA and protein levels of Rad51 and Mre11 were significantly decreased in PC-3 cells co-treated with VPA+AZD2461 while enhanced H2AX phosphorylation was found in PC-3 cells after 12 and 24 hours of co-treatment (p<0.05). Our findings established a preclinical rationale for selective targeting of HR repair pathways by a combination of VPA and AZD2461 as a mechanism for reducing the HR pathway sufficiency in PTEN-mutated prostate cancer cells.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Javad Zavar Reza
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Zarei Jaliani
- Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Chen L, Yang S, Wen C, Zheng S, Yang Y, Feng X, Chen J, Luo D, Liu R, Yang F. Regulation of Microcystin-LR-Induced DNA Damage by miR-451a in HL7702 Cells. Toxins (Basel) 2019; 11:toxins11030164. [PMID: 30875960 PMCID: PMC6468842 DOI: 10.3390/toxins11030164] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022] Open
Abstract
Microcystin-LR is a cyclic heptapeptide hepatotoxin produced by harmful cyanobacteria. A panel of microRNAs containing miR-451a were found to be significantly changed in normal human liver cells HL7702 after exposure to microcystin-LR (MC-LR) in our previous study. However, the functions of miR-451a in hepatotoxicity induced by MC-LR remained unclear. The study aimed to investigate the impacts of miR-451a in HL7702 cells following treatment with 5 or 10 μM MC-LR. The comet assay indicated that MC-LR can influence Olive tail moment (OTM) in HL7702 cells. Furthermore, increase of miR-451a significantly repressed DNA damage and the protein expression level of γ-H2AX induced by MC-LR. Moreover, over-expression of miR-451a inhibited the expression level of p-AKT1 protein in cells following treatment by MC-LR. These results showed that miR-451a may protect from MC-LR-induced DNA damage by down-regulating the expression of p-AKT1, which provides new clues for the diagnosis and therapy policies for liver damage induced by MC-LR.
Collapse
Affiliation(s)
- Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| | - Shu Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| | - Cong Wen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| | - Shuilin Zheng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| | - Yue Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| | - Xiangling Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| | - Jihua Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| | - Dan Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing 210007, China.
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, China.
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing 210007, China.
- Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China.
| |
Collapse
|
18
|
Maidarti M, Clarkson YL, McLaughlin M, Anderson RA, Telfer EE. Inhibition of PTEN activates bovine non-growing follicles in vitro but increases DNA damage and reduces DNA repair response. Hum Reprod 2019; 34:297-307. [PMID: 30521029 PMCID: PMC6343469 DOI: 10.1093/humrep/dey354] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does ovarian follicle activation by phosphatase homologue of chromosome-10 (PTEN) inhibition affect DNA damage and repair in bovine oocytes and granulosa cells? SUMMARY ANSWER PTEN inhibition promotes bovine non-growing follicle activation but results in increased DNA damage and impaired DNA repair capacity in ovarian follicles in vitro. WHAT IS KNOWN ALREADY Inhibition of PTEN is known to activate primordial follicles but may compromise further developmental potential. In breast cancer cells, PTEN inhibition represses nuclear translocation of breast cancer susceptibility 1 (BRCA1) and Rad51; this impairs DNA repair resulting in an accumulation of damaged DNA, which contributes to cell senescence. STUDY DESIGN, SIZE, DURATION Bovine ovarian tissue fragments were exposed to control medium alone or containing either 1 or 10 μM bpv(HOpic), a pharmacological inhibitor of PTEN, in vitro for 24 h. A sub-group of tissue fragments were collected for Western blot analysis after bpv(HOpic) exposure. The remainder were incubated in control medium for a further 5 days and then analysed histologically and by immunohistochemistry to detect DNA damage and repair pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS Bovine ovaries were obtained from abattoir-slaughtered heifers. Tissue fragments were exposed to either control medium alone or medium containing either 1 μM or 10 μM bpv(HOpic) for 24 h. Tissue fragments collected after 24 h were subjected to Akt quantification by Western blotting (six to nine fragments per group per experiment). Follicle stage and morphology were classified in remaining fragments. Immunohistochemical analysis included nuclear exclusion of FOXO3 as a marker of follicle activation, γH2AX as a marker of DNA damage, meiotic recombination 11 (MRE11), ataxia telangiectasia mutated (ATM), Rad51, breast cancer susceptibility 1 (BRCA1) and breast cancer susceptibility 2 (BRCA2) as DNA repair factors. A total of 29 550 follicles from three independent experiments were analysed. MAIN RESULTS AND THE ROLE OF CHANCE Tissue fragments exposed to bpv(HOpic) had increased Akt phosphorylation at serine 473 (pAkt/Akt ratio, 2.25- and 6.23-fold higher in 1 and 10 μM bpv(HOpic) respectively compared to control, P < 0.05). These tissue fragments contained a significantly higher proportion of growing follicles compared to control (78.6% in 1 μM and 88.7% in 10 μM versus 70.5% in control; P < 0.001). The proportion of morphologically healthy follicles did not differ significantly between 1 μM bpv(HOpic) and control (P < 0.001) but follicle health was lower in 10 μM compared to 1 μM and control in all follicle types (P < 0.05). DNA damage in oocytes, indicated by expression of γH2AX, increased following exposure to 1 μM bpv(HOpic) (non-growing, 83%; primary follicles, 76%) and 10 μM (non-growing, 77%; primary, 84%) compared to control (non-growing, 30% and primary, 59%) (P < 0.05 for all groups). A significant reduction in expression of DNA repair proteins MRE11, ATM and Rad51 was observed in oocytes of non-growing and primary follicles of treatment groups (primary follicles in controls versus 10 μM bpv(HOpic): MRE, 68% versus 47%; ATM, 47% versus 18%; Rad51, 48% versus 24%), P < 0.05 for all groups. Higher dose bpv(HOpic) also resulted in lower expression of BRCA1 compared to control and 1 μM bpv(HOpic) (P < 0.001) in non-growing and primary follicles. BRCA2 expression was increased in oocytes of primary follicles in 1 μM bpv(HOpic) (36%) compared to control (20%, P = 0.010) with a marked decrease in 10 μM (1%, P ≤ 0.001). Granulosa cells of primary and secondary follicles in bpv(HOpic) groups showed more DNA damage compared to control (P < 0.05). However, bpv(HOpic) did not impact granulosa cell DNA repair capacity in secondary follicles, but BRCA1 declined significantly in higher dose bpv(HOpic). LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study focuses on non-growing follicle activation after 6 days culture and may not reflect DNA damage and repair capacity in later stages of oocyte and follicle growth. WIDER IMPLICATIONS OF THE FINDINGS In vitro activation of follicle growth may compromise the bidirectional signalling between oocyte and granulosa cells necessary for optimal oocyte and follicle health. This large animal model may be useful in optimising follicle activation protocols with a view to transfer for clinical application. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Indonesia endowment fund for education. No competing interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Mila Maidarti
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology and Genes and Development Group, CDBS Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Yvonne L Clarkson
- Institute of Cell Biology and Genes and Development Group, CDBS Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Marie McLaughlin
- Institute of Cell Biology and Genes and Development Group, CDBS Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Evelyn E Telfer
- Institute of Cell Biology and Genes and Development Group, CDBS Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Klingenberg M, Groß M, Goyal A, Polycarpou-Schwarz M, Miersch T, Ernst AS, Leupold J, Patil N, Warnken U, Allgayer H, Longerich T, Schirmacher P, Boutros M, Diederichs S. The Long Noncoding RNA Cancer Susceptibility 9 and RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein L Form a Complex and Coregulate Genes Linked to AKT Signaling. Hepatology 2018; 68:1817-1832. [PMID: 29790588 DOI: 10.1002/hep.30102] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/08/2018] [Accepted: 05/12/2018] [Indexed: 12/31/2022]
Abstract
The identification of viability-associated long noncoding RNAs (lncRNAs) might be a promising rationale for new therapeutic approaches in liver cancer. Here, we applied an RNA interference screening approach in hepatocellular carcinoma (HCC) cell lines to find viability-associated lncRNAs. Among the multiple identified lncRNAs with a significant impact on HCC cell viability, we selected cancer susceptibility 9 (CASC9) due to the strength of its phenotype, expression, and up-regulation in HCC versus normal liver. CASC9 regulated viability across multiple HCC cell lines as shown by clustered regularly interspaced short palindromic repeats interference and single small interfering RNA (siRNA)-mediated and siRNA pool-mediated depletion of CASC9. Further, CASC9 depletion caused an increase in apoptosis and a decrease of proliferation. We identified the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a CASC9 interacting protein by RNA affinity purification and validated it by native RNA immunoprecipitation. Knockdown of HNRNPL mimicked the loss-of-viability phenotype observed upon CASC9 depletion. Analysis of the proteome (stable isotope labeling with amino acids in cell culture) of CASC9-depleted and HNRNPL-depleted cells revealed a set of coregulated genes which implied a role of the CASC9:HNRNPL complex in AKT signaling and DNA damage sensing. CASC9 expression levels were elevated in patient-derived tumor samples compared to normal control tissue and had a significant association with overall survival of HCC patients. In a xenograft chicken chorioallantoic membrane model, we measured decreased tumor size after knockdown of CASC9. Conclusion: Taken together, we provide a comprehensive list of viability-associated lncRNAs in HCC; we identified the CASC9:HNRNPL complex as a clinically relevant viability-associated lncRNA/protein complex which affects AKT signaling and DNA damage sensing in HCC.
Collapse
Affiliation(s)
- Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center.,Faculty of Biosciences, Heidelberg University.,Institute of Pathology, University Hospital Heidelberg.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg
| | - Matthias Groß
- Division of RNA Biology & Cancer, German Cancer Research Center.,Institute of Pathology, University Hospital Heidelberg
| | - Ashish Goyal
- Division of RNA Biology & Cancer, German Cancer Research Center
| | | | - Thilo Miersch
- Division of Signaling and Functional Genomics, German Cancer Research Center
| | - Anne-Sophie Ernst
- Faculty of Biosciences, Heidelberg University.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg.,Institute of Physiology and Pathophysiology, University of Heidelberg
| | - Jörg Leupold
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, and Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg
| | - Nitin Patil
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, and Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg
| | - Uwe Warnken
- Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Heike Allgayer
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, and Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg
| | | | | | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center.,Division of Cancer Research, Department of Thoracic Surgery, Medical Center, University of Freiburg.,Faculty of Medicine, University of Freiburg.,German Cancer Consortium, Freiburg, Germany
| |
Collapse
|
20
|
Gorrepati KDD, Lupse B, Annamalai K, Yuan T, Maedler K, Ardestani A. Loss of Deubiquitinase USP1 Blocks Pancreatic β-Cell Apoptosis by Inhibiting DNA Damage Response. iScience 2018; 1:72-86. [PMID: 30227958 PMCID: PMC6135944 DOI: 10.1016/j.isci.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Impaired pancreatic β-cell survival contributes to the reduced β-cell mass in diabetes, but underlying regulatory mechanisms and key players in this process remain incompletely understood. Here, we identified the deubiquitinase ubiquitin-specific protease 1 (USP1) as an important player in the regulation of β-cell apoptosis under diabetic conditions. Genetic silencing and pharmacological suppression of USP1 blocked β-cell death in several experimental models of diabetes in vitro and ex vivo without compromising insulin content and secretion and without impairing β-cell maturation/identity genes in human islets. Our further analyses showed that USP1 inhibition attenuated DNA damage response (DDR) signals, which were highly elevated in diabetic β-cells, suggesting a USP1-dependent regulation of DDR in stressed β-cells. Our findings highlight a novel function of USP1 in the control of β-cell survival, and its inhibition may have a potential therapeutic relevance for the suppression of β-cell death in diabetes. Genetic and chemical inhibition of USP1 promoted β-cell survival USP1 inhibitors blocked β-cell death in human islets without affecting β-cell function USP1 inhibition reduced DDR signals in stressed β-cells
Collapse
Affiliation(s)
- Kanaka Durga Devi Gorrepati
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Blaz Lupse
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Karthika Annamalai
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Ting Yuan
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Kathrin Maedler
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| | - Amin Ardestani
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| |
Collapse
|
21
|
Szymonowicz K, Oeck S, Malewicz NM, Jendrossek V. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response. Cancers (Basel) 2018; 10:cancers10030078. [PMID: 29562639 PMCID: PMC5876653 DOI: 10.3390/cancers10030078] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt’s activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nathalie M Malewicz
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| |
Collapse
|
22
|
Kuzu OF, Gowda R, Sharma A, Noory MA, Kardos G, Madhunapantula SV, Drabick JJ, Robertson GP. Identification of WEE1 as a target to make AKT inhibition more effective in melanoma. Cancer Biol Ther 2018; 19:53-62. [PMID: 28853983 PMCID: PMC5790369 DOI: 10.1080/15384047.2017.1360446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
AKT3 is one of the major therapeutic targets in melanoma but clinically targeting AKT3 alone seems to be an ineffective therapeutic approach. To identify unique strategies to enhance the efficacy of targeting AKT3, a screen was undertaken where AKT3 was co-targeted with a panel of kinases important in melanoma development. The screen identified WEE1 as the most potent target that when inhibited along with AKT3 would enhance the efficacy of targeting AKT3 in melanoma. RNAi mediated inhibition of AKT3 and WEE1 synergistically inhibited the viability of melanoma cells leading to a 65-75% decrease in tumor development. This approach was effective by mechanistically modulating pathways associated with the transcription factors p53 and FOXM1. Simultaneously regulating the activity of these two transcriptionally driven pathways, cooperatively deregulated cell cycle control and DNA damage repair to synergistically kill melanoma cells. This study uniquely identifies a potential approach to improve the efficacy of targeting AKT3 in melanoma.
Collapse
Affiliation(s)
- Omer F. Kuzu
- The Pennsylvania State University College of Medicine, Department of Pharmacology, Hershey, PA
| | - Raghavendra Gowda
- The Pennsylvania State University College of Medicine, Department of Pharmacology, Hershey, PA
- The Pennsylvania State University College of Medicine, The Melanoma and Skin Cancer Center, Hershey, PA
- The Melanoma Therapeutics Program, 500 University Drive, Hershey, PA
| | - Arati Sharma
- The Pennsylvania State University College of Medicine, Department of Pharmacology, Hershey, PA
| | - Mohammad A. Noory
- The Pennsylvania State University College of Medicine, Department of Pharmacology, Hershey, PA
| | - Gregory Kardos
- The Pennsylvania State University College of Medicine, Department of Pharmacology, Hershey, PA
| | | | - Joseph J. Drabick
- The Pennsylvania State University College of Medicine, Department of Medicine, Division of Hematology-Oncology, Hershey, PA
- The Pennsylvania State University College of Medicine, The Melanoma and Skin Cancer Center, Hershey, PA
- The Melanoma Therapeutics Program, 500 University Drive, Hershey, PA
| | - Gavin P. Robertson
- The Pennsylvania State University College of Medicine, Department of Pharmacology, Hershey, PA
- The Pennsylvania State University College of Medicine, Department of Pathology, Hershey, PA
- The Pennsylvania State University College of Medicine, Department of Dermatology, Hershey, PA
- The Pennsylvania State University College of Medicine, Department of Surgery, Hershey, PA
- The Pennsylvania State University College of Medicine, The Melanoma and Skin Cancer Center, Hershey, PA
- The Melanoma Therapeutics Program, 500 University Drive, Hershey, PA
| |
Collapse
|
23
|
Chao HX, Poovey CE, Privette AA, Grant GD, Chao HY, Cook JG, Purvis JE. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle. Cell Syst 2017; 5:445-459.e5. [PMID: 29102360 PMCID: PMC5700845 DOI: 10.1016/j.cels.2017.09.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/26/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none.
Collapse
Affiliation(s)
- Hui Xiao Chao
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Cere E Poovey
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Ashley A Privette
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Gavin D Grant
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Hui Yan Chao
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Jeanette G Cook
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA.
| |
Collapse
|
24
|
Yang H, Huang F, Tao Y, Zhao X, Liao L, Tao X. Simvastatin ameliorates ionizing radiation-induced apoptosis in the thymus by activating the AKT/sirtuin 1 pathway in mice. Int J Mol Med 2017; 40:762-770. [PMID: 28677744 PMCID: PMC5547942 DOI: 10.3892/ijmm.2017.3047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Simvastatin is a HMG-CoA reductase inhibitor widely used to lower plasma cholesterol and to protect against cardiovascular risk factors. The aim of this study was to investigate whether simvastatin attenuates ionizing radiation-induced damage in the mouse thymus and to elucidate the possible mechanisms invovled. For this purpose, male C57BL/6J mice aged 6 weeks were used and exposed to 4 Gy 60Co γ-radiation with or without simvastatin (20 mg/kg/day, for 14 days). Apoptosis was determined by terminal deoxynucle-otidyltransferase-mediated dUTP nick-end labeling (TUNEL) assay or transmission electron microscopy (TEM) examination. Thymocytes were also isolated and incubated in DMEM supplemented with 10% FBS at 37°C and exposed to 8 Gy 60Co γ-radiation with or without simvastatin (20 µM). The expression levels of Bcl-2, p53, p-p53, AKT, sirtuin 1 and poly(ADP-ribose) polymerase (PARP) were determined by western blot analysis. TUNEL and TEM examination revealed that simvastatin treatment significantly mitigated ionizing radiation-induced apoptosis in the mouse thymus. It was also found that simvastatin treatment increased AKT/sirtuin 1 expression following exposure to ionizing radiation in vivo and in vitro. In the in vivo model, but not in the in vitro model, Bcl-2 and PARP expression was augmented and that of p53/p-p53 decreased following treatment with simvastatin. On the whole, our findings indicate that simvastatin exerts a protective effect against ionizing radiation-induced damage in the mouse thymus, which may be partially attributed to the activation of the AKT/sirtuin 1 pathway.
Collapse
Affiliation(s)
- Hong Yang
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Fei Huang
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yulong Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xinbin Zhao
- School of Pharmaceutical Sciences Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Lina Liao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xia Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
25
|
A novel function of hepatocyte growth factor in the activation of checkpoint kinase 1 phosphorylation in colon cancer cells. Mol Cell Biochem 2017; 436:29-38. [PMID: 28573382 PMCID: PMC5674134 DOI: 10.1007/s11010-017-3075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/25/2017] [Indexed: 01/02/2023]
Abstract
The ATR/checkpoint kinase 1 (Chk1) pathway plays an essential role in modulating the DNA damage response and homologous recombination. Particularly, Chk1 phosphorylation is related to cancer prognosis and therapeutic resistance. Some receptor tyrosine kinases participate in the regulation of Chk1 phosphorylation; however, the effect of hepatocyte growth factor (HGF) on Chk1 phosphorylation is unknown. In the present study, we demonstrated that HGF moderately activated Chk1 phosphorylation in colon cancer cells by upregulating TopBP1 and RAD51, and promoting TopBP1–ATR complex formation. Furthermore, AKT activity, which was promoted by HGF, served as an important mediator linking HGF/MET signaling and Chk1 phosphorylation. Depleting AKT activity attenuated basal expression of p-Chk1 and HGF-induced Chk1 activation. Moreover, AKT activity directly regulated TopBP1 and RAD51 expression. AKT inhibition suppressed HGF-induced upregulation of TopBP1 and RAD51, and enhanced TopBP1/ATR complex formation. Our results show that HGF was involved in regulating Chk1 phosphorylation, and further demonstrate that AKT activity was responsible for this HGF-induced Chk1 phosphorylation. These findings might potentially result in management of prognosis and therapeutic sensitivity in cancer therapy.
Collapse
|
26
|
Chen MK, Hung MC. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases. Am J Cancer Res 2016; 6:827-842. [PMID: 27186434 PMCID: PMC4859887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023] Open
Abstract
In response to DNA damage lesions due to cellular stress, DNA damage response (DDR) pathways are activated to promote cell survival and genetic stability or unrepaired lesion-induced cell death. Current cancer treatments predominantly utilize DNA damaging agents, such as irradiation and chemotherapy drugs, to inhibit cancer cell proliferation and induce cell death through the activation of DDR. However, a portion of cancer patients is reported to develop therapeutic resistance to these DDR-inducing agents. One significant resistance mechanism in cancer cells is oncogenic kinase overexpression, which promotes cell survival by enhancing DNA damage repair pathways and evading cell cycle arrest. Among the oncogenic kinases, overexpression of receptor tyrosine kinases (RTKs) is reported in many of solid tumors, and numerous clinical trials targeting RTKs are currently in progress. As the emerging trend in cancer treatment combines DNA damaging agents and RTK inhibitors, it is important to understand the substrates of RTKs relative to the DDR pathways. In addition, alteration of RTK expression and their phosphorylated substrates can serve as biomarkers to stratify patients for combination therapies. In this review, we summarize the deleterious effects of RTKs on the DDR pathways and the emerging biomarkers for personalized therapy.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- Graduate School of Biomedical Science, The University of Texas Health Science Center at HoustonHouston, Texas 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, 77030, USA
| | - Mien-Chie Hung
- Graduate School of Biomedical Science, The University of Texas Health Science Center at HoustonHouston, Texas 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, 77030, USA
- Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical UniversityTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
| |
Collapse
|
27
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
28
|
Lee JH, Park SJ, Jeong SY, Kim MJ, Jun S, Lee HS, Chang IY, Lim SC, Yoon SP, Yong J, You HJ. MicroRNA-22 Suppresses DNA Repair and Promotes Genomic Instability through Targeting of MDC1. Cancer Res 2015; 75:1298-1310. [PMID: 25627978 DOI: 10.1158/0008-5472.can-14-2783] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023]
Abstract
MDC1 is critical component of the DNA damage response (DDR) machinery and orchestrates the ensuring assembly of the DDR protein at the DNA damage sites, and therefore loss of MDC1 results in genomic instability and tumorigenicity. However, the molecular mechanisms controlling MDC1 expression are currently unknown. Here, we show that miR-22 inhibits MDC1 translation via direct binding to its 3' untranslated region, leading to impaired DNA damage repair and genomic instability. We demonstrated that activated Akt1 and senescence hinder DDR function of MDC1 by upregulating endogenous miR-22. After overexpression of constitutively active Akt1, homologous recombination was inhibited by miR-22-mediated MDC1 repression. In addition, during replicative senescence and stress-induced premature senescence, MDC1 was downregulated by upregulating miR-22 and thereby accumulating DNA damage. Our results demonstrate a central role of miR-22 in the physiologic regulation of MDC1-dependent DDR and suggest a molecular mechanism for how aberrant Akt1 activation and senescence lead to increased genomic instability, fostering an environment that promotes tumorigenesis.
Collapse
Affiliation(s)
- Jung-Hee Lee
- DNA Damage Response Network Center, Chosun University School of Medicine, Gwangju, Republic of Korea. Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea.
| | - Seon-Joo Park
- DNA Damage Response Network Center, Chosun University School of Medicine, Gwangju, Republic of Korea. Division of Natural Medical Sciences, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Seo-Yeon Jeong
- DNA Damage Response Network Center, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Min-Ji Kim
- DNA Damage Response Network Center, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Semo Jun
- DNA Damage Response Network Center, Chosun University School of Medicine, Gwangju, Republic of Korea. Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hyun-Seo Lee
- DNA Damage Response Network Center, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - In-Youb Chang
- DNA Damage Response Network Center, Chosun University School of Medicine, Gwangju, Republic of Korea. Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sang Pil Yoon
- Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota.
| | - Ho Jin You
- DNA Damage Response Network Center, Chosun University School of Medicine, Gwangju, Republic of Korea. Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
| |
Collapse
|
29
|
Akt-mediated phosphorylation of XLF impairs non-homologous end-joining DNA repair. Mol Cell 2015; 57:648-661. [PMID: 25661488 DOI: 10.1016/j.molcel.2015.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023]
Abstract
Deficiency in repair of damaged DNA leads to genomic instability and is closely associated with tumorigenesis. Most DNA double-strand-breaks (DSBs) are repaired by two major mechanisms, homologous-recombination (HR) and non-homologous-end-joining (NHEJ). Although Akt has been reported to suppress HR, its role in NHEJ remains elusive. Here, we report that Akt phosphorylates XLF at Thr181 to trigger its dissociation from the DNA ligase IV/XRCC4 complex, and promotes its interaction with 14-3-3β leading to XLF cytoplasmic retention, where cytosolic XLF is subsequently degraded by SCF(β-TRCP) in a CKI-dependent manner. Physiologically, upon DNA damage, XLF-T181E expressing cells display impaired NHEJ and elevated cell death. Whereas a cancer-patient-derived XLF-R178Q mutant, deficient in XLF-T181 phosphorylation, exhibits an elevated tolerance of DNA damage. Together, our results reveal a pivotal role for Akt in suppressing NHEJ and highlight the tight connection between aberrant Akt hyper-activation and deficiency in timely DSB repair, leading to genomic instability and tumorigenesis.
Collapse
|
30
|
Goto H, Kasahara K, Inagaki M. Novel insights into Chk1 regulation by phosphorylation. Cell Struct Funct 2014; 40:43-50. [PMID: 25748360 DOI: 10.1247/csf.14017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) is a conserved protein kinase central to the cell-cycle checkpoint during DNA damage response (DDR). Until recently, ATR, a protein kinase activated in response to DNA damage or stalled replication, has been considered as the sole regulator of Chk1. Recent progress, however, has led to the identification of additional protein kinases involved in Chk1 phosphorylation, affecting the subcellular localization and binding partners of Chk1. In fact, spatio-temporal regulation of Chk1 is of critical importance not only in the DDR but also in normal cell-cycle progression. In due course, many potent inhibitors targeted to Chk1 have been developed as anticancer agents and some of these inhibitors are currently in clinical trials. In this review, we summarize the current knowledge of Chk1 regulation by phosphorylation.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | | | | |
Collapse
|
31
|
Jia ZQ, Chen Y, Yan YX, Zhao JX. Iso-suillin isolated from Suillus luteus, induces G1 phase arrest and apoptosis in human hepatoma SMMC-7721 cells. Asian Pac J Cancer Prev 2014; 15:1423-8. [PMID: 24606477 DOI: 10.7314/apjcp.2014.15.3.1423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Iso-suillin, a natural product isolated from Suillus luteus, has been shown to inhibit the growth of some cancer cell lines. However, the molecular mechanisms of action of this compound are poorly understood. The purpose of this study was to investigate how iso-suillin inhibits proliferation and induces apoptosis in a human hepatoma cell line (SMMC-7721). We demonstrated the effects of iso-suillin on cell proliferation and apoptosis in SMMC-7721 cells, with no apparent toxicity in normal human lymphocytes, using colony formation assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Western blotting was used to examine the expression of G1 phase-regulated and apoptosis-associated protein levels in iso-suillin treated SMMC-7721 cells. The results indicated that iso-suillin significantly decreased viability, induced G1 phase arrest and triggered apoptosis in SMMC-7721cells. Taken together, these results suggest the potential of iso-suillin as a candidate for liver cancer treatment.
Collapse
Affiliation(s)
- Zhi-Qiang Jia
- The Basic Medical College, Hebei Medical University, Shijiazhuang, China E-mail :
| | | | | | | |
Collapse
|
32
|
Brenner AK, Reikvam H, Lavecchia A, Bruserud Ø. Therapeutic targeting the cell division cycle 25 (CDC25) phosphatases in human acute myeloid leukemia--the possibility to target several kinases through inhibition of the various CDC25 isoforms. Molecules 2014; 19:18414-47. [PMID: 25397735 PMCID: PMC6270710 DOI: 10.3390/molecules191118414] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/28/2014] [Accepted: 11/02/2014] [Indexed: 01/26/2023] Open
Abstract
The cell division cycle 25 (CDC25) phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs). CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML); and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Håkon Reikvam
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Antonio Lavecchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway.
| |
Collapse
|
33
|
Maeda J, Bell JJ, Genet SC, Fujii Y, Genet MD, Brents CA, Genik PC, Kato TA. Potentially lethal damage repair in drug arrested G2-phase cells after radiation exposure. Radiat Res 2014; 182:448-57. [PMID: 25251700 DOI: 10.1667/rr13744.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Potentially lethal damage (PLD) repair has been defined as that property conferring the ability of cells to recover from DNA damage depending on the postirradiation environment. Using a novel cyclin dependent kinase 1 inhibitor RO-3306 to arrest cells in the G2 phase of the cell cycle, examined PLD repair in G2 in cultured Chinese hamster ovary (CHO) cells. Several CHO-derived DNA repair mutant cell lines were used in this study to elucidate the mechanism of DNA double-strand break repair and to examine PLD repair during the G2 phase of the cell cycle. While arrested in G2 phase, wild-type CHO cells displayed significant PLD repair and improved cell survival compared with cells released immediately from G2 after irradiation. Both the radiation-induced chromosomal aberrations and the delayed entry into mitosis were also reduced by G2-holding PLD recovery. The PLD repair observed in G2 was observed in nonhomologous end-joining (NHEJ) mutant cell lines but absent in homologous recombination mutant cell lines. From the survival curves, G2-NHEJ mutant cell lines were found to be very sensitive to gamma-ray exposure when compared to G2/homologous recombination mutant cell lines. Our findings suggest that after exposure to ionizing radiation during G2, NHEJ is responsible for the majority of non-PLD repair, and conversely, that the homologous recombination is responsible for PLD repair in G2.
Collapse
Affiliation(s)
- Junko Maeda
- a Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu Q, Turner KM, Alfred Yung WK, Chen K, Zhang W. Role of AKT signaling in DNA repair and clinical response to cancer therapy. Neuro Oncol 2014; 16:1313-23. [PMID: 24811392 DOI: 10.1093/neuonc/nou058] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective cancer treatment has been limited by the emergence of resistant cancer cells. The results of many studies indicate that AKT activation plays an important role in the acquisition of resistance to anticancer therapy. AKT is a critical effector serine/threonine kinase in the receptor tyrosine kinase/phosphatase and tensin homolog/phospho-inositide 3-kinase pathway and controls a myriad of cellular functions. Activation of AKT not only supports tumor growth and progression but also contributes to tumor-cell evasion of the cytotoxic effects of cancer therapy through many avenues including the promotion of anti-apoptosis, proliferation, and migration and regulation of the cell cycle. Accumulating evidence has implicated AKT as a direct participant in the DNA damage response and repair induced by commonly used genotoxic agents. In this review, we discuss the molecular mechanisms by which genotoxic agents activate AKT and therefore contribute to resistance to cancer therapeutics, with particular emphasis on DNA repair.
Collapse
Affiliation(s)
- Qun Liu
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| | - Kristen M Turner
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| | - W K Alfred Yung
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| | - Kexin Chen
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| | - Wei Zhang
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| |
Collapse
|
35
|
Yang X, Xu W, Hu Z, Zhang Y, Xu N. Chk1 is required for the metaphase-anaphase transition via regulating the expression and localization of Cdc20 and Mad2. Life Sci 2014; 106:12-8. [PMID: 24747134 DOI: 10.1016/j.lfs.2014.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 11/16/2022]
Abstract
AIMS The checkpoint kinase 1 (Chk1) functions not only in genotoxic stresses but also in normal cell cycle progression, particularly in the initiation, progression and fidelity of unperturbed mitosis. In this study, we investigated the role of Chk1 in regulating the metaphase-anaphase transition in mammalian cells. MAIN METHODS The mitotic progression was monitored by flow cytometry analysis. The levels of cyclin B1, Cdc20 and Mad2 were measured by Western blotting. Metaphase chromosome alignment and the subcellular localization of Cdc20 and Mad2 were analyzed by immunofluorescence and confocal microscopy. KEY FINDINGS Cyclin B1 degradation and the metaphase-anaphase transition were severely blocked by Chk1 siRNA. Depletion of Chk1 induced chromosome alignment defect in metaphase cells. The kinetochore localization of Cdc20, Mad2 was disrupted in Chk1 depleted cells. Chk1 abrogation also dramatically reduced the protein expression levels of Cdc20 and Mad2. SIGNIFICANCE These results strongly suggest that Chk1 is required for the metaphase-anaphase transition via regulating the subcellular localization and the expression of Cdc20 and Mad2.
Collapse
Affiliation(s)
- Xiaoyun Yang
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, PR China
| | - Wei Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, PR China
| | - Zuowei Hu
- Department of Clinical Oncology, Wuhan No. 1 Hospital, Wuhan, Hubei Province, PR China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, PR China
| | - Naihan Xu
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
36
|
Tian H, Ge C, Li H, Zhao F, Hou H, Chen T, Jiang G, Xie H, Cui Y, Yao M, Li J. Ribonucleotide reductase M2B inhibits cell migration and spreading by early growth response protein 1-mediated phosphatase and tensin homolog/Akt1 pathway in hepatocellular carcinoma. Hepatology 2014; 59:1459-70. [PMID: 24214128 DOI: 10.1002/hep.26929] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/04/2013] [Indexed: 01/04/2023]
Abstract
UNLABELLED Ribonucleotide reductase (RR)M2B is an enzyme belonging to the ribonucleotide reductase enzyme family, which is essential for DNA synthesis and repair. RRM2B plays an important role in tumor progression and metastasis; however, little is known about the expression and underlying molecular mechanisms of RRM2B in hepatocellular carcinoma (HCC). In the present study, we report that down-regulation of RRM2B in HCC is negatively associated with intrahepatic metastasis, regardless of p53 status. Moreover, the ectopic overexpression of RRM2B decreased HCC cell migration and invasion in vitro, whereas silencing RRM2B expression resulted in increased migration and invasion in vitro and intrahepatic and lung metastasis in vivo. Additionally, knockdown of RRM2B by short hairpin RNA (shRNA) in HCC cells was associated with epithelial-mesenchymal transition (EMT), including the down-regulation of E-cadherin, and the concomitant up-regulation of N-cadherin and slug. A further experiment showed that RRM2B inhibited cell migration and spreading through regulation of the early growth response protein 1 (Egr-1)/phosphatase and tensin homolog (PTEN)/Akt1 pathway. Consistently, we also detected a significant correlation between RRM2B and E-cadherin protein expression in HCC tissues. Furthermore, Egr-1 also directly bound to the RRM2B promoter and repressed RRM2B transcription, thereby establishing a negative regulatory feedback loop. CONCLUSION These findings indicate that RRM2B suppresses cell migration and spreading by way of modulation of the Egr-1/PTEN/Akt1 pathway.
Collapse
Affiliation(s)
- Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Arbini AA, Guerra F, Greco M, Marra E, Gandee L, Xiao G, Lotan Y, Gasparre G, Hsieh JT, Moro L. Mitochondrial DNA depletion sensitizes cancer cells to PARP inhibitors by translational and post-translational repression of BRCA2. Oncogenesis 2013; 2:e82. [PMID: 24336406 PMCID: PMC3940862 DOI: 10.1038/oncsis.2013.45] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that pharmacologic inhibition of poly (ADP-ribose) polymerase (PARP), a nuclear protein that is crucial in signaling single-strand DNA breaks, is synthetically lethal to cancer cells from patients with genetic deficiency in the DNA repair proteins BRCA1 and BRCA2. Herein, we demonstrate that depletion of the mitochondrial genome (mtDNA) in breast, prostate and thyroid transformed cells resulted in elevated steady-state cytosolic calcium concentration and activation of calcineurin/PI3-kinase/AKT signaling leading to upregulation of miR-1245 and the ubiquitin ligase Skp2, two potent negative regulators of the tumor suppressor protein BRCA2, thus resulting in BRCA2 protein depletion, severe reduction in homologous recombination (HR) and increased sensitivity to the PARP inhibitor rucaparib. Treatment of mtDNA-depleted cells with the PI3-kinase inhibitor LY294002, the calmodulin antagonist W-7, the calcineurin inhibitor FK506, the calcium chelator BAPTA-AM, or suppression of AKT activity by AKT small-interfering RNA (siRNA) enhanced BRCA2 protein levels as well as HR. Decreasing the intracellular calcium levels using BAPTA, or direct reconstitution of BRCA2 protein levels either by recombinant expression or by small molecule inhibition of both Skp2 and miR-1245 restored sensitivity to rucaparib to wild-type levels. Furthermore, by studying prostate tissue specimens from prostate carcinoma patients we found a direct correlation between the presence of mtDNA large deletions and loss of BRCA2 protein in vivo, suggesting that mtDNA status may serve as a marker to predict therapeutic efficacy to PARP inhibitors. In summary, our results uncover a novel mechanism by which mtDNA depletion restrains HR, and highlight the role of mtDNA in regulating sensitivity to PARP inhibitors in transformed cells.
Collapse
Affiliation(s)
- A A Arbini
- Department of Pathology, New York University Medical Center, New York, NY, USA
| | - F Guerra
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - M Greco
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - E Marra
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - L Gandee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Y Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Gasparre
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - J-T Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L Moro
- 1] Department of Pathology, New York University Medical Center, New York, NY, USA [2] Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy [3] Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Han X, Liu D, Zhang Y, Li Y, Lu W, Chen J, Songyang Z. Akt regulates TPP1 homodimerization and telomere protection. Aging Cell 2013; 12:1091-9. [PMID: 23862686 DOI: 10.1111/acel.12137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 12/01/2022] Open
Abstract
Telomeres are specialized structures at the ends of eukaryotic chromosomes that are important for maintaining genome stability and integrity. Telomere dysfunction has been linked to aging and cancer development. In mammalian cells, extensive studies have been carried out to illustrate how core telomeric proteins assemble on telomeres to recruit the telomerase and additional factors for telomere maintenance and protection. In comparison, how changes in growth signaling pathways impact telomeres and telomere-binding proteins remains largely unexplored. The phosphatidylinositol 3-kinase (PI3-K)/Akt (also known as PKB) pathway, one of the best characterized growth signaling cascades, regulates a variety of cellular function including cell proliferation, survival, metabolism, and DNA repair, and dysregulation of PI3-K/Akt signaling has been linked to aging and diseases such as cancer and diabetes. In this study, we provide evidence that the Akt signaling pathway plays an important role in telomere protection. Akt inhibition either by chemical inhibitors or small interfering RNAs induced telomere dysfunction. Furthermore, we found that TPP1 could homodimerize through its OB-fold, a process that was dependent on the Akt kinase. Telomere damage and reduced TPP1 dimerization as a result of Akt inhibition was also accompanied by diminished recruitment of TPP1 and POT1 to the telomeres. Our findings highlight a previously unknown link between Akt signaling and telomere protection.
Collapse
Affiliation(s)
- Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education; School of Life Sciences and Key Laboratory of Reproductive Medicine of Guangdong Province; the First Affiliated Hospital; Sun Yat-Sen University; Guangzhou Guangzhou China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology; Baylor College of Medicine; One Baylor Plaza; Houston TX 77030 USA
| | - Yi Zhang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology; Baylor College of Medicine; One Baylor Plaza; Houston TX 77030 USA
| | - Yujing Li
- Key Laboratory of Gene Engineering of the Ministry of Education; School of Life Sciences and Key Laboratory of Reproductive Medicine of Guangdong Province; the First Affiliated Hospital; Sun Yat-Sen University; Guangzhou Guangzhou China
| | - Weisi Lu
- Key Laboratory of Gene Engineering of the Ministry of Education; School of Life Sciences and Key Laboratory of Reproductive Medicine of Guangdong Province; the First Affiliated Hospital; Sun Yat-Sen University; Guangzhou Guangzhou China
| | - Junjie Chen
- Department of Experimental Radiation Oncology; The University of Texas M D Anderson Cancer Center; Houston TX 77030 USA
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education; School of Life Sciences and Key Laboratory of Reproductive Medicine of Guangdong Province; the First Affiliated Hospital; Sun Yat-Sen University; Guangzhou Guangzhou China
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology; Baylor College of Medicine; One Baylor Plaza; Houston TX 77030 USA
| |
Collapse
|
39
|
Kurosu T, Nagao T, Wu N, Oshikawa G, Miura O. Inhibition of the PI3K/Akt/GSK3 pathway downstream of BCR/ABL, Jak2-V617F, or FLT3-ITD downregulates DNA damage-induced Chk1 activation as well as G2/M arrest and prominently enhances induction of apoptosis. PLoS One 2013; 8:e79478. [PMID: 24260231 PMCID: PMC3832535 DOI: 10.1371/journal.pone.0079478] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/01/2013] [Indexed: 11/24/2022] Open
Abstract
Constitutively-activated tyrosine kinase mutants, such as BCR/ABL, FLT3-ITD, and Jak2-V617F, play important roles in pathogenesis of hematopoietic malignancies and in acquisition of therapy resistance. We previously found that hematopoietic cytokines enhance activation of the checkpoint kinase Chk1 in DNA-damaged hematopoietic cells by inactivating GSK3 through the PI3K/Akt signaling pathway to inhibit apoptosis. Here we examine the possibility that the kinase mutants may also protect DNA-damaged cells by enhancing Chk1 activation. In cells expressing BCR/ABL, FLT3-ITD, or Jak2-V617F, etoposide induced a sustained activation of Chk1, thus leading to the G2/M arrest of cells. Inhibition of these kinases by their inhibitors, imatinib, sorafenib, or JakI-1, significantly abbreviated Chk1 activation, and drastically enhanced apoptosis induced by etoposide. The PI3K inhibitor GD-0941 or the Akt inhibitor MK-2206 showed similar effects with imatinib on etoposide-treated BCR/ABL-expressing cells, including those expressing the imatinib-resistant T315I mutant, while expression of the constitutively activated Akt1-myr mutant conferred resistance to the combined treatment of etoposide and imatinib. GSK3 inhibitors, including LiCl and SB216763, restored the sustained Chk1 activation and mitigated apoptosis in cells treated with etoposide and the inhibitors for aberrant kinases, PI3K, or Akt. These observations raise a possilibity that the aberrant kinases BCR/ABL, FLT3-ITD, and Jak2-V617F may prevent apoptosis induced by DNA-damaging chemotherapeutics, at least partly through enhancement of the Chk1-mediated G2/M checkpoint activation, by inactivating GSK3 through the PI3K/Akt signaling pathway. These results shed light on the molecular mechanisms for chemoresistance of hematological malignancies and provide a rationale for the combined treatment with chemotherapy and the tyrosine kinase or PI3K/Akt pathway inhibitors against these diseases.
Collapse
Affiliation(s)
- Tetsuya Kurosu
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nan Wu
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaku Oshikawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
40
|
Charitou P, Burgering BMT. Forkhead box(O) in control of reactive oxygen species and genomic stability to ensure healthy lifespan. Antioxid Redox Signal 2013; 19:1400-19. [PMID: 22978495 DOI: 10.1089/ars.2012.4921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transcription factors of the Forkhead box O class (FOXOs) are associated with lifespan and play a role in age-related diseases. FOXOs, therefore, serve as a paradigm for developing an understanding as to how age-related diseases, such as cancer and diabetes interconnect with lifespan. Understanding the regulatory inputs on FOXO may reveal how changes in these regulatory signaling pathways affect disease and lifespan. RECENT ADVANCES Numerous regulators of FOXO have now been described and a clear and evolutionary conserved role has emerged for phosphoinositide-3 kinase/protein kinase B (also known as c-Akt or AKT) signaling and c-jun N-terminal kinase signaling. Analysis of FOXO function in the context of these signaling pathways has shown the importance of FOXO-mediated transcriptional regulation on cell cycle progression and other cell fates, such as cell metabolism, stress resistance, and apoptosis in mediating disease and lifespan. CRITICAL ISSUES Persistent DNA damage is also tightly linked to disease and aging; yet, data on a possible link between DNA damage and FOXO have been limited. Here, we discuss possible connections between FOXO and the DNA damage response in the context of the broader role of connecting lifespan and disease. FUTURE DIRECTIONS Understanding the role of lifespan in diseases onset may provide unique and generic possibilities to intervene in disease processes to ensure a healthy lifespan.
Collapse
Affiliation(s)
- Paraskevi Charitou
- Molecular Cancer Research, University Medical Center Utrecht , Utrecht, The Netherlands
| | | |
Collapse
|
41
|
Akt switches TopBP1 function from checkpoint activation to transcriptional regulation through phosphoserine binding-mediated oligomerization. Mol Cell Biol 2013; 33:4685-700. [PMID: 24081328 DOI: 10.1128/mcb.00373-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our previous study showed that Akt phosphorylates TopBP1 at the Ser-1159 residue and induces its oligomerization. Oligomerization is required for TopBP1 to bind and repress E2F1 activity. However, the mechanism through which phosphorylation of TopBP1 by Akt leads to its oligomerization remains to be determined. Here, we demonstrate that binding between the phosphorylated Ser-1159 (pS1159) residue and the 7th and 8th BRCT domains of TopBP1 mediates TopBP1 oligomerization. Mutations within the 7th and 8th BRCT domains of TopBP1 that block binding to a pS1159-containing peptide block TopBP1 oligomerization and its ability to bind and repress E2F1 activities. The Akt-induced TopBP1 oligomerization is also directly demonstrated in vitro by size exclusion chromatography. Importantly, oligomerization perturbs the checkpoint-activating function of TopBP1 by preventing its recruitment to chromatin and ATR binding upon replicative stress. Hyperactivation of Akt inhibits Chk1 phosphorylation after hydroxyurea treatment, and this effect is dependent on TopBP1 phosphorylation at Ser-1159. Thus, Akt can switch the TopBP1 function from checkpoint activation to transcriptional regulation by regulating its quaternary structure. This pathway of regulation is clinically significant, since treatment of a specific Akt inhibitor in PTEN-mutated cancer cells inhibits TopBP1 oligomerization and causes its function to revert from promoting survival to checkpoint activation.
Collapse
|
42
|
Hydrogen sulfide restores a normal morphological phenotype in Werner syndrome fibroblasts, attenuates oxidative damage and modulates mTOR pathway. Pharmacol Res 2013; 74:34-44. [DOI: 10.1016/j.phrs.2013.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 11/19/2022]
|
43
|
Akt signaling and freezing survival in the wood frog, Rana sylvatica. Biochim Biophys Acta Gen Subj 2013; 1830:4828-37. [PMID: 23811346 DOI: 10.1016/j.bbagen.2013.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND The wood frog (Rana sylvatica) exhibits well-developed natural freeze tolerance supported by multiple mechanisms of biochemical adaptation. The present study investigated the role and regulation of the Akt signaling pathway in wood frog tissues (with a focus on liver) responding to freezing stress. METHODS Immunoblotting was used to assess total and phospho-Akt levels, total and phospho-PDK1, PTEN protein level, as well as total and phospho-FOXO1 levels. RT-PCR was used to investigate transcript levels of PTEN and microRNAs. RESULTS Akt was inhibited in skeletal muscle, kidney and heart after 24h freezing exposure with a reversal after thawing. The responses of the main kinase (PDK-1) and phosphatase (PTEN) that regulate Akt were consistent with freeze activation of Akt in liver; freezing exposure activated PDK-1 via enhanced Ser-241 phosphorylation whereas PTEN protein levels were reduced. Levels of three microRNAs (miR-26a, miR-126 and miR-217) that regulate pten expression were elevated in liver during freezing. One well-known role of Akt is in anti-apoptosis, mediated in part by Akt phosphorylation of Ser-256 on FOXO1. Freezing triggered an increase in liver phospho-FOXO1 Ser-256 content, suggesting that an important action of Akt may be apoptosis inhibition. CONCLUSIONS Akt activation in wood frog is stress and tissue specific, with multi-facet regulations (posttranslational and posttranscriptional) involved in supporting this specific signal transduction response. GENERAL SIGNIFICANCE This study implicates the Akt pathway in the metabolic reorganization of cellular metabolism in support of freezing survival.
Collapse
|
44
|
Pim kinases phosphorylate Chk1 and regulate its functions in acute myeloid leukemia. Leukemia 2013; 28:293-301. [PMID: 23748345 DOI: 10.1038/leu.2013.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 11/08/2022]
Abstract
Phosphorylation by Akt on Ser 280 was reported to induce cytoplasmic retention and inactivation of CHK1 with consequent genetic instability in PTEN-/- cells. In acute myeloid leukemia cells carrying the FLT3-internal tandem duplication (ITD) mutation, we observed high rates of FLT3-ITD-dependent CHK1 Ser 280 phosphorylation. Pharmacological inhibition and RNA interference identified Pim1/2, not Akt, as effectors of this phosphorylation. Pim1 catalyzed Ser 280 phosphorylation in vitro and ectopic expression of Pim1/2-induced CHK1 phosphorylation. Ser 280 phosphorylation did not modify CHK1 localization, but facilitated its cell cycle and resistance functions in leukemic cells. FLT3, PIM or CHK1 inhibitors synergized with DNA-damaging agents to induce apoptosis, allowing cells to bypass the etoposide-induced G2/M arrest. Consistently, etoposide-induced CHK1-dependent phosphorylations of CDC25C on Ser 216 and histone H3 on Thr11 were decreased upon FLT3 inhibition. Accordingly, ectopic expression of CHK1 improved the resistance of FLT3-ITD cells and maintained histone H3 phosphorylation in response to DNA damage, whereas expression of unphosphorylated Ser 280Ala mutant did not. Finally, FLT3- and Pim-dependent phosphorylation of CHK1 on Ser 280 was confirmed in primary blasts from patients. These results identify a new pathway involved in the resistance of FLT3-ITD leukemic cells to genotoxic agents, and they constitute the first report of CHK1 Ser 280 regulation in myeloid malignancies.
Collapse
|
45
|
Chu YL, Wu X, Xu Y, Her C. MutS homologue hMSH4: interaction with eIF3f and a role in NHEJ-mediated DSB repair. Mol Cancer 2013; 12:51. [PMID: 23725059 PMCID: PMC3689047 DOI: 10.1186/1476-4598-12-51] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/31/2013] [Indexed: 11/11/2022] Open
Abstract
Background DNA mismatch repair proteins participate in diverse cellular functions including DNA damage response and repair. As a member of this protein family, the molecular mechanisms of hMSH4 in mitotic cells are poorly defined. It is known that hMSH4 is promiscuous, and among various interactions the hMSH4-hMSH5 interaction is involved in recognizing DNA intermediate structures arising from homologous recombination (HR). Results We identified a new hMSH4 interacting protein eIF3f – a protein that functions not only in translation but also in the regulation of apoptosis and tumorigenesis in humans. Our studies have demonstrated that hMSH4-eIF3f interaction is mediated through the N-terminal regions of both proteins. The interaction with eIF3f fosters hMSH4 protein stabilization, which in turn sustains γ-H2AX foci and compromises cell survival in response to ionizing radiation (IR)-induced DNA damage. These effects can be, at least partially, attributed to the down-regulation of NHEJ activity by hMSH4. Furthermore, the interplay between hMSH4 and eIF3f inhibits IR-induced AKT activation, and hMSH4 promotes eIF3f-mediated bypass of S phase arrest, and ultimately enhancing an early G2/M arrest in response to IR treatment. Conclusion Our current study has revealed a role for hMSH4 in the maintenance of genomic stability by suppressing NHEJ-mediated DSB repair.
Collapse
Affiliation(s)
- Yen-Lin Chu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Mail Drop 64-7520, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
46
|
Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 2013; 134:1013-23. [PMID: 23613359 DOI: 10.1002/ijc.28226] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/11/2013] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved DNA damage response (DDR) and cell cycle checkpoints preserve genome integrity. Central to these genome surveillance pathways is a protein kinase, Chk1. DNA damage induces activation of Chk1, which then transduces the checkpoint signal and facilitates cell cycle arrest and DNA damage repair. Significant progress has been made recently toward our understanding of Chk1 regulation and its implications in cancer etiology and therapy. Specifically, a model that involves both spatiotemporal and conformational changes of proteins has been proposed for Chk1 activation. Further, emerging evidence suggests that Chk1 does not appear to be a tumor suppressor; instead, it promotes tumor growth and may contribute to anticancer therapy resistance. Recent data from our laboratory suggest that activating, but not inhibiting, Chk1 in the absence of chemotherapy might represent an innovative approach to suppress tumor growth. These findings suggest unique regulation of Chk1 in cell biology and cancer etiology, pointing to novel strategies for targeting Chk1 in cancer therapy.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
47
|
Yih LH, Hsu NC, Wu YC, Yen WY, Kuo HH. Inhibition of AKT enhances mitotic cell apoptosis induced by arsenic trioxide. Toxicol Appl Pharmacol 2013; 267:228-37. [PMID: 23352504 DOI: 10.1016/j.taap.2013.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 11/18/2022]
Abstract
Accumulated evidence has revealed a tight link between arsenic trioxide (ATO)-induced apoptosis and mitotic arrest in cancer cells. AKT, a serine/threonine kinase frequently over-activated in diverse tumors, plays critical roles in stimulating cell cycle progression, abrogating cell cycle checkpoints, suppressing apoptosis, and regulating mitotic spindle assembly. Inhibition of AKT may therefore enhance ATO cytotoxicity and thus its clinical utility. We show that AKT was activated by ATO in HeLa-S3 cells. Inhibition of AKT by inhibitors of the phosphatidyl inositol 3-kinase/AKT pathway significantly enhanced cell sensitivity to ATO by elevating mitotic cell apoptosis. Ectopic expression of the constitutively active AKT1 had no effect on ATO-induced spindle abnormalities but reduced kinetochore localization of BUBR1 and MAD2 and accelerated mitosis exit, prevented mitotic cell apoptosis, and enhanced the formation of micro- or multi-nuclei in ATO-treated cells. These results indicate that AKT1 activation may prevent apoptosis of ATO-arrested mitotic cells by attenuating the function of the spindle checkpoint and therefore allowing the formation of micro- or multi-nuclei in surviving daughter cells. In addition, AKT1 activation upregulated the expression of aurora kinase B (AURKB) and survivin, and depletion of AURKB or survivin reversed the resistance of AKT1-activated cells to ATO-induced apoptosis. Thus, AKT1 activation suppresses ATO-induced mitotic cell apoptosis, despite the presence of numerous spindle abnormalities, probably by upregulating AURKB and survivin and attenuating spindle checkpoint function. Inhibition of AKT therefore effectively sensitizes cancer cells to ATO by enhancing mitotic cell apoptosis.
Collapse
Affiliation(s)
- Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
48
|
Nek1 kinase associates with ATR-ATRIP and primes ATR for efficient DNA damage signaling. Proc Natl Acad Sci U S A 2013; 110:2175-80. [PMID: 23345434 DOI: 10.1073/pnas.1217781110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The master checkpoint kinase ATR (ATM and Rad3-related) and its partner ATRIP (ATR-interacting protein) exist as a complex and function together in the DNA damage response. Unexpectedly, we found that the stability of the ATR-ATRIP complex is regulated by an unknown kinase independently of DNA damage. In search for this regulator of ATR-ATRIP, we found that a single member of the NIMA (never in mitosis A)-related kinase family, Nek1, is critical for initiating the ATR response. Upon DNA damage, cells lacking Nek1 failed to efficiently phosphorylate multiple ATR substrates and support ATR autophosphorylation at threnine 1989, one of the earliest events during the ATR response. The ability of Nek1 to promote ATR activation relies on the kinase activity of Nek1 and its interaction with ATR-ATRIP. Importantly, even in undamaged cells, Nek1 is required for maintaining the levels of ATRIP, the association between ATR and ATRIP, and the basal kinase activity of ATR. Thus, as an ATR-associated kinase, Nek1, enhances the stability and activity of ATR-ATRIP before DNA damage, priming ATR-ATRIP for a robust DNA damage response.
Collapse
|
49
|
Minami D, Takigawa N, Takeda H, Takata M, Ochi N, Ichihara E, Hisamoto A, Hotta K, Tanimoto M, Kiura K. Synergistic effect of olaparib with combination of cisplatin on PTEN-deficient lung cancer cells. Mol Cancer Res 2012; 11:140-8. [PMID: 23239809 DOI: 10.1158/1541-7786.mcr-12-0401] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PARP enzyme plays a key role in the cellular machinery responsible for DNA damage repair. PTEN is a tumor-suppressor gene deactivating PI3K downstream of EGFR signaling. We hypothesize that PTEN-deficient lung cancer cells suppressed DNA damage signaling and that the absence of PTEN can sensitize these cells to a concurrent treatment of a DNA-damaging agent (cisplatin) and a PARP inhibitor (olaparib). To investigate the effect of olaparib and cisplatin on PTEN-deficient lung tumors, two EGFR-mutant (deletion in exon19) non-small cell lung cancer (NSCLC) cell lines, PC-9 (PTEN wild-type) and H1650 (PTEN loss), were used. We transfected intact PTEN gene into H1650 cells (H1650(PTEN+)) and knocked down PTEN expression in the PC-9 cells (PC-9(PTEN-)) using short hairpin RNA (shRNA). Combination of cisplatin with olaparib showed a synergistic effect in vitro according to the combination index in H1650 cells. Restoration of PTEN in the H1650 cells decreased sensitivity to the combination. Ablation of PTEN in PC-9 cells increased sensitivity to olaparib and cisplatin. We also examined the effectiveness of cisplatin and olaparib in a xenograft model using H1650 and PC-9(PTEN-) cells. The combination of cisplatin with olaparib was more effective than each agent individually. This effect was not observed in a xenograft model using H1650(PTEN+) and PC-9 cells. Mechanistic investigations revealed that PTEN deficiency caused reductions in nuclear RAD51 and RPA focus formation and phosphorylated Chk1 and Mre11. Thus, genetic inactivation of PTEN led to the suppression of DNA repair.
Collapse
Affiliation(s)
- Daisuke Minami
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical ciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yang X, He X, Yang Z, Jabbari E. Mammalian PER2 regulates AKT activation and DNA damage response. Biochem Cell Biol 2012; 90:675-82. [PMID: 22905719 DOI: 10.1139/o2012-025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PER2 is a key mammalian circadian clock protein. It also has a tumor suppressive function. Down regulation of PER2 in the cultured cancer cells accelerates cell proliferation, while overexpression of PER2 inhibits cell growth and induces apoptosis. The Per2 mutant mice have a cancer prone phenotype and an altered DNA damage response. Here we report that PER2 regulates AKT activity. Cells with down-regulated PER2 expression have prolonged high levels of AKT T308 phosphorylation after growth factor stimulation or DNA damage. PER2 down-regulation delays DNA damage induced Chk2 activation and overrides DNA damage induced apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Xiaoming Yang
- Dorn Research Institute, 6439 Garners Ferry Rd, Columbia, SC 29209, USA.
| | | | | | | |
Collapse
|