1
|
Jiang J, Zhan L, Jiang B, Pan J, Hong C, Chen Z, Yang L. Anticancer therapy-induced peripheral neuropathy in solid tumors: diagnosis, mechanisms, and treatment strategies. Cancer Lett 2025; 620:217679. [PMID: 40154913 DOI: 10.1016/j.canlet.2025.217679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Anticancer therapy-induced peripheral neuropathy (PN) is a common adverse event during the diagnosis and treatment of solid tumors. The drug class, cumulative dose, and individual susceptibility affect the incidence and severity of PN. Owing to the lack of specific biomarkers and imaging tests, the diagnostic criteria for PN remain unclear. Moreover, the available and effective clinical treatment strategies are very limited, and most of the current drugs focus on symptom management rather than fundamental reversal of the disease course. The morbidity mechanisms of PN are diverse, including direct neurotoxicity, mitochondrial dysfunction, and disruption of axonal transport. Here, we summarize the diagnosis, mechanisms, and neuroprotective strategies of PN and discuss potential intervention treatments.
Collapse
Affiliation(s)
- Jiahong Jiang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luying Zhan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Boyang Jiang
- The Clinical Medical College, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jingyi Pan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zheling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
He S, Zhu Y, Wang X, Zhang G, Hou K, Xia X, Jiang Z, Gong X, Zhao P. Targeting SARM1 as a novel neuroprotective therapy in neurotropic viral infections. J Neuroinflammation 2025; 22:113. [PMID: 40254576 PMCID: PMC12010687 DOI: 10.1186/s12974-025-03423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Viral encephalitis, resulting from neurotropic viral infections, leads to severe neurological impairment, inflammation, and exhibits high mortality rates with poor prognosis. Currently, there is a lack of effective targeted treatments for this disease, which poses a significant public health concern. SARM1 has been identified as the pivotal mediator of axonal degeneration and inflammation across various neuropathies, activated by an elevation in the NMN/NAD+ ratio. However, comprehensive in vivo investigations into the role of SARM1-mediated pathogenesis in viral encephalitis are still lacking. In this study, we established mouse models of viral encephalitis using Japanese encephalitis virus (JEV), herpes simplex virus-1 (HSV-1), and rabies virus (RABV) as representative pathogens. Our findings demonstrate that neurotropic virus infections elicit robust axonal degeneration, mitochondrial dysfunction, and profound neuropathological damage in cortical neurons via the activation of SARM1. In mouse models of viral encephalitis, deletion or inhibition of SARM1 effectively preserved axonal morphology and maintained mitochondrial homeostasis, while also attenuating the infiltration of CD45+ leukocytes in the cortex. Consequently, these interventions ameliorated neuropathological damage and enhanced survival outcomes in mice. Our findings suggest that SARM1-mediated axonal degeneration and brain inflammation exacerbate the pathological progression of viral encephalitis. Therapies targeting SARM1 emerge as viable and promising strategies for protecting neuronal function in the context of neurotropic viral infections.
Collapse
Affiliation(s)
- Sheng He
- Department of Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
- Yuebei People's Hospital, Affiliated to Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China
| | - Yanyan Zhu
- Department of Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
| | - Xinyue Wang
- Department of Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
| | - Gaofeng Zhang
- Department of Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou, 515041, China
| | - Xianzhu Xia
- Department of Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhenyou Jiang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Xiaoqian Gong
- Yuebei People's Hospital, Affiliated to Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China.
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China.
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China.
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China.
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Affiliated to Shantou University Medical College, Shaoguan, 512025, China.
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China.
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China.
- Yuebei People's Hospital, Affiliated to Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China.
| |
Collapse
|
3
|
Zhao W, Song KX, Ma BD, Liu YT, Sun GC, Chai Y. Effect of epothilone B on the expression of neuroproteins after anastomosis of the sciatic nerve transection in the rat. BMC Surg 2025; 25:152. [PMID: 40217190 PMCID: PMC11987426 DOI: 10.1186/s12893-025-02869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Peripheral nerve injury (PNI) is a common condition that leads to the partial loss of function in the sensory, motor, and autonomic nervous systems. The peripheral nervous system has an inherent capacity to regenerate after injury and re-innervate its target organs, but full functional recovery is rare. In recent years, there has been growing interest in identifying drugs that can promote axonal regeneration and outgrowth following PNI. Epothilone B (EpoB) is an FDA-approved antineoplastic agent that promotes tubulin polymerization and enhances the stability of microtubules. Recently, the regenerative effects of EpoB in the central nervous system have garnered attention, but its potential therapeutic effects on peripheral nerve regeneration remain underexplored. This study utilized a sciatic nerve transection and anastomosis model in rats to evaluate the effects of EpoB on neuroprotein expression following nerve injury. Behavioral analysis, Masson's trichrome staining, and immunofluorescence staining were conducted to assess the impact of EpoB on sciatic nerve regeneration. Over time, motor recovery and muscle reinnervation were observed, with Sciatic Functional Index (SFI) scores higher in the EpoB-treated group compared to the vehicle group. The expression of fibronectin (FN) was significantly lower in the EpoB group, while the expression of Tau, neurofilament-M (NF-M), and growth-associated protein-43 (GAP-43) was significantly higher. In conclusion, EpoB treatment significantly increases the expression of Tau, NF-M, and GAP-43, suggesting a positive effect on axonal regeneration and repair.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Hand (micro) Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Kun-Xiu Song
- Department of Hand (micro) Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Bing-Dong Ma
- Department of Hand (micro) Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yong-Tao Liu
- Department of Hand (micro) Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guang-Chao Sun
- Department of Foot and ankle Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yong Chai
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Egawa R, Yawo H, Kuba H. Activity-dependent refinement of axonal projections forms one-to-one connection pattern in the developing chick ciliary ganglion. Front Cell Neurosci 2025; 19:1560402. [PMID: 40271539 PMCID: PMC12014593 DOI: 10.3389/fncel.2025.1560402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Although it is well established that initially overproduced synaptic connections are extensively remodeled through activity-dependent competition for postsynaptic innervation, the mechanisms determining the final number of postsynaptic targets per axon remain unclear. Here, we investigated the morphology of individual axonal projections during development and the influence of neural activity in the chick ciliary ganglion (CG), a traditional model system for synapse maturation. By single-axon tracing combining Brainbow labeling and tissue clearing, we revealed that by embryonic day 14 (E14), hundreds of preganglionic axons each establish a one-to-one synaptic connection with single CG neurons via a calyx-type presynaptic terminal enveloping the soma of its postsynaptic target. This homogeneous connection pattern emerged through presynaptic terminal maturation from bouton-like to calyx-like morphology and concurrent axonal branch pruning starting around E10. The calyx maturation was retarded by the presynaptic expression of genetically encoded tools for silencing neuronal activity, enhanced tetanus neurotoxin light chain (eTeNT) or Kir2.1, demonstrating the activity-dependence of this morphological refinement. These findings suggest that some presynaptic mechanisms as well as synaptic competition would operate to restrict the number of postsynaptic targets innervated by each axon in the CG. Together with the easy accessibility to single-axon tracing, our results highlight the potential of the chick CG as a model for investigating the presynaptic factors underlying circuit remodeling.
Collapse
Affiliation(s)
- Ryo Egawa
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Hiroshi Kuba
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Xiang H. The interplay between α-synuclein aggregation and necroptosis in Parkinson's disease: a spatiotemporal perspective. Front Neurosci 2025; 19:1567445. [PMID: 40264913 PMCID: PMC12011736 DOI: 10.3389/fnins.2025.1567445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the death of dopaminergic neurons and the aggregation of alpha-synuclein (α-Syn). It presents with prominent motor symptoms, and by the time of diagnosis, a significant number of neurons have already been lost. Current medications can only alleviate symptoms but cannot halt disease progression. Studies have confirmed that both dopaminergic neuronal loss and α-Syn aggregation are associated with necroptosis mechanisms. Necroptosis, a regulated form of cell death, has been recognized as an underexplored hotspot in PD pathogenesis research. In this review, we propose a spatiotemporal model of PD progression, highlighting the interactions between α-Syn aggregation, mitochondrial dysfunction, oxidative stress, neuroinflammation and necroptosis. These processes not only drive motor symptoms but also contribute to early non-motor symptoms, offering insights into potential diagnostic markers. Finally, we touch upon the therapeutic potential of necroptosis inhibition in enhancing current PD treatments, such as L-Dopa. This review aims to provide a new perspective on the pathogenesis of PD and to identify avenues for the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Haoran Xiang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Neurology, Yichang Central People’s Hospital, Yichang, Hubei, China
| |
Collapse
|
6
|
Danos JA, Addemir M, McGettigan L, Summers DW. Nerve growth factor signaling tunes axon maintenance protein abundance and kinetics of Wallerian degeneration. Mol Biol Cell 2025; 36:ar46. [PMID: 39969989 PMCID: PMC12005098 DOI: 10.1091/mbc.e25-01-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential. Our study identifies surprising connections between NGF signaling and proteostasis of axon maintenance factors. NGF deprivation increases Nmnat2 and Stmn2 protein levels in axon segments with a corresponding delay in Wallerian degeneration. Conversely, acute NGF stimulation reduces local abundance of these axon maintenance factors and accelerates Wallerian degeneration. Pharmacological studies implicate phospholipase C as the key effector in tropomyosin-related kinase A (TrkA) activation, which drives degradation of palmitoylated Stmn2. While seemingly opposed to neuroprotective activities well-documented for NGF, downregulating Nmnat2 and Stmn2 favors axonal outgrowth over transient hypersusceptibility to Sarm1-dependent degeneration. This new facet of NGF biology has important implications for axonal remodeling during development and sustained integrity through adulthood.
Collapse
Affiliation(s)
- Joseph A. Danos
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Merve Addemir
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Lily McGettigan
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Daniel W. Summers
- Department of Biology, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
7
|
Kumari A, Rahaman A, Zeng XA, Baloch Z. Therapeutic potential and microRNA regulating properties of phytochemicals in Alzheimer's disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102439. [PMID: 40114707 PMCID: PMC11925107 DOI: 10.1016/j.omtn.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is characterized by the aggregation of Aβ (peptide) and neurofibrillary tangles along with inflammatory processes. Aging is a significant driver of these alterations, and dementia is a major cause of disability and mortality. Despite extensive clinical trials over the past two decades, no effective drug has been developed to improve AD symptoms or slow its progression, indicating the inefficiency of current treatment targets. In AD development, the molecular microenvironment plays a significant role. MicroRNAs (miRNAs) are a key component of this microenvironment, regulate post-transcriptional gene expression, and are expressed more abundantly in the brain than in other tissues. Several dysregulated miRNAs in AD have been linked to neuropathological changes, such as plaque and tangle accrual, as well as altered expression of notorious molecules. Preclinical studies have confirmed the efficacy of phytochemicals/food bioactive compounds (PCs/FBCs) in regulating miRNA expression, which makes them immensely beneficial for targeting miRNA-altered expression patterns in neuronal diseases. This review highlights the potential of miRNAs in driving AD pathology and its development. Furthermore, it discusses the therapeutic efficacy of PCs/FBCs and their miRNA-regulatory properties, especially focusing on antiinflammatory and antioxidant capacities for their development as effective AD agents.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Abdul Rahaman
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zulqarnain Baloch
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, Yunan, China
| |
Collapse
|
8
|
Antal BB, van Nieuwenhuizen H, Chesebro AG, Strey HH, Jones DT, Clarke K, Weistuch C, Ratai EM, Dill KA, Mujica-Parodi LR. Brain aging shows nonlinear transitions, suggesting a midlife "critical window" for metabolic intervention. Proc Natl Acad Sci U S A 2025; 122:e2416433122. [PMID: 40030017 PMCID: PMC11912423 DOI: 10.1073/pnas.2416433122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
Understanding the key drivers of brain aging is essential for effective prevention and treatment of neurodegenerative diseases. Here, we integrate human brain and physiological data to investigate underlying mechanisms. Functional MRI analyses across four large datasets (totaling 19,300 participants) show that brain networks not only destabilize throughout the lifetime but do so along a nonlinear trajectory, with consistent temporal "landmarks" of brain aging starting in midlife (40s). Comparison of metabolic, vascular, and inflammatory biomarkers implicate dysregulated glucose homeostasis as the driver mechanism for these transitions. Correlation between the brain's regionally heterogeneous patterns of aging and gene expression further supports these findings, selectively implicating GLUT4 (insulin-dependent glucose transporter) and APOE (lipid transport protein). Notably, MCT2 (a neuronal, but not glial, ketone transporter) emerges as a potential counteracting factor by facilitating neurons' energy uptake independently of insulin. Consistent with these results, an interventional study of 101 participants shows that ketones exhibit robust effects in restabilizing brain networks, maximized from ages 40 to 60, suggesting a midlife "critical window" for early metabolic intervention.
Collapse
Affiliation(s)
- Botond B. Antal
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Helena van Nieuwenhuizen
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Physics, State University of New York at Stony Brook, Stony Brook, NY
| | - Anthony G. Chesebro
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Helmut H. Strey
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
| | - Lilianne R. Mujica-Parodi
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Physics, State University of New York at Stony Brook, Stony Brook, NY
- Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
9
|
Wang JT, Toh B, An J, Komuro Y, Godoy MI, Putman J, Carmichael ST, Damoiseaux R, Hinman JD. Loss of Sarm1 Mitigates Axonal Degeneration and Promotes Neuronal Repair After Ischemic Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639171. [PMID: 40060510 PMCID: PMC11888178 DOI: 10.1101/2025.02.20.639171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Axonal degeneration is a core feature of ischemic brain injury that limits functional recovery (1). The pro-degenerative molecule Sarm1 is required for Wallerian axon degeneration after traumatic and chemotoxic nerve injuries (2), however it is unclear if a similar mechanism mediates axonal degradation after ischemic injury. Here we show that loss of Sarm1 results in profound attenuation of axonal degeneration after focal ischemia to the subcortical white matter. Moreover, absence of Sarm1 significantly promotes the survival of neurons remote from but connected to the infarct after ischemic injuries to the subcortical white matter as well as to the cortex. To further understand the mechanism of Sarm1-/- mediated neuronal protection, we performed differential gene expression analyses of wildtype and Sarm1-/- stroke-injured neurons and found that the loss of Sarm1 activates a pro-growth molecular program that promotes new axon and synapse formation after white matter ischemia. Using a functional genomics approach to recapitulate such a molecular program in Sarm1-/- neurons, we identify molecular compounds sufficient to enhance cortical neurite outgrowth in vitro, and all of which elicit a conserved epigenetic signature promoting axonogenesis. These results indicate that Sarm1 promotes axonal degeneration and concurrently inhibits an axonal reparative program encoded at the level of the epigenome that can be modulated pharmacologically. Our findings thus reveal a novel role for Sarm1 as a crucial regulator of both axonal degeneration and axonal remodeling after ischemic stroke.
Collapse
Affiliation(s)
- Jack T Wang
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA 94305
| | - Brian Toh
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Jennifer An
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Yutaro Komuro
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Marlesa I Godoy
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Jennifer Putman
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
10
|
Brüll M, Multrus S, Schäfer M, Celardo I, Karreman C, Leist M. Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD + metabolism. Cell Death Dis 2025; 16:24. [PMID: 39824831 PMCID: PMC11742042 DOI: 10.1038/s41419-024-07326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism. Axotomy lead to a loss of the NAD+ synthesis enzyme NMNAT2 within 2 h and a depletion of NAD+ within 4-6 h. This process appeared specific, as isolated neurites maintained ATP levels and a coupled mitochondrial respiration for at least 6 h. In the peripheral nervous system (PNS) many studies observed that NAD+ metabolism, in particular by the NADase SARM1, plays a major role in the ND occurring after axotomy. Since neither ferroptosis nor necroptosis, nor caspase-dependent apoptosis seemed to be involved in neurite loss, we investigated SARM1 as potential executioner (or controller). Knock-down or expression of a dominant-negative isoform of SARM1 indeed drastically delayed ND. Various modifications of NAD+ metabolism known to modulate SARM1 activity showed the corresponding effects on ND. Moreover, supplementation with NAD+ attenuated ND. As a third approach to investigate the role of altered NAD+ metabolism, we made use of the WLD(s) protein, which has been found in a mutant mouse to inhibit Wallerian degeneration of axons. This protein, which has a stable NMNAT activity, and thus can buffer the loss of NMNAT2, protected the neurites by stabilizing neurite NAD+ levels. Thus CNS-type ND was tightly linked to neurite metabolism in multiple experimental setups. Based on this knowledge, several new strategies for treating neurodegenerative diseases can be envisaged.
Collapse
Affiliation(s)
- Markus Brüll
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Selina Multrus
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Michael Schäfer
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Ivana Celardo
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Christiaan Karreman
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.
- CAAT-Europe, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
11
|
Cardoso FSDS, Maria GDS, Pestana FM, Cardoso R, Ramalho BDS, Heringer LDS, Taboada TB, Martinez AMB, de Almeida FM. Nerve repair with polylactic acid and inosine treatment enhance regeneration and improve functional recovery after sciatic nerve transection. Front Cell Neurosci 2025; 18:1525024. [PMID: 39835292 PMCID: PMC11743644 DOI: 10.3389/fncel.2024.1525024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Background Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair. Methods C57/Black6 mice were subjected to sciatic nerve transection, repair with PLA conduit, and intraperitoneal injection of saline or inosine 1 h after injury and daily for 1 week. To assess motor and sensory recovery, functional tests were performed before and weekly up to 8 weeks after injury. Following, to evaluate the promotion of regeneration and myelination, electroneuromyography, morphometric analysis and immunohistochemistry were then performed. Results Our results showed that the inosine group had a greater number of myelinated nerve fibers (1,293 ± 85.49 vs. 817 ± 89.2), an increase in neurofilament high chain (NFH) and myelin basic protein (MBP) immunolabeling and a greater number of fibers within the ideal g-ratio (453.8 ± 45.24 vs. 336.6 ± 37.01). In addition, the inosine group presented a greater adenosine A2 receptor (A2AR) immunolabeling area. This resulted in greater compound muscle action potential amplitude and nerve conduction velocity, leading to preservation of muscle and neuromuscular junction integrity, and consequently, the recovery of motor and sensory function. Conclusion Our findings suggest that inosine may enhance regeneration and improve both motor and sensory function recovery after nerve transection when repaired with a poly-lactic acid conduit. This advances the understanding of biomaterials and molecular treatments.
Collapse
Affiliation(s)
- Fellipe Soares dos Santos Cardoso
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Guilherme dos Santos Maria
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Fernanda Marques Pestana
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | | | - Bruna dos Santos Ramalho
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
- Faculdade Souza Marques, Rio de Janeiro, Brazil
| | - Luiza dos Santos Heringer
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Tiago Bastos Taboada
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
| | - Fernanda Martins de Almeida
- Laboratório de Neurodegeneração e Reparo – Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil
- Departamento de Histologia ICB/UFRJ, Instituto de Ciências Biomédicas, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Danos JA, Addemir M, McGettigan L, Summers DW. Nerve Growth Factor Signaling Tunes Axon Maintenance Protein Abundance and Kinetics of Wallerian Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630780. [PMID: 39803444 PMCID: PMC11722262 DOI: 10.1101/2024.12.31.630780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential. Our study identifies surprising connections between NGF signaling and proteostasis of axon maintenance factors. NGF deprivation increases Nmnat2 and Stmn2 protein levels in axon segments with a corresponding delay in Wallerian degeneration. Conversely, acute NGF stimulation reduces local abundance of these axon maintenance factors and accelerates Wallerian degeneration. Pharmacological studies implicate phospholipase C as the key effector in TrkA activation, which drives degradation of palmitoylated Stmn2. While seemingly opposed to neuroprotective activities well-documented for NGF, downregulating Nmnat2 and Stmn2 favors axonal outgrowth over transient hyper-susceptibility to Sarm1-dependent degeneration. This new facet of NGF biology has important implications for axonal remodeling during development and sustained integrity through adulthood.
Collapse
Affiliation(s)
- Joseph A Danos
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Merve Addemir
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Lily McGettigan
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
13
|
Pagan-Rivera LH, Ocasio-Rivera SE, Godoy-Vitorino F, Miranda JD. Spinal cord injury: pathophysiology, possible treatments and the role of the gut microbiota. Front Microbiol 2024; 15:1490855. [PMID: 39744391 PMCID: PMC11688470 DOI: 10.3389/fmicb.2024.1490855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Spinal cord injury (SCI) is a devastating pathological state causing motor, sensory, and autonomic dysfunction. To date, SCI remains without viable treatment for its patients. After the injury, molecular events centered at the lesion epicenter create a non-permissive environment for cell survival and regeneration. This newly hostile setting is characterized by necrosis, inflammation, demyelination, axotomy, apoptosis, and gliosis, among other events that limit locomotor recovery. This review provides an overview of the pathophysiology of SCI, highlighting the potential role of the gut microbiota in modulating the inflammatory response and influencing neurological recovery following trauma to the spinal cord. Emphasis on the bidirectional communication between the gut and central nervous system, known as the gut-brain axis is given. After trauma, the gut-brain/spinal cord axis promotes the production of pro-inflammatory metabolites that provide a non-permissive environment for cell survival and locomotor recovery. Therefore, any possible pharmacological treatment, including antibiotics and painkillers, must consider their effects on microbiome dysbiosis to promote cell survival, regeneration, and behavioral improvement. Overall, this review provides valuable insights into the pathophysiology of SCI and the evolving understanding of the role of the gut microbiota in SCI, with implications for future research and clinical practice.
Collapse
Affiliation(s)
- Luis H. Pagan-Rivera
- Physiology Department, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Samuel E. Ocasio-Rivera
- Physiology Department, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Filipa Godoy-Vitorino
- Microbiology and Medical Zoology Department, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Jorge D. Miranda
- Physiology Department, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
14
|
Friesen E, Gosal R, Herrera S, Mercredi M, Buist R, Matsuda K, Martin M. Comparisons of MR and EM inferred tissue microstructure properties using a human autopsy corpus callosum sample. Magn Reson Imaging 2024; 115:110255. [PMID: 39401603 DOI: 10.1016/j.mri.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Degeneration of white matter (WM) microstructure in the central nervous system is characteristic of many neurodegenerative conditions. Previous research indicates that axonal degeneration visible in ex vivo electron microscopy (EM) photomicrographs precede the onset of clinical symptoms. Measuring WM microstructural features, such as axon diameter and packing fraction, currently require these highly invasive methods of analysis and it is therefore of great importance to develop methods for in vivo measurements. Diffusion weighted Magnetic Resonance Imaging (MRI) is a non-invasive method which can be used in conjunction with temporal diffusion spectroscopy (TDS) and an oscillating gradient spin echo (OGSE) pulse sequence to probe micron-scale structures within neural tissue. The current experiment aims to compare axon diameter measurements, mean effective axon diameter (AxD¯), and packing fractions calculated from EM histopathological analysis and inferred values from MR images. Mathematical models of axon diameters used for analysis include the ActiveAx Frequency-Dependent Extra-Axonal Diffusion (AAD) model and the AxCaliber Frequency-Dependent Extra-Axonal Diffusion (ACD) model using ROI (Region of Interest) based analysis (RBA) and voxel-based analysis (VBA), respectively. Overall, it was observed that MRI inferred WM microstructural parameters overestimate those calculated from EM. This may be attributable to tissue shrinkage during EM dehydration, the sensitivity of MR pulse sequences to larger diameter axons, and/or inaccurate model assumptions. The results of the current study provide a means to characterize the precision and accuracy of RBA-ACD and VBA-AAD OGSE-TDS and highlight the need for further research investigating the relationship between ex vivo MRI and EM, with the goal of reaching in vivo MRI.
Collapse
Affiliation(s)
- Emma Friesen
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada.
| | - Rubeena Gosal
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada.
| | - Sheryl Herrera
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada
| | - Morgan Mercredi
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada
| | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Kant Matsuda
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Melanie Martin
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
15
|
Cardoso R, Cardoso FSDS, Ramalho BDS, Maria GDS, Cavalcanti RR, Taboada TB, de Almeida JS, Martinez AMB, de Almeida FM. Inosine Improves Functional Recovery and Cell Morphology Following Compressive Spinal Cord Injury in Mice. Neurotrauma Rep 2024; 5:957-968. [PMID: 39464528 PMCID: PMC11512092 DOI: 10.1089/neur.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Spinal cord injury (SCI) is one of the most serious conditions of the central nervous system, causing motor and sensory deficits that lead to a significant impairment in the quality of life. Previous studies have indicated that inosine can promote regeneration after SCI. Here we investigated the effects of inosine on the behavioral and morphological recovery after a compressive injury. Adult female C57BL/6 mice were subjected to laminectomy and spinal cord compression using a vascular clip. Inosine or saline injections were administered intraperitoneally, with the first dose performed 24 h after injury and daily for 7 days after injury. The mice were evaluated using Basso Mouse Scale (BMS), locomotor rating scale, and pinprick test for 8 weeks. At the end, the animals were anesthetized and euthanized, and the spinal cords were collected for morphological evaluation. Inosine-treated animals presented better results in the immunostaining for oligodendrocytes and in the number of myelinated fibers through semithin sections compared to saline-treated animals, showing that there was a greater preservation of the white matter. Analysis of the immunoreactivity of astrocytes and evaluation of the inflammatory profile with macrophage labeling revealed that the animals of the inosine group had a lower immunoreactivity when compared to control, which suggests a reduction of the glial scar and less inflammation, respectively, leading to a more favorable microenvironment for spinal cord regeneration. Indeed, inosine-treated animals scored higher on the BMS scale and presented better results on the pinprick test, indicating that the treatment contributed to motor and sensory recovery. After the animals were sacrificed, we obtained the electroneuromyography, where the inosine group showed a greater amplitude of the compound muscle action potential. These results indicate that inosine contributed to the regeneration process in the spinal cord of mice submitted to compressive injury and should be further investigated as a candidate for SCI therapy.
Collapse
Affiliation(s)
- Ricardo Cardoso
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Fellipe Soares dos Santos Cardoso
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Bruna dos Santos Ramalho
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Guilherme dos Santos Maria
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Roberta Ramos Cavalcanti
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Tiago Bastos Taboada
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Juliana Silva de Almeida
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Fernanda Martins de Almeida
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas—ICB/UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Thornburg-Suresh EJC, Summers DW. Microtubules, Membranes, and Movement: New Roles for Stathmin-2 in Axon Integrity. J Neurosci Res 2024; 102:e25382. [PMID: 39253877 PMCID: PMC11407747 DOI: 10.1002/jnr.25382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Neurons establish functional connections responsible for how we perceive and react to the world around us. Communication from a neuron to its target cell occurs through a long projection called an axon. Axon distances can exceed 1 m in length in humans and require a dynamic microtubule cytoskeleton for growth during development and maintenance in adulthood. Stathmins are microtubule-associated proteins that function as relays between kinase signaling and microtubule polymerization. In this review, we describe the prolific role of Stathmins in microtubule homeostasis with an emphasis on emerging roles for Stathmin-2 (Stmn2) in axon integrity and neurodegeneration. Stmn2 levels are altered in Amyotrophic Lateral Sclerosis and loss of Stmn2 provokes motor and sensory neuropathies. There is growing potential for employing Stmn2 as a disease biomarker or even a therapeutic target. Meeting this potential requires a mechanistic understanding of emerging complexity in Stmn2 function. In particular, Stmn2 palmitoylation has a surprising contribution to axon maintenance through undefined mechanisms linking membrane association, tubulin interaction, and axon transport. Exploring these connections will reveal new insight on neuronal cell biology and novel opportunities for disease intervention.
Collapse
Affiliation(s)
| | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Nitta Y, Osaka J, Maki R, Hakeda-Suzuki S, Suzuki E, Ueki S, Suzuki T, Sugie A. Drosophila model to clarify the pathological significance of OPA1 in autosomal dominant optic atrophy. eLife 2024; 12:RP87880. [PMID: 39177028 PMCID: PMC11343565 DOI: 10.7554/elife.87880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Autosomal dominant optic atrophy (DOA) is a progressive form of blindness caused by degeneration of retinal ganglion cells and their axons, mainly caused by mutations in the OPA1 mitochondrial dynamin like GTPase (OPA1) gene. OPA1 encodes a dynamin-like GTPase present in the mitochondrial inner membrane. When associated with OPA1 mutations, DOA can present not only ocular symptoms but also multi-organ symptoms (DOA plus). DOA plus often results from point mutations in the GTPase domain, which are assumed to have dominant-negative effects. However, the presence of mutations in the GTPase domain does not always result in DOA plus. Therefore, an experimental system to distinguish between DOA and DOA plus is needed. In this study, we found that loss-of-function mutations of the dOPA1 gene in Drosophila can imitate the pathology of optic nerve degeneration observed in DOA. We successfully rescued this degeneration by expressing the human OPA1 (hOPA1) gene, indicating that hOPA1 is functionally interchangeable with dOPA1 in the fly system. However, mutations previously identified did not ameliorate the dOPA1 deficiency phenotype. By expressing both WT and DOA plus mutant hOPA1 forms in the optic nerve of dOPA1 mutants, we observed that DOA plus mutations suppressed the rescue, facilitating the distinction between loss-of-function and dominant-negative mutations in hOPA1. This fly model aids in distinguishing DOA from DOA plus and guides initial hOPA1 mutation treatment strategies.
Collapse
Affiliation(s)
- Yohei Nitta
- Brain Research Institute, Niigata UniversityNiigataJapan
| | - Jiro Osaka
- Brain Research Institute, Niigata UniversityNiigataJapan
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Ryuto Maki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
- Research Initiatives and Promotion Organization, Yokohama National UniversityYokohamaJapan
| | - Emiko Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan UniversityHachiojiJapan
- Department of Gene Function and Phenomics, National Institute of GeneticsMishimaJapan
| | - Satoshi Ueki
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Atsushi Sugie
- Brain Research Institute, Niigata UniversityNiigataJapan
| |
Collapse
|
18
|
Pan X, Hu Y, Lei G, Wei Y, Li J, Luan T, Zhang Y, Chu Y, Feng Y, Zhan W, Zhao C, Meunier FA, Liu Y, Li Y, Wang T. Actomyosin-II protects axons from degeneration induced by mild mechanical stress. J Cell Biol 2024; 223:e202206046. [PMID: 38713825 PMCID: PMC11076810 DOI: 10.1083/jcb.202206046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/16/2023] [Accepted: 04/09/2024] [Indexed: 05/09/2024] Open
Abstract
Whether, to what extent, and how the axons in the central nervous system (CNS) can withstand sudden mechanical impacts remain unclear. By using a microfluidic device to apply controlled transverse mechanical stress to axons, we determined the stress levels that most axons can withstand and explored their instant responses at nanoscale resolution. We found mild stress triggers a highly reversible, rapid axon beading response, driven by actomyosin-II-dependent dynamic diameter modulations. This mechanism contributes to hindering the long-range spread of stress-induced Ca2+ elevations into non-stressed neuronal regions. Through pharmacological and molecular manipulations in vitro, we found that actomyosin-II inactivation diminishes the reversible beading process, fostering progressive Ca2+ spreading and thereby increasing acute axonal degeneration in stressed axons. Conversely, upregulating actomyosin-II activity prevents the progression of initial injury, protecting stressed axons from acute degeneration both in vitro and in vivo. Our study unveils the periodic actomyosin-II in axon shafts cortex as a novel protective mechanism, shielding neurons from detrimental effects caused by mechanical stress.
Collapse
Affiliation(s)
- Xiaorong Pan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yiqing Hu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gaowei Lei
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences China, Shanghai, China
| | - Yaxuan Wei
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences China, Shanghai, China
| | - Jie Li
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Tongshu Luan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunfan Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences China, Shanghai, China
| | - Yuanyuan Chu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu Feng
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenrong Zhan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chunxia Zhao
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Yifan Liu
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Yi Li
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences China, Shanghai, China
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
19
|
McLaughlin L, Zhang B, Sharma S, Knoten AL, Kaushal M, Purkerson JM, Huyck H, Pryhuber GS, Gaut JP, Jain S. Three Dimensional Multiscalar Neurovascular Nephron Connectivity Map of the Human Kidney Across the Lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605633. [PMID: 39211059 PMCID: PMC11361085 DOI: 10.1101/2024.07.29.605633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The human kidney is a vital organ with a remarkable ability to coordinate the activity of up to a million nephrons, its main functional tissue unit (FTU), and maintain homeostasis. We developed tissue processing and analytical methods to construct a 3D map of neurovascular nephron connectivity of the human kidney and glean insights into how this structural organization enables coordination of various functions of the nephron, such as glomerular filtration, solute and water absorption, secretion by the tubules, and regulation of blood flow and pressure by the juxtaglomerular apparatus, in addition to how these functions change across disease and lifespans. Using light sheet fluorescence microscopy (LSFM) and morphometric analysis we discovered changes in anatomical orientation of the vascular pole, glomerular density, volume, and innervation through postnatal development and ageing. The extensive nerve network exists from cortex FTUs to medullary loop of Henle, providing connectivity within segments of the same nephron, and between separate nephrons. The nerves organize glomeruli into discreet communities (in the same network of nerves). Adjacent glomerular communities are connected to intercommunal "mother glomeruli" by nerves, a pattern repeating throughout the cortex. These neuro-nephron networks are not developed in postnatal kidneys and are disrupted in diseased kidneys (diabetic or hydronephrosis). This structural organization likely poises the entire glomerular and juxtaglomerular FTUs to synchronize responses to perturbations in fluid homeostasis, utilizing mother glomeruli as network control centers.
Collapse
|
20
|
Zhou W, Rahman MSU, Sun C, Li S, Zhang N, Chen H, Han CC, Xu S, Liu Y. Perspectives on the Novel Multifunctional Nerve Guidance Conduits: From Specific Regenerative Procedures to Motor Function Rebuilding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307805. [PMID: 37750196 DOI: 10.1002/adma.202307805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Peripheral nerve injury potentially destroys the quality of life by inducing functional movement disorders and sensory capacity loss, which results in severe disability and substantial psychological, social, and financial burdens. Autologous nerve grafting has been commonly used as treatment in the clinic; however, its rare donor availability limits its application. A series of artificial nerve guidance conduits (NGCs) with advanced architectures are also proposed to promote injured peripheral nerve regeneration, which is a complicated process from axon sprouting to targeted muscle reinnervation. Therefore, exploring the interactions between sophisticated NGC complexes and versatile cells during each process including axon sprouting, Schwann cell dedifferentiation, nerve myelination, and muscle reinnervation is necessary. This review highlights the contribution of functional NGCs and the influence of microscale biomaterial architecture on biological processes of nerve repair. Progressive NGCs with chemical molecule induction, heterogenous topographical morphology, electroactive, anisotropic assembly microstructure, and self-powered electroactive and magnetic-sensitive NGCs are also collected, and they are expected to be pioneering features in future multifunctional and effective NGCs.
Collapse
Affiliation(s)
- Weixian Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nuozi Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Charles C Han
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Elmers J, Colzato LS, Ziemssen F, Ziemssen T, Beste C. Optical coherence tomography as a potential surrogate marker of dopaminergic modulation across the life span. Ageing Res Rev 2024; 96:102280. [PMID: 38518921 DOI: 10.1016/j.arr.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The retina has been considered a "window to the brain" and shares similar innervation by the dopaminergic system with the cortex in terms of an unequal distribution of D1 and D2 receptors. Here, we provide a comprehensive overview that Optical Coherence Tomography (OCT), a non-invasive imaging technique, which provides an "in vivo" representation of the retina, shows promise to be used as a surrogate marker of dopaminergic neuromodulation in cognition. Overall, most evidence supports reduced retinal thickness in individuals with dopaminergic dysregulation (e.g., patients with Parkinson's Disease, non-demented older adults) and with poor cognitive functioning. By using the theoretical framework of metacontrol, we derive hypotheses that retinal thinning associated to decreased dopamine (DA) levels affecting D1 families, might lead to a decrease in the signal-to-noise ratio (SNR) affecting cognitive persistence (depending on D1-modulated DA activity) but not cognitive flexibility (depending on D2-modulated DA activity). We argue that the use of OCT parameters might not only be an insightful for cognitive neuroscience research, but also a potentially effective tool for individualized medicine with a focus on cognition. As our society progressively ages in the forthcoming years and decades, the preservation of cognitive abilities and promoting healthy aging will hold of crucial significance. OCT has the potential to function as a swift, non-invasive, and economical method for promptly recognizing individuals with a heightened vulnerability to cognitive deterioration throughout all stages of life.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Focke Ziemssen
- Ophthalmological Clinic, University Clinic Leipzig, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
22
|
Berends M, Nienhuis HLA, Adams D, Karam C, Luigetti M, Polydefkis M, Reilly MM, Sekijima Y, Hazenberg BPC. Neurofilament Light Chains in Systemic Amyloidosis: A Systematic Review. Int J Mol Sci 2024; 25:3770. [PMID: 38612579 PMCID: PMC11011627 DOI: 10.3390/ijms25073770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Peripheral and autonomic neuropathy are common disease manifestations in systemic amyloidosis. The neurofilament light chain (NfL), a neuron-specific biomarker, is released into the blood and cerebrospinal fluid after neuronal damage. There is a need for an early and sensitive blood biomarker for polyneuropathy, and this systematic review provides an overview on the value of NfL in the early detection of neuropathy, central nervous system involvement, the monitoring of neuropathy progression, and treatment effects in systemic amyloidosis. A literature search in PubMed, Embase, and Web of Science was performed on 14 February 2024 for studies investigating NfL levels in patients with systemic amyloidosis and transthyretin gene-variant (TTRv) carriers. Only studies containing original data were included. Included were thirteen full-text articles and five abstracts describing 1604 participants: 298 controls and 1306 TTRv carriers or patients with or without polyneuropathy. Patients with polyneuropathy demonstrated higher NfL levels compared to healthy controls and asymptomatic carriers. Disease onset was marked by rising NfL levels. Following the initiation of transthyretin gene-silencer treatment, NfL levels decreased and remained stable over an extended period. NfL is not an outcome biomarker, but an early and sensitive disease-process biomarker for neuropathy in systemic amyloidosis. Therefore, NfL has the potential to be used for the early detection of neuropathy, monitoring treatment effects, and monitoring disease progression in patients with systemic amyloidosis.
Collapse
Affiliation(s)
- Milou Berends
- Department of Internal Medicine, Amyloidosis Center of Expertise, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (M.B.); (H.L.A.N.)
| | - Hans L. A. Nienhuis
- Department of Internal Medicine, Amyloidosis Center of Expertise, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (M.B.); (H.L.A.N.)
| | - David Adams
- Service de Neurologie, CHU Bicêtre, Assistance Publique—Hôpitaux de Paris, University Paris-Saclay, CERAMIC, Le Kremlin-Bicêtre, 94270 Paris, France;
| | - Chafic Karam
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marco Luigetti
- UOC Neurologia, Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michael Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Mary M. Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK;
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Bouke P. C. Hazenberg
- Department of Rheumatology & Clinical Immunology, Amyloidosis Center of Expertise, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
23
|
Yuan Y, Fang A, Wang H, Wang C, Sui B, Zhao J, Fu ZF, Zhou M, Zhao L. Lyssavirus M protein degrades neuronal microtubules by reprogramming mitochondrial metabolism. mBio 2024; 15:e0288023. [PMID: 38349129 PMCID: PMC10936203 DOI: 10.1128/mbio.02880-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Infection with neurotropic viruses may result in changes in host behavior, which are closely associated with degenerative changes in neurons. The lyssavirus genus comprises highly neurotropic viruses, including the rabies virus (RABV), which has been shown to induce degenerative changes in neurons, marked by the self-destruction of axons. The underlying mechanism by which the RABV degrades neuronal cytoskeletal proteins remains incomplete. In this study, we show that infection with RABV or overexpression of its M protein can disrupt mitochondrial metabolism by binding to Slc25a4. This leads to a reduction in NAD+ production and a subsequent influx of Ca2+ from the endoplasmic reticulum and mitochondria into the cytoplasm of neuronal cell lines, activating Ca2+-dependent proteinase calpains that degrade α-tubulin. We further screened the M proteins of different lyssaviruses and discovered that the M protein of the dog-derived RABV strain (DRV) does not degrade α-tubulin. Sequence analysis of the DRV M protein and that of the lab-attenuated RABV strain CVS revealed that the 57th amino acid is vital for M-induced microtubule degradation. We generated a recombinant RABV with a mutation at the 57th amino acid position in its M protein and showed that this mutation reduces α-tubulin degradation in vitro and axonal degeneration in vivo. This study elucidates the mechanism by which lyssavirus induces neuron degeneration.IMPORTANCEPrevious studies have suggested that RABV (rabies virus, the representative of lyssavirus) infection induces structural abnormalities in neurons. But there are few articles on the mechanism of lyssavirus' effect on neurons, and the mechanism of how RABV infection induces neurological dysfunction remains incomplete. The M protein of lyssavirus can downregulate cellular ATP levels by interacting with Slc25a4, and this decrease in ATP leads to a decrease in the level of NAD+ in the cytosol, which results in the release of Ca2+ from the intracellular calcium pool, the endoplasmic reticulum, and mitochondria. The presence of large amounts of Ca2+ in the cytoplasm activates Ca2+-dependent proteases and degrades microtubule proteins. The amino acid 57 of M protein is the key site determining its disruption of mitochondrial metabolism and subsequent neuron degeneration.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianqing Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
24
|
Hetzer SM, O'Connell C, Lallo V, Robson M, Evanson NK. Model matters: Differential outcomes in traumatic optic neuropathy pathophysiology between blunt and blast-wave mediated head injuries. Exp Neurol 2024; 372:114613. [PMID: 37995952 PMCID: PMC10870099 DOI: 10.1016/j.expneurol.2023.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Over 3 million people in the United States live with long-term disability because of a traumatic brain injury (TBI). The purpose of this study was to characterize and compare two different animal models of TBI (blunt head trauma and blast TBI) to determine common and divergent characteristics of these models. With recent literature reviews noting the prevalence of visual system injury in animal models of TBI, coupled with clinical estimates of 50-75% of all TBI cases, we decided to assess commonalities, if they existed, through visual system injury. A unilateral (left directed) blast and repeat blast model injury with coup-contra-coup injury patterns were compared to a midline blunt injury. Injuries were induced in adult male mice to observe and quantify visual deficits. Retinal ganglion cell loss and axonal degeneration in the optic tract, superior colliculus, and lateral geniculate nuclei were examined to trace injury outcomes throughout major vision-associated areas. Optokinetic response, immunohistochemistry, and western blots were analyzed. Where a single blunt injury produces significant visual deficits a single blast injury appears to have less severe visual consequences. Visual deficits after repeat blasts are similar to a single blast. Single blast injury induces contralateral damage to the right optic chiasm and tract whereas bilateral injury follows a single blunt TBI. Repeat blast injuries are required to see degeneration patterns in downstream regions similar to the damage seen in a single blunt injury. This finding is further supported by amyloid precursor protein (APP) staining in injured cohorts. Blunt injured groups present with staining 1.2 mm ahead of the optic nerve, indicating axonal breakage closer to the optic chiasm. In blast groups, APP was identifiable in a bilateral pattern only in the geniculate nucleus. Evidence for unilateral neuronal degeneration in brain tissue with bilateral axonal ruptures are pivotal discoveries in this model differentiation. Analysis of the two injury models suggests that there is a significant difference in the histological outcomes dependent on injury type, though visual system injury is likely present in more cases than are currently diagnosed clinically.
Collapse
Affiliation(s)
- S M Hetzer
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States of America.
| | - C O'Connell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, United States of America
| | - V Lallo
- College of Arts and Sciences, University of Cincinnati, United States of America
| | - M Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, United States of America
| | - N K Evanson
- Department of Pediatrics, University of Cincinnati College of Medicine, United States of America; Division of Pediatric Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, United States of America
| |
Collapse
|
25
|
Brüll M, Geese N, Celardo I, Laumann M, Leist M. Preparation of Viable Human Neurites for Neurobiological and Neurodegeneration Studies. Cells 2024; 13:242. [PMID: 38334634 PMCID: PMC10854604 DOI: 10.3390/cells13030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Few models allow the study of neurite damage in the human central nervous system. We used here dopaminergic LUHMES neurons to establish a culture system that allows for (i) the observation of highly enriched neurites, (ii) the preparation of the neurite fraction for biochemical studies, and (iii) the measurement of neurite markers and metabolites after axotomy. LUHMES-based spheroids, plated in culture dishes, extended neurites of several thousand µm length, while all somata remained aggregated. These cultures allowed an easy microscopic observation of live or fixed neurites. Neurite-only cultures (NOC) were produced by cutting out the still-aggregated somata. The potential application of such cultures was exemplified by determinations of their protein and RNA contents. For instance, the mitochondrial TOM20 protein was highly abundant, while nuclear histone H3 was absent. Similarly, mitochondrial-encoded RNAs were found at relatively high levels, while the mRNA for a histone or the neuronal nuclear marker NeuN (RBFOX3) were relatively depleted in NOC. Another potential use of NOC is the study of neurite degeneration. For this purpose, an algorithm to quantify neurite integrity was developed. Using this tool, we found that the addition of nicotinamide drastically reduced neurite degeneration. Also, the chelation of Ca2+ in NOC delayed the degeneration, while inhibitors of calpains had no effect. Thus, NOC proved to be suitable for biochemical analysis and for studying degeneration processes after a defined cut injury.
Collapse
Affiliation(s)
- Markus Brüll
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Nils Geese
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Michael Laumann
- Electron Microscopy Centre, University of Konstanz, 78457 Konstanz, Germany;
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
- Center for Alternatives to Animal Testing in Europe (CAAT-Europe), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
26
|
Fernández-Lázaro D, Sanz B, Seco-Calvo J. The Mechanisms of Regulated Cell Death: Structural and Functional Proteomic Pathways Induced or Inhibited by a Specific Protein-A Narrative Review. Proteomes 2024; 12:3. [PMID: 38250814 PMCID: PMC10801515 DOI: 10.3390/proteomes12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Billions of cells die in us every hour, and our tissues do not shrink because there is a natural regulation where Cell Death (CD) is balanced with cell division. The process in which cells eliminate themselves in a controlled manner is called Programmed Cell Death (PCD). The PCD plays an important role during embryonic development, in maintaining homeostasis of the body's tissues, and in the elimination of damaged cells, under a wide range of physiological and developmental stimuli. A multitude of protein mediators of PCD have been identified and signals have been found to utilize common pathways elucidating the proteins involved. This narrative review focuses on caspase-dependent and caspase-independent PCD pathways. Included are studies of caspase-dependent PCD such as Anoikis, Catastrophe Mitotic, Pyroptosis, Emperitosis, Parthanatos and Cornification, and Caspase-Independent PCD as Wallerian Degeneration, Ferroptosis, Paraptosis, Entosis, Methuosis, and Extracellular Trap Abnormal Condition (ETosis), as well as neutrophil extracellular trap abnormal condition (NETosis) and Eosinophil Extracellular Trap Abnormal Condition (EETosis). Understanding PCD from those reported in this review could shed substantial light on the processes of biological homeostasis. In addition, identifying specific proteins involved in these processes is mandatory to identify molecular biomarkers, as well as therapeutic targets. This knowledge could provide the ability to modulate the PCD response and could lead to new therapeutic interventions in a wide range of diseases.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
| | - Begoña Sanz
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jesús Seco-Calvo
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Institute of Biomedicine (IBIOMED), Universidad de León, 27071 León, Spain
| |
Collapse
|
27
|
Wang S, Zhang Y, Song M, Zhao X, Song F. Deregulated mitochondrial quality control, the heel of Achilles in elucidating the role of autophagy in SARM1-mediated axon degeneration. J Neurosci Res 2024; 102:e25292. [PMID: 38284842 DOI: 10.1002/jnr.25292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Autophagic dysfunction in neurodegenerative diseases is being extensively studied, yet the exact mechanism of macroautophagy/autophagy in axon degeneration is still elusive. A recent study by Kim et al. links autophagic stress to the sterile α and toll/interleukin 1 receptor motif containing protein 1 (SARM1)-dependent core axonal degeneration program, providing a new insight into the role of autophagy in axon degeneration. In the classical Wallerian axon degeneration model of axotomy, disruption of axonal transport destroys the coordinated activity of pro-survival and pro-degenerative factors in the axoplasm and activates the NADase activity of SARM1, thus triggering the axonal self-destruction program. However, the mechanism for SARM1 activation in the chronic neurodegenerative disorders is more complex. Mitochondrial defects and oxidative stress contribute to the activation of SARM1, while mitophagy can inhibit mitochondrial dysfunction and promote the clearance of SARM1 on mitochondria, thus protecting against neuronal degeneration. Therefore, in-depth elucidation of the underlying mechanisms of mitophagy during axonal degeneration can help develop promising strategies for the prevention and treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifan Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
28
|
Dogan EO, Bouley J, Zhong J, Harkins AL, Keeler AM, Bosco DA, Brown RH, Henninger N. Genetic ablation of Sarm1 attenuates expression and mislocalization of phosphorylated TDP-43 after mouse repetitive traumatic brain injury. Acta Neuropathol Commun 2023; 11:206. [PMID: 38124145 PMCID: PMC10731794 DOI: 10.1186/s40478-023-01709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Traumatic brain injury (TBI), particularly when moderate-to-severe and repetitive, is a strong environmental risk factor for several progressive neurodegenerative disorders. Mislocalization and deposition of transactive response DNA binding protein 43 (TDP-43) has been reported in both TBI and TBI-associated neurodegenerative diseases. It has been hypothesized that axonal pathology, an early event after TBI, may promote TDP-43 dysregulation and serve as a trigger for neurodegenerative processes. We sought to determine whether blocking the prodegenerative Sarm1 (sterile alpha and TIR motif containing 1) axon death pathway attenuates TDP-43 pathology after TBI. We subjected 111 male Sarm1 wild type, hemizygous, and knockout mice to moderate-to-severe repetitive TBI (rTBI) using a previously established injury paradigm. We conducted serial neurological assessments followed by histological analyses (NeuN, MBP, Iba-1, GFAP, pTDP-43, and AT8) at 1 month after rTBI. Genetic ablation of the Sarm1 gene attenuated the expression and mislocalization of phosphorylated TDP-43 (pTDP-43) and accumulation of pTau. In addition, Sarm1 knockout mice had significantly improved cortical neuronal and axonal integrity, functional deficits, and improved overall survival after rTBI. In contrast, removal of one Sarm1 allele delayed, but did not prevent, neurological deficits and neuroaxonal loss. Nevertheless, Sarm1 haploinsufficient mice showed significantly less microgliosis, pTDP-43 pathology, and pTau accumulation when compared to wild type mice. These data indicate that the Sarm1-mediated prodegenerative pathway contributes to pathogenesis in rTBI including the pathological accumulation of pTDP-43. This suggests that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after moderate-to-severe rTBI.
Collapse
Affiliation(s)
- Elif O Dogan
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ashley L Harkins
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
| |
Collapse
|
29
|
Ames S, Adams K, Geisen ME, Stirling DP. Ca 2+-induced myelin pathology precedes axonal spheroid formation and is mediated in part by store-operated Ca 2+ entry after spinal cord injury. Neural Regen Res 2023; 18:2720-2726. [PMID: 37449636 DOI: 10.4103/1673-5374.373656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The formation of axonal spheroid is a common feature following spinal cord injury. To further understand the source of Ca2+ that mediates axonal spheroid formation, we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca2+. We performed two-photon excitation imaging of spinal cords isolated from Thy1YFP+ transgenic mice and applied the lipophilic dye, Nile red, to record dynamic changes in dorsal column axons and their myelin sheaths respectively. We selectively released Ca2+ from internal stores using the Ca2+ ionophore ionomycin in the presence or absence of external Ca2+. We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 mM Ca2+ artificial cerebrospinal fluid. In contrast, removal of external Ca2+ significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment. Using mice that express a neuron-specific Ca2+ indicator in spinal cord axons, we confirmed that ionomycin induced significant increases in intra-axonal Ca2+, but not in the absence of external Ca2+. Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation. Pretreatment with YM58483 (500 nM), a well-established blocker of store-operated Ca2+ entry, significantly decreased myelin injury and axonal spheroid formation. Collectively, these data reveal that ionomycin-induced depletion of internal Ca2+ stores and subsequent external Ca2+ entry through store-operated Ca2+ entry contributes to pathological changes in myelin and axonal spheroid formation, providing new targets to protect central myelinated fibers.
Collapse
Affiliation(s)
- Spencer Ames
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Kia Adams
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Mariah E Geisen
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery; Anatomical Sciences and Neurobiology; Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
30
|
Vlegels N, Gonzalez-Ortiz F, Knuth NL, Khalifeh N, Gesierich B, Müller F, Müller P, Klein M, Dimitriadis K, Franzmeier N, Liebig T, Duering M, Reidler P, Dichgans M, Karikari TK, Blennow K, Tiedt S. Brain-derived Tau for Monitoring Brain Injury in Acute Ischemic Stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.18.23298728. [PMID: 38014197 PMCID: PMC10680879 DOI: 10.1101/2023.11.18.23298728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The evolution of infarcts varies widely among patients with acute ischemic stroke (IS) and influences treatment decisions. Neuroimaging is not applicable for frequent monitoring and there is no blood-based biomarker to track ongoing brain injury in acute IS. Here, we examined the utility of plasma brain-derived tau (BD-tau) as a biomarker for brain injury in acute IS. We conducted the prospective, observational Precision Medicine in Stroke [PROMISE] study with serial blood sampling upon hospital admission and at days 2, 3, and 7 in patients with acute ischemic stroke (IS) and for comparison, in patients with stroke mimics (SM). We determined the temporal course of plasma BD-tau, its relation to infarct size and admission imaging-based metrics of brain injury, and its value to predict functional outcome. Upon admission (median time-from-onset, 4.4h), BD-tau levels in IS patients correlated with ASPECTS (ρ=-0.21, P<.0001) and were predictive of final infarct volume (ρ=0.26, P<.0001). In contrast to SM patients, BD-tau levels in IS patients increased from admission (median, 2.9 pg/ml [IQR, 1.8-4.8]) to day 2 (median time-from-onset, 22.7h; median BD-tau, 5.0 pg/ml [IQR, 2.6-10.3]; P<.0001). The rate of change of BD-tau from admission to day 2 was significantly associated with collateral supply (R2=0.10, P<.0001) and infarct progression (ρ=0.58, P<.0001). At day 2, BD-tau was predictive of final infarct volume (ρ=0.59, P<.0001) and showed superior value for predicting the 90-day mRS score compared with final infarct volume. In conclusion, in 502 patients with acute IS, plasma BD-tau was associated with imaging-based metrics of brain injury upon admission, increased within the first 24 hours in correlation with infarct progression, and at 24 hours was superior to final infarct volume in predicting 90-day functional outcome. Further research is needed to determine whether BD-tau assessments can inform decision-making in stroke care.
Collapse
Affiliation(s)
- Naomi Vlegels
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicoló Luca Knuth
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
| | - Nada Khalifeh
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Franziska Müller
- Department of Radiology, LMU University Hospital, LMU Munich, Germany
| | - Philipp Müller
- Department of Radiology, LMU University Hospital, LMU Munich, Germany
| | - Matthias Klein
- Department of Neurology, LMU University Hospital, LMU Munich, Germany
| | | | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Liebig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Paul Reidler
- Department of Radiology, LMU University Hospital, LMU Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- German Centre for Cardiovascular Research (DZHK, Munich), Munich, Germany
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
| |
Collapse
|
31
|
Khalaji A, Kolahi S, Ghadakchi L, Jafarpour M. Axonal sensory-motor polyneuropathy in ankylosing spondylitis: A case report. Clin Case Rep 2023; 11:e8038. [PMID: 37822484 PMCID: PMC10562650 DOI: 10.1002/ccr3.8038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Key Clinical Message In ankylosing spondylitis cases, axonal-type sensory-motor polyneuropathy is a rare manifestation and should be considered an underlying etiology in patients with unexplained neuropathy. Abstract This case report discusses a 45-year-old male diagnosed with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial skeleton and peripheral joints. The patient presented with polyneuropathy, characterized by tingling and numbness in the upper and lower limbs, which is an uncommon manifestation of AS. After undergoing various tests, including CT scans and EMG-NCV, no secondary cause for the neuropathy was identified; AS was considered the etiology of the patient's axonal-type sensory-motor polyneuropathy.
Collapse
Affiliation(s)
- Amirreza Khalaji
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Susan Kolahi
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Leyla Ghadakchi
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mehdi Jafarpour
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
32
|
Pacifico P, Coy-Dibley JS, Miller RJ, Menichella DM. Peripheral mechanisms of peripheral neuropathic pain. Front Mol Neurosci 2023; 16:1252442. [PMID: 37781093 PMCID: PMC10537945 DOI: 10.3389/fnmol.2023.1252442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Peripheral neuropathic pain (PNP), neuropathic pain that arises from a damage or disease affecting the peripheral nervous system, is associated with an extremely large disease burden, and there is an increasing and urgent need for new therapies for treating this disorder. In this review we have highlighted therapeutic targets that may be translated into disease modifying therapies for PNP associated with peripheral neuropathy. We have also discussed how genetic studies and novel technologies, such as optogenetics, chemogenetics and single-cell RNA-sequencing, have been increasingly successful in revealing novel mechanisms underlying PNP. Additionally, consideration of the role of non-neuronal cells and communication between the skin and sensory afferents is presented to highlight the potential use of drug treatment that could be applied topically, bypassing drug side effects. We conclude by discussing the current difficulties to the development of effective new therapies and, most importantly, how we might improve the translation of targets for peripheral neuropathic pain identified from studies in animal models to the clinic.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James S. Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Richard J. Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela M. Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
33
|
Metwally E, Al-Abbadi HA, Hussain T, Murtaza G, Abdellatif AM, Ahmed MF. Calpain signaling: from biology to therapeutic opportunities in neurodegenerative disorders. Front Vet Sci 2023; 10:1235163. [PMID: 37732142 PMCID: PMC10507866 DOI: 10.3389/fvets.2023.1235163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Neurodegenerative disorders represent a major and growing healthcare challenge globally. Among the numerous molecular pathways implicated in their pathogenesis, calpain signaling has emerged as a crucial player in neuronal dysfunction and cell death. Calpain is a family of calcium-dependent cysteine proteases that is involved in many biological processes, such as signal transduction, cytoskeleton remodeling, and protein turnover. Dysregulation of calpain activation and activity has been associated with several neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Understanding the intricate structure of calpains is crucial for unraveling their roles in cellular physiology and their implications in pathology. In addition, the identification of diverse abnormalities in both humans and other animal models with deficiencies in calpain highlights the significant progress made in understanding calpain biology. In this comprehensive review, we delve into the recent roles attributed to calpains and provide an overview of the mechanisms that govern their activity during the progression of neurodegenerative diseases. The possibility of utilizing calpain inhibition as a potential therapeutic approach for treating neuronal dysfunctions in neurodegenerative disorders would be an area of interest in future calpain research.
Collapse
Affiliation(s)
- Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatim A. Al-Abbadi
- Faculty of Medicine, University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Ahmed M. Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud F. Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
34
|
Kim JM, Choi JS, Jung J, Yeo SG, Kim SH. Inhibitory effect of parthenolide on peripheral nerve degeneration. Anat Sci Int 2023; 98:529-539. [PMID: 37024641 DOI: 10.1007/s12565-023-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
Traumatic axonal damage disrupts connections between neurons, leading to the loss of motor and sensory functions. Although damaged peripheral nerves can regenerate, recovery depends on the variety and severity of nerve damage. Thus, many phytochemicals have been studied for their ability to reduce peripheral nerve degeneration, and among them, Parthenolide (PTL), which is extracted from Feverfew has effects against production of free radicals, inflammation, and apoptosis. Thus, we conducted a study to investigate whether PTL has an inhibitory effect on peripheral nerve degeneration during peripheral nerve damage. To verify the effect of PTL on peripheral nerve degeneration process, a morphological comparison of peripheral nerves with and without PTL was performed. PTL significantly reduced the quantity of fragmented ovoid formations at 3DIV (days in vitro). Immunostaining for MBP revealed that the ratio of intact myelin sheaths increased significantly in sciatic nerve with PTL compared with absence of PTL at 3DIV. Furthermore, nerve fibers in the presence of PTL maintained the continuity of Neurofilament (NF) compared to those without at 3DIV. Immunostaining for LAMP1 and p75 NTR showed that the expression of LAMP1 and p75 NTR decreased in the nerve after PTL addition at 3DIV. Lastly, immunostaining for anti-Ki67 revealed that PTL inhibited Ki67 expression at 3DIV compared to without PTL. These results confirm that PTL inhibits peripheral nerve degenerative processes. PTL may be a good applicant to inhibit peripheral nerve degeneration. Our study examined the effect of Parthenolide in preventing degeneration of peripheral nerves by inhibiting the breakdown of peripheral axons and myelin, also inhibiting Schwann cell trans-dedifferentiation and proliferation.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, 02447, Korea
| | - Jae Sun Choi
- Clinical Research Institute, Kyung Hee Medical Center, Seou, 02447, Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicines, Kyung Hee University, Seoul, 02447, Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, 02447, Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, 02447, Korea.
- Department of Otohinolaryngology - H & N Surgery, School of Medicine, KyungHee University, #1 Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-702, Korea.
| |
Collapse
|
35
|
Wang S, Zhao H, Lin S, Lv Y, Lin Y, Liu Y, Peng R, Jin H. New therapeutic directions in type II diabetes and its complications: mitochondrial dynamics. Front Endocrinol (Lausanne) 2023; 14:1230168. [PMID: 37670891 PMCID: PMC10475949 DOI: 10.3389/fendo.2023.1230168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
As important organelles of energetic and metabolism, changes in the dynamic state of mitochondria affect the homeostasis of cellular metabolism. Mitochondrial dynamics include mitochondrial fusion and mitochondrial fission. The former is coordinated by mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and optic atrophy 1 (Opa1), and the latter is mediated by dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1) and mitochondrial fission factor (MFF). Mitochondrial fusion and fission are generally in dynamic balance and this balance is important to preserve the proper mitochondrial morphology, function and distribution. Diabetic conditions lead to disturbances in mitochondrial dynamics, which in return causes a series of abnormalities in metabolism, including decreased bioenergy production, excessive production of reactive oxygen species (ROS), defective mitophagy and apoptosis, which are ultimately closely linked to multiple chronic complications of diabetes. Multiple researches have shown that the incidence of diabetic complications is connected with increased mitochondrial fission, for example, there is an excessive mitochondrial fission and impaired mitochondrial fusion in diabetic cardiomyocytes, and that the development of cardiac dysfunction induced by diabetes can be attenuated by inhibiting mitochondrial fission. Therefore, targeting the restoration of mitochondrial dynamics would be a promising therapeutic target within type II diabetes (T2D) and its complications. The molecular approaches to mitochondrial dynamics, their impairment in the context of T2D and its complications, and pharmacological approaches targeting mitochondrial dynamics are discussed in this review and promise benefits for the therapy of T2D and its comorbidities.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Suxian Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yang Lv
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| |
Collapse
|
36
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
37
|
Guss EJ, Akbergenova Y, Cunningham KL, Littleton JT. Loss of the extracellular matrix protein Perlecan disrupts axonal and synaptic stability during Drosophila development. eLife 2023; 12:RP88273. [PMID: 37368474 PMCID: PMC10328508 DOI: 10.7554/elife.88273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) form essential components of the extracellular matrix (ECM) and basement membrane (BM) and have both structural and signaling roles. Perlecan is a secreted ECM-localized HSPG that contributes to tissue integrity and cell-cell communication. Although a core component of the ECM, the role of Perlecan in neuronal structure and function is less understood. Here, we identify a role for Drosophila Perlecan in the maintenance of larval motoneuron axonal and synaptic stability. Loss of Perlecan causes alterations in the axonal cytoskeleton, followed by axonal breakage and synaptic retraction of neuromuscular junctions. These phenotypes are not prevented by blocking Wallerian degeneration and are independent of Perlecan's role in Wingless signaling. Expression of Perlecan solely in motoneurons cannot rescue synaptic retraction phenotypes. Similarly, removing Perlecan specifically from neurons, glia, or muscle does not cause synaptic retraction, indicating the protein is secreted from multiple cell types and functions non-cell autonomously. Within the peripheral nervous system, Perlecan predominantly localizes to the neural lamella, a specialized ECM surrounding nerve bundles. Indeed, the neural lamella is disrupted in the absence of Perlecan, with axons occasionally exiting their usual boundary in the nerve bundle. In addition, entire nerve bundles degenerate in a temporally coordinated manner across individual hemi-segments throughout larval development. These observations indicate disruption of neural lamella ECM function triggers axonal destabilization and synaptic retraction of motoneurons, revealing a role for Perlecan in axonal and synaptic integrity during nervous system development.
Collapse
Affiliation(s)
- Ellen J Guss
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
38
|
Yang Y, Shan S, Huang Z, Wang S, Liu Z, Yong H, Liu Z, Zhang C, Song F. Increased IP3R-3 degradation induced by acrylamide promoted Ca 2+-dependent calpain activation and axon damage in rats. Toxicol Lett 2023:S0378-4274(23)00203-5. [PMID: 37353096 DOI: 10.1016/j.toxlet.2023.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/23/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Occupational and environmental exposure to acrylamide (ACR) can cause selective peripheral and central nerve fiber degeneration. IP3R-3 is an important transmembrane Ca2+ channel on the endoplasmic reticulum (ER), previous studies have found that ACR could induce Ca2+-dependent calpain activation and axon injury, but the exact role of IP3R-3 in ACR neuropathy is still unclear. Here we show that ACR exposure (40mg/kg) markedly increased the ubiquitination of IP3R-3 in rat spinal cords, and promoted the degradation of IP3R-3 through the ubiquitin-proteasome pathway. Furthermore, the normal structure of ER, especially the mitochondrial associated membranes (MAMs) component, was significantly impaired in ACR neuropathy, and the ER stress pathway was activated, which indicated that the aberrant increase of cytoplasmic Ca2+ could be attributed the destruction of IP3R-3. Further investigation demonstrated that the proteasome inhibitor MG-132 effectively rescued the IP3R-3 loss, attenuated the intracellular Ca2+ increase, and reduced the axon loss of Neuron 2a (N2a) cells following ACR exposure. Moreover, the calpain inhibitor ALLN also reduced the loss of IP3R-3 and axon injury in N2a cells, but did not alleviate the Ca2+ increase in cytosol, supporting that the abnormal ubiquitination of IP3R-3 was the upstream of the cellular Ca2+ rise and axon damage in ACR neuropathy. Taken together, our results suggested that the aberrant IP3R-3 degradation played an important role in the disturbance of Ca2+ homeostasis and the downstream axon loss in ACR neuropathy, thus providing a potential therapeutic target for ACR neurotoxicity.
Collapse
Affiliation(s)
- Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Yong
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, 266000, China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
39
|
Hsu YT, Chen LH, Liu YH, Chu SK, Chen TY, Tsai KJ, Shen MR, Liu W. Electrical Sympathetic Neuromodulation Protects Bone Marrow Niche and Drives Hematopoietic Regeneration during Chemotherapy. SMALL METHODS 2023; 7:e2201300. [PMID: 36843214 DOI: 10.1002/smtd.202201300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Indexed: 06/09/2023]
Abstract
The sympathetic nervous system (SNS) of the bone marrow regulates the regeneration and mobilization of hematopoietic stem cells. Chemotherapy can damage bone marrow SNS, which impairs hematopoietic regeneration and aggravates hematologic toxicities. This leads to long-term bone marrow niche damage and increases mortality in patients undergoing chemotherapy. Electrical neuromodulation has been used to improve functional recovery after peripheral nerve injury. This study demonstrates that electrical sympathetic neuromodulation (ESN) of bone marrow can protect the bone marrow niche from chemotherapy-induced injury. Using carboplatin-treated rats, the SNS via the sciatic nerve innervating the femoral marrow with the effective protocol for bone marrow sympathetic activation is electrically stimulated. ESN can mediate several hematopoietic stem cells maintenance factors and promote hematopoietic regeneration after chemotherapy. It also activates adrenergic signals and reduces the release of pro-inflammatory cytokines, particularly interleukin-1 β, which contribute to chemotherapy-related nerve injury. Consequently, the severity of chemotherapy-related leukopenia, thrombocytopenia, and mortality can be reduced by ESN. As a result, in contrast to current drug-based treatment, such as granulocyte colony-stimulating factor, ESN can be a disruptive adjuvant treatment by protecting and modulating bone marrow function to reduce hematologic toxicity during chemotherapy.
Collapse
Affiliation(s)
- Ya-Ting Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Ya-Hui Liu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Shih-Kai Chu
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine National Cheng Kung University, Tainan, 704302, Taiwan
| | - Meng-Ru Shen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- Brain Research Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
40
|
Zeng X, Bian W, Liu Z, Li J, Ren S, Zhang J, Zhang H, Tegeleqi B, He G, Guan M, Gao Z, Huang C, Liu J. Muscle-derived stem cell exosomes with overexpressed miR-214 promote the regeneration and repair of rat sciatic nerve after crush injury to activate the JAK2/STAT3 pathway by targeting PTEN. Front Mol Neurosci 2023; 16:1146329. [PMID: 37305554 PMCID: PMC10250677 DOI: 10.3389/fnmol.2023.1146329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction This study aimed to investigate the effect of muscle-derived stem cell (MDSC) exosomes with overexpressed miR-214 on the regeneration and repair of rat sciatic nerve after crush injury and its molecular mechanism. Methods First, primary MDSCs, Schwann cells (SCs) and dorsal root ganglion (DRG) neurons were isolated and cultured, and the characteristics of MDSCs-derived exosomes were identified by molecular biology and immunohistochemistry. NC mimics and miR-214 mimics were transfected to obtain exo-NC and exo-miR-214. An in vitro co-culture system was established to determine the effect of exo-miR-214 on nerve regeneration. The restoration of sciatic nerve function of rats by exo-miR-214 was evaluated by walking track analysis. Immunofluorescence for NF and S100 was used to detect the regeneration of axon and myelin sheath in injured nerve. The Starbase database was used to analyze the downstream target genes of miR-214. QRT-PCR and dual luciferase reporter assays were used to validate the miR-214 and PTEN interaction relationship. And the expression of the JAK2/STAT3 pathway-related proteins in sciatic nerve tissues were detected by western blot. Results The above experiments showed that MDSCs-derived exosomes with overexpressed miR-214 was found to promote the proliferation and migration of SCs, increase the expression of neurotrophic factors, promote axon extension of DRG neurons and positively affect the recovery of nerve structure and function. In addition, PTEN was a target gene of miR-214. Exo-miR-214 can significantly inhibit the expression level of PTEN, increase the protein expression levels of p-JAK2 and p-STAT3 and the ratio of p-JAK2/JAK2 and p-STAT3/STAT3, also MDSCs-derived exosomes with overexpressed miR-214 can reduce the occurrence of denervated muscle atrophy. Conclusion In summary, the MDSCs-derived exosomes with overexpressed miR-214 is involved in peripheral nerve regeneration and repair in rats after sciatic nerve crush injury to activate the JAK2/ STAT3 pathway by targeting PTEN.
Collapse
|
41
|
Adams AA, Li Y, Kim HA, Pfister BJ. Dorsal root ganglion neurons recapitulate the traumatic axonal injury of CNS neurons in response to a rapid stretch in vitro. Front Cell Neurosci 2023; 17:1111403. [PMID: 37066078 PMCID: PMC10090399 DOI: 10.3389/fncel.2023.1111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: In vitro models of traumatic brain injury (TBI) commonly use neurons isolated from the central nervous system. Limitations with primary cortical cultures, however, can pose challenges to replicating some aspects of neuronal injury associated with closed head TBI. The known mechanisms of axonal degeneration from mechanical injury in TBI are in many ways similar to degenerative disease, ischemia, and spinal cord injury. It is therefore possible that the mechanisms that result in axonal degeneration in isolated cortical axons after in vitro stretch injury are shared with injured axons from different neuronal types. Dorsal root ganglia neurons (DRGN) are another neuronal source that may overcome some current limitations including remaining healthy in culture for long periods of time, ability to be isolated from adult sources, and myelinated in vitro. Methods: The current study sought to characterize the differential responses between cortical and DRGN axons to mechanical stretch injury associated with TBI. Using an in vitro model of traumatic axonal stretch injury, cortical and DRGN neurons were injured at a moderate (40% strain) and severe stretch (60% strain) and acute alterations in axonal morphology and calcium homeostasis were measured. Results: DRGN and cortical axons immediately form undulations in response to severe injury, experience similar elongation and recovery within 20 min after the initial injury, and had a similar pattern of degeneration over the first 24 h after injury. Additionally, both types of axons experienced comparable degrees of calcium influx after both moderate and severe injury that was prevented through pre-treatment with tetrodotoxin in cortical neurons and lidocaine in DRGNs. Similar to cortical axons, stretch injury also causes calcium activated proteolysis of sodium channel in DRGN axons that is prevented by treatment with lidocaine or protease inhibitors. Discussion: These findings suggest that DRGN axons share the early response of cortical neurons to a rapid stretch injury and the associated secondary injury mechanisms. The utility of a DRGN in vitro TBI model may allow future studies to explore TBI injury progression in myelinated and adult neurons.
Collapse
Affiliation(s)
- Alexandra A. Adams
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, United States
| | - Ying Li
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Haesun A. Kim
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, United States
| | - Bryan J. Pfister
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, United States
| |
Collapse
|
42
|
Takenaka T, Ohnishi Y, Yamamoto M, Setoyama D, Kishima H. Glycolytic System in Axons Supplement Decreased ATP Levels after Axotomy of the Peripheral Nerve. eNeuro 2023; 10:ENEURO.0353-22.2023. [PMID: 36894321 PMCID: PMC10035771 DOI: 10.1523/eneuro.0353-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Wallerian degeneration (WD) occurs in the early stages of numerous neurologic disorders, and clarifying WD pathology is crucial for the advancement of neurologic therapies. ATP is acknowledged as one of the key pathologic substances in WD. The ATP-related pathologic pathways that regulate WD have been defined. The elevation of ATP levels in axon contributes to delay WD and protects axons. However, ATP is necessary for the active processes to proceed WD, given that WD is stringently managed by auto-destruction programs. But little is known about the bioenergetics during WD. In this study, we made sciatic nerve transection models for GO-ATeam2 knock-in rats and mice. We presented the spatiotemporal ATP distribution in the injured axons with in vivo ATP imaging systems, and investigated the metabolic source of ATP in the distal nerve stump. A gradual decrease in ATP levels was observed before the progression of WD. In addition, the glycolytic system and monocarboxylate transporters (MCTs) were activated in Schwann cells following axotomy. Interestingly, in axons, we found the activation of glycolytic system and the inactivation of the tricarboxylic acid (TCA) cycle. Glycolytic inhibitors, 2-deoxyglucose (2-DG) and MCT inhibitors, a-cyano-4-hydroxycinnamic acid (4-CIN) decreased ATP and enhanced WD progression, whereas mitochondrial pyruvate carrier (MPC) inhibitors (MSDC-0160) did not change. Finally, ethyl pyruvate (EP) increased ATP levels and delayed WD. Together, our findings suggest that glycolytic system, both in Schwann cells and axons, is the main source of maintaining ATP levels in the distal nerve stump.
Collapse
Affiliation(s)
- Tomofumi Takenaka
- Department of neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yuichiro Ohnishi
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
- Department of Neurosurgery, Osaka Gyoumeikan Hospital, Osaka, 554-0012, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Haruhiko Kishima
- Department of neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
43
|
Saha D, Vishwakarma S, Gupta RK, Pant A, Dhyani V, Sharma S, Majumdar S, Kaur I, Giri L. Non-prophylactic resveratrol-mediated protection of neurite integrity under chronic hypoxia is associated with reduction of Cav1.2 channel expression and calcium overloading. Neurochem Int 2023; 164:105466. [PMID: 36587745 DOI: 10.1016/j.neuint.2022.105466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
Cellular hypoxia is a major cause of oxidative stress, culminating in neuronal damage in neurodegenerative diseases. Numerous ex vivo studies have implicated that hypoxia episodes leading to disruption of Ca2+ homeostasis and redox status contribute to the progression of various neuropathologies and cell death. Isolation and maintenance of primary cell culture being cost-intensive, the details of the time course relationship between Ca2+ overload, L-type Ca2+ channel function, and neurite retraction under chronic and long-term hypoxia remain undefined. In order to explore the effect of oxidative stress and Ca2+ overload on neurite length, first, we developed a 5-day-long neurite outgrowth model using N2a cell line. Second, we propose a chronic hypoxia model to investigate the modulation of the L-type Ca2+ channel (Cav1.2) and oxidative resistance gene (OXR1) expression level during the process of neurite retraction and neuronal damage over 32 h. Thirdly, we developed a framework for quantitative analysis of cytosolic Ca2+, superoxide formation, neurite length, and constriction formation in individual cells using live imaging that provides an understanding of molecular targets. Our findings suggest that an increase in cytosolic Ca2+ is a feature of an early phase of hypoxic stress. Further, we demonstrate that augmentation in the L-type channel leads to amplification in Ca2+ overload, ROS accumulation, and a reduction in neurite length during the late phase of hypoxic stress. Next, we demonstrated that non-prophylactic treatment of resveratrol leads to the reduction of calcium overloading under chronic hypoxia via lowering of L-type channel expression. Finally, we demonstrate that resveratrol-mediated reduction of Cav1.2 channel and STAT3 expression are associated with retention of neurite integrity. The proposed in vitro model assumes significance in the context of drug designing and testing that demands monitoring of neurite length and constriction formations by imaging before animal testing.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sushma Vishwakarma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Rishikesh Kumar Gupta
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Avnika Pant
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Vaibhav Dhyani
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India; Optical Science Centre, Faculty of Science Engineering and Technology, Swinburne University of Technology, Melbourne, Australia
| | - Sarmeela Sharma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
44
|
Lin NH, Goh A, Lin SH, Chuang KA, Chang CH, Li MH, Lu CH, Chen WY, Wei PH, Pan IH, Perng MD, Wen SF. Neuroprotective Effects of a Multi-Herbal Extract on Axonal and Synaptic Disruption in Vitro and Cognitive Impairment in Vivo. J Alzheimers Dis Rep 2023; 7:51-76. [PMID: 36777330 PMCID: PMC9912829 DOI: 10.3233/adr-220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Background Alzheimer's disease (AD) is a multifactorial disorder characterized by cognitive decline. Current available therapeutics for AD have limited clinical benefit. Therefore, preventive therapies for interrupting the development of AD are critically needed. Molecules targeting multifunction to interact with various pathlogical components have been considered to improve the therapeutic efficiency of AD. In particular, herbal medicines with multiplicity of actions produce cognitive benefits on AD. Bugu-M is a multi-herbal extract composed of Ganoderma lucidum (Antler form), Nelumbo nucifera Gaertn., Ziziphus jujuba Mill., and Dimocarpus longan, with the ability of its various components to confer resilience to cognitive deficits. Objective To evaluate the potential of Bugu-M on amyloid-β (Aβ) toxicity and its in vitro mechanisms and on in vivo cognitive function. Methods We illustrated the effect of Bugu-M on Aβ25-35-evoked toxicity as well as its possible mechanisms to diminish the pathogenesis of AD in rat cortical neurons. For cognitive function studies, 2-month-old female 3×Tg-AD mice were administered 400 mg/kg Bugu-M for 30 days. Behavioral tests were performed to assess the efficacy of Bugu-M on cognitive impairment. Results In primary cortical neuronal cultures, Bugu-M mitigated Aβ-evoked toxicity by reducing cytoskeletal aberrations and axonal disruption, restoring presynaptic and postsynaptic protein expression, suppressing mitochondrial damage and apoptotic signaling, and reserving neurogenic and neurotrophic factors. Importantly, 30-day administration of Bugu-M effectively prevented development of cognitive impairment in 3-month-old female 3×Tg-AD mice. Conclusion Bugu-M might be beneficial in delaying the progression of AD, and thus warrants consideration for its preventive potential for AD.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Angela Goh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shyh-Horng Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kai-An Chuang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Han Li
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chu-Hsun Lu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Yin Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Pei-Hsuan Wei
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - I-Hong Pan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,
School of Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| | - Shu-Fang Wen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| |
Collapse
|
45
|
Herwerth M, Wyss M. Axon degeneration: new actor in an old play. Neural Regen Res 2023; 18:547-548. [DOI: 10.4103/1673-5374.350200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Wakhloo D, Oberhauser J, Madira A, Mahajani S. From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer's and Parkinson's diseases. Neural Regen Res 2022; 17:2606-2614. [PMID: 35662189 PMCID: PMC9165389 DOI: 10.4103/1673-5374.336138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Two of the most common neurodegenerative disorders - Alzheimer's and Parkinson's diseases - are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation. The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer's disease pathology. The major hallmark of Parkinson's disease is the loss of dopaminergic neurons in the substantia nigra pars compacta, following the formation of Lewy bodies, which consists primarily of alpha-synuclein aggregates. However, the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood. Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders. Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients. While some publications provide significant findings related to axonal regeneration in Alzheimer's and Parkinson's diseases, they also highlight the limitations and obstacles to the development of neuroregenerative therapies. In this review, we summarize in vitro and in vivo findings related to neurogenesis, neuroregeneration and neurodegeneration in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Debia Wakhloo
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jane Oberhauser
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Angela Madira
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sameehan Mahajani
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
47
|
Costamagna D, Casters V, Beltrà M, Sampaolesi M, Van Campenhout A, Ortibus E, Desloovere K, Duelen R. Autologous iPSC-Derived Human Neuromuscular Junction to Model the Pathophysiology of Hereditary Spastic Paraplegia. Cells 2022; 11:3351. [PMID: 36359747 PMCID: PMC9655384 DOI: 10.3390/cells11213351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of genetic neurodegenerative disorders, characterized by progressive lower limb spasticity and weakness resulting from retrograde axonal degeneration of motor neurons (MNs). Here, we generated in vitro human neuromuscular junctions (NMJs) from five HSP patient-specific induced pluripotent stem cell (hiPSC) lines, by means of microfluidic strategy, to model disease-relevant neuropathologic processes. The strength of our NMJ model lies in the generation of lower MNs and myotubes from autologous hiPSC origin, maintaining the genetic background of the HSP patient donors in both cell types and in the cellular organization due to the microfluidic devices. Three patients characterized by a mutation in the SPG3a gene, encoding the ATLASTIN GTPase 1 protein, and two patients with a mutation in the SPG4 gene, encoding the SPASTIN protein, were included in this study. Differentiation of the HSP-derived lines gave rise to lower MNs that could recapitulate pathological hallmarks, such as axonal swellings with accumulation of Acetyl-α-TUBULIN and reduction of SPASTIN levels. Furthermore, NMJs from HSP-derived lines were lower in number and in contact point complexity, denoting an impaired NMJ profile, also confirmed by some alterations in genes encoding for proteins associated with microtubules and responsible for axonal transport. Considering the complexity of HSP, these patient-derived neuronal and skeletal muscle cell co-cultures offer unique tools to study the pathologic mechanisms and explore novel treatment options for rescuing axonal defects and diverse cellular processes, including membrane trafficking, intracellular motility and protein degradation in HSP.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Valérie Casters
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Marc Beltrà
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Maurilio Sampaolesi
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Anja Van Campenhout
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Orthopedic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Els Ortibus
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatric Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Duelen
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Yamamoto Y, Kadoya K, Terkawi MA, Endo T, Konno K, Watanabe M, Ichihara S, Hara A, Kaneko K, Iwasaki N, Ishijima M. Neutrophils delay repair process in Wallerian degeneration by releasing NETs outside the parenchyma. Life Sci Alliance 2022; 5:e202201399. [PMID: 35961782 PMCID: PMC9375156 DOI: 10.26508/lsa.202201399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/05/2022] Open
Abstract
Although inflammation is indispensable for the repair process in Wallerian degeneration (WD), the role of neutrophils in the WD repair process remains unclear. After peripheral nerve injury, neutrophils accumulate at the epineurium but not the parenchyma in the WD region because of the blood-nerve barrier. An increase or decrease in the number of neutrophils delayed or promoted macrophage infiltration from the epineurium into the parenchyma and the repair process in WD. Abundant neutrophil extracellular traps (NETs) were formed around neutrophils, and its inhibition dramatically increased macrophage infiltration into the parenchyma. Furthermore, inhibition of either MIF or its receptor, CXCR4, in neutrophils decreased NET formation, resulting in enhanced macrophage infiltration into the parenchyma. Moreover, inhibiting MIF for just 2 h after peripheral nerve injury promoted the repair process. These findings indicate that neutrophils delay the repair process in WD from outside the parenchyma by inhibiting macrophage infiltration via NET formation and that neutrophils, NETs, MIF, and CXCR4 are therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Ichihara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Akira Hara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Eid SA, Savelieff MG, Eid AA, Feldman EL. Nox, Nox, Are You There? The Role of NADPH Oxidases in the Peripheral Nervous System. Antioxid Redox Signal 2022; 37:613-630. [PMID: 34861780 PMCID: PMC9634986 DOI: 10.1089/ars.2021.0135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) contribute to multiple aspects of peripheral nervous system (PNS) biology ranging from physiological processes (e.g., axonal outgrowth and regeneration) to pathophysiology (e.g., nerve degeneration). Although ROS are derived from multiple sources, NADPH oxidase (Nox) family members are dedicated to ROS generation. Noxs are expressed in the PNS, and their overexpression is associated with detrimental effects on nerve function and contributes, at least in part, to peripheral neuropathies. Recent Advances: Of the seven members, studies mostly focused on Nox1, Nox2, and Nox4, which are expressed in the PNS in a cell-specific manner. We have also recently identified human Nox5 in sural nerve biopsies. When maintained at homeostatic levels, Noxs regulate several aspects of peripheral nerve health, most notably neurite outgrowth and axonal regeneration following nerve lesion. While Nox2 and Nox4 dysregulation is a major source of oxidative stress in PNS disorders, including neuropathic pain and diabetic peripheral neuropathy, recent evidence also implicates Nox1 and Nox5. Critical Issues: Although there is compelling evidence for a direct role of Noxs on nerve function, little is known about their subcellular localization, intercellular regulation, and interaction. These, together with redox signaling, are considered crucial components of nerve redox status. In addition, the lack of isoform-specific inhibitors limits conclusions about the physiological role of Noxs in the PNS and their therapeutic potential in peripheral neuropathies. Future Directions: Future research using isoform-specific genetic and pharmacological approaches are therefore needed to better understand the significance of Nox enzymes in PNS (patho) physiology. Antioxid. Redox Signal. 37, 613-630.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Masha G. Savelieff
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Eva L. Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Feldman HC, Merlini E, Guijas C, DeMeester KE, Njomen E, Kozina EM, Yokoyama M, Vinogradova E, Reardon HT, Melillo B, Schreiber SL, Loreto A, Blankman JL, Cravatt BF. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Proc Natl Acad Sci U S A 2022; 119:e2208457119. [PMID: 35994671 PMCID: PMC9436332 DOI: 10.1073/pnas.2208457119] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 12/23/2022] Open
Abstract
The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown. Here, we describe the chemical proteomic discovery of a series of tryptoline acrylamides that site-specifically and stereoselectively modify cysteine-311 (C311) in the noncatalytic, autoregulatory armadillo repeat (ARM) domain of SARM1. These covalent compounds inhibit the NADase activity of WT-SARM1, but not C311A or C311S SARM1 mutants, show a high degree of proteome-wide selectivity for SARM1_C311 and stereoselectively block vincristine- and vacor-induced neurite degeneration in primary rodent dorsal root ganglion neurons. Our findings describe selective, covalent inhibitors of SARM1 targeting an allosteric cysteine, pointing to a potentially attractive therapeutic strategy for axon degeneration-dependent forms of neurological disease.
Collapse
Affiliation(s)
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Carlos Guijas
- Lundbeck La Jolla Research Center Inc, San Diego, CA 92121
| | | | - Evert Njomen
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
| | | | - Minoru Yokoyama
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
| | | | | | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138
| | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | | | | |
Collapse
|