1
|
Huang X, Li Z, Huang Y, Zhang Q, Cui Y, Shi X, Jiu Y. Vimentin intermediate filaments coordinate actin stress fibers and podosomes to determine the extracellular matrix degradation by macrophages. Dev Cell 2025:S1534-5807(25)00036-X. [PMID: 39952241 DOI: 10.1016/j.devcel.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/25/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Macrophages possess the capacity to degrade extracellular matrix (ECM), but the specific roles of different cytoskeletal structures in controlling this process are incompletely understood. Here, we report that the inward flow of actin stress fibers delivers endocytosed ECM for lysosomal elimination, replenishing the pool of enzymes for extracellular ECM hydrolysis in actin-rich podosomes. Vimentin deficiency disrupted the balance between stress fibers and podosomes, impairing ECM degradation through integrin CD11b in THP-1 macrophages. In lung adenocarcinoma patient samples, M2-type macrophages exhibit a tighter podosome organization, surrounded by compact vimentin filaments, than M1-type. In vitro experiments verified that the invasion ability of A549 lung carcinoma cells was enhanced when accompanied by wild type, but not vimentin knockout M2-type THP-1, macrophages. Subcutaneous injections of macrophages and tumor cells in nude mice showed that vimentin in macrophages can reduce tumor collagen fibers. Together, our findings provide insights into the cytoskeletal dynamics governing macrophage ECM degradation.
Collapse
Affiliation(s)
- Xinyi Huang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhifang Li
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuhan Huang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanqin Cui
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuemeng Shi
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China.
| |
Collapse
|
2
|
Tomos I, Kanellopoulou P, Nastos D, Aidinis V. Pharmacological targeting of ECM homeostasis, fibroblast activation and invasion for the treatment of pulmonary fibrosis. Expert Opin Ther Targets 2025; 29:43-57. [PMID: 39985559 DOI: 10.1080/14728222.2025.2471579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/24/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with a dismal prognosis. While the standard-of-care (SOC) drugs approved for IPF represent a significant advancement in antifibrotic therapies, they primarily slow disease progression and have limited overall efficacy and many side effects. Consequently, IPF remains a condition with high unmet medical and pharmacological needs. AREAS COVERED A wide variety of molecules and mechanisms have been implicated in the pathogenesis of IPF, many of which have been targeted in clinical trials. In this review, we discuss the latest therapeutic targets that affect extracellular matrix (ECM) homeostasis and the activation of lung fibroblasts, with a specific focus on ECM invasion. EXPERT OPINION A promising new approach involves targeting ECM invasion by fibroblasts, a process that parallels cancer cell behavior. Several cancer drugs are now being tested in IPF for their ability to inhibit ECM invasion, offering significant potential for future treatments. The delivery of these therapies by inhalation is a promising development, as it may enhance local effectiveness and minimize systemic side effects, thereby improving patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Ioannis Tomos
- 5th Department of Respiratory Medicine, 'SOTIRIA' Chest Diseases Hospital of Athens, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dimitris Nastos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
3
|
Pan KW, Chen HC. Perinuclear assembly of vimentin intermediate filaments induces cancer cell nuclear dysmorphia. J Biol Chem 2024:107981. [PMID: 39542246 DOI: 10.1016/j.jbc.2024.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
Nuclear dysmorphia, characterized by crumpled or lobulated polymorphic nuclear shapes, has been used as an index for the malignant grades of certain cancers. The expression of vimentin, a type-III intermediate filament protein, is a hallmark of the epithelial-to-mesenchymal transition. However, it remains unclear whether vimentin is involved in cancer cell nuclear dysmorphia. In this study, we found that vimentin intermediate filaments (VIFs) frequently accumulated at the concave of dysmorphic nucleus in breast cancer MDA-MB-231 cells. Depletion of vimentin apparently restored the nuclear shape of the cells, which was devastated by re-expression of vimentin, but not its assembly-defective Y117D mutant. Depletion of plectin, a cytoskeletal linker, partially prevented the perinuclear accumulation of VIFs and concomitantly restored the nuclear shape of the cells. In addition, depletion of vimentin in lung cancer A549 cells largely prevented nuclear dysmorphia during the epithelial-to-mesenchymal transition induced by TGFβ. Moreover, we found that VIF-mediated nuclear dysmorphia led to defects in DNA repair. Together, our results unveil a novel role of VIFs in cancer cell nuclear dysmorphia, which is associated with genome instability.
Collapse
Affiliation(s)
- Ke-Wei Pan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
4
|
Li Y, Zhao Y, He Y, Liu F, Xia L, Liu K, Zhang M, Chen K. New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction. J Biol Chem 2024; 300:107762. [PMID: 39265663 PMCID: PMC11490884 DOI: 10.1016/j.jbc.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, β-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.
Collapse
Affiliation(s)
- Yubing Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yipeng Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yaojun He
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fang Liu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Xia
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
Gamblin C, Chavrier P. [Formation, organization and function of invadosomes in cell motility and tumor invasion]. Med Sci (Paris) 2024; 40:515-524. [PMID: 38986096 DOI: 10.1051/medsci/2024080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Invadosome is an umbrella term used to describe a family of cellular structures including podosomes and invadopodia. They serve as contact zones between the cell plasma membrane and extracellular matrix, contributing to matrix remodeling by locally enriched proteolytic enzymes. Invadosomes, which are actin-dependent, are implicated in cellular processes promoting adhesion, migration, and invasion. Invadosomes, which exist in various cell types, play crucial roles in physiological phenomena such as vascularization and bone resorption. Invadosomes are also implicated in pathological processes such as matrix tissue remodeling during metastatic tumor cell invasion. This review summarizes basic information and recent advances about mechanisms underlying podosome and invadopodia formation, their organization and function.
Collapse
Affiliation(s)
- Cécile Gamblin
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France - Sorbonne Université, Paris, France
| | - Philippe Chavrier
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| |
Collapse
|
6
|
Biernacka Z, Gregorczyk-Zboroch K, Lasocka I, Ostrowska A, Struzik J, Gieryńska M, Toka FN, Szulc-Dąbrowska L. Ectromelia Virus Affects the Formation and Spatial Organization of Adhesive Structures in Murine Dendritic Cells In Vitro. Int J Mol Sci 2023; 25:558. [PMID: 38203729 PMCID: PMC10779027 DOI: 10.3390/ijms25010558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs. Migration of immature DCs is possible due to the presence of specialized adhesion structures, such as podosomes or focal adhesions (FAs). Since assembly and disassembly of adhesive structures are highly associated with DCs' immunoregulatory and migratory functions, we evaluated how ECTV infection targets podosomes and FAs' organization and formation in natural-host bone marrow-derived DCs (BMDC). We found that ECTV induces a rapid dissolution of podosomes at the early stages of infection, accompanied by the development of larger and wider FAs than in uninfected control cells. At later stages of infection, FAs were predominantly observed in long cellular extensions, formed extensively by infected cells. Dissolution of podosomes in ECTV-infected BMDCs was not associated with maturation and increased 2D cell migration in a wound healing assay; however, accelerated transwell migration of ECTV-infected cells towards supernatants derived from LPS-conditioned BMDCs was observed. We suggest that ECTV-induced changes in the spatial organization of adhesive structures in DCs may alter the adhesiveness/migration of DCs during some conditions, e.g., inflammation.
Collapse
Affiliation(s)
- Zuzanna Biernacka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Karolina Gregorczyk-Zboroch
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Iwona Lasocka
- Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Justyna Struzik
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Małgorzata Gieryńska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Felix N. Toka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| |
Collapse
|
7
|
Herron JC, Hu S, Liu B, Watanabe T, Hahn KM, Elston TC. Spatial models of pattern formation during phagocytosis. PLoS Comput Biol 2022; 18:e1010092. [PMID: 36190993 PMCID: PMC9560619 DOI: 10.1371/journal.pcbi.1010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/13/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Phagocytosis, the biological process in which cells ingest large particles such as bacteria, is a key component of the innate immune response. Fcγ receptor (FcγR)-mediated phagocytosis is initiated when these receptors are activated after binding immunoglobulin G (IgG). Receptor activation initiates a signaling cascade that leads to the formation of the phagocytic cup and culminates with ingestion of the foreign particle. In the experimental system termed "frustrated phagocytosis", cells attempt to internalize micropatterned disks of IgG. Cells that engage in frustrated phagocytosis form "rosettes" of actin-enriched structures called podosomes around the IgG disk. The mechanism that generates the rosette pattern is unknown. We present data that supports the involvement of Cdc42, a member of the Rho family of GTPases, in pattern formation. Cdc42 acts downstream of receptor activation, upstream of actin polymerization, and is known to play a role in polarity establishment. Reaction-diffusion models for GTPase spatiotemporal dynamics exist. We demonstrate how the addition of negative feedback and minor changes to these models can generate the experimentally observed rosette pattern of podosomes. We show that this pattern formation can occur through two general mechanisms. In the first mechanism, an intermediate species forms a ring of high activity around the IgG disk, which then promotes rosette organization. The second mechanism does not require initial ring formation but relies on spatial gradients of intermediate chemical species that are selectively activated over the IgG patch. Finally, we analyze the models to suggest experiments to test their validity.
Collapse
Affiliation(s)
- John Cody Herron
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shiqiong Hu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bei Liu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Takashi Watanabe
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Klaus M. Hahn
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy C. Elston
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
Dynamin 2 and BAR domain protein pacsin 2 cooperatively regulate formation and maturation of podosomes. Biochem Biophys Res Commun 2021; 571:145-151. [PMID: 34325130 DOI: 10.1016/j.bbrc.2021.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 11/20/2022]
Abstract
Podosomes are actin-rich adhesion structures formed in a variety of cell types, such as monocytic cells or cancer cells, to facilitate attachment to and degradation of the extracellular matrix (ECM). Previous studies showed that dynamin 2, a large GTPase involved in membrane remodeling and actin organization, is required for podosome function. However, precise roles of dynamin 2 at the podosomes remain to be elucidated. In this study, we identified a BAR (Bin-Amphiphysin-Rvs167) domain protein pacsin 2 as a functional partner of dynamin 2 at podosomes. Dynamin 2 and pacsin 2 interact and co-localize to podosomes in Src-transformed NIH 3T3 (NIH-Src) cells. RNAi of either dynamin 2 or pacsin 2 in NIH-Src cells inhibited podosome formation and maturation, suggesting essential and related roles at podosomes. Consistently, RNAi of pacsin 2 prevented dynamin 2 localization to podosomes, and reciprocal RNAi of dynamin 2 prevented pacsin 2 localization to podosomes. Taking these results together, we conclude that dynamin 2 and pacsin 2 co-operatively regulate organization of podosomes in NIH-Src cells.
Collapse
|
9
|
Store-operated Ca 2+ entry as a key oncogenic Ca 2+ signaling driving tumor invasion-metastasis cascade and its translational potential. Cancer Lett 2021; 516:64-72. [PMID: 34089807 DOI: 10.1016/j.canlet.2021.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Tumor metastasis is the primary cause of treatment failure and cancer-related deaths. Store-operated Ca2+ entry (SOCE), which is mediated by stromal interaction molecules (STIM) and ORAI proteins, has been implicated in the tumor invasion-metastasis cascade. Epithelial-mesenchymal transition (EMT) is a cellular program that enables tumor cells to acquire the capacities needed for migration and invasion and the formation of distal metastases. Tumor-associated angiogenesis contributes to metastasis because aberrantly developed vessels offer a path for tumor cell dissemination as well as supply sufficient nutrients for the metastatic colony to develop into metastasis. Recently, increasing evidence has indicated that SOCE alterations actively participate in the multi-step process of tumor metastasis. In addition, the dysregulated expression of STIM/ORAI has been reported to be a predictor of poor prognosis. Herein, we review the latest advances about the critical role of SOCE in the tumor metastasis cascade and the underlying regulatory mechanisms. We emphasize the contributions of SOCE to the EMT program, tumor cell migration and invasion, and angiogenesis. We further discuss the possibility of modulating SOCE or intervening in the downstream signaling pathways as a feasible targeting therapy for cancer treatment.
Collapse
|
10
|
Kuo CH, Huang YH, Chen PK, Lee GH, Tang MJ, Conway EM, Shi GY, Wu HL. VEGF-Induced Endothelial Podosomes via ROCK2-Dependent Thrombomodulin Expression Initiate Sprouting Angiogenesis. Arterioscler Thromb Vasc Biol 2021; 41:1657-1671. [PMID: 33730876 DOI: 10.1161/atvbaha.121.315931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| | - Yi-Hsun Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-H.H.)
- Department of Ophthalmology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan (Y.-H.H.)
| | - Po-Ku Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
- Now with Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan (P.-K. C.)
| | - Gang-Hui Lee
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| | - Ming-Jer Tang
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| | - Edward M Conway
- Department of Medicine, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Guey-Yueh Shi
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| |
Collapse
|
11
|
Lee D, Hong JH. Ca 2+ Signaling as the Untact Mode during Signaling in Metastatic Breast Cancer. Cancers (Basel) 2021; 13:1473. [PMID: 33806911 PMCID: PMC8004807 DOI: 10.3390/cancers13061473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
Metastatic features of breast cancer in the brain are considered a common pathology in female patients with late-stage breast cancer. Ca2+ signaling and the overexpression pattern of Ca2+ channels have been regarded as oncogenic markers of breast cancer. In other words, breast tumor development can be mediated by inhibiting Ca2+ channels. Although the therapeutic potential of inhibiting Ca2+ channels against breast cancer has been demonstrated, the relationship between breast cancer metastasis and Ca2+ channels is not yet understood. Thus, we focused on the metastatic features of breast cancer and summarized the basic mechanisms of Ca2+-related proteins and channels during the stages of metastatic breast cancer by evaluating Ca2+ signaling. In particular, we highlighted the metastasis of breast tumors to the brain. Thus, modulating Ca2+ channels with Ca2+ channel inhibitors and combined applications will advance treatment strategies for breast cancer metastasis to the brain.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
| |
Collapse
|
12
|
Gao WJ, Liu JX, Liu MN, Yao YD, Liu ZQ, Liu L, He HH, Zhou H. Macrophage 3D migration: A potential therapeutic target for inflammation and deleterious progression in diseases. Pharmacol Res 2021; 167:105563. [PMID: 33746053 DOI: 10.1016/j.phrs.2021.105563] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are heterogeneous cells that have different physiological functions, such as chemotaxis, phagocytosis, endocytosis, and secretion of various factors. All physiological functions of macrophages are integral to homeostasis, immune defense and tissue repair. However, in several diseases, macrophages are recruited from the blood towards inflammatory sites. This process is called macrophage migration, which promotes deleterious disease progression. Macrophage migration is a key player in many inflammatory diseases, autoimmune diseases and cancers because it contributes to the accumulation of proinflammatory factors, the destruction of tissues and the development of tumors. Therefore, macrophage migration is proposed to be a potential therapeutic target. Macrophages migrate between two-dimensional (2D) and three-dimensional (3D) environments, implying that distinct migratory features and mechanisms are involved. Compared with the 2D migration of macrophages, 3D migration involves more complex variations in cellular morphology and dynamics. The structure of the extracellular matrix, a key factor, is modified in diseases that influence macrophage 3D migration. Macrophage 3D migration relates to disease pathology. Research that focuses on macrophage 3D migration is an emerging field and was reviewed in this article to indicate the molecular and cellular mechanisms of macrophage migration in 3D environments and to provide potential targets for controlling disease progression associated with this migration.
Collapse
Affiliation(s)
- Wan-Jiao Gao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, PR China
| | - Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Huan-Huan He
- The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, Guangdong Province 519000, PR China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
13
|
Gao WJ, Liu JX, Xie Y, Luo P, Liu ZQ, Liu L, Zhou H. Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine. Pharmacol Res 2021; 167:105513. [PMID: 33617975 DOI: 10.1016/j.phrs.2021.105513] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/01/2023]
Abstract
A large number of macrophages in inflamed sites not only amplify the severity of inflammatory responses but also contribute to the deleterious progression of many chronic inflammatory diseases, autoimmune diseases and cancers. Macrophage migration is a prerequisite for their entry into inflammatory sites and their participation of macrophages in the pathologic processes. Inhibition of macrophage migration is therefore a potential anti-inflammatory mechanism. Moreover, alleviation of inflammation also prevents the macrophages infiltration. Sinomenine (SIN) is an alkaloid derived from the Chinese medicinal plant Sinomenium acutum. It has multiple pharmacological effects, including anti-inflammation, immunosuppression, and anti-arthritis. However, its anti-inflammatory molecular mechanisms and effect on macrophage migration are not fully understood. The purpose of this research was to investigate the pharmacological effects and the molecular mechanism of SIN on macrophage migration in vivo and in vitro as well as to elucidate its anti-inflammatory mechanisms associated with macrophage migration. Our results showed that SIN reduced the number of RAW264.7 cells migrating into inflammatory paws and blocked lipopolysaccharide (LPS)-induced RAW264.7 cells and bone marrow-derived macrophages (BMDMs) migration in vitro. Furthermore, SIN attenuated the 3D mesenchymal migration of BMDMs. The absence of macrophage migration after circulatory and periphery macrophages depletion led to a reduction in the severity of inflammatory response. In macrophages depleted (macrophages-/-) mice, as inflammatory severity decreased, RAW264.7 cells migration was suppressed. A non-obvious effect of SIN on the inflammatory response was found in macrophages-/- mice, while the inhibitory effect of SIN on RAW264.7 cells migration was still observed. Furthermore, the migration of RAW264.7 cells pre-treated with SIN was suppressed in normal mice. Finally, Src/focal adhesion kinase (FAK)/P130Cas axis activation, which supports macrophages mesenchymal migration, and iNOS expression, NO production, integrin αV and in integrin β3 expressions, which promote Src/FAK/P130Cas activation, were down-regulated by SIN. However, SIN had no obvious effect on the expression of the monocyte chemoattractant protein-1 (MCP-1), which is an important chemokine for macrophage migration. These results indicated that SIN significantly inhibited macrophage mesenchymal migration by down-regulating on Src/FAK/P130Cas axis activation. There was a mutual regulatory correlation between the inflammatory response and macrophage migration, and the effects of SIN on macrophage migration were involved in its anti-inflammatory activity.
Collapse
Affiliation(s)
- Wan-Jiao Gao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, PR China
| | - Yie Xie
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Pei Luo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
14
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|
15
|
Lin SS, Hsieh TL, Liou GG, Li TN, Lin HC, Chang CW, Wu HY, Yao CK, Liu YW. Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development. Cell Rep 2020; 33:108310. [DOI: 10.1016/j.celrep.2020.108310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
|
16
|
Leverrier-Penna S, Destaing O, Penna A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020; 90:102251. [PMID: 32683175 DOI: 10.1016/j.ceca.2020.102251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.
Collapse
Affiliation(s)
| | - Olivier Destaing
- Institute for Advanced BioSciences, CNRS UMR 5309, INSERM U1209, Institut Albert Bonniot, University Grenoble Alpes, 38700 Grenoble, France.
| | - Aubin Penna
- STIM, CNRS ERL7003, University of Poitiers, 86000 Poitiers, France.
| |
Collapse
|
17
|
Alonso F, Spuul P, Decossas M, Egaña I, Curado F, Fremaux I, Daubon T, Génot E. Regulation of podosome formation in aortic endothelial cells vessels by physiological extracellular cues. Eur J Cell Biol 2020; 99:151084. [DOI: 10.1016/j.ejcb.2020.151084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/27/2023] Open
|
18
|
Guégan JP, Ginestier C, Charafe-Jauffret E, Ducret T, Quignard JF, Vacher P, Legembre P. CD95/Fas and metastatic disease: What does not kill you makes you stronger. Semin Cancer Biol 2020; 60:121-131. [PMID: 31176682 DOI: 10.1016/j.semcancer.2019.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
CD95 (also known as Fas) is the prototype of death receptors; however, evidence suggests that this receptor mainly implements non-apoptotic signaling pathways such as NF-κB, MAPK, and PI3K that are involved in cell migration, differentiation, survival, and cytokine secretion. At least two different forms of CD95 L exist. The multi-aggregated transmembrane ligand (m-CD95 L) is cleaved by metalloproteases to release a homotrimeric soluble ligand (s-CD95 L). Unlike m-CD95 L, the interaction between s-CD95 L and its receptor CD95 fails to trigger apoptosis, but instead promotes calcium-dependent cell migration, which contributes to the accumulation of inflammatory Th17 cells in damaged organs of lupus patients and favors cancer cell invasiveness. Novel inhibitors targeting the pro-inflammatory roles of CD95/CD95 L may provide attractive therapeutic options for patients with chronic inflammatory disorders or cancer. This review discusses the roles of the CD95/CD95 L pair in cell migration and metastasis.
Collapse
Affiliation(s)
- Jean Philippe Guégan
- CLCC Eugène Marquis, Équipe Ligue Contre Le Cancer, Rennes, France; Université Rennes, INSERM U1242, Rennes, France
| | - Christophe Ginestier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Marseille, France
| | - Thomas Ducret
- Université de Bordeaux, Bordeaux, France; Centre de Recherche Cardio Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Jean-François Quignard
- Université de Bordeaux, Bordeaux, France; Centre de Recherche Cardio Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Pierre Vacher
- Université de Bordeaux, Bordeaux, France; INSERM U1218, Bordeaux, France
| | - Patrick Legembre
- CLCC Eugène Marquis, Équipe Ligue Contre Le Cancer, Rennes, France; Université Rennes, INSERM U1242, Rennes, France.
| |
Collapse
|
19
|
Lapointe F, Turcotte S, Roy J, Bissonnette E, Rola-Pleszczynski M, Stankova J. RPTPε promotes M2-polarized macrophage migration through ROCK2 signaling and podosome formation. J Cell Sci 2020; 133:jcs.234641. [PMID: 31722979 DOI: 10.1242/jcs.234641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/05/2019] [Indexed: 01/30/2023] Open
Abstract
Cysteinyl-leukotrienes (cys-LTs) have well-characterized physiopathological roles in the development of inflammatory diseases. We have previously found that protein tyrosine phosphatase ε (PTPε) is a signaling partner of CysLT1R, a high affinity receptor for leukotriene D4 (LTD4). There are two major isoforms of PTPε, receptor-like (RPTPε) and cytoplasmic (cyt-)PTPε, both of which are encoded by the PTPRE gene but from different promoters. In most cells, their expression is mutually exclusive, except in human primary monocytes, which express both isoforms. Here, we show differential PTPε isoform expression patterns between monocytes, M1 and M2 human monocyte-derived macrophages (hMDMs), with the expression of glycosylated forms of RPTPε predominantly in M2-polarized hMDMs. Using PTPε-specific siRNAs and expression of RPTPε and cyt-PTPε, we found that RPTPε is involved in monocyte adhesion and migration of M2-polarized hMDMs in response to LTD4 Altered organization of podosomes and higher phosphorylation of the inhibitory Y-722 residue of ROCK2 was also found in PTPε-siRNA-transfected cells. In conclusion, we show that differentiation and polarization of monocytes into M2-polarized hMDMs modulates the expression of PTPε isoforms and RPTPε is involved in podosome distribution, ROCK2 activation and migration in response to LTD4.
Collapse
Affiliation(s)
- Fanny Lapointe
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sylvie Turcotte
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Joanny Roy
- Department of Medicine, Université Laval, Québec G1V 4G5, Canada
| | | | - Marek Rola-Pleszczynski
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jana Stankova
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
20
|
Store-Operated Ca 2+ Entry in Tumor Progression: From Molecular Mechanisms to Clinical Implications. Cancers (Basel) 2019; 11:cancers11070899. [PMID: 31252656 PMCID: PMC6678533 DOI: 10.3390/cancers11070899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
The remodeling of Ca2+ homeostasis has been implicated as a critical event in driving malignant phenotypes, such as tumor cell proliferation, motility, and metastasis. Store-operated Ca2+ entry (SOCE) that is elicited by the depletion of the endoplasmic reticulum (ER) Ca2+ stores constitutes the major Ca2+ influx pathways in most nonexcitable cells. Functional coupling between the plasma membrane Orai channels and ER Ca2+-sensing STIM proteins regulates SOCE activation. Previous studies in the human breast, cervical, and other cancer types have shown the functional significance of STIM/Orai-dependent Ca2+ signals in cancer development and progression. This article reviews the information on the regulatory mechanisms of STIM- and Orai-dependent SOCE pathways in the malignant characteristics of cancer, such as proliferation, resistance, migration, invasion, and metastasis. The recent investigations focusing on the emerging importance of SOCE in the cells of the tumor microenvironment, such as tumor angiogenesis and antitumor immunity, are also reviewed. The clinical implications as cancer therapeutics are discussed.
Collapse
|
21
|
Chuang MC, Lin SS, Ohniwa RL, Lee GH, Su YA, Chang YC, Tang MJ, Liu YW. Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion. J Cell Biol 2019; 218:1670-1685. [PMID: 30894403 PMCID: PMC6504888 DOI: 10.1083/jcb.201809161] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle development requires the cell-cell fusion of differentiated myoblasts to form muscle fibers. The actin cytoskeleton is known to be the main driving force for myoblast fusion; however, how actin is organized to direct intercellular fusion remains unclear. Here we show that an actin- and dynamin-2-enriched protrusive structure, the invadosome, is required for the fusion process of myogenesis. Upon differentiation, myoblasts acquire the ability to form invadosomes through isoform switching of a critical invadosome scaffold protein, Tks5. Tks5 directly interacts with and recruits dynamin-2 to the invadosome and regulates its assembly around actin filaments to strengthen the stiffness of dynamin-actin bundles and invadosomes. These findings provide a mechanistic framework for the acquisition of myogenic fusion machinery during myogenesis and reveal a novel structural function for Tks5 and dynamin-2 in organizing actin filaments in the invadosome to drive membrane fusion.
Collapse
Affiliation(s)
- Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Gang-Hui Lee
- International Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jer Tang
- International Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan .,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Gulvady AC, Forsythe IJ, Turner CE. Hic-5 regulates Src-induced invadopodia rosette formation and organization. Mol Biol Cell 2019; 30:1298-1313. [PMID: 30893012 PMCID: PMC6724605 DOI: 10.1091/mbc.e18-10-0629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts transformed by the proto-oncogene Src form individual invadopodia that can spontaneously self-organize into large matrix-degrading superstructures called rosettes. However, the mechanisms by which the invadopodia can spatiotemporally reorganize their architecture is not well understood. Here, we show that Hic-5, a close relative of the scaffold protein paxillin, is essential for the formation and organization of rosettes in active Src-transfected NIH3T3 fibroblasts and cancer-associated fibroblasts. Live cell imaging, combined with domain-mapping analysis of Hic-5, identified critical motifs as well as phosphorylation sites that are required for the formation and dynamics of rosettes. Using pharmacological inhibition and mutant expression, we show that FAK kinase activity, along with its proximity to and potential interaction with the LD2,3 motifs of Hic-5, is necessary for rosette formation. Invadopodia dynamics and their coalescence into rosettes were also dependent on Rac1, formin, and myosin II activity. Superresolution microscopy revealed the presence of formin FHOD1 and INF2-mediated unbranched radial F-actin fibers emanating from invadopodia and rosettes, which may facilitate rosette formation. Collectively, our data highlight a novel role for Hic-5 in orchestrating the organization of invadopodia into higher-order rosettes, which may promote the localized matrix degradation necessary for tumor cell invasion.
Collapse
Affiliation(s)
- Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Ian J Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
23
|
Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene 2019; 38:4075-4094. [PMID: 30696956 PMCID: PMC6755999 DOI: 10.1038/s41388-019-0705-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
Vimentin intermediate filaments (VIFs), expressed in most mesenchymal and cancer cells, undergo dramatic reorganization during cell migration; however, the mechanism remains obscure. This study demonstrates that upon growth-factor stimulation, Src directly phosphorylates vimentin at Tyr117, leading to VIF disassembly into squiggles and particles at the cell edge during lamellipodia formation. The protein tyrosine phosphatase SHP2 counteracted the Src effects on VIF tyrosine phosphorylation and organization. VIFs formed by vimentin Y117D mutant were more soluble and dynamic than those formed by the wild-type and Y117F mutant. Increased expression of vimentin promoted growth-factor induced lamellipodia formation and cell migration, whereas the mutants suppressed both. The vimentin-induced increase in lamellipodia formation correlated with the activation of Rac and Vav2, with the latter associated with VIFs and recruited to the plasma membrane upon growth-factor stimulation. These results reveal a novel mechanism for regulating VIF dynamics through Src and SHP2 and demonstrate that proper VIF dynamics are important for Rac activation and cell migration.
Collapse
|
24
|
Liou YM, Chan CL, Huang R, Wang CLA. Effect of l-caldesmon on osteoclastogenesis in RANKL-induced RAW264.7 cells. J Cell Physiol 2018; 233:6888-6901. [PMID: 29377122 DOI: 10.1002/jcp.26452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023]
Abstract
Non-muscle caldesmon (l-CaD) is involved in the regulation of actin cytoskeletal remodeling in the podosome formation, but its function in osteoclastogenesis remains to be determined. In this study, RANKL-induced differentiation of RAW264.7 murine macrophages to osteoclast-like cells (OCs) was used as a model to determine the physiological role of l-CaD and its phosphorylation in osteoclastogenesis. Upon RANKL treatment, RAW264.7 cells undergo cell-cell fusion into multinucleate, and TRAP-positive large OCs with a concomitant increase of l-CaD expression. Using gain- and loss-of-function in OC precursor cells followed by RANKL induction, we showed that the expression of l-CaD in response to RANKL activation is an important event for osteoclastogenesis, and bone resorption. To determine the effect of l-CaD phosphorylation in osteoclastogenesis, three decoy peptides of l-CaD were used with, respectively, Ser-to-Ala mutations at the Erk- and Pak1-mediated phosphorylation sites, and Ser-to-Asp mutation at the Erk-mediated phosphorylation sites. Both the former two peptides competed with the C-terminal segment of l-CaD for F-actin binding and accelerated formation of podosome-like structures in RANKL-induced OCs, while the third peptide did not significantly affect the F-actin binding of l-CaD, and decreased the formation of podosome-like structures in OCs. With the experiments using dephosphorylated and phosphorylated l-CaD mutants, we further showed that dephosphorylated l-CaD mutant facilitated RANKL-induced TRAP activity with an increased cell fusion index, whereas phosphorylated l-CaD decreased the TRAP activity and cell fusion. Our findings suggested that both the level of l-CaD expression and the extent of l-CaD phosphorylation play a role in RANKL-induced osteoclast differentiation.
Collapse
Affiliation(s)
- Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chu-Lung Chan
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Renjian Huang
- Boston Biomedical Research Institute, Watertown, Massachusetts
| | | |
Collapse
|
25
|
Abstract
Podosomes are dynamic actin-based membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Individual podosomes are often found to organize into large rosette-like structures in some types of cells, such as osteoclasts, endothelial cells, Src-transformed fibroblasts, and certain highly invasive cancer cells. In this study, we show that new podosome rosettes arise through one of two mechanisms; de novo assembly or fission of a pre-existing podosome rosette in Src-transformed fibroblasts. Fission is a more efficient way than de novo assembly to generate new podosome rosettes in these cells. Podosome rosettes undergoing fission possess higher motility and a stronger matrix-degrading capability. Podosome rosette fission may be the result of polarized myosin II-mediated contractility of these structures, which is coordinately regulated by myosin light chain kinase and Rho-associated kinase II. Collectively, this study unveils a previously unknown mechanism-fission for the biogenesis of podosome rosettes.
Collapse
|
26
|
Chen YW, Lai CS, Chen YF, Chiu WT, Chen HC, Shen MR. STIM1-dependent Ca 2+ signaling regulates podosome formation to facilitate cancer cell invasion. Sci Rep 2017; 7:11523. [PMID: 28912430 PMCID: PMC5599537 DOI: 10.1038/s41598-017-11273-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
The clinical significance of STIM proteins and Orai Ca2+ channels in tumor progression has been demonstrated in different types of cancers. Podosomes are dynamic actin-rich cellular protrusions that facilitate cancer cell invasiveness by degrading extracellular matrix. Whether STIM1-dependent Ca2+ signaling facilitates cancer cell invasion through affecting podosome formation remains unclear. Here we show that the invasive fronts of cancer tissues overexpress STIM1, accompanied by active store-operated Ca2+ entry (SOCE). Interfering SOCE activity by SOCE inhibitors and STIM1 or Orai1 knockdown remarkably affects podosome rosettes formation. Mechanistically, STIM1-silencing significantly alters the podosome rosettes dynamics, shortens the maintenance phase of podosome rosettes and reduces cell invasiveness. The subsequently transient expression of STIM1 cDNA in STIM1-null (STIM1−/−) mouse embryo fibroblasts rescues the suppression of podosome formation, suggesting that STIM1-mediated SOCE activation directly regulates podosome formation. This study uncovers SOCE-mediated Ca2+ microdomain that is the molecular basis for Ca2+ sensitivity controlling podosome formation.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chieh-Shan Lai
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
27
|
Abstract
Malignant carcinomas are often characterized by metastasis, the movement of carcinoma cells from a primary site to colonize distant organs. For metastasis to occur, carcinoma cells first must adopt a pro-migratory phenotype and move through the surrounding stroma towards a blood or lymphatic vessel. Currently, there are very limited possibilities to target these processes therapeutically. The family of Rho GTPases is an ubiquitously expressed division of GTP-binding proteins involved in the regulation of cytoskeletal dynamics and intracellular signaling. The best characterized members of the Rho family GTPases are RhoA, Rac1 and Cdc42. Abnormalities in Rho GTPase function have major consequences for cancer progression. Rho GTPase activation is driven by cell surface receptors that activate GTP exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this review, we summarize our current knowledge on Rho GTPase function in the regulation of metastasis. We will focus on key discoveries in the regulation of epithelial-mesenchymal-transition (EMT), cell-cell junctions, formation of membrane protrusions, plasticity of cell migration and adaptation to a hypoxic environment. In addition, we will emphasize on crosstalk between Rho GTPase family members and other important oncogenic pathways, such as cyclic AMP-mediated signaling, canonical Wnt/β-catenin, Yes-associated protein (YAP) and hypoxia inducible factor 1α (Hif1α) and provide an overview of the advancements and challenges in developing pharmacological tools to target Rho GTPase and the aforementioned crosstalk in the context of cancer therapeutics.
Collapse
|
28
|
Iamshanova O, Fiorio Pla A, Prevarskaya N. Molecular mechanisms of tumour invasion: regulation by calcium signals. J Physiol 2017; 595:3063-3075. [PMID: 28304082 DOI: 10.1113/jp272844] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular calcium (Ca2+ ) signals are key regulators of multiple cellular functions, both healthy and physiopathological. It is therefore unsurprising that several cancers present a strong Ca2+ homeostasis deregulation. Among the various hallmarks of cancer disease, a particular role is played by metastasis, which has a critical impact on cancer patients' outcome. Importantly, Ca2+ signalling has been reported to control multiple aspects of the adaptive metastatic cancer cell behaviour, including epithelial-mesenchymal transition, cell migration, local invasion and induction of angiogenesis (see Abstract Figure). In this context Ca2+ signalling is considered to be a substantial intracellular tool that regulates the dynamicity and complexity of the metastatic cascade. In the present study we review the spatial and temporal organization of Ca2+ fluxes, as well as the molecular mechanisms involved in metastasis, analysing the key steps which regulate initial tumour spread.
Collapse
Affiliation(s)
- Oksana Iamshanova
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France
| | - Alessandra Fiorio Pla
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France.,Department of Life Science and Systems Biology, University of Torino, Torino, Italy
| | - Natalia Prevarskaya
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France
| |
Collapse
|
29
|
Rafiq NBM, Lieu ZZ, Jiang T, Yu CH, Matsudaira P, Jones GE, Bershadsky AD. Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO. J Cell Biol 2016; 216:181-197. [PMID: 28007915 PMCID: PMC5223603 DOI: 10.1083/jcb.201605104] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/26/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023] Open
Abstract
Podosomes represent a class of integrin-mediated cell-matrix adhesions formed by migrating and matrix-degrading cells. We demonstrate that in macrophage-like THP1 cells and fibroblasts stimulated to produce podosomes, down-regulation of the G-protein ARF1 or the ARF1 guanine nucleotide exchange factor, ARNO, by small, interfering RNA or pharmacological inhibitors led to striking podosome elimination. Concomitantly, treatments inducing podosome formation increased the level of guanosine triphosphate (GTP)-bound ARF1. ARNO was found to colocalize with the adhesive rings of podosomes, whereas ARF1 was localized to vesicular structures transiently contacting podosome rings. Inhibition of ARF1 led to an increase in RhoA-GTP levels and triggered assembly of myosin-IIA filaments in THP1 cells, whereas the suppression of myosin-IIA rescued podosome formation regardless of ARF1 inhibition. Finally, expression of constitutively active ARF1 in fibroblasts induced formation of putative podosome precursors: actin-rich puncta coinciding with matrix degradation sites and containing proteins of the podosome core but not of the adhesive ring. Thus, ARNO-ARF1 regulates formation of podosomes by inhibition of RhoA/myosin-II and promotion of actin core assembly.
Collapse
Affiliation(s)
- Nisha Bte Mohd Rafiq
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, England, UK
| | - Zi Zhao Lieu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Tingting Jiang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Cheng-Han Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Paul Matsudaira
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Gareth E Jones
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, England, UK
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Blangy A. Tensins are versatile regulators of Rho GTPase signalling and cell adhesion. Biol Cell 2016; 109:115-126. [DOI: 10.1111/boc.201600053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anne Blangy
- CNRS; UMR 5237 CRBM; Montpellier France
- Montpellier University; Montpellier France
| |
Collapse
|
31
|
Kim J, Jang J, Yang C, Kim EJ, Jung H, Kim C. Vimentin filament controls integrin α5β1-mediated cell adhesion by binding to integrin through its Ser38 residue. FEBS Lett 2016; 590:3517-3525. [PMID: 27658040 DOI: 10.1002/1873-3468.12430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023]
Abstract
Regulation of integrin affinity for its ligand is essential for cell adhesion and migration. Here, we found that direct interaction of vimentin with integrin β1 can enhance binding of integrin α5β1 to its ligand, fibronectin. Conversely, blocking the interaction reduced fibronectin binding, cell migration on a fibronectin-coated surface, and neural tube closure during Xenopus embryogenesis. We also found that withaferin A (WFA), a natural compound known to inhibit vimentin function, can suppress the vimentin-integrin interaction and abolish fibronectin binding. Finally, we identified Ser38 of vimentin as a critical residue for integrin binding. Our results suggest that phosphorylation of vimentin at Ser38 may regulate the integrin-ligand interaction, thus providing a molecular basis for antivimentin therapeutic strategies.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jungim Jang
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chansik Yang
- Department of Life Sciences, Korea University, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Eun Jin Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hosung Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
32
|
El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence. J Cell Biol 2016; 213:109-25. [PMID: 27069022 PMCID: PMC4828691 DOI: 10.1083/jcb.201510043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
The authors find that matrix metalloproteinase MT1-MMP is enriched at the plasma membrane of macrophage podosomes, where it persists beyond podosome lifetime and, through binding to the subcortical actin cytoskeleton, forms subcellular signposts that facilitate podosome reformation. Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct “islets” embedded in the plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon podosome dissolution and persist beyond podosome lifetime. Importantly, the majority of MT1-MMP islets are reused as sites of podosome reemergence. siRNA-mediated knockdown and recomplementation analyses show that islet formation is based on the cytoplasmic tail of MT1-MMP and its ability to bind the subcortical actin cytoskeleton. Collectively, our data reveal a previously unrecognized phase in the podosome life cycle and identify a structural function of MT1-MMP that is independent of its proteolytic activity. MT1-MMP islets thus act as cellular memory devices that enable efficient and localized reformation of podosomes, ensuring coordinated matrix degradation and invasion.
Collapse
Affiliation(s)
- Karim El Azzouzi
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
33
|
Tsai WC, Chen CL, Chen HC. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling. Oncotarget 2016. [PMID: 26204488 PMCID: PMC4695156 DOI: 10.18632/oncotarget.4313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells.
Collapse
Affiliation(s)
- Wan-Chen Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Lin Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institutue of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
34
|
Significance of kinase activity in the dynamic invadosome. Eur J Cell Biol 2016; 95:483-492. [PMID: 27465307 DOI: 10.1016/j.ejcb.2016.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
Abstract
Invadosomes are actin rich protrusive structures that facilitate invasive migration in multiple cell types. Comprised of invadopodia and podosomes, these highly dynamic structures adhere to and degrade the extracellular matrix, and are also thought to play a role in mechanosensing. Many extracellular signals have been implicated in invadosome stimulation, activating complex signalling cascades to drive the formation, activity and turnover of invadosomes. While the structural components of invadosomes have been well studied, the regulation of invadosome dynamics is still poorly understood. Protein kinases are essential to this regulation, affecting all stages of invadosome dynamics and allowing tight spatiotemporal control of their activity. Invadosome organisation and function have been linked to pathophysiological states such as cancer invasion and metastasis; therapeutic targeting of invadosome regulatory components is thus warranted. In this review, we discuss the involvement of kinase signalling in every stage of the invadosome life cycle and evaluate its significance.
Collapse
|
35
|
Chen YF, Hsu KF, Shen MR. The store-operated Ca 2+ entry-mediated signaling is important for cancer spread. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1427-35. [DOI: 10.1016/j.bbamcr.2015.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/17/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022]
|
36
|
Jerrell RJ, Parekh A. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2. Biomaterials 2016; 84:119-129. [PMID: 26826790 DOI: 10.1016/j.biomaterials.2016.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/17/2023]
Abstract
ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis.
Collapse
Affiliation(s)
- Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
37
|
Kedziora KM, Leyton-Puig D, Argenzio E, Boumeester AJ, van Butselaar B, Yin T, Wu YI, van Leeuwen FN, Innocenti M, Jalink K, Moolenaar WH. Rapid Remodeling of Invadosomes by Gi-coupled Receptors: DISSECTING THE ROLE OF Rho GTPases. J Biol Chem 2016; 291:4323-33. [PMID: 26740622 DOI: 10.1074/jbc.m115.695940] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 01/15/2023] Open
Abstract
Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance.
Collapse
Affiliation(s)
| | | | | | | | | | - Taofei Yin
- the Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Yi I Wu
- the Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Frank N van Leeuwen
- the Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Metello Innocenti
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | | | | |
Collapse
|
38
|
Block MR, Destaing O, Petropoulos C, Planus E, Albigès-Rizo C, Fourcade B. Integrin-mediated adhesion as self-sustained waves of enzymatic activation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042704. [PMID: 26565269 DOI: 10.1103/physreve.92.042704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Indexed: 06/05/2023]
Abstract
Integrin receptors mediate interaction between the cellular actin-cytoskeleton and extracellular matrix. Based on their activation properties, we propose a reaction-diffusion model where the kinetics of the two-state receptors is modulated by their lipidic environment. This environment serves as an activator variable, while a second variable plays the role of a scaffold protein and controls the self-sustained activation of the receptors. Due to receptor diffusion which couples dynamically the activator and the inhibitor, our model connects major classes of reaction diffusion systems for excitable media. Spot and rosette solutions, characterized by receptor clustering into localized static or dynamic structures, are organized into a phase diagram. It is shown that diffusion and kinetics of receptors determines the dynamics and the stability of these structures. We discuss this model as a precursor model for cell signaling in the context of podosomes forming actoadhesive metastructures, and we study how generic signaling defects influence their organization.
Collapse
Affiliation(s)
- M R Block
- Chromatine and Epigenetics, Institut Albert Bonniot, INSERM-CNRS U823, 38042 Grenoble Cedex, France
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - O Destaing
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - C Petropoulos
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - E Planus
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - C Albigès-Rizo
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - B Fourcade
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
- Laboratoire Joliot Curie, CNRS Ens-Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
39
|
Abstract
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
40
|
Hyder CL, Kemppainen K, Isoniemi KO, Imanishi SY, Goto H, Inagaki M, Fazeli E, Eriksson JE, Törnquist K. Sphingolipids inhibit vimentin-dependent cell migration. J Cell Sci 2015; 128:2057-69. [PMID: 25908861 DOI: 10.1242/jcs.160341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), can induce or inhibit cellular migration. The intermediate filament protein vimentin is an inducer of migration and a marker for epithelial-mesenchymal transition. Given that keratin intermediate filaments are regulated by SPC, with consequences for cell motility, we wanted to determine whether vimentin is also regulated by sphingolipid signalling and whether it is a determinant for sphingolipid-mediated functions. In cancer cells where S1P and SPC inhibited migration, we observed that S1P and SPC induced phosphorylation of vimentin on S71, leading to a corresponding reorganization of vimentin filaments. These effects were sphingolipid-signalling-dependent, because inhibition of either the S1P2 receptor (also known as S1PR2) or its downstream effector Rho-associated kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) nullified the sphingolipid-induced effects on vimentin organization and S71 phosphorylation. Furthermore, the anti-migratory effect of S1P and SPC could be prevented by expressing S71-phosphorylation-deficient vimentin. In addition, we demonstrated, by using wild-type and vimentin-knockout mouse embryonic fibroblasts, that the sphingolipid-mediated inhibition of migration is dependent on vimentin. These results imply that this newly discovered sphingolipid-vimentin signalling axis exerts brake-and-throttle functions in the regulation of cell migration.
Collapse
Affiliation(s)
- Claire L Hyder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kati Kemppainen
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kimmo O Isoniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Environmental Science Lab, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku. Nagoya 468-8503, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya 466-8550, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya 466-8550, Japan
| | - Elnaz Fazeli
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kid Törnquist
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
41
|
Seano G, Chiaverina G, Gagliardi PA, di Blasio L, Puliafito A, Bouvard C, Sessa R, Tarone G, Sorokin L, Helley D, Jain RK, Serini G, Bussolino F, Primo L. Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nat Cell Biol 2014; 16:931-41, 1-8. [PMID: 25218639 DOI: 10.1038/ncb3036] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 08/06/2014] [Indexed: 02/06/2023]
Abstract
The mechanism by which angiogenic endothelial cells break the physical barrier of the vascular basement membrane and consequently sprout to form new vessels in mature tissues is unclear. Here, we show that the angiogenic endothelium is characterized by the presence of functional podosome rosettes. These extracellular-matrix-degrading and adhesive structures are precursors of de novo branching points and represent a key feature in the formation of new blood vessels. VEGF-A stimulation induces the formation of endothelial podosome rosettes by upregulating integrin α6β1. In contrast, the binding of α6β1 integrin to the laminin of the vascular basement membrane impairs the formation of podosome rosettes by restricting α6β1 integrin to focal adhesions and hampering its translocation to podosomes. Using an ex vivo sprouting angiogenesis assay, transgenic and knockout mouse models and human tumour sample analysis, we provide evidence that endothelial podosome rosettes control blood vessel branching and are critical regulators of pathological angiogenesis.
Collapse
Affiliation(s)
- Giorgio Seano
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy [3] Edwin L. Steele Laboratory for Tumor Biology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Giulia Chiaverina
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Paolo Armando Gagliardi
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Laura di Blasio
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Alberto Puliafito
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Claire Bouvard
- UMR-S 765, Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Roberto Sessa
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Molecular Biotechnology Center, Turin 10124, Italy
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, Muenster University, Muenster 48149, Germany
| | - Dominique Helley
- UMR-S 970, Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Rakesh K Jain
- Edwin L. Steele Laboratory for Tumor Biology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Guido Serini
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Federico Bussolino
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Luca Primo
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| |
Collapse
|
42
|
Kolli-Bouhafs K, Sick E, Noulet F, Gies JP, De Mey J, Rondé P. FAK competes for Src to promote migration against invasion in melanoma cells. Cell Death Dis 2014; 5:e1379. [PMID: 25118939 PMCID: PMC4454304 DOI: 10.1038/cddis.2014.329] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/16/2014] [Accepted: 07/01/2014] [Indexed: 01/09/2023]
Abstract
Melanoma is one of the most deadly cancers because of its high propensity to metastasis, a process that requires migration and invasion of tumor cells driven by the regulated formation of adhesives structures like focal adhesions (FAs) and invasive structures like invadopodia. FAK, the major kinase of FAs, has been implicated in many cellular processes, including migration and invasion. In this study, we investigated the role of FAK in the regulation of invasion. We report that suppression of FAK in B16F10 melanoma cells led to increased invadopodia formation and invasion through Matrigel, but impaired migration. These effects are rescued by FAK WT but not by FAK(Y397F) reexpression. Invadopodia formation requires local Src activation downstream of FAK and in a FAK phosphorylation-dependant manner. FAK deletion correlates with increased phosphorylation of Tks-5 (tyrosine kinase substrate with five SH3 domain) and reactive oxygen species production. In conclusion, our data show that FAK is able to mediate opposite effects on cell migration and invasion. Accordingly, beneficial effects of FAK inhibition are context dependent and may depend on the cell response to environmental cues and/or on the primary or secondary changes that melanoma experienced through the invasion cycle.
Collapse
Affiliation(s)
- K Kolli-Bouhafs
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - E Sick
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - F Noulet
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - J-P Gies
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - J De Mey
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - P Rondé
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
43
|
Seano G, Daubon T, Génot E, Primo L. Podosomes as novel players in endothelial biology. Eur J Cell Biol 2014; 93:405-12. [PMID: 25199436 DOI: 10.1016/j.ejcb.2014.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 11/15/2022] Open
Abstract
Podosomes and invadopodia, collectively known as invadosomes, are specialized cell-matrix contacts with an inherent ability to degrade extracellular matrix. Their occurrence in either normal (podosomes) or cancer cells (invadopodia) is thus traditionally associated with cell invasiveness and tissue remodelling. These specialized micro-domains of the plasma membrane are characterized by enrichment of F-actin, cortactin and metalloproteases. Recent developments in the field show that, under some circumstances, vascular endothelial cells (ECs) can be induced to form this kind of peculiar structures. Cultured ECs contain either 0.5-1-μm-wide individual podosomes or 5 to 10 μm wide ring-like clusters of podosomes (podosome rosettes). The formation of individual podosomes or podosome rosettes in ECs can be induced by soluble factors, such as TGFβ, VEGF, TNFα or pharmacological agents, such as phorbol esters. Recently, the evidence of the existence of such structures in vascular endothelium has been provided by ex vivo observation. Endothelial podosome rosettes have recently been functionally linked to arterial remodelling and sprouting angiogenesis. Concerted efforts aim now at confirming the relevance of endothelial podosomes in these patho-physiological processes in vivo. In the current review, we will introduce some general considerations regarding ECs in the vascular system. From there on, we will review the various EC types where podosomes have been described and the state-of-art knowledge hitherto generated regarding endothelial podosome features.
Collapse
Affiliation(s)
- Giorgio Seano
- Laboratory of Cell Migration, Candiolo Cancer Institute, FPO, IRCCS, Turin, Italy; Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MAUSA
| | - Thomas Daubon
- European Institute of Chemistry and Biology, Université de Bordeaux, Pessac, France; INSERM, 1045, Université de Bordeaux, Bordeaux, France
| | - Elisabeth Génot
- European Institute of Chemistry and Biology, Université de Bordeaux, Pessac, France; INSERM, 1045, Université de Bordeaux, Bordeaux, France.
| | - Luca Primo
- Laboratory of Cell Migration, Candiolo Cancer Institute, FPO, IRCCS, Turin, Italy; Department of Oncology, University of Torino, Turin, Italy.
| |
Collapse
|
44
|
Reynolds AB, Kanner SB, Bouton AH, Schaller MD, Weed SA, Flynn DC, Parsons JT. SRChing for the substrates of Src. Oncogene 2013; 33:4537-47. [PMID: 24121272 DOI: 10.1038/onc.2013.416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/12/2022]
Abstract
By the mid 1980's, it was clear that the transforming activity of oncogenic Src was linked to the activity of its tyrosine kinase domain and attention turned to identifying substrates, the putative next level of control in the pathway to transformation. Among the first to recognize the potential of phosphotyrosine-specific antibodies, Parsons and colleagues launched a risky shotgun-based approach that led ultimately to the cDNA cloning and functional characterization of many of today's best-known Src substrates (for example, p85-Cortactin, p110-AFAP1, p130Cas, p125FAK and p120-catenin). Two decades and over 6000 citations later, the original goals of the project may be seen as secondary to the enormous impact of these protein substrates in many areas of biology. At the request of the editors, this review is not restricted to the current status of the substrates, but reflects also on the anatomy of the project itself and some of the challenges and decisions encountered along the way.
Collapse
Affiliation(s)
- A B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - S B Kanner
- Arrowhead Research Corporation, Madison, WI, USA
| | - A H Bouton
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M D Schaller
- Department of Biochemistry, 3124 HSN, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - S A Weed
- Department of Neurobiology and Anatomy, 1833 Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D C Flynn
- Department of Medical Lab Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - J T Parsons
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
45
|
Schachtner H, Calaminus SDJ, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 2013; 70:572-89. [PMID: 23804547 DOI: 10.1002/cm.21119] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Cells use various actin-based motile structures to allow them to move across and through matrix of varying density and composition. Podosomes are actin cytoskeletal structures that form in motile cells and that mediate adhesion to substrate, migration, and other specialized functions such as transmigration through cell and matrix barriers. The podosome is a unique and interesting entity, which appears in the light microscope as an individual punctum, but is linked to other podosomes like a node on a network of the underlying cytoskeleton. Here, we discuss the signals that control podosome assembly and dynamics in different cell types and the actin organising proteins that regulate both the inner actin core and integrin-rich surrounding ring structures. We review the structure and composition of podosomes and also their functions in various cell types of both myeloid and endothelial lineage. We also discuss the emerging idea that podosomes can sense matrix stiffness and enable cells to respond to their environment.
Collapse
Affiliation(s)
- Hannah Schachtner
- CRUK Beatson Institute for Cancer Research and College of Medical, Veterinary and Life Sciences, Glasgow University, Garscube Campus, Switchback Rd., Bearsden, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
46
|
Abstract
Remodeling of extracellular matrix (ECM) is a fundamental cell property that allows cells to alter their microenvironment and move through tissues. Invadopodia and podosomes are subcellular actin-rich structures that are specialized for matrix degradation and are formed by cancer and normal cells, respectively. Although initial studies focused on defining the core machinery of these two structures, recent studies have identified inputs from both growth factor and adhesion signaling as crucial for invasive activity. This Commentary will outline the current knowledge on the upstream signaling inputs to invadopodia and podosomes and their role in governing distinct stages of these invasive structures. We discuss invadopodia and podosomes as adhesion structures and highlight new data showing that invadopodia-associated adhesion rings promote the maturation of already-formed invadopodia. We present a model in which growth factor stimulation leads to phosphoinositide 3-kinase (PI3K) activity and formation of invadopodia, whereas adhesion signaling promotes exocytosis of proteinases at invadopodia.
Collapse
Affiliation(s)
- Daisuke Hoshino
- Department of Cancer Biology, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232-6840, USA
| | | | | |
Collapse
|
47
|
Gan-Lu-Yin Inhibits Proliferation and Migration of Murine WEHI-3 Leukemia Cells and Tumor Growth in BALB/C Allograft Tumor Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:684071. [PMID: 23573143 PMCID: PMC3613066 DOI: 10.1155/2013/684071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/04/2013] [Indexed: 01/16/2023]
Abstract
The aim of this study was to explore the antitumor effect of Gan-Lu-Yin (GLY), a traditional Chinese herbal formula, on leukemia. Ethanolic extract of GLY was applied to evaluate its regulatory mechanisms in proliferation, migration, and differentiation of WEHI-3 leukemic cells as well as antitumor effect on BALB/c mice model. The results showed that GLY markedly reduced cell proliferation and migration with induced differentiation of WEHI-3 cells. The expression level of phosphorylated FAK, Akt, ERK1/2, and Rb was decreased p21 expression while level was increased in WEHI-3 treated with GLY. The results of cell cycle analysis revealed that GLY treatment could markedly induce G1 phase arrest and decrease cell population in S phase. Moreover, experimental results demonstrated that GLY decreased the protein expression and enzyme activity of MMP-2 and MMP-9. GLY treatment also reduced WEHI-3 leukemic infiltration in liver and spleen and tumor growth in animal model. Accordingly, GLY demonstrated an inhibitory effect on tumor growth with a regulatory mechanism partially through inhibiting FAK, Akt, and ERK expression in WEHI-3 cells. GLY may provide a promising antileukemic approach in the clinical application.
Collapse
|
48
|
Pan YR, Tseng WS, Chang PW, Chen HC. Phosphorylation of moesin by c-Jun N-terminal kinase is important for podosome rosette formation in Src-transformed fibroblasts. J Cell Sci 2013; 126:5670-80. [DOI: 10.1242/jcs.134361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Podosomes are actin-based membrane protrusions that facilitate extracellular matrix degradation and invasive cell motility. Podosomes can self-organize into large rosette-like structures in Src-transformed fibroblasts, osteoclasts, and some highly invasive cancer cells. However, the mechanism of this assembly remains obscure. In this study, we show that the suppression of c-Jun N-terminal kinase (JNK) by the JNK inhibitor SP600125 or short-hairpin RNA inhibited podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. In addition, SrcY527F was less potent to induce podosome rosettes in JNK1-null or JNK2-null mouse embryo fibroblasts than in their wild-type counterparts. The kinase activity of JNK was essential for promoting podosome rosette formation but not for its localization to podosome rosettes. Moesin, a member of the ERM (ezrin, radixin, and moesin) protein family, was identified as a substrate of JNK. We show that the phosphorylation of moesin at Thr558 by JNK was important for podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. Taken together, our results unveil a novel role of JNK in podosome rosette formation by phosphorylating moesin.
Collapse
|
49
|
Pan YR, Cho KH, Lee HH, Chang ZF, Chen HC. Protein tyrosine phosphatase SHP2 suppresses podosome rosette formation in Src-transformed fibroblasts. J Cell Sci 2012. [PMID: 23178938 DOI: 10.1242/jcs.116624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Podosomes are actin-enriched membrane protrusions that play important roles in extracellular matrix degradation and invasive cell motility. Podosomes undergo self-assembly into large rosette-like structures in Src-transformed fibroblasts, osteoclasts and certain highly invasive cancer cells. Several protein tyrosine kinases have been shown to be important for the formation of podosome rosettes, but little is known regarding the role of protein tyrosine phosphatases in this process. We found that knockdown of the Src homolog domain-containing phosphatase 2 (SHP2) significantly increased podosome rosette formation in Src-transformed fibroblasts. By contrast, SHP2 overexpression suppressed podosome rosette formation in these cells. The phosphatase activity of SHP2 was essential for the suppression of podosome rosette formation. SHP2 selectively suppressed the tyrosine phosphorylation of Tks5, a scaffolding protein required for podosome formation. The inhibitory effect of SHP2 on podosome rosette formation was associated with the increased activation of Rho-associated kinase (ROCK) and the enhanced polymerization of vimentin filaments. A higher content of polymerized vimentin filaments was correlated with a lower content of podosome rosettes. Taken together, our findings indicate that SHP2 serves as a negative regulator of podosome rosette formation through the dephosphorylation of Tks5 and the activation of ROCK-mediated polymerization of vimentin in Src-transformed fibroblasts.
Collapse
Affiliation(s)
- Yi-Ru Pan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Itoh T, Hasegawa J. Mechanistic insights into the regulation of circular dorsal ruffle formation. J Biochem 2012; 153:21-9. [PMID: 23175656 DOI: 10.1093/jb/mvs138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Growth factor stimulations induce dynamic changes in the cytoskeleton beneath the plasma membrane. Among them is the formation of membrane ruffles organized in a circular array, called 'circular dorsal ruffles' (CDRs). Physiological functions of CDRs include downregulation of cell growth by desensitizing the signalling from growth factor receptors as well as rearrangement of adhesion sites at the onset of cell migration. For the formation of CDRs, not only the activators of actin polymerization, such as N-WASP and the Arp2/3-complex, but also membrane deforming proteins with BAR/F-BAR domains are necessary. Small GTPases are also involved in the formation of CDRs by controlling intracellular trafficking through endosomes. Moreover, recent analyses of another circular cytoskeletal structure, podosome rosettes, have revealed common molecular features shared with CDRs. Among them, the roles of PI3-kinase and phosphoinositide 5-phosphatase may hold the key to the induction of these circular structures.
Collapse
Affiliation(s)
- Toshiki Itoh
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan.
| | | |
Collapse
|