1
|
Li HH, Hung HY, Yu JS, Liao YC, Lai MC. Hypoxia-induced translation of collagen-modifying enzymes PLOD2 and P4HA1 is dependent on RBM4 and eIF4E2 in human colon cancer HCT116 cells. FEBS J 2025; 292:881-898. [PMID: 39710969 DOI: 10.1111/febs.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 09/04/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Hypoxia is a critical microenvironmental factor that induces tumorigenesis and cancer progression, including metastasis. The highly dynamic nature of the extracellular matrix (ECM) plays a crucial role in metastasis. Collagens are the predominant component of structural proteins embedded within the ECM. The biosynthesis of collagen typically undergoes a series of posttranslational modifications, such as hydroxylation of lysine and proline residues by procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) and prolyl 4-hydroxylases (P4Hs), respectively. Collagen hydroxylation is critical for ECM remodeling and maintenance. We recently investigated hypoxia-induced translation in human colon cancer HCT116 cells and identified several collagen-modifying enzymes, including procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) and prolyl 4-hydroxylase subunit alpha 1 (P4HA1). Although the translation of bulk mRNAs is repressed in hypoxia, specific mRNAs remain efficiently translated under such conditions. We have found that PLOD2 and P4HA1 are significantly upregulated in hypoxic HCT116 cells compared to normoxic cells. HIF-1 is known to induce the transcription of PLOD2 and P4HA1 during hypoxia. However, the molecular mechanisms of hypoxia-induced translation of PLOD2 and P4HA1 remain largely unclear. We provide evidence that RBM4 and eIF4E2 are required for hypoxia-induced translation of PLOD2 and P4HA1 mRNAs. The 3' UTRs of PLOD2 and P4HA1 mRNAs are involved in translational control during hypoxia in HCT116 cells.
Collapse
Affiliation(s)
- Hung-Hsuan Li
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Yuan Hung
- Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Cheng Liao
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chih Lai
- Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Shen CL, Tsai YY, Chou SJ, Chang YM, Tarn WY. RBM4-mediated intron excision of Hsf1 induces BDNF for cerebellar foliation. Commun Biol 2024; 7:1712. [PMID: 39738787 DOI: 10.1038/s42003-024-07328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in brain development and neural function. Constitutive knockout of the splicing regulator RBM4 reduces BDNF expression in the developing brain and causes cerebellar hypoplasia, an autism-like feature. Here, we show that Rbm4 knockout induced intron 6 retention of Hsf1, leading to downregulation of HSF1 protein and its downstream target BDNF. RBM4-mediated Hsf1 intron excision regulated BDNF expression in cultured granule cells. Ectopic expression of HSF1 restored cerebellar foliation and motor learning of Rbm4-knockout mice, indicating a critical role for RBM4-HSF1-BDNF in cerebellar foliation. Moreover, N-methyl-D-aspartate receptor (NMDAR) signaling promoted the expression and nuclear translocation of RBM4, and hence increased the expression of both HSF and BDNF. A short CU-rich motif was responsible for NMDAR- and RBM4-mediated intron excision. Finally, RBM4 and polypyrimidine tract binding (PTB) proteins play antagonistic roles in intron excision, suggesting a role for splicing regulation in BDNF expression.
Collapse
Affiliation(s)
- Chiu-Lun Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Young Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Columbia University in the City of New York, New York, USA
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Fan L, Wang Y, Huang H, Wang Z, Liang C, Yang X, Ye P, Lin J, Shi W, Zhou Y, Yan H, Long Z, Wang Z, Liu L, Qian J. RNA binding motif 4 inhibits the replication of ebolavirus by directly targeting 3'-leader region of genomic RNA. Emerg Microbes Infect 2024; 13:2300762. [PMID: 38164794 PMCID: PMC10773643 DOI: 10.1080/22221751.2023.2300762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Ebola virus (EBOV) belongs to Filoviridae family possessing single-stranded negative-sense RNA genome, which is a serious threat to human health. Nowadays, no therapeutics have been proven to be successful in efficiently decreasing the mortality rate. RNA binding proteins (RBPs) are reported to participate in maintaining cell integrity and regulation of viral replication. However, little is known about whether and how RBPs participate in regulating the life cycle of EBOV. In our study, we found that RNA binding motif protein 4 (RBM4) inhibited the replication of EBOV in HEK293T and Huh-7 cells by suppressing viral mRNA production. Such inhibition resulted from the direct interaction between the RRM1 domain of RBM4 and the "CU" enrichment elements located in the PE1 and TSS of the 3'-leader region within the viral genome. Simultaneously, RBM4 could upregulate the expression of some cytokines involved in the host innate immune responses to synergistically exert its antiviral function. The findings therefore suggest that RBM4 might serve as a novel target of anti-EBOV strategy.
Collapse
Affiliation(s)
- Linjin Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yulong Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Hongxin Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Zequn Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Xiaofeng Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Pengfei Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Jingyan Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Wendi Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yuandong Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Zhenyu Long
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhongyi Wang
- Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Linna Liu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| |
Collapse
|
4
|
Sun W, Fang X, Zhang H, Lu Y, Wang P, Li J, Li M. Endogenous RBM4 prevents Ang II-induced cardiomyocyte hypertrophy via downregulating the expression of PTBP1. Acta Biochim Biophys Sin (Shanghai) 2024; 57:365-377. [PMID: 39118568 PMCID: PMC11986438 DOI: 10.3724/abbs.2024103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/02/2024] [Indexed: 08/10/2024] Open
Abstract
Aberrant gene expression in cardiomyocyte has been revealed to be the fundamental essence of pathological cardiac hypertrophy. However, the detailed mechanisms are not fully understood. The underlying regulators of gene expression involved in cardiac hypertrophy remain to be further identified. Here, we report that the RNA-binding protein RNA-binding motif protein 4 (RBM4) functions as an endogenic protector that is able to fight against cardiomyocyte hypertrophy in vitro. Under pro-hypertrophic stimulation of angiotensin II (Ang II), the protein level of RBM4 in cardiomyocyte and myocardium is elevated. Knockdown of RBM4 can further aggravate cardiomyocyte hypertrophy, while over-expression of RBM4 represses cardiomyocyte hypertrophy. Mechanistically, RBM4 is localized in the nucleus and down-regulates the expression of polypyrimidine tract-binding protein 1 (PTBP1), which has been shown to aggravate cardiomyocyte hypertrophy. In addition, we suggest that the up-regulation of RBM4 in cardiomyocyte hypertrophy is caused by N6-methyladenosine (m6A). Ang II induces m6A methylation of RBM4 mRNA, which further enhances the YTH domain-containing family protein 1 (YTHDF1)-mediated translation of RBM4. Thus, our results reveal a novel pathway consisting of m6A, RBM4 and PTBP1, which is involved in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Weihan Sun
- />School of Basic Medical SciencesQingdao UniversityQingdao266071China
| | - Xinyu Fang
- />School of Basic Medical SciencesQingdao UniversityQingdao266071China
| | - Heng Zhang
- />School of Basic Medical SciencesQingdao UniversityQingdao266071China
| | - Yijian Lu
- />School of Basic Medical SciencesQingdao UniversityQingdao266071China
| | - Peiyan Wang
- />School of Basic Medical SciencesQingdao UniversityQingdao266071China
| | - Jiaxin Li
- />School of Basic Medical SciencesQingdao UniversityQingdao266071China
| | - Mengyang Li
- />School of Basic Medical SciencesQingdao UniversityQingdao266071China
| |
Collapse
|
5
|
Nazim M, Lin CH, Feng AC, Xiao W, Yeom KH, Li M, Daly AE, Tan X, Vu H, Ernst J, Carey MF, Smale ST, Black DL. Alternative splicing of a chromatin modifier alters the transcriptional regulatory programs of stem cell maintenance and neuronal differentiation. Cell Stem Cell 2024; 31:754-771.e6. [PMID: 38701759 PMCID: PMC11126784 DOI: 10.1016/j.stem.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.
Collapse
Affiliation(s)
- Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Mulin Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xianglong Tan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ha Vu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Ernst
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Liu Z, Meng X, Zhang Y, Sun J, Tang X, Zhang Z, Liu L, He Y. FUT8-mediated aberrant N-glycosylation of SEMA7A promotes head and neck squamous cell carcinoma progression. Int J Oral Sci 2024; 16:26. [PMID: 38548747 PMCID: PMC10978839 DOI: 10.1038/s41368-024-00289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/01/2024] Open
Abstract
SEMA7A belongs to the Semaphorin family and is involved in the oncogenesis and tumor progression. Aberrant glycosylation has been intricately linked with immune escape and tumor growth. SEMA7A is a highly glycosylated protein with five glycosylated sites. The underlying mechanisms of SEMA7A glycosylation and its contribution to immunosuppression and tumorigenesis are unclear. Here, we identify overexpression and aberrant N-glycosylation of SEMA7A in head and neck squamous cell carcinoma, and elucidate fucosyltransferase FUT8 catalyzes aberrant core fucosylation in SEMA7A at N-linked oligosaccharides (Asn 105, 157, 258, 330, and 602) via a direct protein‒protein interaction. A glycosylated statue of SEMA7A is necessary for its intra-cellular trafficking from the cytoplasm to the cytomembrane. Cytokine EGF triggers SEMA7A N-glycosylation through increasing the binding affinity of SEMA7A toward FUT8, whereas TGF-β1 promotes abnormal glycosylation of SEMA7A via induction of epithelial-mesenchymal transition. Aberrant N-glycosylation of SEMA7A leads to the differentiation of CD8+ T cells along a trajectory toward an exhausted state, thus shaping an immunosuppressive microenvironment and being resistant immunogenic cell death. Deglycosylation of SEMA7A significantly improves the clinical outcome of EGFR-targeted and anti-PD-L1-based immunotherapy. Finally, we also define RBM4, a splice regulator, as a downstream effector of glycosylated SEMA7A and a pivotal mediator of PD-L1 alternative splicing. These findings suggest that targeting FUT8-SEMA7A axis might be a promising strategy for improving antitumor responses in head and neck squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Jingjing Sun
- Department of Oral Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease Shanghai, Shanghai, China
| | - Xiao Tang
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Liu Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China.
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China.
| |
Collapse
|
7
|
Xu M, Li B, Huang J, Jia R, Guo J. The N6-methyladenosine demethylase FTO is required for odontoblast differentiation in vitro and dentine formation in mice by promoting RUNX2 exon 5 inclusion through RBM4. Int Endod J 2023; 56:1534-1549. [PMID: 37698901 DOI: 10.1111/iej.13975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
AIM Fat mass and obesity-associated (FTO) protein, the first discovered N6-methyladenine (m6A) demethylase, played positive roles in bone formation. In this study, the aim was to investigate the function and potential mechanism of Fto in dentine formation. METHODOLOGY In vivo model, postnatal 12-day (PN12), 4-week-old (4 wk), 6-week-old (6 wk) healthy male C57BL/6J were randomly divided into Fto knockout (Fto-/- ) mice and wild-type (WT) littermates according to their genotypes, with 3-5 mice in each group. The mandibles of Fto-/- mice and WT control littermates were isolated for analysis by micro-computed tomography (micro-CT), 3-dimensional reconstruction and Haematoxylin-eosin (HE) staining. In vitro, mouse dental papilla cells (mDPCs) and human dental stem pulp cells (hDPSCs) were cultured with odontogenetic medium to evaluate differentiation capacity; expression levels of odontoblastic related genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). The inclusion levels of Runt-related transcription factor 2 (RUNX2) exon 5 in mDPCs and hDPSCs were detected by semiquantitative real-time polymerase chain reaction (RT-PCR). The RNA binding motif protein 4 (RBM4) m6A site was verified through m6A methylated RNA immunoprecipitation (MeRIP) and the stability of RBM4 mRNA influenced by FTO knockdown was measured by mRNA stability assay. Differences with p values < .05 were regarded as statistically significant. RESULTS We discovered that Fto-/- mice showed significant dentine formation defects characterized by widened pulp cavity, enlarged pulp-tooth volume ratio, thinned dentine and pre-dentine layer of root (p < .05). Fto-/- mDPCs and FTO-silencing hDPSCs not only exhibited insufficient mineralization ability and decreased expression levels of odontoblastic mineralization related genes (p < .05), but showed significantly reduced Runx2 exon 5 inclusion level (p < .05). FTO knockdown increased the m6A level of RBM4 and destabilized the mRNA of RBM4, thus contributing to the reduced RBM4 expression level. Moreover, Rbm4 overexpression in Fto-/- mDPCs can partly restore Runx2 exon 5 inclusion level and the differentiation ability disrupted by Fto knockout. CONCLUSION Thus, within the limitations of this study, the data suggest that FTO promotes odontoblastic differentiation during dentine formation by stabilizing RBM4 mRNA to promote RUNX2 exon 5 inclusion.
Collapse
Affiliation(s)
- Mi Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bingrong Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junjun Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Investigating Neuron Degeneration in Huntington's Disease Using RNA-Seq Based Transcriptome Study. Genes (Basel) 2023; 14:1801. [PMID: 37761940 PMCID: PMC10530489 DOI: 10.3390/genes14091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused due to a CAG repeat expansion in the huntingtin (HTT) gene. The primary symptoms of HD include motor dysfunction such as chorea, dystonia, and involuntary movements. The primary motor cortex (BA4) is the key brain region responsible for executing motor/movement activities. Investigating patient and control samples from the BA4 region will provide a deeper understanding of the genes responsible for neuron degeneration and help to identify potential markers. Previous studies have focused on overall differential gene expression and associated biological functions. In this study, we illustrate the relationship between variants and differentially expressed genes/transcripts. We identified variants and their associated genes along with the quantification of genes and transcripts. We also predicted the effect of variants on various regulatory activities and found that many variants are regulating gene expression. Variants affecting miRNA and its targets are also highlighted in our study. Co-expression network studies revealed the role of novel genes. Function interaction network analysis unveiled the importance of genes involved in vesicle-mediated transport. From this unified approach, we propose that genes expressed in immune cells are crucial for reducing neuron death in HD.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - Y.-h. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| |
Collapse
|
9
|
Tsai YY, Shen CL, D D, Tsai CY, Tarn WY. Activation of TrkB signaling mitigates cerebellar anomalies caused by Rbm4-Bdnf deficiency. Commun Biol 2023; 6:910. [PMID: 37670183 PMCID: PMC10480162 DOI: 10.1038/s42003-023-05294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
A molecular and functional link between neurotrophin signaling and cerebellar foliation is lacking. Here we show that constitutive knockout of two homologous genes encoding the RNA binding protein RBM4 results in foliation defects at cerebellar lobules VI-VII and delayed motor learning in mice. Moreover, the features of Rbm4 double knockout (dKO), including impaired differentiation of cerebellar granule cells and dendritic arborization of Purkinje cells, are reminiscent of neurotrophin deficiency. Loss of RBM4 indeed reduced brain-derived neurotrophic factor (BDNF). RBM4 promoted the expression of BDNF and full-length TrkB, implicating RBM4 in efficient BDNF-TrkB signaling. Finally, prenatal supplementation with 7,8-dihydroxyflavone, a TrkB agonist, restored granule cell differentiation, Purkinje cell dendritic complexity and foliation-the intercrural fissure in particular-in the neonatal cerebellum of Rbm4dKO mice, which also showed improved motor learning in adulthood. This study provides evidence that prenatal activation of TrkB signaling ameliorates cerebellar malformation caused by BDNF deficiency.
Collapse
Affiliation(s)
- Yu-Young Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Columbia University in the City of New York, New York, US
| | - Chiu-Lun Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dhananjaya D
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Naing YT, Sun L. The Role of Splicing Factors in Adipogenesis and Thermogenesis. Mol Cells 2023; 46:268-277. [PMID: 37170770 PMCID: PMC10183792 DOI: 10.14348/molcells.2023.2195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023] Open
Abstract
Obesity is a significant global health risk that can cause a range of serious metabolic problems, such as type 2 diabetes and cardiovascular diseases. Adipose tissue plays a pivotal role in regulating energy and lipid storage. New research has underlined the crucial role of splicing factors in the physiological and functional regulation of adipose tissue. By generating multiple transcripts from a single gene, alternative splicing allows for a greater diversity of the proteome and transcriptome, which subsequently influence adipocyte development and metabolism. In this review, we provide an outlook on the part of splicing factors in adipogenesis and thermogenesis, and investigate how the different spliced isoforms can affect the development and function of adipose tissue.
Collapse
Affiliation(s)
- Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
11
|
Vicente-García C, Hernández-Camacho JD, Carvajal JJ. Regulation of myogenic gene expression. Exp Cell Res 2022; 419:113299. [DOI: 10.1016/j.yexcr.2022.113299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/22/2022]
|
12
|
Guo T, You K, Chen X, Sun Y, Wu Y, Wu P, Jiang Y. RBM47 inhibits hepatocellular carcinoma progression by targeting UPF1 as a DNA/RNA regulator. Cell Death Dis 2022; 8:320. [PMID: 35831298 PMCID: PMC9279423 DOI: 10.1038/s41420-022-01112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms by which the tumor behaviors of hepatocellular carcinoma (HCC) support growth and metastasis remain largely unknown, and it has become increasingly apparent that molecular dysregulation is of considerable importance for cellular signaling pathways. Recently, RNA-binding motif protein 47 (RBM47) has been suggested to function as a tumor regulator by acting as an RNA binding protein (RBP), but its role in HCC remains ambiguous. Here, in HCC, we identified that RBM47 had an inhibitory influence on tumor behaviors in vitro and accordingly suppressed the growth and metastasis of xenograft tumors in vivo. Additionally, RBM47 was verified to positively regulate Upframeshift 1 (UPF1), which is a crucial protein involved in the nonsense-mediated RNA decay (NMD) process and was previously determined to be an HCC suppressor. Mechanistically, the stability of UPF1 mRNA was demonstrated to be enhanced with its 3’UTR bound by RBM47, which acted as an RNA binding protein. Meanwhile, RBM47 was also proven to promote the transcription of UPF1 as a transcription factor. Taken together, we concluded that RBM47 functioned as a tumor suppressor by upregulating UPF1, acting as a DNA/RNA binding protein at the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Tao Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Ke You
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xi Chen
- School of Stomatology, Weifang Medical University, Weifang, 261053, China
| | - Yuqi Sun
- School of Clinical Medicine, Weifang Medical University, Weifang, 261031, China
| | - Ying Wu
- Liuzhou Key Laboratory of Infectious Disease Immunity Research, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, 545006, China
| | - Ping Wu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yingying Jiang
- School of Stomatology, Weifang Medical University, Weifang, 261053, China. .,Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, 261035, China.
| |
Collapse
|
13
|
Ebrahimie E, Rahimirad S, Tahsili M, Mohammadi-Dehcheshmeh M. Alternative RNA splicing in stem cells and cancer stem cells: Importance of transcript-based expression analysis. World J Stem Cells 2021; 13:1394-1416. [PMID: 34786151 PMCID: PMC8567453 DOI: 10.4252/wjsc.v13.i10.1394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Alternative ribonucleic acid (RNA) splicing can lead to the assembly of different protein isoforms with distinctive functions. The outcome of alternative splicing (AS) can result in a complete loss of function or the acquisition of new functions. There is a gap in knowledge of abnormal RNA splice variants promoting cancer stem cells (CSCs), and their prospective contribution in cancer progression. AS directly regulates the self-renewal features of stem cells (SCs) and stem-like cancer cells. Notably, octamer-binding transcription factor 4A spliced variant of octamer-binding transcription factor 4 contributes to maintaining stemness properties in both SCs and CSCs. The epithelial to mesenchymal transition pathway regulates the AS events in CSCs to maintain stemness. The alternative spliced variants of CSCs markers, including cluster of differentiation 44, aldehyde dehydrogenase, and doublecortin-like kinase, α6β1 integrin, have pivotal roles in increasing self-renewal properties and maintaining the pluripotency of CSCs. Various splicing analysis tools are considered in this study. LeafCutter software can be considered as the best tool for differential splicing analysis and identification of the type of splicing events. Additionally, LeafCutter can be used for efficient mapping splicing quantitative trait loci. Altogether, the accumulating evidence re-enforces the fact that gene and protein expression need to be investigated in parallel with alternative splice variants.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne 3086, Australia
- School of Biosciences, The University of Melbourne, Melbourne 3010, Australia,
| | - Samira Rahimirad
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal H4A 3J1, Quebec, Canada
| | | | | |
Collapse
|
14
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
15
|
Xu XC, He S, Zhou YQ, Liu CJ, Liu SQ, Peng W, Liu YX, Wei PP, Bei JX, Luo CL. RNA-binding motif protein RBM47 promotes tumorigenesis in nasopharyngeal carcinoma through multiple pathways. J Genet Genomics 2021; 48:595-605. [PMID: 34274258 DOI: 10.1016/j.jgg.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
RNA binding motif proteins (RBMs) have been widely implicated in the tumorigenesis of multiple human cancers but scarcely studied in nasopharyngeal carcinoma (NPC). Here, we compare the mRNA levels of 29 RBMs between 87 NPC and 10 control samples. We find that RBM47 is frequently upregulated in NPC specimens, and its high expression is associated with the poor prognosis of patients with NPC. Biological experiments show that RBM47 plays an oncogenic role in NPC cells. Mechanically, RBM47 binds to the promoter and regulates the transcription of BCAT1, and its overexpression partially rescues the inhibitory effects of RBM47-knockdown on NPC cells. Moreover, transcriptome analysis reveals that RBM47 regulates alternative splicing of pre-mRNA, including those cancer-related, to a large extent in NPC cells. Furthermore, RBM47 binds to hnRNPM and cooperatively regulates multiple splicing events in NPC cells. In addition, we find that knockdown of hnRNPM inhibits proliferation and migration of NPC cells. Our study, taken together, shows that RBM47 promotes the progression of NPC through multiple pathways, acting as a transcriptional factor and a modulator of alternative splicing in cooperation with hnRNPM. Our study also highlights that RBM47 and hnRNPM could be prognostic factors and potential therapeutic targets for NPC.
Collapse
Affiliation(s)
- Xiao-Chen Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Ya-Qing Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Chu-Jun Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Shu-Qiang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Wan Peng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Yu-Xiang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Pan-Pan Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; Department of Medical Oncology, National Cancer Centre of Singapore, Singapore 169610, Singapore
| | - Chun-Ling Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China.
| |
Collapse
|
16
|
Wang Y, Yu Y, Pang Y, Yu H, Zhang W, Zhao X, Yu J. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol 2021; 18:2107-2126. [PMID: 33787465 DOI: 10.1080/15476286.2021.1909320] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The zinc finger CCHC-type (ZCCHC) superfamily proteins, characterized with the consensus sequence C-X2-C-X4-H-X4-C, are accepted to have high-affinity binding to single-stranded nucleic acids, especially single-stranded RNAs. In human beings 25 ZCCHC proteins have been annotated in the HGNC database. Of interest is that among the family, most members are involved in the multiple steps of RNA metabolism. In this review, we focus on the diverged roles of human ZCCHC proteins on RNA transcription, biogenesis, splicing, as well as translation and degradation.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojun Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Zhang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Ka HI, Seo H, Choi Y, Kim J, Cho M, Choi SY, Park S, Han S, An J, Chung HS, Yang Y, Kim MJ. Loss of splicing factor IK impairs normal skeletal muscle development. BMC Biol 2021; 19:44. [PMID: 33789631 PMCID: PMC8015194 DOI: 10.1186/s12915-021-00980-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND IK is a splicing factor that promotes spliceosome activation and contributes to pre-mRNA splicing. Although the molecular mechanism of IK has been previously reported in vitro, the physiological role of IK has not been fully understood in any animal model. Here, we generate an ik knock-out (KO) zebrafish using the CRISPR/Cas9 system to investigate the physiological roles of IK in vivo. RESULTS The ik KO embryos display severe pleiotropic phenotypes, implying an essential role of IK in embryonic development in vertebrates. RNA-seq analysis reveals downregulation of genes involved in skeletal muscle differentiation in ik KO embryos, and there exist genes having improper pre-mRNA splicing among downregulated genes. The ik KO embryos display impaired neuromuscular junction (NMJ) and fast-twitch muscle development. Depletion of ik reduces myod1 expression and upregulates pax7a, preventing normal fast muscle development in a non-cell-autonomous manner. Moreover, when differentiation is induced in IK-depleted C2C12 myoblasts, myoblasts show a reduced ability to form myotubes. However, inhibition of IK does not influence either muscle cell proliferation or apoptosis in zebrafish and C2C12 cells. CONCLUSION This study provides that the splicing factor IK contributes to normal skeletal muscle development in vivo and myogenic differentiation in vitro.
Collapse
Affiliation(s)
- Hye In Ka
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.,Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hyemin Seo
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Youngsook Choi
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Joohee Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Mina Cho
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sujeong Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sora Han
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jinsu An
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea. .,Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
18
|
Yang L, Wang ZA, Zuo H, Geng R, Guo Z, Niu S, Weng S, He J, Xu X. The LARK protein is involved in antiviral and antibacterial responses in shrimp by regulating humoral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103826. [PMID: 32784011 DOI: 10.1016/j.dci.2020.103826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The LARK proteins containing a C2HC-type zinc finger motif and two RNA recognition motifs are conserved across vertebrates and invertebrates. Previous studies have suggested that invertebrate LARKs and their mammalian counterparts, the RBM4 proteins, regulate gene expression by affecting RNA stability and post-transcriptional processing, participating in multiple life processes. In the current study, the LARK gene from Pacific white shrimp Litopenaeus vannamei was identified and functionally explored in the context of immunity. The LARK protein was mainly present in the nucleus of its expression vector-transfected S2 cells, and the LARK mRNA was detectable in all the tested shrimp tissues. Expression of LARK in gill was up-regulated by immune stimulation with various pathogens. In vivo experiments demonstrated that LARK played positive roles in both antiviral and antibacterial responses and silencing of LARK could make shrimp more susceptible to infection with Vibrio parahaemolyticus and white spot syndrome virus (WSSV). Although silencing of LARK did not affect the phagocytic activity of hemocytes, it regulated expression of many components of the NF-κB and JAK-STAT pathways and a series of immune function proteins. These suggested that LARK could be mainly involved in regulation of humoral immunity. The current study could help reveal the roles of LARK/RBM4 in immunity and further explore the regulatory mechanisms of shrimp immunity.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou, PR China
| | - Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
19
|
First Identification of RNA-Binding Proteins That Regulate Alternative Exons in the Dystrophin Gene. Int J Mol Sci 2020; 21:ijms21207803. [PMID: 33096920 PMCID: PMC7589424 DOI: 10.3390/ijms21207803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
The Duchenne muscular dystrophy (DMD) gene has a complex expression pattern regulated by multiple tissue-specific promoters and by alternative splicing (AS) of the resulting transcripts. Here, we used an RNAi-based approach coupled with DMD-targeted RNA-seq to identify RNA-binding proteins (RBPs) that regulate splicing of its skeletal muscle isoform (Dp427m) in a human muscular cell line. A total of 16 RBPs comprising the major regulators of muscle-specific splicing events were tested. We show that distinct combinations of RBPs maintain the correct inclusion in the Dp427m of exons that undergo spatio-temporal AS in other dystrophin isoforms. In particular, our findings revealed the complex networks of RBPs contributing to the splicing of the two short DMD exons 71 and 78, the inclusion of exon 78 in the adult Dp427m isoform being crucial for muscle function. Among the RBPs tested, QKI and DDX5/DDX17 proteins are important determinants of DMD exon inclusion. This is the first large-scale study to determine which RBP proteins act on the physiological splicing of the DMD gene. Our data shed light on molecular mechanisms contributing to the expression of the different dystrophin isoforms, which could be influenced by a change in the function or expression level of the identified RBPs.
Collapse
|
20
|
Posttranscriptional regulation of human endogenous retroviruses by RNA-binding motif protein 4, RBM4. Proc Natl Acad Sci U S A 2020; 117:26520-26530. [PMID: 33020268 DOI: 10.1073/pnas.2005237117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human genome encodes for over 1,500 RNA-binding proteins (RBPs), which coordinate regulatory events on RNA transcripts. Most studies of RBPs have concentrated on their action on host protein-encoding mRNAs, which constitute a minority of the transcriptome. A widely neglected subset of our transcriptome derives from integrated retroviral elements, termed endogenous retroviruses (ERVs), that comprise ∼8% of the human genome. Some ERVs have been shown to be transcribed under physiological and pathological conditions, suggesting that sophisticated regulatory mechanisms to coordinate and prevent their ectopic expression exist. However, it is unknown how broadly RBPs and ERV transcripts directly interact to provide a posttranscriptional layer of regulation. Here, we implemented a computational pipeline to determine the correlation of expression between individual RBPs and ERVs from single-cell or bulk RNA-sequencing data. One of our top candidates for an RBP negatively regulating ERV expression was RNA-binding motif protein 4 (RBM4). We used photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation to demonstrate that RBM4 indeed bound ERV transcripts at CGG consensus elements. Loss of RBM4 resulted in an elevated transcript level of bound ERVs of the HERV-K and -H families, as well as increased expression of HERV-K envelope protein. We pinpointed RBM4 regulation of HERV-K to a CGG-containing element that is conserved in the LTRs of HERV-K-10, -K-11, and -K-20, and validated the functionality of this site using reporter assays. In summary, we systematically identified RBPs that may regulate ERV function and demonstrate a role for RBM4 in controlling ERV expression.
Collapse
|
21
|
Park JW, Fu S, Huang B, Xu RH. Alternative splicing in mesenchymal stem cell differentiation. Stem Cells 2020; 38:1229-1240. [PMID: 32627865 PMCID: PMC7586970 DOI: 10.1002/stem.3248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
The differentiation and maturation of mesenchymal stem cells (MSCs) to mesodermal and other lineages are known to be controlled by various extrinsic and intrinsic signals. The dysregulation of the MSC differentiation balance has been linked to several pathophysiological conditions, including obesity and osteoporosis. Previous research of the molecular mechanisms governing MSC differentiation has mostly focused on transcriptional regulation. However, recent findings are revealing the underrated role of alternative splicing (AS) in MSC differentiation and functions. In this review, we discuss recent progress in elucidating the regulatory roles of AS in MSC differentiation. We catalogue and highlight the key AS events that modulate MSC differentiation to major osteocytes, chondrocytes, and adipocytes, and discuss the regulatory mechanisms by which AS is regulated.
Collapse
Affiliation(s)
- Jung Woo Park
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Siyi Fu
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Borong Huang
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Ren-He Xu
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| |
Collapse
|
22
|
Fochi S, Lorenzi P, Galasso M, Stefani C, Trabetti E, Zipeto D, Romanelli MG. The Emerging Role of the RBM20 and PTBP1 Ribonucleoproteins in Heart Development and Cardiovascular Diseases. Genes (Basel) 2020; 11:genes11040402. [PMID: 32276354 PMCID: PMC7230170 DOI: 10.3390/genes11040402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a regulatory mechanism essential for cell differentiation and tissue organization. More than 90% of human genes are regulated by alternative splicing events, which participate in cell fate determination. The general mechanisms of splicing events are well known, whereas only recently have deep-sequencing, high throughput analyses and animal models provided novel information on the network of functionally coordinated, tissue-specific, alternatively spliced exons. Heart development and cardiac tissue differentiation require thoroughly regulated splicing events. The ribonucleoprotein RBM20 is a key regulator of the alternative splicing events required for functional and structural heart properties, such as the expression of TTN isoforms. Recently, the polypyrimidine tract-binding protein PTBP1 has been demonstrated to participate with RBM20 in regulating splicing events. In this review, we summarize the updated knowledge relative to RBM20 and PTBP1 structure and molecular function; their role in alternative splicing mechanisms involved in the heart development and function; RBM20 mutations associated with idiopathic dilated cardiovascular disease (DCM); and the consequences of RBM20-altered expression or dysfunction. Furthermore, we discuss the possible application of targeting RBM20 in new approaches in heart therapies.
Collapse
|
23
|
Hung CS, Lin JC. Alternatively spliced MBNL1 isoforms exhibit differential influence on enhancing brown adipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194437. [PMID: 31730826 DOI: 10.1016/j.bbagrm.2019.194437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/15/2023]
Abstract
Browning of white adipocytes (WAs) (also referred as beige cells) was demonstrated to execute thermogenesis by consuming stored lipids as do brown adipocytes (BAs), and this is highly related to metabolic homeostasis. Alternative splicing (AS) constitutes a pivotal mechanism for defining cellular fates and functional specifications. Nevertheless, the impacts of AS regulation on the browning of WAs have not been comprehensively investigated. In this study, we first identified the discriminative expression and splicing profiles of the muscleblind-like 1 (MBNL1) gene in postnatal brown adipose tissues (BATs) compared to those of embryonic BATs. A shift in the MBNL1+ex 5 isoform 7 (MBNL17) to MBNL1-ex 5 isoform 1 (MBNL11) was characterized throughout BAT development or during the in vitro browning of pre-WAs, 3T3-L1 cells. The interplay between MBNL1 and the exonic CCUG motif constitutes an autoregulatory mechanism for excluding MBNL1 exon 5. The simultaneous association of RNA-binding motif protein 4a (RBM4a) with exonic and intronic CU elements collaboratively mediates the skipping of MBNL1 exon 5. Overexpressing the MBNL11 isoform exhibited a more-prominent effect than that of the MBNL17 isoform on programming its own transcripts and beige cell-related splicing events in a CCUG motif-mediated manner. In addition to splicing regulation, overexpression of the MBNL11 and MBNL17 isoforms differentially enhanced beige adipogenic signatures of 3T3-L1 cells. Our findings demonstrated that MBNL1 constitutes an emerging and autoregulatory mechanism involved in development of beige cells.
Collapse
Affiliation(s)
- Ching-Sheng Hung
- PhD Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- PhD Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
24
|
Chang HL, Lin JC. SRSF1 and RBM4 differentially modulate the oncogenic effect of HIF-1α in lung cancer cells through alternative splicing mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118550. [PMID: 31491447 DOI: 10.1016/j.bbamcr.2019.118550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/30/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Alternative splicing (AS) constitutes a pivotal mechanism for expanding the transcriptome and proteome diversity in higher eukaryotes. In contrast, misregulated AS events are relevant to carcinogenic signatures, including migration, angiogenesis, immortality, and drug resistance of cancer cells. Using a transcriptome analysis, discriminative splicing profiles of hypoxia-inducible factor (HIF)-1α transcripts were identified in tumorous tissues compared to adjacent normal tissues of lung cancer (LC) patients. In cancerous tissues or LC-derived cells, relatively high levels of HIF-1α-ex14 transcripts encoding the HIF-1αS isoform were noted compared to adjacent normal tissues and non-cancerous cells. The HIF-1αS isoform exhibited a more-prominent effect than that of the HIF-1αL isoform translated from HIF-1α+ex14 transcripts on enhancing promoter activities of the vascular endothelial growth factor receptor 2 (VEGFR2), serine/arginine splicing factor 1 (SRSF1), and c13orf25 genes. An increase in the SRSF1 protein facilitated the generation of HIF-1α-ex14 transcripts, whereas overexpression of RNA-binding motif protein 4 (RBM4) enhanced the expression of HIF-1α+ex14 transcripts in the A549 cells. Results of splicing reporter assays demonstrated the differential impacts of RBM4 and SRSF1 on the utilization of HIF-1α exon 14 in a CU element-dependent manner. In addition to transcriptional regulation, overexpression of the HIF-1αS and HIF-1αL isoforms differentially enhanced the metastatic signatures of A549 cells. Taken together, SRSF1 and RBM4 constitute an antagonistic mechanism on regulating the splicing profiles of HIF-1α gene, which is relevant to the oncogenic signatures of LC cells.
Collapse
Affiliation(s)
- Huai-Liang Chang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
25
|
Yong H, Zhao W, Zhou X, Liu Z, Tang Q, Shi H, Cheng R, Zhang X, Qiu Z, Zhu J, Feng Z. RNA-Binding Motif 4 (RBM4) Suppresses Tumor Growth and Metastasis in Human Gastric Cancer. Med Sci Monit 2019; 25:4025-4034. [PMID: 31145716 PMCID: PMC6559002 DOI: 10.12659/msm.914513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Dysregulation of the splicing activator, RNA-binding motif 4 (RBM4), has recently been reported to be involved in the progression of several cancers. However, the mechanisms that underpin the activity of RBM4 in gastric cancer (GC) remain unknown. The purpose of our study was to explore how RBM4 affects the biological behavior of GC through in vivo and in vitro experiments. MATERIAL AND METHODS Western blot and flow cytometry analyses were used to investigate the RBM4 protein levels in normal gastric epithelial cells and 5 types of GC cells. Cell Counting Kit-8 assay, flow cytometry analysis, wound-healing, and migration and invasion assays were evaluated in vitro in BGC823 and MGC803 GC cells. A xenograft tumor model was used to assess whether RBM4 inhibits GC growth in vivo. Mitogen-activated protein kinase (MAPK) protein levels were determined using western blot analyses. RESULTS Our study revealed that RBM4 protein was downregulated in GC cells. Re-expression of RBM4 inhibited the proliferation, migration, and invasion of GC cells, while promoting apoptosis. Thus, the overexpression of RBM4 can inhibit tumor growth in GC mouse models. We also report that RBM4 was involved in the activation of MAPK-dependent signaling pathways in human GC. CONCLUSIONS It is hoped that these findings will improve our understanding of GC pathogenesis while also helping us to explore the feasibility of RBM4-targeted therapy for GC treatment.
Collapse
Affiliation(s)
- Hongmei Yong
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xueyi Zhou
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Zhenyun Liu
- Sinobioway Cell Therapy Co., Ltd., Wuhu, Anhui, China (mainland)
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Huichang Shi
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Ronghui Cheng
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Xiao Zhang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhenning Qiu
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jin Zhu
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu, China (mainland)
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
26
|
Zheng ZZ, Sun X, Zhang B, Pu J, Jiang ZY, Li M, Fan YJ, Xu YZ. Alternative splicing regulation of doublesex gene by RNA-binding proteins in the silkworm Bombyx mori. RNA Biol 2019; 16:809-820. [PMID: 30836863 DOI: 10.1080/15476286.2019.1590177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Doublesex is highly conserved and sex-specifically spliced in insect sex-determination pathways, and its alternative splicing (AS) is regulated by Transformer, an exonic splicing activator, in the model system of Drosophila melanogaster. However, due to the lack of a transformer gene, AS regulation of doublesex remains unclear in Lepidoptera, which contain the economically important silkworm Bombyx mori and thousands of agricultural pests. Here, we use yeast three-hybrid system to screen for RNA-binding proteins that recognize sex-specific exons 3 and 4 of silkworm doublesex (Bm-dsx); this approach identified BxRBP1/Lark binding to the exon 3, and BxRBP2/TBPH and BxRBP3/Aret binding to the exon 4. Investigation of tissues shows that BxRBP1 and BxRBP2 have no sex specificity, but BxRBP3 has - three of its four isoforms are expressed with a sex-bias. Using novel sex-specific silkworm cell lines, we find that BxRBP1 and BxRBP3 directly interact with each other, and cooperatively function as splicing repressors. Over-expression of BxRBP1 and BxRBP3 isoforms efficiently inhibits splicing of the exons 3 and 4 in the female-specific cells and generates the male-specific isoform of Bm-dsx. We also demonstrate that the sex-determination upstream gene Masc regulates alternatively transcribed BxRBP3 isoforms. Thus, we identify a new regulatory mechanism of doublesex AS in the silkworm, revealing an evolutionary divergence in insect sex-determination.
Collapse
Affiliation(s)
- Zeng-Zhang Zheng
- a Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Xia Sun
- b College of Life Technology , Jiangsu University of Science and Technology , Zhenjiang , China
| | - Bei Zhang
- a Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Jia Pu
- a Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Ze-Yu Jiang
- a Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Science , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Muwang Li
- b College of Life Technology , Jiangsu University of Science and Technology , Zhenjiang , China
| | - Yu-Jie Fan
- c College of Life Science , Wuhan University , Wuhan , China
| | - Yong-Zhen Xu
- c College of Life Science , Wuhan University , Wuhan , China
| |
Collapse
|
27
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
28
|
Dlamini Z, Hull R, Makhafola TJ, Mbele M. Regulation of alternative splicing in obesity-induced hypertension. Diabetes Metab Syndr Obes 2019; 12:1597-1615. [PMID: 31695458 PMCID: PMC6718130 DOI: 10.2147/dmso.s188680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Obesity is the result of genetics which predisposes an individual to obesity and environmental factors, resulting in excessive weight gain. A well-established linear relationship exists between hypertension and obesity. The combined burden of hypertension and obesity poses significant health and economic challenges. Many environmental factors and genetic traits interact to contribute to obesity-linked hypertension. These include excess sodium re-absorption or secretion by the kidneys, a hypertensive shift of renal-pressure and activation of the sympathetic nervous system. Most individuals suffering from hypertension need drugs in order to treat their raised blood pressure, and while a number of antihypertensive therapeutic agents are currently available, 50% of cases remain uncontrolled. In order to develop new and effective therapeutic agents combating obesity-induced hypertension, a thorough understanding of the molecular events leading to adipogenesis is critical. With the advent of whole genome and exome sequencing techniques, new genes and variants which can be used as markers for obesity and hypertension are being identified. This review examines the role played by alternative splicing (AS) as a contributing factor to the metabolic regulation of obesity-induced hypertension. Splicing mutations constitute at least 14% of the disease-causing mutations, thus implicating polymorphisms that effect splicing as indicators of disease susceptibility. The unique transcripts resulting from the alternate splicing of mRNA encoding proteins that play a key role in contributing to obesity would be vital to gain a proper understanding of the genetic causes of obesity. A greater knowledge of the genetic basis for obesity-linked hypertension will assist in the development of appropriate diagnostic tests as well as the identification of new personalized therapeutic targets against obesity-induced hypertension.
Collapse
Affiliation(s)
- Zodwa Dlamini
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
- Correspondence: Zodwa Dlamini South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, South AfricaTel +27 3 18 199 334/5Email
| | - Rodney Hull
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| | - Tshepiso J Makhafola
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| | - Mzwandile Mbele
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| |
Collapse
|
29
|
Rawcliffe DFR, Österman L, Nordin A, Holmberg M. PTBP1 acts as a dominant repressor of the aberrant tissue-specific splicing of ISCU in hereditary myopathy with lactic acidosis. Mol Genet Genomic Med 2018; 6:887-897. [PMID: 30209894 PMCID: PMC6305642 DOI: 10.1002/mgg3.413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 04/17/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive disease caused by an intron mutation in the iron-sulfur cluster assembly (ISCU) gene. The mutation results in aberrant splicing, where part of the intron is retained in the final mRNA transcript, giving rise to a truncated nonfunctional ISCU protein. Using an ISCU mini-gene system, we have previously shown that PTBP1 can act as a repressor of the mis-splicing of ISCU, where overexpression of PTBP1 resulted in a decrease of the incorrect splicing. In this study, we wanted to, in more detail, analyze the role of PTBP1 in the regulation of endogenous ISCU mis-splicing. METHODS Overexpression and knockdown of PTBP1 was performed in myoblasts from two HML patients and a healthy control. Quantification of ISCU mis-splicing was done by qRTPCR. Biotinylated ISCU RNA, representing wildtype and mutant intron sequence, was used in a pull-down assay with nuclear extracts from myoblasts. Levels of PTBP1 in human cell lines and mice tissues were analyzed by qRTPCR and western blot. RESULTS PTBP1 overexpression in HML patient myoblasts resulted in a substantial decrease of ISCU mis-splicing while knockdown of PTBP1 resulted in a drastic increase. The effect could be observed in both patient and control myoblasts. We could also show that PTBP1 interacts with both the mutant and wild-type ISCU intron sequence, but with a higher affinity to the mutant sequence. Furthermore, low levels of PTBP1 among examined mouse tissues correlated with high levels of incorrect splicing of ISCU. CONCLUSION Our results show that PTBP1 acts as a dominant repressor of ISCU mis-splicing. We also show an inverse correlation between the levels of PTBP1 and ISCU mis-splicing, suggesting that the high level of mis-splicing in the skeletal muscle is primarily due to the low levels of PTBP1.
Collapse
Affiliation(s)
- Denise F. R. Rawcliffe
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Lennart Österman
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Angelica Nordin
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Monica Holmberg
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| |
Collapse
|
30
|
Peng HY, Liang YC, Tan TH, Chuang HC, Lin YJ, Lin JC. RBM4a-SRSF3-MAP4K4 Splicing Cascade Constitutes a Molecular Mechanism for Regulating Brown Adipogenesis. Int J Mol Sci 2018; 19:E2646. [PMID: 30200638 PMCID: PMC6163301 DOI: 10.3390/ijms19092646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
An increase in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) reportedly attenuates insulin-mediated signaling which participates in the development of brown adipose tissues (BATs). Nevertheless, the effect of MAP4K4 on brown adipogenesis remains largely uncharacterized. In this study, results of a transcriptome analysis (also referred as RNA-sequencing) showed differential expressions of MAP4K4 or SRSF3 transcripts isolated from distinct stages of embryonic BATs. The discriminative splicing profiles of MAP4K4 or SRSF3 were noted as well in brown adipocytes (BAs) with RNA-binding motif protein 4-knockout (RBM4-/-) compared to the wild-type counterparts. Moreover, the relatively high expressions of authentic SRSF3 transcripts encoding the splicing factor functioned as a novel regulator toward MAP4K4 splicing during brown adipogenesis. The presence of alternatively spliced MAP4K4 variants exerted differential effects on the phosphorylation of c-Jun N-terminal protein kinase (JNK) which was correlated with the differentiation or metabolic signature of BAs. Collectively, the RBM4-SRSF3-MAP4K4 splicing cascade constitutes a novel molecular mechanism in manipulating the development of BAs through related signaling pathways.
Collapse
Affiliation(s)
- Hui-Yu Peng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
31
|
RBM4a modulates the impact of PRDM16 on development of brown adipocytes through an alternative splicing mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1515-1525. [PMID: 30327195 DOI: 10.1016/j.bbamcr.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Brown adipocytes (BAs) exhibit an energy-expending signature that is important in balancing metabolic homeostasis. In this study, results of transcriptome analyses revealed the reprogrammed splicing profile of the PR domain containing 16 (PRDM16) gene, a key transcription factor involved in brown adipogenesis, throughout development of wild-type brown adipose tissues (BATs). Moreover, discriminative splicing patterns of PRDM16 transcripts were noted in embryonic and postnatal RBM4a-/- BATs. Overexpression of RBM4a enhanced the relative levels of PRDM16-ex 16 transcripts by simultaneously interacting with exonic and intronic CU elements, which encoded the PRDM16S isoform containing a distinct C-terminus. The presence of the overexpressed PRDM16S isoform showed a stronger effect than the overexpressed PRDM16L isoform on enhancing transcriptional activity of the RBM4a and the PGC-1α promoter. Overexpression of the PRDM16S isoform exerted more-prominent effects on enhancing the BAT-related gene program and energy expenditure compared to those of PRDM16L-overexpressing cells. Our studies demonstrated that RBM4a-regulated alternative splicing constituted another regulatory mechanism for strengthening the influence of PRDM16 on the development of brown adipocytes.
Collapse
|
32
|
RBM4 Modulates Radial Migration via Alternative Splicing of Dab1 during Cortex Development. Mol Cell Biol 2018; 38:MCB.00007-18. [PMID: 29581187 DOI: 10.1128/mcb.00007-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/23/2022] Open
Abstract
The RNA-binding motif 4 (RBM4) protein participates in cell differentiation via its role in regulating the expression of tissue-specific or developmentally regulated mRNA splice isoforms. RBM4 is expressed in embryonic brain during development; it is initially enriched in the ventricular zone/subventricular zone and subsequently distributed throughout the cerebral cortex. Rbm4a knockout brain exhibited delayed migration of late-born neurons. Using in utero electroporation, we confirmed that knockdown of RBM4 impaired cortical neuronal migration. RNA immunoprecipitation with high-throughput sequencing identified Disabled-1 (Dab1), which encodes a critical reelin signaling adaptor, as a potential target of RBM4. Rbm4a knockout embryonic brain showed altered Dab1 isoform ratios. Overexpression of RBM4 promoted the inclusion of Dab1 exons 7 and 8 (7/8), whereas its antagonist polypyrimidine tract-binding protein 1 (PTBP1) acted in an opposite manner. RBM4 directly counteracted the effect of PTBP1 on exon 7/8 selection. Finally, we showed that the full-length Dab1, but not exon 7/8-truncated Dab1, rescued neuronal migration defects in RBM4-depleted neurons, indicating that RBM4 plays a role in neuronal migration via modulating the expression of Dab1 splice isoforms. Our findings imply that RBM4 is necessary during brain development and that its deficiency may lead to developmental brain abnormality.
Collapse
|
33
|
Nakka K, Ghigna C, Gabellini D, Dilworth FJ. Diversification of the muscle proteome through alternative splicing. Skelet Muscle 2018; 8:8. [PMID: 29510724 PMCID: PMC5840707 DOI: 10.1186/s13395-018-0152-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. Main body In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved “targeted” proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. Conclusions An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0152-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiran Nakka
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Claudia Ghigna
- Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| | - Davide Gabellini
- Unit of Gene Expression and Muscular Dystrophy, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, DIBIT2, 5A3-44, via Olgettina 58, 20132, Milan, Italy.
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
34
|
Lin JC. Multi-posttranscriptional regulations lessen the repressive effect of SRPK1 on brown adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:503-514. [PMID: 29474929 DOI: 10.1016/j.bbalip.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 01/28/2023]
Abstract
Alternative splicing has been widely demonstrated to function as pivotal regulation in specifying cellular fates and biological functions. The relative expression or cellular localization of a splicing factor constitutes an important mechanism in spatiotemporal programming of cell- and stage-specific splicing profiles. In this study, results of deep RNA-sequencing (RNA-Seq) analyses first revealed the reprogrammed splicing profile and reduced expression of serine/arginine-rich splicing factor protein kinase 1 (SRPK1) throughout the development of brown adipose tissue (BAT). A gradual increase in the exon 10-skipped SRPK1 transcript, a potential target of a nonsense-mediated decay (NMD) mechanism, was noted during brown adipogenesis. Elevated RBM4a constituted the regulatory mechanism that led to skipping of SRPK1 exon 10. Moreover, brown adipogenesis-induced upregulation of microRNA (miR)-485 interfered with SRPK1 expression by targeting its 3'-untranslated region (UTR). Depletion of endogenous SRPK1 enhanced the development of C3H10T1/2 cells toward brown adipocytes. Taking our results together, multiple post-transcriptional regulations reduced SRPK1 expression, which subsequently affected brown adipogenesis.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; PhD program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
35
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
36
|
Su CH, D D, Tarn WY. Alternative Splicing in Neurogenesis and Brain Development. Front Mol Biosci 2018; 5:12. [PMID: 29484299 PMCID: PMC5816070 DOI: 10.3389/fmolb.2018.00012] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.
Collapse
Affiliation(s)
- Chun-Hao Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dhananjaya D
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
37
|
Lin JC, Lee YC, Tan TH, Liang YC, Chuang HC, Fann YC, Johnson KR, Lin YJ. RBM4-SRSF3-MAP4K4 splicing cascade modulates the metastatic signature of colorectal cancer cell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:259-272. [DOI: 10.1016/j.bbamcr.2017.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
38
|
The impact of the RBM4-initiated splicing cascade on modulating the carcinogenic signature of colorectal cancer cells. Sci Rep 2017; 7:44204. [PMID: 28276498 PMCID: PMC5343574 DOI: 10.1038/srep44204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
A growing body of studies has demonstrated that dysregulated splicing profiles constitute pivotal mechanisms for carcinogenesis. In this study, we identified discriminative splicing profiles of colorectal cancer (CRC) cells compared to adjacent normal tissues using deep RNA-sequencing (RNA-seq). The RNA-seq results and cohort studies indicated a relatively high ratio of exon 4-excluded neuro-oncological ventral antigen 1 (Nova1−4) and intron 2-retained SRSF6 (SRSF6+intron 2) transcripts in CRC tissues and cell lines. Nova1 variants exhibited differential effects on eliminating SRSF6 expression in CRC cells by inducing SRSF6+intron 2 transcripts which were considered to be the putative target of alternative splicing-coupled nonsense-mediated decay mechanism. Moreover, the splicing profile of vascular endothelial growth factor (VEGF)165/VEGF165b transcripts was relevant to SRSF6 expression, which manipulates the progression of CRC calls. These results highlight the novel and hierarchical role of an alternative splicing cascade that is involved in the development of CRC.
Collapse
|
39
|
RBM4 Regulates Neuronal Differentiation of Mesenchymal Stem Cells by Modulating Alternative Splicing of Pyruvate Kinase M. Mol Cell Biol 2017; 37:MCB.00466-16. [PMID: 27821480 DOI: 10.1128/mcb.00466-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
RBM4 promotes differentiation of neuronal progenitor cells and neurite outgrowth of cultured neurons via its role in splicing regulation. In this study, we further explored the role of RBM4 in neuronal differentiation. During neuronal differentiation, energy production shifts from glycolysis to oxidative phosphorylation. We found that the splice isoform change of the metabolic enzyme pyruvate kinase M (PKM) from PKM2 to PKM1 occurs during brain development and is impaired in RBM4-deficient brains. The PKM isoform change could be recapitulated in human mesenchymal stem cells (MSCs) during neuronal induction. Using a PKM minigene, we demonstrated that RBM4 plays a direct role in regulating alternative splicing of PKM. Moreover, RBM4 antagonized the function of the splicing factor PTB and induced the expression of a PTB isoform with attenuated splicing activity in MSCs. Overexpression of RBM4 or PKM1 induced the expression of neuronal genes, increased the mitochondrial respiration capacity in MSCs, and, accordingly, promoted neuronal differentiation. Finally, we demonstrated that RBM4 is induced and is involved in the PKM splicing switch and neuronal gene expression during hypoxia-induced neuronal differentiation. Hence, RBM4 plays an important role in the PKM isoform switch and the change in mitochondrial energy production during neuronal differentiation.
Collapse
|
40
|
Lin JC, Tsao MF, Lin YJ. Differential Impacts of Alternative Splicing Networks on Apoptosis. Int J Mol Sci 2016; 17:ijms17122097. [PMID: 27983653 PMCID: PMC5187897 DOI: 10.3390/ijms17122097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
41
|
The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells. Oncotarget 2016; 6:38046-60. [PMID: 26506517 PMCID: PMC4741983 DOI: 10.18632/oncotarget.5710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/06/2015] [Indexed: 01/17/2023] Open
Abstract
Dysregulated splicing of pre-messenger (m)RNA is considered a molecular occasion of carcinogenesis. However, the underlying mechanism is complex and remains to be investigated. Herein, we report that the upregulated miR-92a reduced the RNA-binding motif 4 (RBM4) protein expression, leading to the imbalanced expression of the neuronal polypyrimidine tract-binding (nPTB) protein through alternative splicing-coupled nonsense mediated decay (NMD) mechanism. Increase in nPTB protein enhances the relative level of fibroblast growth factor receptor 2 IIIc (FGFR2) and pyruvate kinase M2 (PKM2) transcripts which contribute to the progression and metabolic signature of CRC cells. Expression profiles of RBM4 and downstream alternative splicing events are consistently observed in cancerous tissues compared to adjacent normal tissues. These results constitute a mechanistic understanding of RBM4 on repressing the carcinogenesis of colorectal cells.
Collapse
|
42
|
Lin JC, Chi YL, Peng HY, Lu YH. RBM4-Nova1-SRSF6 splicing cascade modulates the development of brown adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1368-1379. [PMID: 27535496 DOI: 10.1016/j.bbagrm.2016.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/13/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023]
Abstract
Alternative splicing (AS) is a pivotal mechanism for the expansion of gene diversity, which determines the cellular fate or specification. However, the effect of AS networks on brown adipogenesis has not been comprehensively investigated. In this study, we identified the discriminative splicing profiles of RNA-binding motif protein 4a-knockout (RBM4a-/-) brown adipocytes (BAs) and compared them with those of their wild-type counterparts through deep RNA-sequencing. Among these candidates, RBM4a ablation enhanced the relative level of exon 4-excluded neuro-oncological ventral antigen 1 (Nova1-4) transcripts, which were predominantly generated in embryonic BAs. By contrast, most of the Nova1 transcripts were exon 4-included (Nova1+4) in mature BAs. The Nova1 isoforms exhibited differential effects on repressing the development of BAs. Moreover, overexpression of Nova1 proteins reduced the serine/arginine splicing factor 6 (SRSF6) level by enhancing the generation of intron 2-included (SRSF6+intron 2) transcripts, which are a putative candidate of the AS-coupled nonsense-mediated decay mechanism. Furthermore, we observed the positive effect of SRSF6 on BA development. These results highlight the hierarchical role of RBM4a in an AS cascade that manipulates brown adipogenesis.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Lin Chi
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hui-Yu Peng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Han Lu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
43
|
Prognostic value of decreased expression of RBM4 in human gastric cancer. Sci Rep 2016; 6:28222. [PMID: 27324405 PMCID: PMC4915006 DOI: 10.1038/srep28222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022] Open
Abstract
RNA-binding motif 4 (RBM4) is a multifunctional protein that participates in regulating alternative splicing and mRNA translation. Its reduced expression has been associated with poor overall survival in lung cancer, breast cancer and ovarian cancer. We assessed RBM4 protein expression levels with immunohistochemistry in tissue microarrays containing malignant gastric cancer tissues and benign tissues from 813 patients. We also examined the expression levels of RBM4 mRNA in twenty-five paired gastric cancer samples and adjacent noncancerous tissues. Both RBM4 protein and mRNA expression levels were significantly lower in gastric cancer tissues compared with the adjacent noncancerous tissues. There was a significant association between reduced RBM4 protein expression and differentiation (P < 0.001), lymph node metastasis (P = 0.026), TNM state (P = 0.014) and distant metastasis (P = 0.036). Patients with reduced RBM4 expression (P < 0.001, CI = 0.315–0.710) and TNM stage III and IV (P < 0.001, CI = 4.757–11.166) had a poor overall survival. These findings suggest that RBM4 is a new biomarker in gastric cancer, as the reduced expression of this protein is correlated with poor differentiation, lymph node status and distant metastasis. Further, lower RBM4 expression is an independent prognostic marker for gastric cancer.
Collapse
|
44
|
Tarn WY, Kuo HC, Yu HI, Liu SW, Tseng CT, Dhananjaya D, Hung KY, Tu CC, Chang SH, Huang GJ, Chiu IM. RBM4 promotes neuronal differentiation and neurite outgrowth by modulating Numb isoform expression. Mol Biol Cell 2016; 27:1676-83. [PMID: 27009199 PMCID: PMC4865323 DOI: 10.1091/mbc.e15-11-0798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/18/2016] [Indexed: 01/22/2023] Open
Abstract
RBM4 modulates alternative exon selection of Numb and up-regulates proneural Mash1 gene expression, possibly via specific Numb isoforms. RBM4 overexpression promotes neuronal cell differentiation. Moreover, RBM4 is essential for neurite outgrowth in primary cortical neurons by modulating specific Numb isoform expression. RBM4 participates in cell differentiation by regulating tissue-specific alternative pre-mRNA splicing. RBM4 also has been implicated in neurogenesis in the mouse embryonic brain. Using mouse embryonal carcinoma P19 cells as a neural differentiation model, we observed a temporal correlation between RBM4 expression and a change in splicing isoforms of Numb, a cell-fate determination gene. Knockdown of RBM4 affected the inclusion/exclusion of exons 3 and 9 of Numb in P19 cells. RBM4-deficient embryonic mouse brain also exhibited aberrant splicing of Numb pre-mRNA. Using a splicing reporter minigene assay, we demonstrated that RBM4 promoted exon 3 inclusion and exon 9 exclusion. Moreover, we found that RBM4 depletion reduced the expression of the proneural gene Mash1, and such reduction was reversed by an RBM4-induced Numb isoform containing exon 3 but lacking exon 9. Accordingly, induction of ectopic RBM4 expression in neuronal progenitor cells increased Mash1 expression and promoted cell differentiation. Finally, we found that RBM4 was also essential for neurite outgrowth from cortical neurons in vitro. Neurite outgrowth defects of RBM4-depleted neurons were rescued by RBM4-induced exon 9–lacking Numb isoforms. Therefore our findings indicate that RBM4 modulates exon selection of Numb to generate isoforms that promote neuronal cell differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hung-Che Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shin-Wu Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Tzu Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Dodda Dhananjaya
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kuan-Yang Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chiang Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shuo-Hsiu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Guo-Jen Huang
- Graduate Institute of Biomedical Sciences, Chung-Gung University, Tao-Yuan City 33302, Taiwan
| | - Ing-Ming Chiu
- National Health Research Institutes, Chu-Nan 35053, Taiwan
| |
Collapse
|
45
|
Lin JC, Lu YH, Liu YR, Lin YJ. RBM4a-regulated splicing cascade modulates the differentiation and metabolic activities of brown adipocytes. Sci Rep 2016; 6:20665. [PMID: 26857472 PMCID: PMC4746625 DOI: 10.1038/srep20665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/11/2016] [Indexed: 12/11/2022] Open
Abstract
RNA-binding motif protein 4a (RBM4a) reportedly reprograms splicing profiles of the insulin receptor (IR) and myocyte enhancer factor 2C (MEF2C) genes, facilitating the differentiation of brown adipocytes. Using an RNA-sequencing analysis, we first compared the gene expressing profiles between wild-type and RBM4a−/− brown adipocytes. The ablation of RBM4a led to increases in the PTBP1, PTBP2 (nPTB), and Nova1 proteins, whereas elevated RBM4a reduced the expression of PTBP1 and PTBP2 proteins in brown adipocytes through an alternative splicing-coupled nonsense-mediated decay mechanism. Subsequently, RBM4a indirectly shortened the half-life of the Nova1 transcript which was comparatively stable in the presence of PTBP2. RBM4a diminished the influence of PTBP2 in adipogenic development by reprogramming the splicing profiles of the FGFR2 and PKM genes. These results constitute a mechanistic understanding of the RBM4a-modulated splicing cascade during the brown adipogenesis.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Han Lu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
46
|
Lin JC. RBM4-MEF2C network constitutes a feed-forward circuit that facilitates the differentiation of brown adipocytes. RNA Biol 2015; 12:208-20. [PMID: 25826570 DOI: 10.1080/15476286.2015.1017213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Myocyte enhancer factor 2c (MEF2C) is the MADS-box type transcription factor involved in the differentiation of cardiac and skeletal muscle and synaptic formation. Alternatively spliced transcripts of the MEF2C gene were proven to encode isoforms which exert distinct functions in transcriptional regulation. During the differentiation of brown adipocytes, upregulated RBM4 enhanced skipping of the MEF2Cγ region which functions as a transcriptional repressor. The presence of an overexpressed MEF2Cγ- isoform in turn induced transcriptional activity of the RBM4 promoter, constituting a positive feedback circuit in differentiating brown adipocytes. The RBM4-MEF2Cγ- network induced the expression of "myogenic" miR-1 to a greater extent than did PRDM17, BMP7 C/EBPβ, or UCP1 transcripts in C3H10T1/2 cells. Overexpression of miR-1 independently exerted the same activity as RBM4 and the MEF2Cγ- isoform of upregulating brown adipocyte-specific factors in C3H10T1/2 cells, which suggests a potential effect of miR-1 on brown adipocytes. These results indicated that the RBM4-MEF2C-miR-1 network constitutes a novel mechanism which programs the gene expression profile toward the development of brown adipocytes.
Collapse
Affiliation(s)
- Jung-Chun Lin
- a School of Medical Laboratory Science and Biotechnology ; College of Medical Science and Technology; Taipei Medical University ; Taipei , Taiwan
| |
Collapse
|
47
|
Lin JC. Impacts of Alternative Splicing Events on the Differentiation of Adipocytes. Int J Mol Sci 2015; 16:22169-89. [PMID: 26389882 PMCID: PMC4613302 DOI: 10.3390/ijms160922169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing was found to be a common phenomenon after the advent of whole transcriptome analyses or next generation sequencing. Over 90% of human genes were demonstrated to undergo at least one alternative splicing event. Alternative splicing is an effective mechanism to spatiotemporally expand protein diversity, which influences the cell fate and tissue development. The first focus of this review is to highlight recent studies, which demonstrated effects of alternative splicing on the differentiation of adipocytes. Moreover, use of evolving high-throughput approaches, such as transcriptome analyses (RNA sequencing), to profile adipogenic transcriptomes, is also addressed.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| |
Collapse
|
48
|
Yang J, Hung LH, Licht T, Kostin S, Looso M, Khrameeva E, Bindereif A, Schneider A, Braun T. RBM24 is a major regulator of muscle-specific alternative splicing. Dev Cell 2015; 31:87-99. [PMID: 25313962 DOI: 10.1016/j.devcel.2014.08.025] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022]
Abstract
Cell-type-specific splicing generates numerous alternatively spliced transcripts playing important roles for organ development and homeostasis, but only a few tissue-specific splicing factors have been identified. We found that RBM24 governs a large number of muscle-specific splicing events that are critically involved in cardiac and skeletal muscle development and disease. Targeted inactivation of RBM24 in mice disrupted cardiac development and impaired sarcomerogenesis in striated muscles. In vitro splicing assays revealed that recombinant RBM24 is sufficient to promote muscle-specific exon inclusion in nuclear extracts of nonmuscle cells. Furthermore, we demonstrate that binding of RBM24 to an intronic splicing enhancer (ISE) is essential and sufficient to overcome repression of exon inclusion by an exonic splicing silencer (ESS) containing PTB and hnRNP A1/A2 binding sites. Introduction of ESS and ISE converted a constitutive exon into an RMB24-dependent alternative exon. We reason that RBM24 is a major regulator of alternative splicing in striated muscles.
Collapse
Affiliation(s)
- Jiwen Yang
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry, University of Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Thomas Licht
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | - Sawa Kostin
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | - Mario Looso
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | - Ekaterina Khrameeva
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow 127994, Russia
| | - Albrecht Bindereif
- Institute of Biochemistry, University of Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Andre Schneider
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany.
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany.
| |
Collapse
|
49
|
A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis. Mol Cell Biol 2014; 35:758-68. [PMID: 25512611 DOI: 10.1128/mcb.01040-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The output of alternative splicing depends on the cooperative or antagonistic activities of several RNA-binding proteins (RBPs), like Ptbp1 and Esrp1 in Xenopus. Fine-tuning of the RBP abundance is therefore of prime importance to achieve tissue- or cell-specific splicing patterns. Here, we addressed the mechanisms leading to the high expression of the ptbp1 gene, which encodes Ptbp1, in Xenopus epidermis. Two splice isoforms of ptbp1 mRNA differ by the presence of an alternative exon 11, and only the isoform including exon 11 can be translated to a full-length protein. In vivo minigene assays revealed that the nonproductive isoform was predominantly produced. Knockdown experiments demonstrated that Esrp1, which is specific to the epidermis, strongly stimulated the expression of ptbp1 by favoring the productive isoform. Consequently, knocking down esrp1 phenocopied ptbp1 inactivation. Conversely, Ptbp1 repressed the expression of its own gene by favoring the nonproductive isoform. Hence, a complex posttranscriptional mechanism controls Ptbp1 abundance in Xenopus epidermis: skipping of exon 11 is the default splicing pattern, but Esrp1 stimulates ptbp1 expression by favoring the inclusion of exon 11 up to a level that is limited by Ptbp1 itself. These results decipher a posttranscriptional mechanism that achieves various abundances of the ubiquitous RBP Ptbp1 in different tissues.
Collapse
|
50
|
Lin JC, Lin CY, Tarn WY, Li FY. Elevated SRPK1 lessens apoptosis in breast cancer cells through RBM4-regulated splicing events. RNA (NEW YORK, N.Y.) 2014; 20:1621-31. [PMID: 25140042 PMCID: PMC4174443 DOI: 10.1261/rna.045583.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imbalanced splicing of premessenger RNA is typical of tumorous malignancies, and the regulatory mechanisms involved in several tumorigenesis-associated splicing events are identified. Elevated expression of serine-arginine protein kinase 1 (SRPK1) may participate in the pathway responsible for the dysregulation of splicing events in malignant tumor cells. In this study, we observed a correlation between the cytoplasmic accumulation of RNA-binding motif protein 4 (RBM4) and up-regulated SRPK1 in breast cancer cells. The production of the IR-B and MCL-1S transcripts was induced separately by the overexpression of RBM4 and SRPK1 gene silencing. Overexpressed RBM4 simultaneously bound to the CU-rich elements within the MCL-1 exon2 and the downstream intron, which subsequently facilitated the exclusion of the regulated exon. Breast cancer cells are deprived of apoptotic resistance through the RBM4-mediated up-regulation of the IR-B and MCL-1S transcripts. These findings suggest that the splicing events regulated by the SRPK1-RMB4 network may contribute to tumorigenesis through altered sensitivity to apoptotic signals in breast cancer cells.
Collapse
MESH Headings
- Apoptosis
- Blotting, Western
- Breast/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Proliferation
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Staging
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 110, Taipei, Taiwan
| | - Ching-Yu Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 110, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan
| | - Fang-Yu Li
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 110, Taipei, Taiwan
| |
Collapse
|