1
|
Minegishi T, Kastian RF, Inagaki N. Mechanical regulation of synapse formation and plasticity. Semin Cell Dev Biol 2023; 140:82-89. [PMID: 35659473 DOI: 10.1016/j.semcdb.2022.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 01/28/2023]
Abstract
Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Research Center for Genetic Engineering, National Research and Innovation Agency Republic of Indonesia, Cibinong, Bogor, Indonesia
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
2
|
Nabavi M, Hiesinger PR. Turnover of synaptic adhesion molecules. Mol Cell Neurosci 2023; 124:103816. [PMID: 36649812 DOI: 10.1016/j.mcn.2023.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Molecular interactions between pre- and postsynaptic membranes play critical roles during the development, function and maintenance of synapses. Synaptic interactions are mediated by cell surface receptors that may be held in place by trans-synaptic adhesion or intracellular binding to membrane-associated scaffolding and signaling complexes. Despite their role in stabilizing synaptic contacts, synaptic adhesion molecules undergo turnover and degradation during all stages of a neuron's life. Here we review current knowledge about membrane trafficking mechanisms that regulate turnover of synaptic adhesion molecules and the functional significance of turnover for synapse development and function. Based on recent proteomics, genetics and imaging studies, synaptic adhesion molecules exhibit remarkably high turnover rates compared to other synaptic proteins. Degradation occurs predominantly via endolysosomal mechanisms, with little evidence for roles of proteasomal or autophagic degradation. Basal turnover occurs both during synaptic development and maintenance. Neuronal activity typically stabilizes synaptic adhesion molecules while downregulating neurotransmitter receptors based on turnover. In conclusion, constitutive turnover of synaptic adhesion molecules is not a necessarily destabilizing factor, but a basis for the dynamic regulation of trans-synaptic interactions during synapse formation and maintenance.
Collapse
Affiliation(s)
- Melinda Nabavi
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany
| | - P Robin Hiesinger
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany.
| |
Collapse
|
3
|
Anyachor CP, Dooka DB, Orish CN, Amadi CN, Bocca B, Ruggieri F, Senofonte M, Frazzoli C, Orisakwe OE. Mechanistic considerations and biomarkers level in nickel-induced neurodegenerative diseases: An updated systematic review. IBRO Neurosci Rep 2022; 13:136-146. [PMID: 35989698 PMCID: PMC9382260 DOI: 10.1016/j.ibneur.2022.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/30/2022] [Indexed: 10/27/2022] Open
Abstract
The environment has been implicated to be a strong determinant of brain health with higher risk of neurodegeneration. The drastic rise in the prevalence of neurodegenerative diseases (NDDs) including Alzheimer's disease (AD), Parkinson's disease (PD), autism spectrum disorder (ASD), multiple sclerosis (MS) etc., supports the idea that environmental factors may play a major role in NDDs aetiology. Nickel is one of the listed environmental metals reported to pose a serious threat to human health. This paper reported available studies on nickel level in NDDs covering both animal and human studies. Different databases were searched for articles reporting the main neurotoxicity mechanisms and the concentration of nickel in fluids and tissues of NDDs patients compared to controls. Data were extracted and synthesized by ensuring the articles were related to nickel and NDDs. Various mechanisms were reported as oxidative stress, disturbances in mitochondrial membrane potential, trace elements homeostasis destabilization, etc. Nickel was found elevated in biological fluids as blood, serum/plasma and CSF and in the brain of NDDs, as a consequence of unintentional exposure thorough nickel-contaminated air, food, water, and skin contact. In addition, after exposure to nickel, the concentration of markers of lipid peroxidation were increased, while some antioxidant defence systems decreased. Thus, the reduction in the exposure to nickel contaminant may hold a promise in reducing the incidence of NDDs.
Collapse
Affiliation(s)
- Chidinma Promise Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Donatus Baridoo Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome Viale Regina Elena, 29900161 Roma, Italy
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
4
|
Radwitz J, Hausrat TJ, Heisler FF, Janiesch PC, Pechmann Y, Rübhausen M, Kneussel M. Tubb3 expression levels are sensitive to neuronal activity changes and determine microtubule growth and kinesin-mediated transport. Cell Mol Life Sci 2022; 79:575. [DOI: 10.1007/s00018-022-04607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
Abstract
AbstractMicrotubules are dynamic polymers of α/β-tubulin. They regulate cell structure, cell division, cell migration, and intracellular transport. However, functional contributions of individual tubulin isotypes are incompletely understood. The neuron-specific β-tubulin Tubb3 displays highest expression around early postnatal periods characterized by exuberant synaptogenesis. Although Tubb3 mutations are associated with neuronal disease, including abnormal inhibitory transmission and seizure activity in patients, molecular consequences of altered Tubb3 levels are largely unknown. Likewise, it is unclear whether neuronal activity triggers Tubb3 expression changes in neurons. In this study, we initially asked whether chemical protocols to induce long-term potentiation (cLTP) affect microtubule growth and the expression of individual tubulin isotypes. We found that growing microtubules and Tubb3 expression are sensitive to changes in neuronal activity and asked for consequences of Tubb3 downregulation in neurons. Our data revealed that reduced Tubb3 levels accelerated microtubule growth in axons and dendrites. Remarkably, Tubb3 knockdown induced a specific upregulation of Tubb4 gene expression, without changing other tubulin isotypes. We further found that Tubb3 downregulation reduces tubulin polyglutamylation, increases KIF5C motility and boosts the transport of its synaptic cargo N-Cadherin, which is known to regulate synaptogenesis and long-term potentiation. Due to the large number of tubulin isotypes, we developed and applied a computational model based on a Monte Carlo simulation to understand consequences of tubulin expression changes in silico. Together, our data suggest a feedback mechanism with neuronal activity regulating tubulin expression and consequently microtubule dynamics underlying the delivery of synaptic cargoes.
Collapse
|
5
|
Yepes M. The uPA/uPAR system in astrocytic wound healing. Neural Regen Res 2022; 17:2404-2406. [PMID: 35535878 PMCID: PMC9120704 DOI: 10.4103/1673-5374.338991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022] Open
Abstract
The repair of injured tissue is a highly complex process that involves cell proliferation, differentiation, and migration. Cell migration requires the dismantling of intercellular contacts in the injured zone and their subsequent reconstitution in the wounded area. Urokinase-type plasminogen activator (uPA) is a serine proteinase found in multiple cell types including endothelial cells, smooth muscle cells, monocytes, and macrophages. A substantial body of experimental evidence with different cell types outside the central nervous system indicates that the binding of uPA to its receptor (uPAR) on the cell surface prompts cell migration by inducing plasmin-mediated degradation of the extracellular matrix. In contrast, although uPA and uPAR are abundantly found in astrocytes and uPA binding to uPAR triggers astrocytic activation, it is unknown if uPA also plays a role in astrocytic migration. Neuronal cadherin is a member of cell adhesion proteins pivotal for the formation of cell-cell contacts between astrocytes. More specifically, while the extracellular domain of neuronal cadherin interacts with the extracellular domain of neuronal cadherin in neighboring cells, its intracellular domain binds to β-catenin, which in turn links the complex to the actin cytoskeleton. Glycogen synthase kinase 3β is a serine-threonine kinase that prevents the cytoplasmic accumulation of β-catenin by inducing its phosphorylation at Ser33, Ser37, and Ser41, thus activating a sequence of events that lead to its proteasomal degradation. The data discussed in this perspective indicate that astrocytes release uPA following a mechanical injury, and that binding of this uPA to uPAR on the cell membrane induces the detachment of β-catenin from the intracellular domain of neuronal cadherin by triggering its extracellular signal-regulated kinase 1/2-mediated phosphorylation at Tyr650. Remarkably, this is followed by the cytoplasmic accumulation of β-catenin because uPA-induced extracellular signal-regulated kinase 1/2 activation also phosphorylates lipoprotein receptor-related protein 6 at Ser1490, which in turn, by recruiting glycogen synthase kinase 3β to its intracellular domain abrogates its effect on β-catenin. The cytoplasmic accumulation of β-catenin is followed by its nuclear translocation, where it induces the expression of uPAR, which is required for the migration of astrocytes from the injured edge into the wounded area.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
6
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
7
|
Liang M, Zhu L, Wang R, Su H, Ma D, Wang H, Chen T. Methamphetamine Exposure in Adolescent Impairs Memory of Mice in Adulthood Accompanied by Changes in Neuroplasticity in the Dorsal Hippocampus. Front Cell Neurosci 2022; 16:892757. [PMID: 35656409 PMCID: PMC9152172 DOI: 10.3389/fncel.2022.892757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023] Open
Abstract
Methamphetamine (METH) has been shown to alter learning and memory by affecting the neuroplasticity of the dorsal hippocampus, a key structure that undergoes extensive remodeling during adolescence. In this study, we investigated whether mid-to-late adolescent exposure to METH leads to long-lasting memory impairment. To do this, adolescents (35–48 postnatal days) were exposed to different doses of METH for 14 days and then evaluated by the Morris water maze (MWM), new object recognition test (NORT), and the Y-maze, to investigate the learning and memory abilities of mice in their adolescence and adulthood, respectively. We also detected the mRNA levels of genes associated with neuroplasticity in the dorsal hippocampus. The synaptic ultrastructure and the number of neurons and astrocytes in the dorsal hippocampus were also determined by transmission electron microscopy (TEM) and immunofluorescence (IF). Exposure to METH in mid-to-late adolescence impaired spatial memory retrieval ability and the long-term recognition memory of mice in their adulthood, but not in their adolescence. Of note, the impairment of memory capacity in adulthood was accompanied by molecular and structural changes in synapses in the dorsal hippocampus. Our results indicate that mice exposed to METH in mid-to-late adolescence have impaired memory ability in their adulthood; this may be the result of abnormal changes in the structural plasticity of the dorsal hippocampus; the causal relationship between changes in synaptic structural plasticity and memory impairment needs to be further confirmed. In summary, our study provides evidence for the detrimental consequences of adolescent addiction and the prevention of adolescent drug abuse.
Collapse
Affiliation(s)
- Min Liang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Li Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Rui Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Hang Su
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Dongliang Ma
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Hongyan Wang
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Teng Chen,
| |
Collapse
|
8
|
Inoue Y, Sawano T, Yamaguchi N, Inoue S, Takayama A, Nakazawa S, Inagaki S, Nakatani J, Tanaka H. Comparative distribution of
Arcadlin/Protocadherin‐8
mRNA in the intact and ischemic brains of adult mice. J Comp Neurol 2022; 530:2033-2055. [DOI: 10.1002/cne.25319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yosuke Inoue
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Toshinori Sawano
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Natsumi Yamaguchi
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Shota Inoue
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Akinori Takayama
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Shuma Nakazawa
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Shinobu Inagaki
- United Graduate School of Child Development Osaka University Suita Japan
- Department of Physical Therapy Osaka Yukioka College of Health Science Ibaraki Japan
| | - Jin Nakatani
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Hidekazu Tanaka
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| |
Collapse
|
9
|
Shao S, Yao D, Li S, Li J, Si Y, Zhang H, Zhu Z, Song D, Li H. N-Cadherin Regulates GluA1-Mediated Depressive-Like Behavior in Adolescent Female Rat Offspring following Prenatal Stress. Neuroendocrinology 2022; 112:493-509. [PMID: 34348318 DOI: 10.1159/000518383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The incidence of depression is twice higher in women than in men, and gender differences in the prevalence rates first emerge around puberty. Prenatal stress (PS) induces gender-dependent depressive-like behavior in adolescent offspring, but the neuro-physiological mechanisms remain unclear. Our study aimed to investigate the possible neuro-physiological mechanisms of gender-dependent depressive-like behavior in PS adolescent offspring and further explored the possibility of treating depression in adolescent female rats. METHODS The pregnant rats were exposed to restraint stress in the third trimester for 7 days. The depressive-like behavior and the expression of N-cadherin and AMPARs in the hippocampus of adolescent offspring rats were assessed. 10 mg/kg AMPAR antagonist CNQX and 10 mg/kg N-cadherin antagonist ADH-1 were intraperitoneally injected into female adolescent offspring, respectively; 0.2 µg AMPAR agonist CX546 was administered to the dentate gyrus of male adolescent offspring to determine the role of N-cadherin-AMPARs in depressive-like behavior of the offspring following PS. RESULTS We found that PS increased N-cadherin expression, which upregulated GluA1 expression in the dentate gyrus, mediating depressive-like behavior in adolescent female rat offspring by reducing PSD-95. In addition, ADH-1 and CNQX improved depressive-like behavior in adolescent female offspring following PS. Furthermore, injection of the CX546 into the dentate gyrus induced depressive-like behavior in PS male offspring. CONCLUSION The gender-dependent expression of N-cadherin-GluA1 pathway in adolescent offspring in the dentate gyrus was the key factor in gender differences of depressive-like behavior following PS.
Collapse
Affiliation(s)
- Shuya Shao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Yao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Senya Li
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yufang Si
- Key Laboratory of Resource Biology and Biotechnology in Western China, Maternal and Infant Health Research Institute and Medical College, Northwestern University, Xi'an, China
| | - Huiping Zhang
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Maternal and Infant Health Research Institute and Medical College, Northwestern University, Xi'an, China
| | - Dongli Song
- Division of Neonatology, Department of Pediatrics, Santa Clara Valley Medical Center, San Jose, California, USA
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Dagar S, Teng Z, Gottmann K. Transsynaptic N-Cadherin Adhesion Complexes Control Presynaptic Vesicle and Bulk Endocytosis at Physiological Temperature. Front Cell Neurosci 2021; 15:713693. [PMID: 34759800 PMCID: PMC8573734 DOI: 10.3389/fncel.2021.713693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
At mammalian glutamatergic synapses, most basic elements of synaptic transmission have been shown to be modulated by specific transsynaptic adhesion complexes. However, although crucial for synapse homeostasis, a physiological regulation of synaptic vesicle endocytosis by adhesion molecules has not been firmly established. The homophilic adhesion protein N-cadherin is localized at the peri-active zone, where the highly temperature-dependent endocytosis of vesicles occurs. Here, we demonstrate an important modulatory role of N-cadherin in endocytosis at near physiological temperature by synaptophysin-pHluorin imaging. Different modes of endocytosis including bulk endocytosis were dependent on N-cadherin expression and function. N-cadherin modulation might be mediated by actin filaments because actin polymerization ameliorated the knockout-induced endocytosis defect. Using super-resolution imaging, we found strong recruitment of N-cadherin to glutamatergic synapses upon massive vesicle release, which might in turn enhance vesicle endocytosis. This provides a novel, adhesion protein-mediated mechanism for efficient coupling of exo- and endocytosis.
Collapse
Affiliation(s)
- Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Zenghui Teng
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
CDH2 mutation affecting N-cadherin function causes attention-deficit hyperactivity disorder in humans and mice. Nat Commun 2021; 12:6187. [PMID: 34702855 PMCID: PMC8548587 DOI: 10.1038/s41467-021-26426-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common childhood-onset psychiatric disorder characterized by inattention, impulsivity and hyperactivity. ADHD exhibits substantial heritability, with rare monogenic variants contributing to its pathogenesis. Here we demonstrate familial ADHD caused by a missense mutation in CDH2, which encodes the adhesion protein N-cadherin, known to play a significant role in synaptogenesis; the mutation affects maturation of the protein. In line with the human phenotype, CRISPR/Cas9-mutated knock-in mice harboring the human mutation in the mouse ortholog recapitulated core behavioral features of hyperactivity. Symptoms were modified by methylphenidate, the most commonly prescribed therapeutic for ADHD. The mutated mice exhibited impaired presynaptic vesicle clustering, attenuated evoked transmitter release and decreased spontaneous release. Specific downstream molecular pathways were affected in both the ventral midbrain and prefrontal cortex, with reduced tyrosine hydroxylase expression and dopamine levels. We thus delineate roles for CDH2-related pathways in the pathophysiology of ADHD. Molecular mechanisms of attention-deficit hyperactivity disorder (ADHD) are not fully understood. Here the authors demonstrate a mutation in CDH2, encoding N-cadherin, that is associated with ADHD, and in a mouse model, delineate molecular electrophysiological characteristics associated with this mutation.
Collapse
|
12
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
13
|
Diaz A, Merino P, McCann P, Yepes MA, Quiceno LG, Torre E, Tomkins A, Zhang X, Hales CM, Tong FC, Yepes M. Urokinase-type plasminogen activator promotes N-cadherin-mediated synaptic recovery in the ischemic brain. J Cereb Blood Flow Metab 2021; 41:2381-2394. [PMID: 33757316 PMCID: PMC8393294 DOI: 10.1177/0271678x211002297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022]
Abstract
Urokinase-type plasminogen activator (uPA) is a serine proteinase that catalyzes the generation of plasmin on the cell surface and activates cell signaling pathways that promote remodeling and repair. Neuronal cadherin (NCAD) is a transmembrane protein that in the mature brain mediates the formation of synaptic contacts in the II/III and V cortical layers. Our studies show that uPA is preferentially found in the II/III and V cortical laminae of the gyrencephalic cortex of the non-human primate. Furthermore, we found that in murine cerebral cortical neurons and induced pluripotent stem cell (iPSC)-derived neurons prepared from healthy human donors, most of this uPA is associated with pre-synaptic vesicles. Our in vivo experiments revealed that in both, the gyrencephalic cortex of the non-human primate and the lissecephalic murine brain, cerebral ischemia decreases the number of intact synaptic contacts and the expression of uPA and NCAD in a band of tissue surrounding the necrotic core. Additionally, our in vitro data show that uPA induces the synthesis of NCAD in cerebral cortical neurons, and in line with these observations, intravenous treatment with recombinant uPA three hours after the onset of cerebral ischemia induces NCAD-mediated repair of synaptic contacts in the area surrounding the necrotic core.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Patrick McCann
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel A Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Laura G Quiceno
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Amelia Tomkins
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Xiaodong Zhang
- Imaging Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Chadwick M Hales
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Frank C Tong
- Departments of Radiology and Neurosurgery, Emory University, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
14
|
Polenghi A, Nieus T, Guazzi S, Gorostiza P, Petrini EM, Barberis A. Kainate Receptor Activation Shapes Short-Term Synaptic Plasticity by Controlling Receptor Lateral Mobility at Glutamatergic Synapses. Cell Rep 2021; 31:107735. [PMID: 32521260 PMCID: PMC7296349 DOI: 10.1016/j.celrep.2020.107735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 01/24/2023] Open
Abstract
Kainate receptors (KARs) mediate postsynaptic currents with a key impact on neuronal excitability. However, the molecular determinants controlling KAR postsynaptic localization and stabilization are poorly understood. Here, we exploit optogenetic and single-particle tracking approaches to study the role of KAR conformational states induced by glutamate binding on KAR lateral mobility at synapses. We report that following glutamate binding, KARs are readily and reversibly trapped at glutamatergic synapses through increased interaction with the β-catenin/N-cadherin complex. We demonstrate that such activation-dependent synaptic immobilization of KARs is crucial for the modulation of short-term plasticity of glutamatergic synapses. Thus, the present study unveils the crosstalk between conformational states and lateral mobility of KARs, a mechanism regulating glutamatergic signaling, particularly in conditions of sustained synaptic activity. Anchoring of KARs at glutamatergic synapses depends on receptor-glutamate binding KARs activation/desensitization promotes receptors trapping at glutamatergic synapses N-cadherins mediate the KAR activation/desensitization-dependent anchoring at synapses Synaptic trapping of desensitized KARs affects short-term synaptic plasticity
Collapse
Affiliation(s)
- Alice Polenghi
- Synaptic Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Thierry Nieus
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, Milan, Italy
| | - Stefania Guazzi
- Synaptic Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Pau Gorostiza
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Network Biomedical Research Center in Bioengineering, Biomaterials and Nanotechnology (CIBER-BBN), 50018 Zaragoza, Spain
| | - Enrica Maria Petrini
- Synaptic Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Andrea Barberis
- Synaptic Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| |
Collapse
|
15
|
Asada-Utsugi M, Uemura K, Kubota M, Noda Y, Tashiro Y, Uemura TM, Yamakado H, Urushitani M, Takahashi R, Hattori S, Miyakawa T, Ageta-Ishihara N, Kobayashi K, Kinoshita M, Kinoshita A. Mice with cleavage-resistant N-cadherin exhibit synapse anomaly in the hippocampus and outperformance in spatial learning tasks. Mol Brain 2021; 14:23. [PMID: 33494786 PMCID: PMC7831172 DOI: 10.1186/s13041-021-00738-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/16/2021] [Indexed: 11/30/2022] Open
Abstract
N-cadherin is a homophilic cell adhesion molecule that stabilizes excitatory synapses, by connecting pre- and post-synaptic termini. Upon NMDA receptor (NMDAR) activation by glutamate, membrane-proximal domains of N-cadherin are cleaved serially by a-disintegrin-and-metalloprotease 10 (ADAM10) and then presenilin 1(PS1, catalytic subunit of the γ-secretase complex). To assess the physiological significance of the initial N-cadherin cleavage, we engineer the mouse genome to create a knock-in allele with tandem missense mutations in the mouse N-cadherin/Cadherin-2 gene (Cdh2 R714G, I715D, or GD) that confers resistance on proteolysis by ADAM10 (GD mice). GD mice showed a better performance in the radial maze test, with significantly less revisiting errors after intervals of 30 and 300 s than WT, and a tendency for enhanced freezing in fear conditioning. Interestingly, GD mice reveal higher complexity in the tufts of thorny excrescence in the CA3 region of the hippocampus. Fine morphometry with serial section transmission electron microscopy (ssTEM) and three-dimensional (3D) reconstruction reveals significantly higher synaptic density, significantly smaller PSD area, and normal dendritic spine volume in GD mice. This knock-in mouse has provided in vivo evidence that ADAM10-mediated cleavage is a critical step in N-cadherin shedding and degradation and involved in the structure and function of glutamatergic synapses, which affect the memory function.
Collapse
Affiliation(s)
- M. Asada-Utsugi
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho Otsu, Shiga, 520-2192 Japan
| | - K. Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - M. Kubota
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y. Noda
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y. Tashiro
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T. M. Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - H. Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - M. Urushitani
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho Otsu, Shiga, 520-2192 Japan
| | - R. Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - S. Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192 Japan
| | - T. Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192 Japan
| | - N. Ageta-Ishihara
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya, 464-8602 Japan
| | - K. Kobayashi
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602 Japan
| | - M. Kinoshita
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya, 464-8602 Japan
| | - A. Kinoshita
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
17
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Dukes MP, Rowe RK, Harvey T, Rangel W, Pedigo S. Nickel reduces calcium dependent dimerization in neural cadherin. Metallomics 2020; 11:475-482. [PMID: 30624456 DOI: 10.1039/c8mt00349a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cadherins are the transmembrane component in adherens junctions, structures that link the actin cytoskeletons in adjacent cells within solid tissues including neurological synapses, epithelium and endothelium. Cell-cell adhesion by cadherins requires the binding of calcium ions to specific sites in the extracellular region. Given the complexity of the cell adhesion microenvironment, we are investigating whether other divalent cations might affect calcium-dependent dimerization of neural (N) cadherin. The studies reported herein characterize the impact of binding physiological magnesium(ii) or neurotoxic nickel(ii) on calcium-dependent N-cadherin function. Physiological levels of magnesium have only a small effect on the calcium-binding affinity and calcium-induced dimerization of N-cadherin. However, a tenfold lower concentration of nickel decreases the apparent calcium-binding affinity and calcium-induced dimerization of N-cadherin. Competitive binding studies indicate that the apparent dissociation constants for nickel and magnesium are 0.2 mM and 2.5 mM, respectively. These Kd values are consistent with concentrations observed for a range of divalent cations in the extracellular space. Results from these studies indicate that calcium-induced dimerization by N-cadherin is attenuated by natural and non-physiological divalent cations in the extracellular microenvironment.
Collapse
Affiliation(s)
- M P Dukes
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | | | | | | | | |
Collapse
|
19
|
Urokinase-Type Plasminogen Activator Protects Cerebral Cortical Neurons from Soluble Aβ-Induced Synaptic Damage. J Neurosci 2020; 40:4251-4263. [PMID: 32332118 DOI: 10.1523/jneurosci.2804-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/20/2020] [Accepted: 04/13/2020] [Indexed: 11/21/2022] Open
Abstract
Soluble amyloid β (Aβ)-induced synaptic dysfunction is an early event in the pathogenesis of Alzheimer's disease (AD) that precedes the deposition of insoluble Aβ and correlates with the development of cognitive deficits better than the number of plaques. The mammalian plasminogen activation (PA) system catalyzes the generation of plasmin via two activators: tissue-type (tPA) and urokinase-type (uPA). A dysfunctional tPA-plasmin system causes defective proteolytic degradation of Aβ plaques in advanced stages of AD. In contrast, it is unknown whether uPA and its receptor (uPAR) contribute to the pathogenesis of this disease. Neuronal cadherin (NCAD) plays a pivotal role in the formation of synapses and dendritic branches, and Aβ decreases its expression in cerebral cortical neurons. Here we show that neuronal uPA protects the synapse from the harmful effects of soluble Aβ. However, Aβ-induced inactivation of the eukaryotic initiation factor 2α halts the transcription of uPA mRNA, leaving unopposed the deleterious effects of Aβ on the synapse. In line with these observations, the synaptic abundance of uPA, but not uPAR, is decreased in the frontal cortex of AD patients and 5xFAD mice, and in cerebral cortical neurons incubated with soluble Aβ. We found that uPA treatment increases the synaptic expression of NCAD by a uPAR-mediated plasmin-independent mechanism, and that uPA-induced formation of NCAD dimers protects the synapse from the harmful effects of soluble Aβ oligomers. These data indicate that Aβ-induced decrease in the synaptic abundance of uPA contributes to the development of synaptic damage in the early stages of AD.SIGNIFICANCE STATEMENT Soluble amyloid β (Aβ)-induced synaptic dysfunction is an early event in the pathogenesis of cognitive deficits in Alzheimer's disease (AD). We found that neuronal urokinase-type (uPA) protects the synapse from the deleterious effects of soluble Aβ. However, Aβ-induced inactivation of the eukaryotic initiation factor 2α decreases the synaptic abundance of uPA, leaving unopposed the harmful effects of Aβ on the synapse. In line with these observations, the synaptic expression of uPA is decreased in the frontal cortex of AD brains and 5xFAD mice, and uPA treatment abrogates the deleterious effects of Aβ on the synapse. These results unveil a novel mechanism of Aβ-induced synaptic dysfunction in AD patients, and indicate that recombinant uPA is a potential therapeutic strategy to protect the synapse before the development of irreversible brain damage.
Collapse
|
20
|
The impact of N-cadherin–β-catenin signaling on the analgesic effects of glial cell-derived neurotrophic factor in neuropathic pain. Biochem Biophys Res Commun 2020; 522:463-470. [DOI: 10.1016/j.bbrc.2019.11.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
|
21
|
Accogli A, Calabretta S, St-Onge J, Boudrahem-Addour N, Dionne-Laporte A, Joset P, Azzarello-Burri S, Rauch A, Krier J, Fieg E, Pallais JC, McConkie-Rosell A, McDonald M, Freedman SF, Rivière JB, Lafond-Lapalme J, Simpson BN, Hopkin RJ, Trimouille A, Van-Gils J, Begtrup A, McWalter K, Delphine H, Keren B, Genevieve D, Argilli E, Sherr EH, Severino M, Rouleau GA, Yam PT, Charron F, Srour M. De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Collosum, Axon, Cardiac, Ocular, and Genital Defects. Am J Hum Genet 2019; 105:854-868. [PMID: 31585109 DOI: 10.1016/j.ajhg.2019.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023] Open
Abstract
Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).
Collapse
Affiliation(s)
- Andrea Accogli
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, H4A 3J1, Montreal, QC, Canada; Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Dipartimento di Neuroscienze, Reabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, 16132 Genova Italy
| | - Sara Calabretta
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada
| | - Judith St-Onge
- McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada
| | | | | | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, CH-8952 Schlieren, Switzerland
| | | | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, CH-8952 Schlieren, Switzerland
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Sharon F Freedman
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Joël Lafond-Lapalme
- McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Aurélien Trimouille
- Centre Hospitalier Universitaire Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France; Laboratoire Maladies Rares: Génétique et Métabolisme, Inserm U1211, Université de Bordeaux, 33076 Bordeaux, France
| | - Julien Van-Gils
- Centre Hospitalier Universitaire Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France; Laboratoire Maladies Rares: Génétique et Métabolisme, Inserm U1211, Université de Bordeaux, 33076 Bordeaux, France
| | | | | | - Heron Delphine
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - David Genevieve
- Département de Genetique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du Développement, Université Montpellier, Unité Inserm U1183, Centre Hospitalier Universitaire Montpellier, 34000 Montpellier, France
| | - Emanuela Argilli
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, CA 94143 San Francisco
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, CA 94143 San Francisco
| | - Mariasavina Severino
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada; Department of Medicine, University of Montreal, H3C 3J7, Montreal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, H4A 3J1, Montreal, QC, Canada.
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, H4A 3J1, Montreal, QC, Canada; McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, QC, Canada.
| |
Collapse
|
22
|
Emerging Roles of Synapse Organizers in the Regulation of Critical Periods. Neural Plast 2019; 2019:1538137. [PMID: 31565044 PMCID: PMC6745111 DOI: 10.1155/2019/1538137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023] Open
Abstract
Experience remodels cortical connectivity during developmental windows called critical periods. Experience-dependent regulation of synaptic strength during these periods establishes circuit functions that are stabilized as critical period plasticity wanes. These processes have been extensively studied in the developing visual cortex, where critical period opening and closure are orchestrated by the assembly, maturation, and strengthening of distinct synapse types. The synaptic specificity of these processes points towards the involvement of distinct molecular pathways. Attractive candidates are pre- and postsynaptic transmembrane proteins that form adhesive complexes across the synaptic cleft. These synapse-organizing proteins control synapse development and maintenance and modulate structural and functional properties of synapses. Recent evidence suggests that they have pivotal roles in the onset and closure of the critical period for vision. In this review, we describe roles of synapse-organizing adhesion molecules in the regulation of visual critical period plasticity and we discuss the potential they offer to restore circuit functions in amblyopia and other neurodevelopmental disorders.
Collapse
|
23
|
Jones KA, Sumiya M, Woolfrey KM, Srivastava DP, Penzes P. Loss of EPAC2 alters dendritic spine morphology and inhibitory synapse density. Mol Cell Neurosci 2019; 98:19-31. [PMID: 31059774 PMCID: PMC6639166 DOI: 10.1016/j.mcn.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
EPAC2 is a guanine nucleotide exchange factor that regulates GTPase activity of the small GTPase Rap and Ras and is highly enriched at synapses. Activation of EPAC2 has been shown to induce dendritic spine shrinkage and increase spine motility, effects that are necessary for synaptic plasticity. These morphological effects are dysregulated by rare mutations of Epac2 associated with autism spectrum disorders. In addition, EPAC2 destabilizes synapses through the removal of synaptic GluA2/3-containing AMPA receptors. Previous work has shown that Epac2 knockout mice (Epac2−/−) display abnormal social interactions, as well as gross disorganization of the frontal cortex and abnormal spine motility in vivo. In this study we sought to further understand the cellular consequences of knocking out Epac2 on the development of neuronal and synaptic structure and organization of cortical neurons. Using primary cortical neurons generated from Epac2+/+ or Epac2−/− mice, we confirm that EPAC2 is required for cAMP-dependent spine shrinkage. Neurons from Epac2−/− mice also displayed increased synaptic expression of GluA2/3-containing AMPA receptors, as well as of the adhesion protein N-cadherin. Intriguingly, analysis of excitatory and inhibitory synaptic proteins revealed that loss of EPAC2 resulted in altered expression of vesicular GABA transporter (VGAT) but not vesicular glutamate transporter 1 (VGluT1), indicating an altered ratio of excitatory and inhibitory synapses onto neurons. Finally, examination of cortical neurons located within the anterior cingulate cortex further revealed subtle deficits in the establishment of dendritic arborization in vivo. These data provide evidence that loss of EPAC2 enhances the stability of excitatory synapses and increases the number of inhibitory inputs. EPAC2 is required for cAMP-dependent spine remodeling. Loss of EPAC2 results in over-stabilized excitatory synapses. Loss of EPAC2 results in an increase in inhibitory input onto neurons. EPAC2 is required for correct dendritic arborization and spine formation in vivo.
Collapse
Affiliation(s)
- Kelly A Jones
- Department of Physiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK
| | - Michiko Sumiya
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Kevin M Woolfrey
- Department of Physiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK
| | - Deepak P Srivastava
- Department of Physiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Peter Penzes
- Department of Physiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Kudryashova IV. The Molecular Basis of Destabilization of Synapses as a Factor of Structural Plasticity. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Chakroborty S, Hill ES, Christian DT, Helfrich R, Riley S, Schneider C, Kapecki N, Mustaly-Kalimi S, Seiler FA, Peterson DA, West AR, Vertel BM, Frost WN, Stutzmann GE. Reduced presynaptic vesicle stores mediate cellular and network plasticity defects in an early-stage mouse model of Alzheimer's disease. Mol Neurodegener 2019; 14:7. [PMID: 30670054 PMCID: PMC6343260 DOI: 10.1186/s13024-019-0307-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/13/2019] [Indexed: 01/27/2023] Open
Abstract
Background Identifying effective strategies to prevent memory loss in AD has eluded researchers to date, and likely reflects insufficient understanding of early pathogenic mechanisms directly affecting memory encoding. As synaptic loss best correlates with memory loss in AD, refocusing efforts to identify factors driving synaptic impairments may provide the critical insight needed to advance the field. In this study, we reveal a previously undescribed cascade of events underlying pre and postsynaptic hippocampal signaling deficits linked to cognitive decline in AD. These profound alterations in synaptic plasticity, intracellular Ca2+ signaling, and network propagation are observed in 3–4 month old 3xTg-AD mice, an age which does not yet show overt histopathology or major behavioral deficits. Methods In this study, we examined hippocampal synaptic structure and function from the ultrastructural level to the network level using a range of techniques including electron microscopy (EM), patch clamp and field potential electrophysiology, synaptic immunolabeling, spine morphology analyses, 2-photon Ca2+ imaging, and voltage-sensitive dye-based imaging of hippocampal network function in 3–4 month old 3xTg-AD and age/background strain control mice. Results In 3xTg-AD mice, short-term plasticity at the CA1-CA3 Schaffer collateral synapse is profoundly impaired; this has broader implications for setting long-term plasticity thresholds. Alterations in spontaneous vesicle release and paired-pulse facilitation implicated presynaptic signaling abnormalities, and EM analysis revealed a reduction in the ready-releasable and reserve pools of presynaptic vesicles in CA3 terminals; this is an entirely new finding in the field. Concurrently, increased synaptically-evoked Ca2+ in CA1 spines triggered by LTP-inducing tetani is further enhanced during PTP and E-LTP epochs, and is accompanied by impaired synaptic structure and spine morphology. Notably, vesicle stores, synaptic structure and short-term plasticity are restored by normalizing intracellular Ca2+ signaling in the AD mice. Conclusions These findings suggest the Ca2+ dyshomeostasis within synaptic compartments has an early and fundamental role in driving synaptic pathophysiology in early stages of AD, and may thus reflect a foundational disease feature driving later cognitive impairment. The overall significance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic vesicle stores, synaptic plasticity, and network propagation, which directly impact memory encoding. Electronic supplementary material The online version of this article (10.1186/s13024-019-0307-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Evan S Hill
- Department of Cell Biology and Anatomy, The Chicago Medical School; Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Daniel T Christian
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Rosalind Helfrich
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Shannon Riley
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Corinne Schneider
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Nicolas Kapecki
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Sarah Mustaly-Kalimi
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Figen A Seiler
- Electron Microscopy Center, RFUMS, North Chicago, IL, 60064, USA
| | - Daniel A Peterson
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Anthony R West
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Barbara M Vertel
- Department of Cell Biology and Anatomy, The Chicago Medical School; Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.,Electron Microscopy Center, RFUMS, North Chicago, IL, 60064, USA
| | - William N Frost
- Department of Cell Biology and Anatomy, The Chicago Medical School; Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| |
Collapse
|
26
|
Davila S, Liu P, Smith A, Marshall AG, Pedigo S. Spontaneous Calcium-Independent Dimerization of the Isolated First Domain of Neural Cadherin. Biochemistry 2018; 57:6404-6415. [PMID: 30387993 DOI: 10.1021/acs.biochem.8b00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cadherins are calcium-dependent, transmembrane adhesion molecules that assemble through direct noncovalent association of their N-terminal extracellular modular domains. As the transmembrane component of adherens junctions, they indirectly link adherent cells' actin cytoskeletons. Here, we investigate the most distal extracellular domain of neural cadherin (N-cadherin), a protein required at excitatory synapses, the site of long-term potentiation. This domain is the site of the adhesive interface, and it forms a dimer spontaneously without binding calcium, a surprising finding given that calcium binding is required for proper physiological function. A critical tryptophan at position 2, W2, provides a spectroscopic probe for the "closed" monomer and strand-swapped dimer. Spectroscopic studies show that W2 remains docked in the two forms but has a different apparent interaction with the hydrophobic pocket. Size-exclusion chromatography was used to measure the levels of the monomer and dimer over time to study the kinetics and equilibria of the unexpected spontaneous dimer formation ( Kd = 130 μM; τ = 2 days at 4 °C). Our results support the idea that NCAD1 is missing critical contacts that facilitate the rapid exchange of the βA-strand. Furthermore, the monomer and dimer have equivalent and exceptionally high intrinsic stability for a 99-residue Ig-like domain with no internal disulfides ( Tm = 77 °C; Δ H = 85 kcal/mol). Ultimately, a complete analysis of synapse dynamics requires characterization of the kinetics and equilibria of N-cadherin. The studies reported here take a reductionist approach to understanding the essential biophysics of an atypical Ig-like domain that is the site of the adhesive interface of N-cadherin.
Collapse
Affiliation(s)
- Samantha Davila
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| | - Peilu Liu
- Department of Chemistry & Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States.,Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Alexis Smith
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| | - Alan G Marshall
- Department of Chemistry & Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States.,Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Susan Pedigo
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| |
Collapse
|
27
|
Gorlewicz A, Kaczmarek L. Pathophysiology of Trans-Synaptic Adhesion Molecules: Implications for Epilepsy. Front Cell Dev Biol 2018; 6:119. [PMID: 30298130 PMCID: PMC6160742 DOI: 10.3389/fcell.2018.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Chemical synapses are specialized interfaces between neurons in the brain that transmit and modulate information, thereby integrating cells into multiplicity of interacting neural circuits. Cell adhesion molecules (CAMs) might form trans-synaptic complexes that are crucial for the appropriate identification of synaptic partners and further for the establishment, properties, and dynamics of synapses. When affected, trans-synaptic adhesion mechanisms play a role in synaptopathies in a variety of neuropsychiatric disorders including epilepsy. This review recapitulates current understanding of trans-synaptic interactions in pathophysiology of interneuronal connections. In particular, we discuss here the possible implications of trans-synaptic adhesion dysfunction for epilepsy.
Collapse
Affiliation(s)
- Adam Gorlewicz
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
28
|
Seipold L, Altmeppen H, Koudelka T, Tholey A, Kasparek P, Sedlacek R, Schweizer M, Bär J, Mikhaylova M, Glatzel M, Saftig P. In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cell Mol Life Sci 2018; 75:3251-3267. [PMID: 29520422 PMCID: PMC11105247 DOI: 10.1007/s00018-018-2791-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022]
Abstract
A disintegrin and metalloproteinase 10 (ADAM10) plays a major role in the ectodomain shedding of important surface molecules with physiological and pathological relevance including the amyloid precursor protein (APP), the cellular prion protein, and different cadherins. Despite its therapeutic potential, there is still a considerable lack of knowledge how this protease is regulated. We have previously identified tetraspanin15 (Tspan15) as a member of the TspanC8 family to specifically associate with ADAM10. Cell-based overexpression experiments revealed that this binding affected the maturation process and surface expression of the protease. Our current study shows that Tspan15 is abundantly expressed in mouse brain, where it specifically interacts with endogenous ADAM10. Tspan15 knockout mice did not reveal an overt phenotype but showed a pronounced decrease of the active and mature form of ADAM10, an effect which augmented with aging. The decreased expression of active ADAM10 correlated with an age-dependent reduced shedding of neuronal (N)-cadherin and the cellular prion protein. APP α-secretase cleavage and the expression of Notch-dependent genes were not affected by the loss of Tspan15, which is consistent with the hypothesis that different TspanC8s cause ADAM10 to preferentially cleave particular substrates. Analyzing spine morphology revealed no obvious differences between Tspan15 knockout and wild-type mice. However, Tspan15 expression was elevated in brains of an Alzheimer's disease mouse model and of patients, suggesting that upregulation of Tspan15 expression reflects a cellular response in a disease state. In conclusion, our data show that Tspan15 and most likely also other members of the TspanC8 family are central modulators of ADAM10-mediated ectodomain shedding in vivo.
Collapse
Affiliation(s)
- Lisa Seipold
- Institute of Biochemistry, Christian Albrechts University Kiel, Olshausenstrasse 40, 24118, Kiel, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tomas Koudelka
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University Kiel, Niemannsweg 11, Kiel, 24105, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University Kiel, Niemannsweg 11, Kiel, 24105, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i, Vestec, Czech Republic
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Julia Bär
- Center for Molecular Neurobiology Hamburg (ZMNH), Emmy-Noether Group "Neuronal Protein Transport", University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Marina Mikhaylova
- Center for Molecular Neurobiology Hamburg (ZMNH), Emmy-Noether Group "Neuronal Protein Transport", University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University Kiel, Olshausenstrasse 40, 24118, Kiel, Germany.
| |
Collapse
|
29
|
Cen C, Luo LD, Li WQ, Li G, Tian NX, Zheng G, Yin DM, Zou Y, Wang Y. PKD1 Promotes Functional Synapse Formation Coordinated with N-Cadherin in Hippocampus. J Neurosci 2018; 38:183-199. [PMID: 29133434 PMCID: PMC6705812 DOI: 10.1523/jneurosci.1640-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Functional synapse formation is critical for the wiring of neural circuits in the developing brain. The cell adhesion molecule N-cadherin plays important roles in target recognition and synaptogenesis. However, the molecular mechanisms that regulate the localization of N-cadherin and the subsequent effects remain poorly understood. Here, we show that protein kinase D1 (PKD1) directly binds to N-cadherin at amino acid residues 836-871 and phosphorylates it at Ser 869, 871, and 872, thereby increasing the surface localization of N-cadherin and promoting functional synapse formation in primary cultured hippocampal neurons obtained from embryonic day 18 rat embryos of either sex. Intriguingly, neuronal activity enhances the interactions between N-cadherin and PKD1, which are critical for the activity-dependent growth of dendritic spines. Accordingly, either disruption the binding between N-cadherin and PKD1 or preventing the phosphorylation of N-cadherin by PKD1 in the hippocampal CA1 region of male rat leads to the reduction in synapse number and impairment of LTP. Together, this study demonstrates a novel mechanism of PKD1 regulating the surface localization of N-cadherin and suggests that the PKD1-N-cadherin interaction is critical for synapse formation and function.SIGNIFICANCE STATEMENT Defects in synapse formation and function lead to various neurological diseases, although the mechanisms underlying the regulation of synapse development are far from clear. Our results suggest that protein kinase D1 (PKD1) functions upstream of N-cadherin, a classical synaptic adhesion molecule, to promote functional synapse formation. Notably, we identified a crucial binding fragment to PKD1 at C terminus of N-cadherin, and this fragment also contains PKD1 phosphorylation sites. Through this interaction, PKD1 enhances the stability of N-cadherin on cell membrane and promotes synapse morphogenesis and synaptic plasticity in an activity-dependent manner. Our study reveals the role of PKD1 and the potential downstream mechanism in synapse development, and contributes to the research for neurodevelopment and the therapy for neurological diseases.
Collapse
Affiliation(s)
- Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Li-Da Luo
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Wen-Qi Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Gang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Na-Xi Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Ge Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China, and
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California 92093
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China,
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Zobel K, Choi SE, Minakova R, Gocyla M, Offenhäusser A. N-Cadherin modified lipid bilayers promote neural network formation and circuitry. SOFT MATTER 2017; 13:8096-8107. [PMID: 29085948 DOI: 10.1039/c7sm01214d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neural adhesion, maturation, and the correct wiring of the brain to establish each neuron's intended connectivity are controlled by complex interactions of bioactive molecules such as ligands, growth factors, or enzymes. The correct pairing of adjacent neurons is thought to be highly regulated by ligand-mediated cell-cell adhesion proteins, which are known to induce signaling activities. We developed a new platform consisting of supported lipid bilayers incorporated with Fc-chimera synaptic proteins like ephrinA5 or N-cadherin. We extensively characterized their function employing a quartz crystal microbalance with dissipation (QCM-D), calcium imaging, and immunofluorescence analysis. Our biomimetic platform has been shown to promote neural cell adhesion and to improve neural maturation at day in vitro 7 (DIV7) as indicated by an elevated expression of synaptophysin.
Collapse
Affiliation(s)
- K Zobel
- Institute of Bioelectronics (ICS-8), Forschungszentrum Juelich, Wilhelm-Johnen Straße, 52425 Juelich, Germany.
| | | | | | | | | |
Collapse
|
31
|
Basu R, Duan X, Taylor MR, Martin EA, Muralidhar S, Wang Y, Gangi-Wellman L, Das SC, Yamagata M, West PJ, Sanes JR, Williams ME. Heterophilic Type II Cadherins Are Required for High-Magnitude Synaptic Potentiation in the Hippocampus. Neuron 2017; 96:160-176.e8. [PMID: 28957665 DOI: 10.1016/j.neuron.2017.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 11/26/2022]
Abstract
Hippocampal CA3 neurons form synapses with CA1 neurons in two layers, stratum oriens (SO) and stratum radiatum (SR). Each layer develops unique synaptic properties but molecular mechanisms that mediate these differences are unknown. Here, we show that SO synapses normally have significantly more mushroom spines and higher-magnitude long-term potentiation (LTP) than SR synapses. Further, we discovered that these differences require the Type II classic cadherins, cadherins-6, -9, and -10. Though cadherins typically function via trans-cellular homophilic interactions, our results suggest presynaptic cadherin-9 binds postsynaptic cadherins-6 and -10 to regulate mushroom spine density and high-magnitude LTP in the SO layer. Loss of these cadherins has no effect on the lower-magnitude LTP typically observed in the SR layer, demonstrating that cadherins-6, -9, and -10 are gatekeepers for high-magnitude LTP. Thus, Type II cadherins may uniquely contribute to the specificity and strength of synaptic changes associated with learning and memory.
Collapse
Affiliation(s)
- Raunak Basu
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Xin Duan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94117, USA
| | - Matthew R Taylor
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - E Anne Martin
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shruti Muralidhar
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yueqi Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Luke Gangi-Wellman
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sujan C Das
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter J West
- Department of Pharmacology and Toxicology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Megan E Williams
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
32
|
Li MY, Miao WY, Wu QZ, He SJ, Yan G, Yang Y, Liu JJ, Taketo MM, Yu X. A Critical Role of Presynaptic Cadherin/Catenin/p140Cap Complexes in Stabilizing Spines and Functional Synapses in the Neocortex. Neuron 2017. [PMID: 28641114 DOI: 10.1016/j.neuron.2017.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The formation of functional synapses requires coordinated assembly of presynaptic transmitter release machinery and postsynaptic trafficking of functional receptors and scaffolds. Here, we demonstrate a critical role of presynaptic cadherin/catenin cell adhesion complexes in stabilizing functional synapses and spines in the developing neocortex. Importantly, presynaptic expression of stabilized β-catenin in either layer (L) 4 excitatory neurons or L2/3 pyramidal neurons significantly upregulated excitatory synaptic transmission and dendritic spine density in L2/3 pyramidal neurons, while its sparse postsynaptic expression in L2/3 neurons had no such effects. In addition, presynaptic β-catenin expression enhanced release probability of glutamatergic synapses. Newly identified β-catenin-interacting protein p140Cap is required in the presynaptic locus for mediating these effects. Together, our results demonstrate that cadherin/catenin complexes stabilize functional synapses and spines through anterograde signaling in the neocortex and provide important molecular evidence for a driving role of presynaptic components in spinogenesis in the neocortex.
Collapse
Affiliation(s)
- Min-Yin Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ying Miao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiu-Zi Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shun-Ji He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoquan Yan
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Jia Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida Konoé-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
33
|
Milanovic D, Pesic V, Loncarevic-Vasiljkovic N, Avramovic V, Tesic V, Jevtovic-Todorovic V, Kanazir S, Ruzdijic S. Neonatal Propofol Anesthesia Changes Expression of Synaptic Plasticity Proteins and Increases Stereotypic and Anxyolitic Behavior in Adult Rats. Neurotox Res 2017; 32:247-263. [DOI: 10.1007/s12640-017-9730-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
|
34
|
Cocaine, cadherins and synaptic plasticity. Nat Neurosci 2017; 20:499-501. [PMID: 28352112 DOI: 10.1038/nn.4535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Ohta KI, Suzuki S, Warita K, Kaji T, Kusaka T, Miki T. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. J Neurochem 2017; 141:179-194. [PMID: 28178750 DOI: 10.1111/jnc.13977] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood.
Collapse
Affiliation(s)
- Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tomohiro Kaji
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
36
|
Mills F, Globa AK, Liu S, Cowan CM, Mobasser M, Phillips AG, Borgland SL, Bamji SX. Cadherins mediate cocaine-induced synaptic plasticity and behavioral conditioning. Nat Neurosci 2017; 20:540-549. [PMID: 28192395 PMCID: PMC5373847 DOI: 10.1038/nn.4503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023]
Abstract
Drugs of abuse alter synaptic connections in the ‘reward circuit’ of the brain, which leads to long-lasting behavioral changes that underlie addiction. Here we show that cadherin adhesion molecules play a critical role in mediating synaptic plasticity and behavioral changes driven by cocaine. We demonstrate that cadherin is essential for long-term potentiation (LTP) in the ventral tegmental area (VTA), and is recruited to the synaptic membrane of excitatory inputs onto dopaminergic neurons following cocaine-mediated behavioral conditioning. Furthermore, we show that stabilization of cadherin at the membrane of these synapses blocks cocaine-induced synaptic plasticity, leading to a significant reduction in conditioned place preference induced by cocaine. Our findings identify cadherins and associated molecules as targets of interest for understanding pathological plasticity associated with addiction.
Collapse
Affiliation(s)
- Fergil Mills
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea K Globa
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shuai Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M Cowan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mahsan Mobasser
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony G Phillips
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
van Stegen B, Dagar S, Gottmann K. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin. Sci Rep 2017; 7:40865. [PMID: 28106089 PMCID: PMC5247765 DOI: 10.1038/srep40865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4–64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis.
Collapse
Affiliation(s)
- Bernd van Stegen
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
38
|
Schulte C, Ripamonti M, Maffioli E, Cappelluti MA, Nonnis S, Puricelli L, Lamanna J, Piazzoni C, Podestà A, Lenardi C, Tedeschi G, Malgaroli A, Milani P. Scale Invariant Disordered Nanotopography Promotes Hippocampal Neuron Development and Maturation with Involvement of Mechanotransductive Pathways. Front Cell Neurosci 2016; 10:267. [PMID: 27917111 PMCID: PMC5114288 DOI: 10.3389/fncel.2016.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
The identification of biomaterials which promote neuronal maturation up to the generation of integrated neural circuits is fundamental for modern neuroscience. The development of neural circuits arises from complex maturative processes regulated by poorly understood signaling events, often guided by the extracellular matrix (ECM). Here we report that nanostructured zirconia surfaces, produced by supersonic cluster beam deposition of zirconia nanoparticles and characterized by ECM-like nanotopographical features, can direct the maturation of neural networks. Hippocampal neurons cultured on such cluster-assembled surfaces displayed enhanced differentiation paralleled by functional changes. The latter was demonstrated by single-cell electrophysiology showing earlier action potential generation and increased spontaneous postsynaptic currents compared to the neurons grown on the featureless unnaturally flat standard control surfaces. Label-free shotgun proteomics broadly confirmed the functional changes and suggests furthermore a vast impact of the neuron/nanotopography interaction on mechanotransductive machinery components, known to control physiological in vivo ECM-regulated axon guidance and synaptic plasticity. Our results indicate a potential of cluster-assembled zirconia nanotopography exploitable for the creation of efficient neural tissue interfaces and cell culture devices promoting neurogenic events, but also for unveiling mechanotransductive aspects of neuronal development and maturation.
Collapse
Affiliation(s)
- Carsten Schulte
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di MilanoMilan, Italy; Fondazione FilareteMilan, Italy
| | - Maddalena Ripamonti
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Elisa Maffioli
- Fondazione FilareteMilan, Italy; Dipartimento di Medicina Veterinaria, Università degli Studi di MilanoMilan, Italy
| | - Martino A Cappelluti
- Fondazione FilareteMilan, Italy; SEMM - European School of Molecular MedicineMilan, Italy
| | - Simona Nonnis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano Milan, Italy
| | - Luca Puricelli
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Jacopo Lamanna
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Claudio Piazzoni
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Alessandro Podestà
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Cristina Lenardi
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Gabriella Tedeschi
- Fondazione FilareteMilan, Italy; Dipartimento di Medicina Veterinaria, Università degli Studi di MilanoMilan, Italy
| | - Antonio Malgaroli
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Paolo Milani
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| |
Collapse
|
39
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
40
|
Abstract
Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.
Collapse
|
41
|
N-Cadherin is Involved in Neuronal Activity-Dependent Regulation of Myelinating Capacity of Zebrafish Individual Oligodendrocytes In Vivo. Mol Neurobiol 2016; 54:6917-6930. [PMID: 27771903 DOI: 10.1007/s12035-016-0233-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023]
Abstract
Stimulating neuronal activity increases myelin sheath formation by individual oligodendrocytes, but how myelination is regulated by neuronal activity in vivo is still not fully understood. While in vitro studies have revealed the important role of N-cadherin in myelination, our understanding in vivo remains quite limited. To obtain the role of N-cadherin during activity-dependent regulation of myelinating capacity of individual oligodendrocytes, we successfully built an in vivo dynamic imaging model of the Mauthner cell at the subcellular structure level in the zebrafish central nervous system. Enhanced green fluorescent protein (EGFP)-tagged N-cadherin was used to visualize the stable accumulations and mobile transports of N-cadherin by single-cell electroporation at the single-cell level. We found that pentylenetetrazol (PTZ) significantly enhanced the accumulation of N-cadherin in Mauthner axons, a response that was paralleled by enhanced sheath number per oligodendrocytes. By offsetting this phenotype using oligopeptide (AHAVD) which blocks the function of N-cadherin, we showed that PTZ regulates myelination in an N-cadherin-dependent manner. What is more, we further suggested that PTZ influences N-cadherin and myelination via a cAMP pathway. Consequently, our data indicated that N-cadherin is involved in neuronal activity-dependent regulation of myelinating capacity of zebrafish individual oligodendrocytes in vivo.
Collapse
|
42
|
Chamma I, Levet F, Sibarita JB, Sainlos M, Thoumine O. Nanoscale organization of synaptic adhesion proteins revealed by single-molecule localization microscopy. NEUROPHOTONICS 2016; 3:041810. [PMID: 27872870 PMCID: PMC5093229 DOI: 10.1117/1.nph.3.4.041810] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
The advent of superresolution imaging has created a strong need for both optimized labeling strategies and analysis methods to probe the nanoscale organization of complex biological structures. We present a thorough description of the distribution of synaptic adhesion proteins at the nanoscopic scale, namely presynaptic neurexin-[Formula: see text] ([Formula: see text]), and its two postsynaptic binding partners neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2). We monitored these proteins in the membrane of neurons by direct stochastic optical reconstruction microscopy, after live surface labeling with Alexa647-conjugated monomeric streptavidin. The small probe ([Formula: see text]) efficiently penetrates into crowded synaptic junctions and reduces the distance to target. We quantified the organization of the single-molecule localization data using a tesselation-based analysis technique. We show that Nlg1 exhibits a fairly disperse organization within dendritic spines, while LRRTM2 is organized in compact domains, and [Formula: see text] in presynaptic terminals displays a dual-organization pattern intermediate between that of Nlg1 and LRRTM2. These results suggest that part of [Formula: see text] interacts transsynaptically with Nlg1 and the other part with LRRTM2.
Collapse
Affiliation(s)
- Ingrid Chamma
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| | - Florian Levet
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| | - Jean-Baptiste Sibarita
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| | - Matthieu Sainlos
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| | - Olivier Thoumine
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 147 rue Léo-Saignat, Bordeaux Cedex 33077, France
| |
Collapse
|
43
|
Yang C, Li X, Wang C, Fu S, Li H, Guo Z, Zhao S, Lin J. N-cadherin regulates beta-catenin signal and its misexpression perturbs commissural axon projection in the developing chicken spinal cord. J Mol Histol 2016; 47:541-554. [PMID: 27650519 DOI: 10.1007/s10735-016-9698-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
N-cadherin is a calcium-sensitive cell adhesion molecule that plays an important role in the formation of the neural circuit and the development of the nervous system. In the present study, we investigated the function of N-cadherin in cell-cell connection in vitro with HEK293T cells, and in commissural axon projections in the developing chicken spinal cord using in ovo electroporation. Cell-cell connections increased with N-cadherin overexpression in HEK293T cells, while cell contacts disappeared after co-transfection with an N-cadherin-shRNA plasmid. The knockdown of N-cadherin caused the accumulation of β-catenin in the nucleus, supporting the notion that N-cadherin regulates β-catenin signaling in vitro. Furthermore, N-cadherin misexpression perturbed commissural axon projections in the spinal cord. The overexpression of N-cadherin reduced the number of axons that projected alongside the contralateral margin of the floor plate, and formed intermediate longitudinal commissural axons. In contrast, the knockdown of N-cadherin perturbed commissural axon projections significantly, affecting the projections alongside the contralateral margin of the floor plate, but did not affect intermediate longitudinal commissural axons. Taken together, these findings suggest that N-cadherin regulates commissural axon projections in the developing chicken spinal cord.
Collapse
Affiliation(s)
- Ciqing Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Xiaoying Li
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Congrui Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Sulei Fu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Han Li
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China. .,Institute of Anatomy I, Jena University Hospital, 07743, Jena, Germany.
| |
Collapse
|
44
|
Chen CY, Chen YT, Wang JY, Huang YS, Tai CY. Postsynaptic Y654 dephosphorylation of β-catenin modulates presynaptic vesicle turnover through increased n-cadherin-mediated transsynaptic signaling. Dev Neurobiol 2016; 77:61-74. [PMID: 27328456 DOI: 10.1002/dneu.22411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/26/2016] [Accepted: 06/18/2016] [Indexed: 11/08/2022]
Abstract
Synaptic adhesion molecules, which coordinately control structural and functional changes at both sides of synapses, are important for synaptogenesis and synaptic plasticity. Because they physically form homophilic or heterophilic adhesions across synaptic junctions, these molecules can initiate transsynaptic communication in both anterograde and retrograde directions. Using optical imaging approaches, we investigated whether an increase in postsynaptic N-cadherin could correspondingly alter the function of connected presynaptic terminals. Postsynaptic expression of β-catenin Y654F, a phosphorylation-defective form with enhanced binding to N-cadherin, is sufficient to increase postsynaptic surface levels of N-cadherin and consequently promote presynaptic reorganizations. Such reorganizations include increases in the densities of the synaptic vesicle protein, Synaptotagmin 1 and the active zone scaffold protein, Bassoon, the number of active boutons and the size of the total recycling vesicle pool. In contrast, synaptic vesicle turnover is significantly impaired, preventing the exchange of synaptic vesicles with adjacent boutons. Together, N-cadherin-mediated retrograde signaling, governed by phosphoregulation of postsynaptic β-catenin Y654, coordinately modulates presynaptic vesicle dynamics to enhance synaptic communication in mature neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 61-74, 2017.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ting Chen
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Center, Taipei 11490, Taiwan
| | - Jen-Yeu Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chin-Yin Tai
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan.,Institute of Biologics, Development Center for Biotechnology, New Taipei City, 22180, Taiwan
| |
Collapse
|
45
|
Synaptic Cell Adhesion Molecules in Alzheimer's Disease. Neural Plast 2016; 2016:6427537. [PMID: 27242933 PMCID: PMC4868906 DOI: 10.1155/2016/6427537] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD.
Collapse
|
46
|
García-Nafría J, Herguedas B, Watson JF, Greger IH. The dynamic AMPA receptor extracellular region: a platform for synaptic protein interactions. J Physiol 2016; 594:5449-58. [PMID: 26891027 DOI: 10.1113/jp271844] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022] Open
Abstract
AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate fast excitatory neurotransmission and synaptic plasticity. Structures of GluA2 homotetramers in distinct functional states, together with simulations, emphasise the loose architecture of the AMPAR extracellular region (ECR). The ECR encompasses ∼80% of the receptor, and consists of the membrane-distal N-terminal domain (NTD) and ligand-binding domain (LBD), which is fused to the ion channel domain. Minimal contacts within and between layers, together with flexible peptide linkers connecting these three domains give rise to an organisation capable of dynamic rearrangements. This building plan is uniquely suited to engage interaction partners in the crowded environment of synapses, permitting the formation of new binding sites and the loss of existing ones. ECR motions are thereby expected to impact signalling as well as synaptic anchorage and may thereby influence AMPAR clustering during synaptic plasticity.
Collapse
Affiliation(s)
- J García-Nafría
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - B Herguedas
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - J F Watson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - I H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
47
|
Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plast 2016; 2016:7969272. [PMID: 27019755 PMCID: PMC4785275 DOI: 10.1155/2016/7969272] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.
Collapse
|
48
|
Abstract
Neurons are highly polarized specialized cells. Neuronal integrity and functional roles are critically dependent on dendritic architecture and synaptic structure, function and plasticity. The cadherins are glycosylated transmembrane proteins that form cell adhesion complexes in various tissues. They are associated with a group of cytosolic proteins, the catenins. While the functional roles of the complex have been extensively investigates in non-neuronal cells, it is becoming increasingly clear that components of the complex have critical roles in regulating dendritic and synaptic architecture, function and plasticity in neurons. Consistent with these functional roles, aberrations in components of the complex have been implicated in a variety of neurodevelopmental disorders. In this review, we discuss the roles of the classical cadherins and catenins in various aspects of dendrite and synapse architecture and function and their relevance to human neurological disorders. Cadherins are glycosylated transmembrane proteins that were initially identified as Ca(2+)-dependent cell adhesion molecules. They are present on plasma membrane of a variety of cell types from primitive metazoans to humans. In the past several years, it has become clear that in addition to providing mechanical adhesion between cells, cadherins play integral roles in tissue morphogenesis and homeostasis. The cadherin family is composed of more than 100 members and classified into several subfamilies, including classical cadherins and protocadherins. Several of these cadherin family members have been implicated in various aspects of neuronal development and function. (1-3) The classical cadherins are associated with a group of cytosolic proteins, collectively called the catenins. While the functional roles of the cadherin-catenin cell adhesion complex have been extensively investigated in epithelial cells, it is now clear that components of the complex are well expressed in central neurons at different stages during development. (4,5) Recent exciting studies have shed some light on the functional roles of cadherins and catenins in central neurons. In this review, we will provide a brief overview of the cadherin superfamily, describe cadherin family members expressed in central neurons, cadherin-catenin complexes in central neurons and then focus on role of the cadherin-catenin complex in dendrite morphogenesis and synapse morphogenesis, function and plasticity. The final section is dedicated to discussion of the emerging list of neural disorders linked to cadherins and catenins. While the roles of cadherins and catenins have been examined in several different types of neurons, the focus of this review is their role in mammalian central neurons, particularly those of the cortex and hippocampus. Accompanying this review is a series of excellent reviews targeting the roles of cadherins and protocadherins in other aspects of neural development.
Collapse
Affiliation(s)
- Eunju Seong
- a Developmental Neuroscience; Munroe-Meyer Institute; University of Nebraska Medical Center ; Omaha , NE USA
| | | | | |
Collapse
|
49
|
Shinoe T, Goda Y. Tuning synapses by proteolytic remodeling of the adhesive surface. Curr Opin Neurobiol 2015; 35:148-55. [DOI: 10.1016/j.conb.2015.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/17/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
50
|
Ichinose S, Ogawa T, Hirokawa N. Mechanism of Activity-Dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 2015; 87:1022-35. [PMID: 26335646 DOI: 10.1016/j.neuron.2015.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
A regulated mechanism of cargo loading is crucial for intracellular transport. N-cadherin, a synaptic adhesion molecule that is critical for neuronal function, must be precisely transported to dendritic spines in response to synaptic activity and plasticity. However, the mechanism of activity-dependent cargo loading remains unclear. To elucidate this mechanism, we investigated the activity-dependent transport of N-cadherin via its transporter, KIF3A. First, by comparing KIF3A-bound cargo vesicles with unbound KIF3A, we identified critical KIF3A phosphorylation sites and specific kinases, PKA and CaMKIIa, using quantitative phosphoanalyses. Next, mutagenesis and kinase inhibitor experiments revealed that N-cadherin transport was enhanced via phosphorylation of the KIF3A C terminus, thereby increasing cargo-loading activity. Furthermore, N-cadherin transport was enhanced during homeostatic upregulation of synaptic strength, triggered by chronic inactivation by TTX. We propose the first model of activity-dependent cargo loading, in which phosphorylation of the KIF3A C terminus upregulates the loading and transport of N-cadherin in homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Sotaro Ichinose
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|