1
|
Guo H, Zhang Z, Chen Y, Yang H, Deng L, Dai J, Cong M, Wang B, Qu DH, Zhu WH, Zhang J, Tian H. All-in-One Photoacid Generators with Green/Red-light Responsiveness and Cooperative Functionality. Angew Chem Int Ed Engl 2025; 64:e202425313. [PMID: 39856013 DOI: 10.1002/anie.202425313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
Photoacid generators (PAGs) are invaluable molecular tools that exhibited tremendous potential in emerging interdisciplinary researches of life-science, nanotechnology and smart materials. However, current PAGs are primarily mono-functional in terms of acid generation and rely on UV/deep-blue light excitation, posing a fundamental hurdle to their broader adoption. Developing cooperatively functioned PAGs with long-wavelength light responsiveness presents a formidable challenge due to the absence of suitable molecular scaffolds. Here, we introduce a newly-developed perylene bisimides PAG motif (PBI-PAG) that integrates desired multi-functionality and visible-light photo-reactivity. Taking advantages of characteristic opto-electronic properties of PBI scaffold, PBI-PAGs are capable of quantitative releasing (>99 %) a palette of acids upon green/red light (560-605 nm) excitation. Concurrently, a photo-generated counterpart is functioned as a photo-sensitizer that could perform cooperatively with acid as an anti-metastasis cancer therapy agent. These two processes constitute the first example of a cooperatively functioned PAG operated at substrate-adaptive wavelengths.
Collapse
Affiliation(s)
- Huichao Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuhao Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Haochen Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Long Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Muyu Cong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Bangsen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Runyan LA, Kudryashova E, Agrawal R, Mohamed M, Kudryashov DS. Human plastins are novel cytoskeletal pH sensors with a reduced F-actin bundling capacity at basic pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645573. [PMID: 40196613 PMCID: PMC11974883 DOI: 10.1101/2025.03.26.645573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Intracellular pH (pHi) is a fundamental component of cell homeostasis. Controlled elevations in pHi precede and accompany cell polarization, cytokinesis, and directional migration. pH dysregulation contributes to cancer, neurodegenerative diseases, diabetes, and other metabolic disorders. While cytoskeletal rearrangements are crucial for these processes, only a few cytoskeletal proteins, namely Cdc42, cofilin, talin, cortactin, α-actinin, and AIP1 have been documented as pH sensors. Here, we report that actin-bundling proteins plastin 2 (PLS2, aka LCP1) and plastin 3 (PLS3) respond to physiological scale pH fluctuations by a reduced F-actin bundling at alkaline pH. The inhibition of PLS2 actin-bundling activity at elevated pH stems from the reduced affinity of the N-terminal actin-binding domain (ABD1) to actin. In fibroblast cells, elevated cytosolic pH caused the dissociation of ectopically expressed PLS2 from actin structures, whereas acidic conditions promoted its tighter association with focal adhesions and stress fibers. We identified His207 as one of the pH-sensing residues whose mutation to Lys and Tyr reduces pH sensitivity by enhancing and inhibiting the bundling ability, respectively. Our results suggest that weaker actin bundling by plastin isoforms at alkaline pH favors higher dynamics of the actin cytoskeleton. Therefore, like other cytoskeleton pH sensors, plastins promote disassembly and faster dynamics of cytoskeletal components during cytokinesis and cell migration. Since both plastins are implemented in cancer, their pH sensitivity may contribute to the accelerated proliferation and enhanced invasive and metastatic potentials of cancer cells at alkaline pHi.
Collapse
Affiliation(s)
- Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Richa Agrawal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Mubarik Mohamed
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| |
Collapse
|
3
|
Chen YJN, Shi RC, Xiang YC, Fan L, Tang H, He G, Zhou M, Feng XZ, Tan JD, Huang P, Ye X, Zhao K, Fu WY, Li LL, Bian XT, Chen H, Wang F, Wang T, Zhang CK, Zhou BH, Chen W, Liang TT, Lv JT, Kang X, Shi YX, Kim E, Qin YH, Hettinghouse A, Wang KD, Zhao XL, Yang MY, Tang YZ, Piao HL, Guo L, Liu CJ, Miao HM, Tang KL. Malate initiates a proton-sensing pathway essential for pH regulation of inflammation. Signal Transduct Target Ther 2024; 9:367. [PMID: 39737965 PMCID: PMC11683149 DOI: 10.1038/s41392-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages. Here, we found that L-malate exerts anti-inflammatory effect via BiP-IRF2BP2 signaling, which is a sensor of cytosolic pH in macrophages. First, L-malate, a TCA intermediate upregulated in pro-inflammatory macrophages, was identified as a potent anti-inflammatory metabolite through initial screening. Subsequent screening with DARTS and MS led to the isolation of L-malate-BiP binding. Further screening through protein‒protein interaction microarrays identified a L-malate-restrained coupling of BiP with IRF2BP2, a known anti-inflammatory protein. Interestingly, pH reduction, which promotes carboxyl protonation of L-malate, facilitates L-malate and carboxylate analogues such as succinate to bind BiP, and disrupt BiP-IRF2BP2 interaction in a carboxyl-dependent manner. Both L-malate and acidification inhibit BiP-IRF2BP2 interaction, and protect IRF2BP2 from BiP-driven degradation in macrophages. Furthermore, both in vitro and in vivo, BiP-IRF2BP2 signal is required for effects of both L-malate and pH on inflammatory responses. These findings reveal a previously unrecognized, proton/carboxylate dual sensing pathway wherein pH and L-malate regulate inflammatory responses, indicating the role of certain carboxylate metabolites as adaptors in the proton biosensing by interactions between macromolecules.
Collapse
Affiliation(s)
- Yu-Jia-Nan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| | - Rong-Chen Shi
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yuan-Cai Xiang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Li Fan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Hong Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Gang He
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Mei Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xin-Zhe Feng
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Jin-Dong Tan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pan Huang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiao Ye
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Kun Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Wen-Yu Fu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Liu-Li Li
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Xu-Ting Bian
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Feng Wang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Teng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Chen-Ke Zhang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Bing-Hua Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Wan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Tao-Tao Liang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jing-Tong Lv
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xia Kang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - You-Xing Shi
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ellen Kim
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Yin-Hua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University, Chongqing, 400038, China
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Kai-di Wang
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, China
| | - Xiang-Li Zhao
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ming-Yu Yang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yu-Zhen Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lin Guo
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Hong-Ming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Kang-Lai Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Li Y, Zhang Y, Zhang J, Zhan Z, Mao W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur J Med Chem 2024; 279:116913. [PMID: 39357313 DOI: 10.1016/j.ejmech.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase frequently overexpressed in various cancer cells, facilitating tumor growth through the regulation of cell adhesion, migration, and proliferation. Consequently, targeting FAK is considered a promising anti-tumor strategy, particularly for invasive cancers. Numerous potent small-molecule inhibitors have progressed to clinical trials. Among these, Defactinib is under evaluation for regulatory approval as a treatment for ovarian serous tumors. Furthermore, novel FAK inhibitors, including PROTACs, have emerged as key research focuses, anticipated to overcome the limitations of traditional inhibitors. In this Perspective, we highlight the protein structure, biological functions, relevant signaling pathways, and associations of FAK with cancer development. We also analyze the clinical status of FAK inhibitors, paying special attention to the various classes of FAK inhibitors, with detailed analyses of their chemical structures, structure-activity relationships (SARs), bioactivity profiles, selectivity profiles, and therapeutic potentials.
Collapse
Affiliation(s)
- Yingnan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Yuming Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China; West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| |
Collapse
|
5
|
Sallah S, Warwicker J. Computational investigation of missense somatic mutations in cancer and potential links to pH-dependence and proteostasis. PLoS One 2024; 19:e0314022. [PMID: 39561123 PMCID: PMC11575792 DOI: 10.1371/journal.pone.0314022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Metabolic changes during tumour development lead to acidification of the extracellular environment and a smaller increase of intracellular pH. Searches for somatic missense mutations that could reveal adaptation to altered pH have focussed on arginine to histidine changes, part of a general arginine depletion that originates from DNA mutational mechanisms. Analysis of mutations to histidine, potentially a simple route to the introduction of pH-sensing, shows no clear biophysical separation overall of subsets that are more and less frequently mutated in cancer genomes. Within the more frequently mutated subset, individual sites predicted to mediate pH-dependence upon mutation include NDST1 (a Golgi-resident heparan sulphate modifying enzyme), the HLA-C chain of MHCI complex, and the water channel AQP-7. Arginine depletion is a general feature that persists in the more frequently mutated subset, and is complemented by over-representation of mutations to lysine. Arginine to lysine balance is a known factor in determining protein solubility, with higher lysine content being more favourable. Proteins with greater change in arginine to lysine balance are enriched for cell periphery location, where proteostasis is likely to be challenged in tumour cells. Somatic missense mutations in a cancer genome number only in the 10s typically, although can be much higher. Whether the altered arginine to lysine balance is of sufficient scale to play a role in tumour development is unknown.
Collapse
Affiliation(s)
- Shalaw Sallah
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Chen Y, Liu P, Zhong Z, Zhang H, Sun A, Wang Y. STIM1 functions as a proton sensor to coordinate cytosolic pH with store-operated calcium entry. J Biol Chem 2024; 300:107924. [PMID: 39454952 PMCID: PMC11626807 DOI: 10.1016/j.jbc.2024.107924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The meticulous regulation of intracellular pH (pHi) is crucial for maintaining cellular function and homeostasis, impacting physiological processes such as heart rhythm, cell migration, proliferation, and differentiation. Dysregulation of pHi is implicated in various pathologies such as arrhythmias, cancer, and neurodegenerative diseases. Here, we explore the role of STIM1, an ER calcium (Ca2+) sensor mediating Store Operated Ca2+ Entry (SOCE), in sensing pHi changes. Our study reveals that STIM1 functions as a sensor for pHi changes, independent of its Ca2+-binding state. Through comprehensive experimental approaches including confocal microscopy, FRET-based sensors, and mutagenesis, we demonstrate that changes in pHi induce conformational alterations in STIM1, thereby modifying its subcellular localization and activity. We identify two conserved histidines within STIM1 essential for sensing pHi shifts. Moreover, intracellular alkalization induced by agents such as Angiotensin II or NH4Cl enhances STIM1-mediated SOCE, promoting cardiac hypertrophy. These findings reveal a novel facet of STIM1 as a multi-modal stress sensor that coordinates cellular responses to both Ca2+ and pH fluctuations. This dual functionality underscores its potential as a therapeutic target for diseases associated with pH and Ca2+ dysregulation.
Collapse
Affiliation(s)
- Yilan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ziyi Zhong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hanhan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
7
|
Romero-Moreno R, Czowski BJ, Harris L, Kuehn JF, White KA. Intracellular pH differentially regulates transcription of metabolic and signaling pathways in normal epithelial cells. J Biol Chem 2024; 300:107658. [PMID: 39128712 PMCID: PMC11489351 DOI: 10.1016/j.jbc.2024.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Intracellular pH (pHi) dynamics regulate normal cell function, and dysregulated pHi dynamics is an emerging hallmark of cancer (constitutively increased pHi) and neurodegeneration (constitutively decreased pHi). However, the molecular mechanisms by which pHi dynamics regulate cell biology are poorly understood. Here, we discovered that altering pHi in normal human breast epithelial cells triggers global transcriptional changes. We identified 176 genes differentially regulated by pHi, with pHi-dependent genes clustering in signaling and glycolytic pathways. Using various normal epithelial cell models, we showed pH-dependent Notch homolog 1 protein expression, with increased protein abundance at high pHi. This resulted in pH-dependent downstream signaling, with increased Notch homolog 1 signaling at high pHi. We also found that high pHi increased the expression of glycolytic enzymes and regulators of pyruvate fate, including lactate dehydrogenase and pyruvate dehydrogenase kinase. These transcriptional changes were sufficient to alter lactate production, with high pHi shifting these normal epithelial cells toward a glycolytic metabolism and increasing lactate production. Thus, pHi dynamics transcriptionally regulate signaling and metabolic pathways in normal epithelial cells. Our data reveal new molecular regulators of pHi-dependent biology and a role for increased pHi in driving the acquisition of cancer-associated signaling and metabolic changes in normal human epithelial cells.
Collapse
Affiliation(s)
- Ricardo Romero-Moreno
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brandon J Czowski
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lindsey Harris
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessamine F Kuehn
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katharine A White
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
8
|
Worthan SB, McCarthy RDP, Delaleau M, Stikeleather R, Bratton BP, Boudvillain M, Behringer MG. Evolution of pH-sensitive transcription termination in Escherichia coli during adaptation to repeated long-term starvation. Proc Natl Acad Sci U S A 2024; 121:e2405546121. [PMID: 39298488 PMCID: PMC11441560 DOI: 10.1073/pnas.2405546121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in Escherichia coli populations experimentally evolved under repeated long-term starvation conditions, during which the accumulation of metabolic waste followed by transfer into fresh media results in drastic environmental pH fluctuations associated with feast and famine. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers plasticity via an alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species that regularly experience neutral to alkaline pH fluctuations in their environments. Our results suggest that Arg to His substitutions in Rho may serve to rapidly coordinate complex physiological responses through pH sensing and shed light on how cellular populations use environmental cues to coordinate rapid responses to complex, fluctuating environments.
Collapse
Affiliation(s)
- Sarah B. Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN37232
| | | | - Mildred Delaleau
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d’Orléans, Orléans Cedex 245071, France
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ85281
| | - Benjamin P. Bratton
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN37232
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN37232
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d’Orléans, Orléans Cedex 245071, France
| | - Megan G. Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN37232
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
9
|
Van Dyck PK, Piszkin L, Gorski EA, Nascimento ET, Abebe JA, Hoffmann LM, Peng JW, White KA. Ionizable networks mediate pH-dependent allostery in SH2 signaling proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608875. [PMID: 39229188 PMCID: PMC11370553 DOI: 10.1101/2024.08.21.608875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
IntroductionTransient intracellular pH dynamics1regulate mammalian proliferation2,3, migration4, and differentiation5. However, for many pH-dependent cell processes, the molecular mediators are unknown6. Prior work identified histidine residues as molecular switches in pH-sensitive proteins, but how other ionizable residues contribute to pH-dependent protein allostery is understudied. Here, we develop anin silicocomputational pipeline to identify putative pH-sensitive proteins and their molecular mechanisms. We first apply this pipeline to SHP2, a known pH-sensitive signaling protein with an uncharacterized molecular mechanism. We show wild-type SHP2 phosphatase activity is pH-sensitivein vitroand in cells, and mutation of identified H116 and E252 to non-titratable alanine residues abolishes pH-sensitive function. We also show that c-Src is a previously unrecognized pH-dependent kinase, and mutation of the identified ionizable network again abolishes pH-sensitive activity. Constant pH molecular dynamics simulations support a conserved allosteric mechanism of pH-dependent binding of inhibitory SH2 domains to the functional catalytic domains of SHP2 and c-Src. We apply our computational pipeline across SH2 domain-containing signaling proteins and identify evolutionarily conserved putative pH-sensing networks. Our results reveal that pH is an allosteric regulator of SH2 domain-containing signaling proteins providing insight into normal pH-dependent cell biology and diseases where pHi is dysregulated, such as cancer.
Collapse
Affiliation(s)
- Papa Kobina Van Dyck
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame 1234 N. Notre Dame Avenue South Bend, IN 46617 USA
| | - Luke Piszkin
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall Notre Dame, IN 46556 USA
| | - Elijah A. Gorski
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame 1234 N. Notre Dame Avenue South Bend, IN 46617 USA
| | - Eduarda Tartarella Nascimento
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame 1234 N. Notre Dame Avenue South Bend, IN 46617 USA
- Saint Mary’s College, Notre Dame, IN 46556 USA
| | - Joshua A. Abebe
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame 1234 N. Notre Dame Avenue South Bend, IN 46617 USA
| | - Logan M. Hoffmann
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame 1234 N. Notre Dame Avenue South Bend, IN 46617 USA
| | - Jeffrey W. Peng
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall Notre Dame, IN 46556 USA
| | - Katharine A. White
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame 1234 N. Notre Dame Avenue South Bend, IN 46617 USA
| |
Collapse
|
10
|
Chen A, Zhang J, Yan Z, Lu Y, Chen W, Sun Y, Gu Q, Li F, Yang Y, Qiu S, Lin X, Zhang D, Teng J, Fang Y, Shen B, Song N, Ding X. Acidic preconditioning induced intracellular acid adaptation to protect renal injury via dynamic phosphorylation of focal adhesion kinase-dependent activation of sodium hydrogen exchanger 1. Cell Commun Signal 2024; 22:393. [PMID: 39118129 PMCID: PMC11308338 DOI: 10.1186/s12964-024-01773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.
Collapse
Affiliation(s)
- Annan Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Zhixin Yan
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Weize Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yingxue Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Qiuyu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Fang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yan Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Shanfang Qiu
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xueping Lin
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Dong Zhang
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Fudan Zhangjiang Institute, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
11
|
Schlaepfer DD, Ojalill M, Stupack DG. Focal adhesion kinase signaling - tumor vulnerabilities and clinical opportunities. J Cell Sci 2024; 137:jcs261723. [PMID: 39034922 PMCID: PMC11298715 DOI: 10.1242/jcs.261723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.
Collapse
Affiliation(s)
- David D. Schlaepfer
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Marjaana Ojalill
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Dwayne G. Stupack
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| |
Collapse
|
12
|
Lund LM, Marchi AN, Alderfer L, Hall E, Hammer J, Trull KJ, Hanjaya-Putra D, White KA. Intracellular pH dynamics respond to microenvironment stiffening and mediate vasculogenic mimicry through β-catenin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597454. [PMID: 38895391 PMCID: PMC11185592 DOI: 10.1101/2024.06.04.597454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Dysregulated intracellular pH (pHi) dynamics and an altered tumor microenvironment have emerged as drivers of cancer cell phenotypes. However, the molecular integration between the physical properties of the microenvironment and dynamic intracellular signaling responses remains unclear. Here, we use two metastatic cell models, one breast and one lung, to assess pHi response to varying extracellular matrix (ECM) stiffness. To experimentally model ECM stiffening, we use two tunable-stiffness hydrogel systems: Matrigel and hyaluronic acid (HA) gels, which mimic the increased protein secretion and crosslinking associated with ECM stiffening. We find that single-cell pHi decreases with increased ECM stiffness in both hydrogel systems and both metastatic cell types. We also observed that stiff ECM promotes vasculogenic mimicry (VM), a phenotype associated with metastasis and resistance. Importantly, we show that decreased pHi is both a necessary and sufficient mediator of VM, as raising pHi on stiff ECM reduces VM phenotypes and lowering pHi on soft ECM drives VM. We characterize β-catenin as a pH-dependent molecular mediator of pH-dependent VM, where stiffness-driven changes in β-catenin abundance can be overridden by increased pHi. We uncover a dynamic relationship between matrix stiffness and pHi, thus suggesting pHi dynamics can override mechanosensitive cell responses to the extracellular microenvironment.
Collapse
Affiliation(s)
- Leah M Lund
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Angelina N Marchi
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Laura Alderfer
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, 153 Multidisciplinary Engineering Research Building, Notre Dame, IN 46556 USA
- Current: Vivodyne, Suite 775 601 Walnut Street, Philadelphia PA 19106 USA
| | - Eva Hall
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, 153 Multidisciplinary Engineering Research Building, Notre Dame, IN 46556 USA
| | - Jacob Hammer
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Keelan J Trull
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Donny Hanjaya-Putra
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, 153 Multidisciplinary Engineering Research Building, Notre Dame, IN 46556 USA
- Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Hall, Notre Dame, IN 46556 USA
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| |
Collapse
|
13
|
Yang M, Xiang H, Luo G. Targeting focal adhesion kinase (FAK) for cancer therapy: FAK inhibitors, FAK-based dual-target inhibitors and PROTAC degraders. Biochem Pharmacol 2024; 224:116246. [PMID: 38685282 DOI: 10.1016/j.bcp.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
14
|
Kisor KP, Ruiz DG, Jacobson MP, Barber DL. A role for pH dynamics regulating transcription factor DNA binding selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595212. [PMID: 38826444 PMCID: PMC11142074 DOI: 10.1101/2024.05.21.595212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Intracellular pH (pHi) dynamics regulates diverse cell processes such as proliferation, dysplasia, and differentiation, often mediated by the protonation state of a functionally critical histidine residue in endogenous pH sensing proteins. How pHi dynamics can directly regulate gene expression and whether transcription factors can function as pH sensors has received limited attention. We tested the prediction that transcription factors with a histidine in their DNA binding domain (DBD) that forms hydrogen bonds with nucleotides can have pH-regulated activity, which is relevant to more than 85 transcription factors in distinct families, including FOX, KLF, SOX and MITF/Myc. Focusing on FOX family transcription factors, we used unbiased SELEX-seq to identify pH-dependent DNA binding motif preferences, then confirm pH-regulated binding affinities for FOXC2, FOXM1, and FOXN1 to a canonical FkhP DNA motif that are 2.5 to 7.5 greater at pH 7.0 compared with pH 7.5. For FOXC2, we also find greater activity for an FkhP motif at lower pHi in cells and that pH-regulated binding and activity are dependent on a conserved histidine (His122) in the DBD. RNA-seq with FOXC2 also reveals pH-dependent differences in enriched promoter motifs. Our findings identify pH-regulated transcription factor-DNA binding selectivity with relevance to how pHi dynamics can regulate gene expression for myriad cell behaviours.
Collapse
|
15
|
Stock C. pH-regulated single cell migration. Pflugers Arch 2024; 476:639-658. [PMID: 38214759 PMCID: PMC11006768 DOI: 10.1007/s00424-024-02907-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Over the last two decades, extra- and intracellular pH have emerged as fundamental regulators of cell motility. Fundamental physiological and pathological processes relying on appropriate cell migration, such as embryonic development, wound healing, and a proper immune defense on the one hand, and autoimmune diseases, metastatic cancer, and the progression of certain parasitic diseases on the other, depend on surrounding pH. In addition, migrating single cells create their own localized pH nanodomains at their surface and in the cytosol. By this means, the migrating cells locally modulate their adhesion to, and the re-arrangement and digestion of, the extracellular matrix. At the same time, the cytosolic nanodomains tune cytoskeletal dynamics along the direction of movement resulting in concerted lamellipodia protrusion and rear end retraction. Extracellular pH gradients as found in wounds, inflamed tissues, or the periphery of tumors stimulate directed cell migration, and long-term exposure to acidic conditions can engender a more migratory and invasive phenotype persisting for hours up to several generations of cells after they have left the acidic milieu. In the present review, the different variants of pH-dependent single cell migration are described. The underlying pH-dependent molecular mechanisms such as conformational changes of adhesion molecules, matrix protease activity, actin (de-)polymerization, and signaling events are explained, and molecular pH sensors stimulated by H+ signaling are presented.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hepatology, Infectiology & Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Worthan SB, McCarthy RDP, Delaleau M, Stikeleather R, Bratton BP, Boudvillain M, Behringer MG. Evolution of pH-sensitive transcription termination during adaptation to repeated long-term starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582989. [PMID: 38464051 PMCID: PMC10925284 DOI: 10.1101/2024.03.01.582989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in E. coli populations experimentally evolved under repeated long-term starvation conditions, during which feast and famine result in drastic environmental pH fluctuations. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers a plastic alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalinization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species originating from fluctuating alkaline environments. Our results suggest that Arg to His substitutions in global regulators of gene expression can serve to rapidly coordinate complex responses through pH sensing and shed light on how cellular populations across the tree of life use environmental cues to coordinate rapid responses to complex, fluctuating environments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
| | | | - Mildred Delaleau
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
| | - Benjamin P Bratton
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
| |
Collapse
|
17
|
Pandey M, Shah SK, Gromiha MM. Computational approaches for identifying disease-causing mutations in proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 139:141-171. [PMID: 38448134 DOI: 10.1016/bs.apcsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Advancements in genome sequencing have expanded the scope of investigating mutations in proteins across different diseases. Amino acid mutations in a protein alter its structure, stability and function and some of them lead to diseases. Identification of disease-causing mutations is a challenging task and it will be helpful for designing therapeutic strategies. Hence, mutation data available in the literature have been curated and stored in several databases, which have been effectively utilized for developing computational methods to identify deleterious mutations (drivers), using sequence and structure-based properties of proteins. In this chapter, we describe the contents of specific databases that have information on disease-causing and neutral mutations followed by sequence and structure-based properties. Further, characteristic features of disease-causing mutations will be discussed along with computational methods for identifying cancer hotspot residues and disease-causing mutations in proteins.
Collapse
Affiliation(s)
- Medha Pandey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Suraj Kumar Shah
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India; International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
18
|
Abstract
Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, University of Copenhagen, Faculty of Science, København, Denmark.
| |
Collapse
|
19
|
Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal 2023; 111:110852. [PMID: 37586468 DOI: 10.1016/j.cellsig.2023.110852] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and distributes important regulatory functions in skeletal system. Mesenchymal stem cell (MSC) possesses significant migration and differentiation capacity, is an important source of distinctive bone cells production and a prominent bone development pathway. MSC has a wide range of applications in tissue bioengineering and regenerative medicine, and is frequently employed for hematopoietic support, immunological regulation, and defect repair, although current research is insufficient. FAK has been identified to cross-link with many other keys signaling pathways in bone biology and is considered as a fundamental "crossroad" on the signal transduction pathway and a "node" in the signal network to mediate MSC lineage development in skeletal system. In this review, we summarized the structure, characteristics, cellular signaling, and the interactions of FAK with other signaling pathways in the skeletal system. The discovery of FAK and its mediated molecules will lead to a new knowledge of bone development and bone construction as well as considerable potential for therapeutic use in the treatment of bone-related disorders such as osteoporosis, osteoarthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
20
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Baba SK, Baba SK, Mir R, Elfaki I, Algehainy N, Ullah MF, Barnawi J, Altemani FH, Alanazi M, Mustafa SK, Masoodi T, Akil ASA, Bhat AA, Macha MA. Long non-coding RNAs modulate tumor microenvironment to promote metastasis: novel avenue for therapeutic intervention. Front Cell Dev Biol 2023; 11:1164301. [PMID: 37384249 PMCID: PMC10299194 DOI: 10.3389/fcell.2023.1164301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is a devastating disease and the primary cause of morbidity and mortality worldwide, with cancer metastasis responsible for 90% of cancer-related deaths. Cancer metastasis is a multistep process characterized by spreading of cancer cells from the primary tumor and acquiring molecular and phenotypic changes that enable them to expand and colonize in distant organs. Despite recent advancements, the underlying molecular mechanism(s) of cancer metastasis is limited and requires further exploration. In addition to genetic alterations, epigenetic changes have been demonstrated to play an important role in the development of cancer metastasis. Long non-coding RNAs (lncRNAs) are considered one of the most critical epigenetic regulators. By regulating signaling pathways and acting as decoys, guides, and scaffolds, they modulate key molecules in every step of cancer metastasis such as dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Gaining a good knowledge of the detailed molecular basis underlying lncRNAs regulating cancer metastasis may provide previously unknown therapeutic and diagnostic lncRNAs for patients with metastatic disease. In this review, we concentrate on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis, the cross-talk with metabolic reprogramming, modulating cancer cell anoikis resistance, influencing metastatic microenvironment, and the interaction with pre-metastatic niche formation. In addition, we also discuss the clinical utility and therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent areas for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Sana Khurshid Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Sadaf Khursheed Baba
- Department of Microbiology, Sher-I-Kashmir Institute of Medical Science (SKIMS), Soura, Kashmir, India
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Fahad Ullah
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H. Altemani
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Ammira S. Alshabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| |
Collapse
|
22
|
Targeting Na-H exchanger 1 overcomes nuclear factor kappa B-mediated tumor resistance to radiotherapy. Neoplasia 2022; 35:100862. [PMID: 36508876 PMCID: PMC9761853 DOI: 10.1016/j.neo.2022.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Intrinsic or acquired radioresistance often limits the efficacy of radiation therapy (RT), thereby leading to local control failure. Cancerous cells have abnormal pH dynamics due to high metabolic demands, but it is unclear how pH dynamics contribute to radioresistance. In this study, we investigated the role of Na-H exchange 1 (NHE1), the major intracellular pH (pHi) regulator, in RT response. We observed that RT increased NHE1 expression and modulated pHi in MDA-MB-231 human breast cancer cells. When combined with RT, pharmacological NHE1 inhibition by 5-(N-Ethyl-N-isopropyl)amiloride (EIPA) reduced pHi and clonogenic survival. EIPA attenuated radiation-damaged DNA repair, increasing G2/M cell cycle arrest. The combination of EIPA and RT increased apoptotic cell death while decreasing phosphorylation of NF-κB p65. Similarly, the knockdown of NHE1 increased radiosensitivity with lower pHi and increased apoptosis. Consistent with in vitro data, the EIPA plus RT inhibited the growth of MDA-MB-231 xenograft tumors in mice to a greater extent than either EIPA or RT alone. EIPA abrogated the RT-induced increase in NHE1 and phospho-NF-κB p65 expression in tumor tissues. Such coincidence of increased NHE1 level, pHi, and NF-κB activation was also found in radioresistant MDA-MB-231 cells, which were reversed by EIPA treatment. Bioinformatics analysis of RNA sequencing data revealed that inhibiting NHE1 reversed three core gene networks that were up-regulated in radioresistant cells and correlated with high NHE1 expression in patient samples: NF-κB, senescence, and extracellular matrix. Taken together, our findings suggest that NHE1 contributes to RT resistance via NF-κB-mediated signaling networks, and NHE1 may be a promising target for improving RT outcomes.
Collapse
|
23
|
Wilson AD, Richards MA, Curtis MK, Gunadasa-Rohling M, Monterisi S, Loonat AA, Miller JJ, Ball V, Lewis A, Tyler DJ, Moshnikova A, Andreev OA, Reshetnyak YK, Carr C, Swietach P. Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH. Cardiovasc Res 2022; 118:2946-2959. [PMID: 34897412 PMCID: PMC9648823 DOI: 10.1093/cvr/cvab364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.
Collapse
Affiliation(s)
- Abigail D Wilson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mark A Richards
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Jack J Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Vicky Ball
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Andrew Lewis
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Carolyn Carr
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
24
|
Wang N, Zhou L, Shao CY, Wang XT, Zhang N, Ma J, Hu HL, Wang Y, Qiu M, Shen Y. Potassium channel K ir 4.1 regulates oligodendrocyte differentiation via intracellular pH regulation. Glia 2022; 70:2093-2107. [PMID: 35775976 DOI: 10.1002/glia.24240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022]
Abstract
In humans, loss-of-function mutations of Kcnj10 in SeSAME/EAST syndrome, which encodes the inwardly rectifying K+ channel 4.1 (Kir 4.1), causes progressive neurological decline. Despite its rich expression in oligodendrocyte (OL) lineage cells and an emerging link with demyelinating disease, the function of Kir 4.1 in OLs is unclear. Here we show a novel role of Kir 4.1 in OL development. Kir 4.1 expression is markedly greater in OLs than in OL precursor cells (OPCs), and the down-regulation of Kir 4.1 impairs OL maturation by affecting OPC differentiation. Interestingly, Kir 4.1 regulates the intracellular pH of OPCs and OLs via the Na+ /H+ exchanger, which underlies impeded OPC differentiation by Kir 4.1 inhibition. Furthermore, Kir 4.1 regulates GSK3β and SOX10, two molecules critical to OPC development. Collectively, our work opens a new avenue to understanding the functions of Kir 4.1 and intracellular pH in OLs.
Collapse
Affiliation(s)
- Na Wang
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Zhou
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Brain Science, Guizhou Institution of Higher Education, Zunyi Medical University, Zunyi, China
| | - Chong-Yu Shao
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Tai Wang
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Zhang
- Key Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical University, Yinchuan, China
| | - Jiao Ma
- Key Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical University, Yinchuan, China
| | - Hai-Lan Hu
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yin Wang
- Key Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical University, Yinchuan, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Shen
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
de Oliveira VM, Dias MMG, Avelino TM, Videira NB, da Silva FB, Doratioto TR, Whitford PC, Leite VBP, Figueira ACM. pH and the Breast Cancer Recurrent Mutation D538G Affect the Process of Activation of Estrogen Receptor α. Biochemistry 2022; 61:455-463. [PMID: 35238537 DOI: 10.1021/acs.biochem.1c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptor α (ERα) is a regulatory protein that can access a set of distinct structural configurations. ERα undergoes extensive remodeling as it interacts with different agonists and antagonists, as well as transcription activation and repression factors. Moreover, breast cancer tumors resistant to hormone therapy have been associated with the imbalance between the active and inactive ERα states. Cancer-activating mutations in ERα play a crucial role in this imbalance and can promote the progression of cancer. However, the rate of this progression can also be increased by dysregulated pH in the tumor microenvironment. Many molecular aspects of the process of activation of ERα that can be affected by these pH changes and mutations are still unclear. Thus, we applied computational and experimental techniques to explore the activation process dynamics of ER for environments with different pHs and in the presence of one of the most recurrent cancer-activating mutations, D538G. Our results indicated that the effect of the pH increase associated with the D538G mutation promoted a robust stabilization of the active state of ER. We were also able to determine the main protein regions that have the most potential to influence the activation process under different pH conditions, which may provide targets of future therapeutics for the treatment of hormone-resistant breast cancer tumors. Finally, the approach used here can be applied for proteins associated with the proliferation of other cancer types, which can also have their function affected by small pH changes.
Collapse
Affiliation(s)
- Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Marieli M G Dias
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Thayná M Avelino
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Natália B Videira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Fernando B da Silva
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto 01140-070, SP, Brazil
| | - Tábata R Doratioto
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto 01140-070, SP, Brazil
| | - Ana Carolina M Figueira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| |
Collapse
|
26
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
27
|
Case LB, De Pasquale M, Henry L, Rosen MK. Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation. eLife 2022; 11:e72588. [PMID: 35049497 PMCID: PMC8791637 DOI: 10.7554/elife.72588] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion complexes (IACs) are integrin-based plasma-membrane-associated compartments where cells sense environmental cues. The physical mechanisms and molecular interactions that mediate initial IAC formation are unclear. We found that both p130Cas ('Cas') and Focal adhesion kinase ('FAK') undergo liquid-liquid phase separation in vitro under physiologic conditions. Cas- and FAK- driven phase separation is sufficient to reconstitute kindlin-dependent integrin clustering in vitro with recombinant mammalian proteins. In vitro condensates and IACs in mouse embryonic fibroblasts (MEFs) exhibit similar sensitivities to environmental perturbations including changes in temperature and pH. Furthermore, mutations that inhibit or enhance phase separation in vitro reduce or increase the number of IACs in MEFs, respectively. Finally, we find that the Cas and FAK pathways act synergistically to promote phase separation, integrin clustering, IAC formation and partitioning of key components in vitro and in cells. We propose that Cas- and FAK-driven phase separation provides an intracellular trigger for integrin clustering and nascent IAC formation.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Milagros De Pasquale
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Lisa Henry
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
28
|
Wu Y, Li N, Ye C, Jiang X, Luo H, Zhang B, Zhang Y, Zhang Q. Focal adhesion kinase inhibitors, a heavy punch to cancer. Discov Oncol 2021; 12:52. [PMID: 35201485 PMCID: PMC8777493 DOI: 10.1007/s12672-021-00449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Kinases are the ideal druggable targets for diseases and especially were highlighted on cancer therapy. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and its aberrant signaling extensively implicates in the progression of most cancer types, involving in cancer cell growth, adhesion, migration, and tumor microenvironment (TME) remodeling. FAK is commonly overexpressed and activated in a variety of cancers and plays as a targetable kinase in cancer therapy. FAK inhibitors already exhibited promising performance in preclinical and early-stage clinical trials. Moreover, substantial evidence has implied that targeting FAK is more effective in combination strategy, thereby reversing the failure of chemotherapies or targeted therapies in solid tumors. In the current review, we summarized the drug development progress, chemotherapy strategy, and perspective view for FAK inhibitors.
Collapse
Affiliation(s)
- Yueling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Ning Li
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Chengfeng Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Xingmei Jiang
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qingyu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
29
|
Donahue CET, Siroky MD, White KA. An Optogenetic Tool to Raise Intracellular pH in Single Cells and Drive Localized Membrane Dynamics. J Am Chem Soc 2021; 143:18877-18887. [PMID: 34726911 PMCID: PMC8603357 DOI: 10.1021/jacs.1c02156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Intracellular pH
(pHi) dynamics are critical for regulating normal
cell physiology. For example, transient increases in pHi (7.2–7.6)
regulate cell behaviors like cell polarization, actin cytoskeleton
remodeling, and cell migration. Most studies on pH-dependent cell
behaviors have been performed at the population level and use nonspecific
methods to manipulate pHi. The lack of tools to specifically manipulate
pHi at the single-cell level has hindered investigation of the role
of pHi dynamics in driving single cell behaviors. In this work, we
show that Archaerhodopsin (ArchT), a light-driven outward proton pump,
can be used to elicit robust and physiological pHi increases over
the minutes time scale. We show that activation of ArchT is repeatable,
enabling the maintenance of high pHi in single cells for up to 45
minutes. We apply this spatiotemporal pHi manipulation tool to determine
whether increased pHi is a sufficient driver of membrane ruffling
in single cells. Using the ArchT tool, we show that increased pHi
in single cells can drive localized membrane ruffling responses within
seconds and increased membrane dynamics (both protrusion and retraction
events) compared to unstimulated ArchT cells as well as control cells.
Overall, this tool allows us to directly investigate the relationship
between increased pHi and single cell behaviors such as membrane ruffling.
This tool will be transformative in facilitating experiments that
are required to determine roles for increased pHi in driving single
cell behaviors.
Collapse
Affiliation(s)
- Caitlin E T Donahue
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46617, United States
| | - Michael D Siroky
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46617, United States
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46617, United States
| |
Collapse
|
30
|
Tharp KM, Higuchi-Sanabria R, Timblin GA, Ford B, Garzon-Coral C, Schneider C, Muncie JM, Stashko C, Daniele JR, Moore AS, Frankino PA, Homentcovschi S, Manoli SS, Shao H, Richards AL, Chen KH, Hoeve JT, Ku GM, Hellerstein M, Nomura DK, Saijo K, Gestwicki J, Dunn AR, Krogan NJ, Swaney DL, Dillin A, Weaver VM. Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metab 2021; 33:1322-1341.e13. [PMID: 34019840 PMCID: PMC8266765 DOI: 10.1016/j.cmet.2021.04.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria control eukaryotic cell fate by producing the energy needed to support life and the signals required to execute programed cell death. The biochemical milieu is known to affect mitochondrial function and contribute to the dysfunctional mitochondrial phenotypes implicated in cancer and the morbidities of aging. However, the physical characteristics of the extracellular matrix are also altered in cancerous and aging tissues. Here, we demonstrate that cells sense the physical properties of the extracellular matrix and activate a mitochondrial stress response that adaptively tunes mitochondrial function via solute carrier family 9 member A1-dependent ion exchange and heat shock factor 1-dependent transcription. Overall, our data indicate that adhesion-mediated mechanosignaling may play an unappreciated role in the altered mitochondrial functions observed in aging and cancer.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Greg A Timblin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Breanna Ford
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carlos Garzon-Coral
- Chemical Engineering Department, Stanford University, Stanford, CA 94305, USA
| | - Catherine Schneider
- Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jonathon M Muncie
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph R Daniele
- MD Anderson Cancer Center, South Campus Research, Houston, CA 77054, USA
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Phillip A Frankino
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Stefan Homentcovschi
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Sagar S Manoli
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kuei-Ho Chen
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gregory M Ku
- Diabetes Center, Division of Endocrinology and Metabolism, Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Marc Hellerstein
- Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Karou Saijo
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jason Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexander R Dunn
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Chin MY, Patwardhan AR, Ang KH, Wang AL, Alquezar C, Welch M, Nguyen PT, Grabe M, Molofsky AV, Arkin MR, Kao AW. Genetically Encoded, pH-Sensitive mTFP1 Biosensor for Probing Lysosomal pH. ACS Sens 2021; 6:2168-2180. [PMID: 34102054 PMCID: PMC8240087 DOI: 10.1021/acssensors.0c02318] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Lysosomes are important sites for macromolecular degradation, defined by an acidic lumenal pH of ∼4.5. To better understand lysosomal pH, we designed a novel, genetically encoded, fluorescent protein (FP)-based pH biosensor called Fluorescence Indicator REporting pH in Lysosomes (FIRE-pHLy). This biosensor was targeted to lysosomes with lysosomal-associated membrane protein 1 (LAMP1) and reported lumenal pH between 3.5 and 6.0 with monomeric teal fluorescent protein 1 (mTFP1), a bright cyan pH-sensitive FP variant with a pKa of 4.3. Ratiometric quantification was enabled with cytosolically oriented mCherry using high-content quantitative imaging. We expressed FIRE-pHLy in several cellular models and quantified the alkalinizing response to bafilomycin A1, a specific V-ATPase inhibitor. In summary, we have engineered FIRE-pHLy, a specific, robust, and versatile lysosomal pH biosensor, that has broad applications for investigating pH dynamics in aging- and lysosome-related diseases, as well as in lysosome-based drug discovery.
Collapse
Affiliation(s)
- Marcus Y Chin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Anand R Patwardhan
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Kean-Hooi Ang
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Austin L Wang
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Carolina Alquezar
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Mackenzie Welch
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Phi T Nguyen
- Weill Institute for Neurosciences, Department of Psychiatry, University of California, San Francisco, California 94158, United States
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Anna V Molofsky
- Weill Institute for Neurosciences, Department of Psychiatry, University of California, San Francisco, California 94158, United States
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Aimee W Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
32
|
Mousson A, Legrand M, Steffan T, Vauchelles R, Carl P, Gies JP, Lehmann M, Zuber G, De Mey J, Dujardin D, Sick E, Rondé P. Inhibiting FAK-Paxillin Interaction Reduces Migration and Invadopodia-Mediated Matrix Degradation in Metastatic Melanoma Cells. Cancers (Basel) 2021; 13:cancers13081871. [PMID: 33919725 PMCID: PMC8070677 DOI: 10.3390/cancers13081871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The focal adhesion kinase (FAK) is over-expressed in a variety of human tumors and is involved in many aspects of the metastatic process. This has led to the development of small inhibitors of FAK kinase function which are currently evaluated in clinical trials. We demonstrate here that this class of inhibitors, while decreasing melanoma cell migration, increases invadopodia activity in metastatic melanoma cells. Searching for an alternative strategy to inhibit the oncogenic activity of FAK, we show that inhibiting FAK scaffolding function using a small peptide altering FAK–paxillin interactions reduces both migration and invadopodia-mediated matrix degradation in metastatic melanoma cells. Abstract The nonreceptor tyrosine kinase FAK is a promising target for solid tumor treatment because it promotes invasion, tumor progression, and drug resistance when overexpressed. Investigating the role of FAK in human melanoma cells, we found that both in situ and metastatic melanoma cells strongly express FAK, where it controls tumor cells’ invasiveness by regulating focal adhesion-mediated cell motility. Inhibiting FAK in human metastatic melanoma cells with either siRNA or a small inhibitor targeting the kinase domain impaired migration but led to increased invadopodia formation and extracellular matrix degradation. Using FAK mutated at Y397, we found that this unexpected increase in invadopodia activity is due to the lack of phosphorylation at this residue. To preserve FAK–Src interaction while inhibiting pro-migratory functions of FAK, we found that altering FAK–paxillin interaction, with either FAK mutation in the focal adhesion targeting (FAT) domain or a competitive inhibitor peptide mimicking paxillin LD domains drastically reduces cell migration and matrix degradation by preserving FAK activity in the cytoplasm. In conclusion, our data show that targeting FAK–paxillin interactions could be a potential therapeutic strategy to prevent metastasis formation, and molecules targeting this interface could be alternative to inhibitors of FAK kinase activity which display unexpected effects.
Collapse
Affiliation(s)
- Antoine Mousson
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Marlène Legrand
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Tania Steffan
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Romain Vauchelles
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Plateforme PIQ, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Philippe Carl
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Jean-Pierre Gies
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Maxime Lehmann
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Guy Zuber
- Université de Strasbourg, CNRS UMR7242, Intervention Chémobiologique, ESBS, 67412 Illkirch, France;
| | - Jan De Mey
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Denis Dujardin
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Emilie Sick
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Philippe Rondé
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
- Correspondence: ; Tel.: +33-3-6885-4184
| |
Collapse
|
33
|
An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Biochem J 2021; 477:2999-3018. [PMID: 32729927 DOI: 10.1042/bcj20200311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases. Here, we show evidence of catalytic regulation of IDH1 by pH, identifying a trend of increasing kcat values for αKG production upon increasing pH in the buffers we tested. To understand the molecular determinants of IDH1 pH sensitivity, we used the pHinder algorithm to identify buried ionizable residues predicted to have shifted pKa values. Such residues can serve as pH sensors, with changes in protonation states leading to conformational changes that regulate catalysis. We identified an acidic residue buried at the IDH1 dimer interface, D273, with a predicted pKa value upshifted into the physiological range. D273 point mutations had decreased catalytic efficiency and, importantly, loss of pH-regulated catalysis. Based on these findings, we conclude that IDH1 activity is regulated, at least in part, by pH. We show this regulation is mediated by at least one buried acidic residue ∼12 Å from the IDH1 active site. By establishing mechanisms of regulation of this well-conserved enzyme, we highlight catalytic features that may be susceptible to pH changes caused by cell stress and disease.
Collapse
|
34
|
Lu Y, Sun H. Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). J Med Chem 2020; 63:14382-14403. [PMID: 33058670 DOI: 10.1021/acs.jmedchem.0c01248] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor intracellular tyrosine kinase that plays an essential role in cancer cell adhesion, survival, proliferation, and migration through both its enzymatic activities and scaffolding functions. Overexpression of FAK has been found in many human cancer cells from different origins, which promotes tumor progression and influences clinical outcomes in different classes of human tumors. Therefore, FAK has been considered as a promising target for small molecule anticancer drug development. Many FAK inhibitors targeting different domains of FAK with various mechanisms of functions have been reported, including kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors. In addition, FAK-targeting PROTACs, which can induce the degradation of FAK, have also been developed. In this Perspective, we summarized the progress in the development of small molecular FAK inhibitors and proposed the perspectives for the future development of agents targeting FAK.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
35
|
Jearawuttanakul K, Khumkhrong P, Suksen K, Reabroi S, Munyoo B, Tuchinda P, Borwornpinyo S, Boonmuen N, Chairoungdua A. Cleistanthin A induces apoptosis and suppresses motility of colorectal cancer cells. Eur J Pharmacol 2020; 889:173604. [PMID: 32980346 DOI: 10.1016/j.ejphar.2020.173604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Here, we investigated the molecular mechanisms that underpin the anticancer effects of cleistanthin A (CA) in two CRC cell lines, HCT 116, and SW480. At 48 h, CA exhibited apoptotic cytotoxic effects in both CRC cell lines, concomitant with reduction of an anti-apoptotic protein, survivin. Mechanistically, CA treatment significantly reduced the expression levels of β-catenin and active-β-catenin in a dose-dependent manner in both CRC cell lines. Moreover, CA suppressed the Wnt/β-catenin signaling pathway by decreasing β-catenin-mediated transcriptional activity and expression of β-catenin target genes, AXIN2, CCND1, and survivin. Furthermore, CA also inhibited transcriptional activity in cells overexpressing a constitutively active β-catenin S33Y, indicating a GSK-3β-independent mechanism underlying the observed CA effects on CRC cells. Although cytotoxic activity was not observed with CA treatment at 24 h, cell migration and invasion were significantly reduced. In addition, CA suppressed V-type ATPase activity and focal adhesion kinase (FAK) phosphorylation. Collectively, our study reveals that CA has time-dependent effects on CRC cell phenotypes. First, short-term CA treatment inhibited CRC cell migration and invasion partly through the suppression of V-type ATPase activity. This suppression resulted in reduced FAK activation. Second, longer-term CA treatment decreased cell viability which correlated with the suppression of Wnt/β-catenin signaling induced transcriptional activity. Altogether, our data suggest that CA has the potential to develop as an effective and novel therapeutic drug for CRC patients.
Collapse
Affiliation(s)
- Kedchin Jearawuttanakul
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | | | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somrudee Reabroi
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Bamroong Munyoo
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Patoomratana Tuchinda
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
36
|
Cancer and pH Dynamics: Transcriptional Regulation, Proteostasis, and the Need for New Molecular Tools. Cancers (Basel) 2020; 12:cancers12102760. [PMID: 32992762 PMCID: PMC7601256 DOI: 10.3390/cancers12102760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
An emerging hallmark of cancer cells is dysregulated pH dynamics. Recent work has suggested that dysregulated intracellular pH (pHi) dynamics enable diverse cancer cellular behaviors at the population level, including cell proliferation, cell migration and metastasis, evasion of apoptosis, and metabolic adaptation. However, the molecular mechanisms driving pH-dependent cancer-associated cell behaviors are largely unknown. In this review article, we explore recent literature suggesting pHi dynamics may play a causative role in regulating or reinforcing tumorigenic transcriptional and proteostatic changes at the molecular level, and discuss outcomes on tumorigenesis and tumor heterogeneity. Most of the data we discuss are population-level analyses; lack of single-cell data is driven by a lack of tools to experimentally change pHi with spatiotemporal control. Data is also sparse on how pHi dynamics play out in complex in vivo microenvironments. To address this need, at the end of this review, we cover recent advances for live-cell pHi measurement at single-cell resolution. We also discuss the essential role for tool development in revealing mechanisms by which pHi dynamics drive tumor initiation, progression, and metastasis.
Collapse
|
37
|
Pethő Z, Najder K, Carvalho T, McMorrow R, Todesca LM, Rugi M, Bulk E, Chan A, Löwik CWGM, Reshkin SJ, Schwab A. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers (Basel) 2020; 12:E2484. [PMID: 32887220 PMCID: PMC7565548 DOI: 10.3390/cancers12092484] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Karolina Najder
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Tiago Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Micol Rugi
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Etmar Bulk
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Clemens W. G. M. Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
- Department of Oncology CHUV, UNIL and Ludwig Cancer Center, 1011 Lausanne, Switzerland
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| |
Collapse
|
38
|
Liu Y, White KA, Barber DL. Intracellular pH Regulates Cancer and Stem Cell Behaviors: A Protein Dynamics Perspective. Front Oncol 2020; 10:1401. [PMID: 32983969 PMCID: PMC7479815 DOI: 10.3389/fonc.2020.01401] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The International Society of Cancer Metabolism (ISCaM) meeting on Cancer Metabolic Rewiring, held in Braga Portugal in October 2019, provided an outstanding forum for investigators to present current findings and views, and discuss ideas and future directions on fundamental biology as well as clinical translations. The first session on Cancer pH Dynamics was preceded by the opening keynote presentation from our group entitled Intracellular pH Regulation of Protein Dynamics: From Cancer to Stem Cell Behaviors. In this review we introduce a brief background on intracellular pH (pHi) dynamics, including how it is regulated as well as functional consequences, summarize key findings included in our presentation, and conclude with perspectives on how understanding the role of pHi dynamics in stem cells can be relevant for understanding how pHi dynamics enables cancer progression.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katharine A White
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
39
|
Zheng T, Jäättelä M, Liu B. pH gradient reversal fuels cancer progression. Int J Biochem Cell Biol 2020; 125:105796. [DOI: 10.1016/j.biocel.2020.105796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
|
40
|
Fukagawa S, Takahashi A, Sayama K, Mori S, Murase T. Carbon dioxide ameliorates reduced desquamation in dry scaly skin via protease activation. Int J Cosmet Sci 2020; 42:564-572. [PMID: 32542869 DOI: 10.1111/ics.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/07/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Scaling, a phenomenon showing an abnormal detachment of the stratum corneum (SC) owing to desquamation dysfunction, is commonly observed in various skin diseases or xerotic skin due to ageing and low humidity. Therefore, it is considered that ameliorating the disturbed desquamatory process of the SC leads to improvement in scaling. Carbon dioxide (CO2 ) is known to be good for some skin diseases; however, the effect of CO2 on scaling and its mechanism are not sufficiently clear. We aimed to elucidate the effect of transepidermal application of CO2 on scaling and its mechanism of action. METHODS Twenty healthy men with mild scaling on the cheeks were recruited for a double-blind, placebo-controlled, split-face study. They applied the formulation containing CO2 twice daily for 1 week. After the study, the SC was collected by tape stripping to analyse desquamatory protease activities and degradation of extracellular corneodesmosomes. Furthermore, the contribution of pH to proteolysis of the corneodesmosome by CO2 was evaluated using three-dimensional (3D) cultured epidermal models. RESULTS The spectroscopic absorbance of tape strips, used as scaling indicators, was decreased, concomitantly with the amelioration of incomplete degradation of desmoglein-1, one of the main corneodesmosomal proteins, and activation of trypsin-like protease in the SC by transepidermal application of CO2 . Experiments using 3D cultured epidermis showed that pH in the epidermal tissue was lowered by CO2 , whereas a pH change was not observed with the application of the formulation containing hydrochloric acid, which was added to equalize the pH to that of the CO2 formulation. CONCLUSION The transcutaneous application of CO2 ameliorates reduced desquamatory process in xerotic skin, with concomitant mild acidification of the SC, thereby leading to improvement in scaling. Thus, CO2 may have an advantage of efficiently and safely counteracting scaling of various skin disorders.
Collapse
Affiliation(s)
- Satoko Fukagawa
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| | - Ayami Takahashi
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| | - Keimon Sayama
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| | - Shinobu Mori
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| | - Takatoshi Murase
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| |
Collapse
|
41
|
Li Z, Sun X. Non-Coding RNAs Operate in the Crosstalk Between Cancer Metabolic Reprogramming and Metastasis. Front Oncol 2020; 10:810. [PMID: 32547948 PMCID: PMC7273922 DOI: 10.3389/fonc.2020.00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 01/10/2023] Open
Abstract
Metastasis, the spread of cancer cells from a primary tumor to a secondary site, represents one of the hallmarks of malignancies and the leading cause of cancer-related death. The process of metastasis is a result of the interaction of genetic heterogeneity, abnormal metabolism, and tumor microenvironments. On the other hand, metabolic reprogramming, another malignancy hallmark, refers to the ability of cancer cells to alter metabolic and nutrient acquisition modes in order to support the energy demands for accomplishing the rapid growth, dissemination, and colonization. Cancer cells remodel metabolic patterns to supplement nutrients for their metastasis and also undergo metabolic adjustments at different stages of metastasis. Genes and signaling pathways involved in tumor metabolic reprogramming crosstalk with those participating in metastasis. Non-coding RNAs are a group of RNA molecules that do not code proteins but have pivotal biological functions. Some of microRNAs and lncRNAs, which are the two most extensively studied non-coding RNAs, have been identified to participate in regulating metabolic remodeling of glucose, lipid, glutamine, oxidative phosphorylation, and mitochondrial respiration, as well as the process of metastasis involving cell motility, transit in the circulation and growth at a new site. This article reviews recent progress on non-coding RNAs operating in the crosstalk between tumor metabolic reprogramming and metastasis, particularly those influencing metastasis through regulating metabolism, and the underlying mechanisms of how they exert their regulatory functions.
Collapse
Affiliation(s)
- Ziyi Li
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
42
|
Mohanty A, Pharaon RR, Nam A, Salgia S, Kulkarni P, Massarelli E. FAK-targeted and combination therapies for the treatment of cancer: an overview of phase I and II clinical trials. Expert Opin Investig Drugs 2020; 29:399-409. [DOI: 10.1080/13543784.2020.1740680] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Atish Mohanty
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Rebecca R Pharaon
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Arin Nam
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Sabrina Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
43
|
Abstract
Metabolism is a continuous source of acids. To keep up with a desired metabolic rate, tumors must establish an adequate means of clearing their acidic end-products. This homeostatic priority is achieved by various buffers, enzymes, and transporters connected through the common denominator of H+ ions. Whilst this complexity is proportionate to the importance of adequate pH control, it is problematic for developing an intuition for tracking the route taken by acids, assessing the relative importance of various acid-handling proteins, and predicting the outcomes of pharmacological inhibition or genetic alteration. Here, with the help of a simplified mathematical framework, the genesis of cancer pH regulation is explained in terms of the obstacles to efficient acid venting and how these are overcome by specific molecules, often associated with cancer. Ultimately, the pH regulatory apparatus in tumors must (i) provide adequate lactic acid permeability through membranes, (ii) facilitate CO2/HCO3−/H+ diffusivity across the interstitium, (iii) invest in a form of active transport that strikes a favorable balance between intracellular pH and intracellular lactate retention under the energetic constraints of a cell, and (iv) enable the necessary feedback to complete the homeostatic loop. A more informed and quantitative approach to understanding acid-handling in cancer is mandatory for identifying vulnerabilities, which could be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, England.
| |
Collapse
|
44
|
Benitez M, Tatapudy S, Liu Y, Barber DL, Nystul TG. Drosophila anion exchanger 2 is required for proper ovary development and oogenesis. Dev Biol 2019; 452:127-133. [PMID: 31071312 DOI: 10.1016/j.ydbio.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/22/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Understanding how cell fate decisions are regulated is a central question in stem cell biology. Recent studies have demonstrated that intracellular pH (pHi) dynamics contribute to this process. Indeed, the pHi of cells within a tissue is not simply a consequence of chemical reactions in the cytoplasm and other cellular activity, but is actively maintained at a specific setpoint in each cell type. We found previously that the pHi of cells in the follicle stem cell (FSC) lineage in the Drosophila ovary increases progressively during differentiation from an average of 6.8 in the FSCs, to 7.0 in newly produced daughter cells, to 7.3 in more differentiated cells. Two major regulators of pHi in this lineage are Drosophila sodium-proton exchanger 2 (dNhe2) and a previously uncharacterized gene, CG8177, that is homologous to mammalian anion exchanger 2 (AE2). Based on this homology, we named the gene anion exchanger 2 (ae2). Here, we generated null alleles of ae2 and found that homozygous mutant flies are viable but have severe defects in ovary development and adult oogenesis. Specifically, we find that ae2 null flies have smaller ovaries, reduced fertility, and impaired follicle formation. In addition, we find that the follicle formation defect can be suppressed by a decrease in dNhe2 copy number and enhanced by the overexpression of dNhe2, suggesting that this phenotype is due to the dysregulation of pHi. These findings support the emerging idea that pHi dynamics regulate cell fate decisions and our studies provide new genetic tools to investigate the mechanisms by which this occurs.
Collapse
Affiliation(s)
- Marimar Benitez
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, USA
| | - Sumitra Tatapudy
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, USA
| | - Yi Liu
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, USA
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Todd G Nystul
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, USA.
| |
Collapse
|
45
|
Charafeddine RA, Cortopassi WA, Lak P, Tan R, McKenney RJ, Jacobson MP, Barber DL, Wittmann T. Tau repeat regions contain conserved histidine residues that modulate microtubule-binding in response to changes in pH. J Biol Chem 2019; 294:8779-8790. [PMID: 30992364 DOI: 10.1074/jbc.ra118.007004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tau, a member of the MAP2/tau family of microtubule-associated proteins, stabilizes and organizes axonal microtubules in healthy neurons. In neurodegenerative tauopathies, tau dissociates from microtubules and forms neurotoxic extracellular aggregates. MAP2/tau family proteins are characterized by three to five conserved, intrinsically disordered repeat regions that mediate electrostatic interactions with the microtubule surface. Here, we used molecular dynamics, microtubule-binding experiments, and live-cell microscopy, revealing that highly-conserved histidine residues near the C terminus of each microtubule-binding repeat are pH sensors that can modulate tau-microtubule interaction strength within the physiological intracellular pH range. We observed that at low pH (<7.5), these histidines are positively charged and interact with phenylalanine residues in a hydrophobic cleft between adjacent tubulin dimers. At higher pH (>7.5), tau deprotonation decreased binding to microtubules both in vitro and in cells. Electrostatic and hydrophobic characteristics of histidine were both required for tau-microtubule binding, as substitutions with constitutively and positively charged nonaromatic lysine or uncharged alanine greatly reduced or abolished tau-microtubule binding. Consistent with these findings, tau-microtubule binding was reduced in a cancer cell model with increased intracellular pH but was rapidly restored by decreasing the pH to normal levels. These results add detailed insights into the intracellular regulation of tau activity that may be relevant in both normal and pathological conditions.
Collapse
Affiliation(s)
- Rabab A Charafeddine
- From the Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143
| | - Wilian A Cortopassi
- the Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, and
| | - Parnian Lak
- the Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, and
| | - Ruensern Tan
- the Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - Richard J McKenney
- the Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - Matthew P Jacobson
- the Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, and
| | - Diane L Barber
- From the Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143
| | - Torsten Wittmann
- From the Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143,
| |
Collapse
|
46
|
Rohani N, Hao L, Alexis MS, Joughin BA, Krismer K, Moufarrej MN, Soltis AR, Lauffenburger DA, Yaffe MB, Burge CB, Bhatia SN, Gertler FB. Acidification of Tumor at Stromal Boundaries Drives Transcriptome Alterations Associated with Aggressive Phenotypes. Cancer Res 2019; 79:1952-1966. [PMID: 30755444 PMCID: PMC6467770 DOI: 10.1158/0008-5472.can-18-1604] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/19/2018] [Accepted: 02/06/2019] [Indexed: 01/07/2023]
Abstract
Acidosis is a fundamental feature of the tumor microenvironment, which directly regulates tumor cell invasion by affecting immune cell function, clonal cell evolution, and drug resistance. Despite the important association of tumor microenvironment acidosis with tumor cell invasion, relatively little is known regarding which areas within a tumor are acidic and how acidosis influences gene expression to promote invasion. Here, we injected a labeled pH-responsive peptide to mark acidic regions within tumors. Surprisingly, acidic regions were not restricted to hypoxic areas and overlapped with highly proliferative, invasive regions at the tumor-stroma interface, which were marked by increased expression of matrix metalloproteinases and degradation of the basement membrane. RNA-seq analysis of cells exposed to low pH conditions revealed a general rewiring of the transcriptome that involved RNA splicing and enriched for targets of RNA binding proteins with specificity for AU-rich motifs. Alternative splicing of Mena and CD44, which play important isoform-specific roles in metastasis and drug resistance, respectively, was sensitive to histone acetylation status. Strikingly, this program of alternative splicing was reversed in vitro and in vivo through neutralization experiments that mitigated acidic conditions. These findings highlight a previously underappreciated role for localized acidification of tumor microenvironment in the expression of an alternative splicing-dependent tumor invasion program. SIGNIFICANCE: This study expands our understanding of acidosis within the tumor microenvironment and indicates that acidosis induces potentially therapeutically actionable changes to alternative splicing.
Collapse
Affiliation(s)
- Nazanin Rohani
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts.
| | - Liangliang Hao
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Maria S Alexis
- Department of Biological Engineering, MIT, Cambridge, Massachusetts
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
- Department of Biological Engineering, MIT, Cambridge, Massachusetts
- Center for Precision Cancer Medicine, MIT, Cambridge, Massachusetts
| | - Konstantin Krismer
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
- Department of Biological Engineering, MIT, Cambridge, Massachusetts
- Center for Precision Cancer Medicine, MIT, Cambridge, Massachusetts
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts
| | - Mira N Moufarrej
- Department of Biological Engineering, MIT, Cambridge, Massachusetts
| | - Anthony R Soltis
- Department of Biological Engineering, MIT, Cambridge, Massachusetts
| | | | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
- Department of Biological Engineering, MIT, Cambridge, Massachusetts
- Center for Precision Cancer Medicine, MIT, Cambridge, Massachusetts
- Department of Biology, MIT, Cambridge, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | | | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Cambridge, Massachusetts
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts.
- Department of Biology, MIT, Cambridge, Massachusetts
| |
Collapse
|
47
|
Jensen HH, Pedersen GA, Morgen JJ, Parsons M, Pedersen SF, Nejsum LN. The Na + /H + exchanger NHE1 localizes as clusters to cryptic lamellipodia and accelerates collective epithelial cell migration. J Physiol 2018; 597:849-867. [PMID: 30471113 DOI: 10.1113/jp277383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Exogenous Na+ /H+ exchanger 1 (NHE1) expression stimulated the collective migration of epithelial cell sheets Stimulation with epidermal growth factor, a key morphogen, primarily increased migration of the front row of cells, whereas NHE1 increased that of submarginal cell rows, and the two stimuli were additive Accordingly, NHE1 localized not only to the leading edges of leader cells, but also in cryptic lamellipodia in submarginal cell rows NHE1 expression disrupted the morphology of epithelial cell sheets and three-dimensional cysts ABSTRACT: Collective cell migration plays essential roles in embryonic development, in normal epithelial repair processes, and in many diseases including cancer. The Na+ /H+ exchanger 1 (NHE1, SLC9A1) is an important regulator of motility in many cells and has been widely studied for its roles in cancer, although its possible role in collective migration of normal epithelial cells has remained unresolved. In the present study, we show that NHE1 expression in MDCK-II kidney epithelial cells accelerated collective cell migration. NHE1 localized to the leading edges of leader cells, as well as to cryptic lamellipodia in submarginal cell rows. Epidermal growth factor, a kidney morphogen, increased displacement of the front row of collectively migrating cells and reduced the number of migration fingers. NHE1 expression increased the number of migration fingers and increased displacement of submarginal cell rows, resulting in additive effects of NHE1 and epidermal growth factor. Finally, NHE1 expression resulted in disorganized development of MDCK-II cell cysts. Thus, NHE1 contributes to collective migration and epithelial morphogenesis, suggesting roles for the transporter in embryonic and early postnatal development.
Collapse
Affiliation(s)
- Helene H Jensen
- Department of Clinical Medicine, Aarhus University, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Department of Chemistry and Bioscience, Aalborg University, Denmark
| | | | - Jeanette J Morgen
- Department of Clinical Medicine, Aarhus University, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Stine F Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
48
|
Affiliation(s)
- Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 boulevard Tonnellé, 37032, Tours, France.,Institut Universitaire de France, 1, rue Descartes, 75231, Paris, Cedex 05, France
| |
Collapse
|
49
|
White KA, Grillo-Hill BK, Esquivel M, Peralta J, Bui VN, Chire I, Barber DL. β-Catenin is a pH sensor with decreased stability at higher intracellular pH. J Cell Biol 2018; 217:3965-3976. [PMID: 30315137 PMCID: PMC6219716 DOI: 10.1083/jcb.201712041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023] Open
Abstract
White et al. find that intracellular pH regulates the stability of β-catenin, the Wnt signaling molecule that controls cell polarity, adhesion, and differentiation. A conserved histidine residue in β-catenin mediates pH-dependent binding to the E3 ligase β-TrCP for degradation, and a cancer-associated mutation that bypasses this pH-sensitive regulation induces ectopic tumors in the Drosophila eye. β-Catenin functions as an adherens junction protein for cell–cell adhesion and as a signaling protein. β-catenin function is dependent on its stability, which is regulated by protein–protein interactions that stabilize β-catenin or target it for proteasome-mediated degradation. In this study, we show that β-catenin stability is regulated by intracellular pH (pHi) dynamics, with decreased stability at higher pHi in both mammalian cells and Drosophila melanogaster. β-Catenin degradation requires phosphorylation of N-terminal residues for recognition by the E3 ligase β-TrCP. While β-catenin phosphorylation was pH independent, higher pHi induced increased β-TrCP binding and decreased β-catenin stability. An evolutionarily conserved histidine in β-catenin (found in the β-TrCP DSGIHS destruction motif) is required for pH-dependent binding to β-TrCP. Expressing a cancer-associated H36R–β-catenin mutant in the Drosophila eye was sufficient to induce Wnt signaling and produced pronounced tumors not seen with other oncogenic β-catenin alleles. We identify pHi dynamics as a previously unrecognized regulator of β-catenin stability, functioning in coincidence with phosphorylation.
Collapse
Affiliation(s)
- Katharine A White
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Bree K Grillo-Hill
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Mario Esquivel
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Jobelle Peralta
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Vivian N Bui
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Ismahan Chire
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
50
|
Goult BT, Yan J, Schwartz MA. Talin as a mechanosensitive signaling hub. J Cell Biol 2018; 217:3776-3784. [PMID: 30254032 PMCID: PMC6219721 DOI: 10.1083/jcb.201808061] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM), mediated by transmembrane receptors of the integrin family, is exquisitely sensitive to biochemical, structural, and mechanical features of the ECM. Talin is a cytoplasmic protein consisting of a globular head domain and a series of α-helical bundles that form its long rod domain. Talin binds to the cytoplasmic domain of integrin β-subunits, activates integrins, couples them to the actin cytoskeleton, and regulates integrin signaling. Recent evidence suggests switch-like behavior of the helix bundles that make up the talin rod domains, where individual domains open at different tension levels, exerting positive or negative effects on different protein interactions. These results lead us to propose that talin functions as a mechanosensitive signaling hub that integrates multiple extracellular and intracellular inputs to define a major axis of adhesion signaling.
Collapse
Affiliation(s)
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore.,Department of Physics, National University of Singapore, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Martin A Schwartz
- Wellcome Trust Centre for Matrix Research, University of Manchester, Manchester, UK.,Yale Cardiovascular Research Center and Departments of Internal Medicine (Cardiology), Cell Biology, and Biomedical Engineering, Yale School of Medicine, New Haven, CT
| |
Collapse
|