1
|
Nommick A, Chuyen A, Clément R, Thomé V, Daian F, Rosnet O, Richard F, Brouilly N, Loiseau E, Boutin C, Kodjabachian L. Dual role of Xenopus Odf2 in multiciliated cell patterning and differentiation. Dev Biol 2025; 520:224-238. [PMID: 39864486 DOI: 10.1016/j.ydbio.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
In developing tissues, the number, position, and differentiation of cells must be coordinately controlled to ensure the emergence of physiological function. The epidermis of the Xenopus embryo contains thousands of uniformly distributed multiciliated cells (MCCs), which grow hundreds of coordinately polarized cilia that beat vigorously to generate superficial water flow. Using this model, we uncovered a dual role for the conserved centriolar component Odf2, in MCC apical organization at the cell level, and in MCC spatial distribution at the tissue level. Like in other species, Xenopus Odf2 localized to the basal foot of basal bodies. Consistently, Odf2 morpholino-mediated knockdown impaired basal foot morphogenesis. Consequently, the rate of microtubule nucleation by Odf2-deficient basal bodies was reduced, leading to cilia disorientation, reduced beating, and ultimately altered flow production across the embryo. Furthermore, we show that Odf2 is required to maintain MCC motility and homotypic repulsion prior to their emergence into the surface layer. Our data suggest that Odf2 promotes MCC spacing via its role in the modulation of cytoplasmic microtubule dynamics. Mathematical simulations confirmed that reduced migration speed alters the spacing order of MCCs. This study provides a striking example of coupling between organizational scales by a unique effector.
Collapse
Affiliation(s)
- Aude Nommick
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Alexandre Chuyen
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Raphael Clément
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Virginie Thomé
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Fabrice Daian
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Olivier Rosnet
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Fabrice Richard
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Nicolas Brouilly
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Etienne Loiseau
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Camille Boutin
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
2
|
Robichaud JH, Zhang Y, Chen C, He K, Huang Y, Zhang X, Sun X, Ma X, Hardiman G, Morrison CG, Dong Z, LeBrasseur NK, Ling K, Hu J. Transiently formed nucleus-to-cilium microtubule arrays mediate senescence initiation in a KIFC3-dependent manner. Nat Commun 2024; 15:7977. [PMID: 39266565 PMCID: PMC11393428 DOI: 10.1038/s41467-024-52363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Despite the importance of cellular senescence in human health, how damaged cells undergo senescence remains elusive. We have previously shown that promyelocytic leukemia nuclear body (PML-NBs) translocation of the ciliary FBF1 is essential for senescence induction in stressed cells. Here we discover that an early cellular event occurring in stressed cells is the transient assembly of stress-induced nucleus-to-cilium microtubule arrays (sinc-MTs). The sinc-MTs are distinguished by unusual polyglutamylation and unique polarity, with minus-ends nucleating near the nuclear envelope and plus-ends near the ciliary base. KIFC3, a minus-end-directed kinesin, is recruited to plus-ends of sinc-MTs and interacts with the centrosomal protein CENEXIN1. In damaged cells, CENEXIN1 co-translocates with FBF1 to PML-NBs. Deficiency of KIFC3 abolishes PML-NB translocation of FBF1 and CENEXIN1, as well as senescence initiation in damaged cells. Our study reveals that KIFC3-mediated nuclear transport of FBF1 along polyglutamylated sinc-MTs is a prerequisite for senescence induction in mammalian cells.
Collapse
Affiliation(s)
- Jielu Hao Robichaud
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xu Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Xiaobo Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Ireland
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Nathan K LeBrasseur
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Otani H, Nakazato R, Koike K, Ohta K, Ikegami K. Excess microtubule and F-actin formation mediates shortening and loss of primary cilia in response to a hyperosmotic milieu. J Cell Sci 2024; 137:jcs261988. [PMID: 39056167 DOI: 10.1242/jcs.261988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The primary cilium is a small organelle protruding from the cell surface that receives signals from the extracellular milieu. Although dozens of studies have reported that several genetic factors can impair the structure of primary cilia, evidence for environmental stimuli affecting primary cilia structures is limited. Here, we investigated an extracellular stress that affected primary cilia morphology and its underlying mechanisms. Hyperosmotic shock induced reversible shortening and disassembly of the primary cilia of murine intramedullary collecting duct cells. The shortening of primary cilia caused by hyperosmotic shock followed delocalization of the pericentriolar material (PCM). Excessive microtubule and F-actin formation in the cytoplasm coincided with the hyperosmotic shock-induced changes to primary cilia and the PCM. Treatment with a microtubule-disrupting agent, nocodazole, partially prevented the hyperosmotic shock-induced disassembly of primary cilia and almost completely prevented delocalization of the PCM. An actin polymerization inhibitor, latrunculin A, also partially prevented the hyperosmotic shock-induced shortening and disassembly of primary cilia and almost completely prevented delocalization of the PCM. We demonstrate that hyperosmotic shock induces reversible morphological changes in primary cilia and the PCM in a manner dependent on excessive formation of microtubule and F-actin.
Collapse
Affiliation(s)
- Hiroshi Otani
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kanae Koike
- Natural Science Center for Basic Research and Development , Hiroshima University, Higashi Hiroshima 739-8527, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center , Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
4
|
Shiratsuchi G, Konishi S, Yano T, Yanagihashi Y, Nakayama S, Katsuno T, Kashihara H, Tanaka H, Tsukita K, Suzuki K, Herawati E, Watanabe H, Hirai T, Yagi T, Kondoh G, Gotoh S, Tamura A, Tsukita S. Dual-color live imaging unveils stepwise organization of multiple basal body arrays by cytoskeletons. EMBO Rep 2024; 25:1176-1207. [PMID: 38316902 PMCID: PMC10933483 DOI: 10.1038/s44319-024-00066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024] Open
Abstract
For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner. Later during MCC differentiation, fluctuations in BB-orientation were restricted, and locally aligned BB-arrays were further coordinated to align across the entire cell (BB-global alignment), mainly in an apical intermediate-sized filament-lattice-dependent manner. Thus, the high coordination of the BB-array was established for efficient mucociliary clearance as the primary defense against pathogen infection, identifying apical cytoskeletons as potential therapeutic targets.
Collapse
Affiliation(s)
- Gen Shiratsuchi
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Satoshi Konishi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Tomoki Yano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | | | - Shogo Nakayama
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Tatsuya Katsuno
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroka Kashihara
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroo Tanaka
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- School of Medicine, Teikyo University, Tokyo, Japan
| | - Kazuto Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koya Suzuki
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Elisa Herawati
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Hitomi Watanabe
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Gen Kondoh
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Atsushi Tamura
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- School of Medicine, Teikyo University, Tokyo, Japan.
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Chatzifrangkeskou M, Kouis P, Skourides PA. JNK regulates ciliogenesis through the interflagellar transport complex and actin networks. J Cell Biol 2023; 222:e202303052. [PMID: 37851005 PMCID: PMC10585068 DOI: 10.1083/jcb.202303052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) regulates various important physiological processes. Although the JNK pathway has been under intense investigation for over 20 yr, its complexity is still perplexing, with multiple protein partners underlying the diversity of its activity. We show that JNK is associated with the basal bodies in both primary and motile cilia. Loss of JNK disrupts basal body migration and docking and leads to severe ciliogenesis defects. JNK's involvement in ciliogenesis stems from a dual role in the regulation of the actin networks of multiciliated cells (MCCs) and the establishment of the intraflagellar transport-B core complex. JNK signaling is also critical for the maintenance of the actin networks and ciliary function in mature MCCs. JNK is implicated in the development of diabetes, neurodegeneration, and liver disease, all of which have been linked to ciliary dysfunction. Our work uncovers a novel role of JNK in ciliogenesis and ciliary function that could have important implications for JNK's role in the disease.
Collapse
Affiliation(s)
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Paris A. Skourides
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
6
|
Chang TJB, Hsu JCC, Yang TT. Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles. Nat Commun 2023; 14:1688. [PMID: 36973278 PMCID: PMC10043031 DOI: 10.1038/s41467-023-37342-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Distal appendages (DAPs) are vital in cilia formation, mediating vesicular and ciliary docking to the plasma membrane during early ciliogenesis. Although numerous DAP proteins arranging a nine-fold symmetry have been studied using superresolution microscopy analyses, the extensive ultrastructural understanding of the DAP structure developing from the centriole wall remains elusive owing to insufficient resolution. Here, we proposed a pragmatic imaging strategy for two-color single-molecule localization microscopy of expanded mammalian DAP. Importantly, our imaging workflow enables us to push the resolution limit of a light microscope well close to a molecular level, thus achieving an unprecedented mapping resolution inside intact cells. Upon this workflow, we unravel the ultra-resolved higher-order protein complexes of the DAP and its associated proteins. Intriguingly, our images show that C2CD3, microtubule triplet, MNR, CEP90, OFD1, and ODF2 jointly constitute a unique molecular configuration at the DAP base. Moreover, our finding suggests that ODF2 plays an auxiliary role in coordinating and maintaining DAP nine-fold symmetry. Together, we develop an organelle-based drift correction protocol and a two-color solution with minimum crosstalk, allowing a robust localization microscopy imaging of expanded DAP structures deep into the gel-specimen composites.
Collapse
Affiliation(s)
- Ting-Jui Ben Chang
- Department of Physics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | | | - T Tony Yang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Li S, Wang Z, Jia X, Niu T, Zhang J, Yin G, Zhang X, Zhu Y, Ji G, Sun F. ELI trifocal microscope: a precise system to prepare target cryo-lamellae for in situ cryo-ET study. Nat Methods 2023; 20:276-283. [PMID: 36646897 PMCID: PMC9911351 DOI: 10.1038/s41592-022-01748-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023]
Abstract
Cryo-electron tomography (cryo-ET) has become a powerful approach to study the high-resolution structure of cellular macromolecular machines in situ. However, the current correlative cryo-fluorescence and electron microscopy lacks sufficient accuracy and efficiency to precisely prepare cryo-lamellae of target locations for subsequent cryo-ET. Here we describe a precise cryogenic fabrication system, ELI-TriScope, which sets electron (E), light (L) and ion (I) beams at the same focal point to achieve accurate and efficient preparation of a target cryo-lamella. ELI-TriScope uses a commercial dual-beam scanning electron microscope modified to incorporate a cryo-holder-based transfer system and embed an optical imaging system just underneath the vitrified specimen. Cryo-focused ion beam milling can be accurately navigated by monitoring the real-time fluorescence signal of the target molecule. Using ELI-TriScope, we prepared a batch of cryo-lamellae of HeLa cells targeting the centrosome with a success rate of ~91% and discovered new in situ structural features of the human centrosome by cryo-ET.
Collapse
Affiliation(s)
- Shuoguo Li
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyan Wang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xing Jia
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tongxin Niu
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhang
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guoliang Yin
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Zhang
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhu
- University of Chinese Academy of Sciences, Beijing, China.
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Gang Ji
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Fei Sun
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Ma D, Wang F, Teng J, Huang N, Chen J. Structure and function of distal and subdistal appendages of the mother centriole. J Cell Sci 2023; 136:286880. [PMID: 36727648 DOI: 10.1242/jcs.260560] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Centrosomes are composed of centrioles surrounded by pericentriolar material. The two centrioles in G1 phase are distinguished by the localization of their appendages in the distal and subdistal regions; the centriole possessing both types of appendage is older and referred to as the mother centriole, whereas the other centriole lacking appendages is the daughter centriole. Both distal and subdistal appendages in vertebrate cells consist of multiple proteins assembled in a hierarchical manner. Distal appendages function mainly in the initial process of ciliogenesis, and subdistal appendages are involved in microtubule anchoring, mitotic spindle regulation and maintenance of ciliary signaling. Mutations in genes encoding components of both appendage types are implicated in ciliopathies and developmental defects. In this Review, we discuss recent advances in knowledge regarding the composition and assembly of centriolar appendages, as well as their roles in development and disease.
Collapse
Affiliation(s)
- Dandan Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Soh AWJ, Pearson CG. Ciliate cortical organization and dynamics for cell motility: Comparing ciliates and vertebrates. J Eukaryot Microbiol 2022; 69:e12880. [PMID: 34897878 PMCID: PMC9188629 DOI: 10.1111/jeu.12880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of efficient fluid flow is crucial for organismal development and homeostasis, sexual reproduction, and motility. Multi-ciliated cells possess fields of motile cilia that beat in synchrony to propel fluid. Ciliary arrays are remarkably conserved in their organization and function. Ciliates have polarized multi-ciliary arrays (MCAs) to promote fluid flow for cell motility. The ciliate cortex is decorated with hundreds of basal bodies (BB) forming linear rows along the cell's anterior-posterior axis. BBs scaffold and position cilia to form the organized ciliary array. Nascent BBs assemble at the base of BBs. As nascent BBs mature, they integrate into the cortical BB and cytoskeletal network and nucleate their own cilium. The organization of MCAs is balanced between cortical stability and cortical dynamism. The cortical cytoskeletal network both establishes and maintains a stable organization of the MCA in the face of mechanical forces exerted by ciliary beating. At the same time, MCA organization is plastic, such that it remodels for optimal ciliary mobility during development and in response to environmental conditions. Such plasticity promotes effective feeding and ecological behavior required for these organisms. Together, these properties allow an organism to effectively sense, adapt to, and move through its environment.
Collapse
Affiliation(s)
- Adam W. J. Soh
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Chad G. Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
10
|
Aljiboury A, Mujcic A, Curtis E, Cammerino T, Magny D, Lan Y, Bates M, Freshour J, Ahmed-Braimeh YH, Hehnly H. Pericentriolar matrix (PCM) integrity relies on cenexin and polo-like kinase (PLK)1. Mol Biol Cell 2022; 33:br14. [PMID: 35609215 PMCID: PMC9582643 DOI: 10.1091/mbc.e22-01-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/11/2022] Open
Abstract
Polo-like-kinase (PLK) 1 activity is associated with maintaining the functional and physical properties of the centrosome's pericentriolar matrix (PCM). In this study, we use a multimodal approach of human cells (HeLa), zebrafish embryos, and phylogenic analysis to test the role of a PLK1 binding protein, cenexin, in regulating the PCM. Our studies identify that cenexin is required for tempering microtubule nucleation by maintaining PCM cohesion in a PLK1-dependent manner. PCM architecture in cenexin-depleted zebrafish embryos was rescued with wild-type human cenexin, but not with a C-terminal cenexin mutant (S796A) deficient in PLK1 binding. We propose a model where cenexin's C terminus acts in a conserved manner in eukaryotes, excluding nematodes and arthropods, to sequester PLK1 that limits PCM substrate phosphorylation events required for PCM cohesion.
Collapse
Affiliation(s)
- Abrar Aljiboury
- Biology Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Amra Mujcic
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Erin Curtis
- Biology Department, Syracuse University, Syracuse, NY 13244
| | | | - Denise Magny
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Yiling Lan
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Michael Bates
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Judy Freshour
- Biology Department, Syracuse University, Syracuse, NY 13244
| | | | - Heidi Hehnly
- Biology Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
11
|
Mendes A, Heil HS, Coelho S, Leterrier C, Henriques R. Mapping molecular complexes with super-resolution microscopy and single-particle analysis. Open Biol 2022; 12:220079. [PMID: 35892200 PMCID: PMC9326279 DOI: 10.1098/rsob.220079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the structure of supramolecular complexes provides insight into their functional capabilities and how they can be modulated in the context of disease. Super-resolution microscopy (SRM) excels in performing this task by resolving ultrastructural details at the nanoscale with molecular specificity. However, technical limitations, such as underlabelling, preclude its ability to provide complete structures. Single-particle analysis (SPA) overcomes this limitation by combining information from multiple images of identical structures and producing an averaged model, effectively enhancing the resolution and coverage of image reconstructions. This review highlights important studies using SRM-SPA, demonstrating how it broadens our knowledge by elucidating features of key biological structures with unprecedented detail.
Collapse
Affiliation(s)
| | | | - Simao Coelho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, Oeiras, Portugal,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
12
|
Roux-Bourdieu ML, Dwivedi D, Harry D, Meraldi P. PLK1 controls centriole distal appendage formation and centrobin removal via independent pathways. J Cell Sci 2022; 135:275085. [PMID: 35343570 DOI: 10.1242/jcs.259120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Centrioles are central structural elements of centrosomes and cilia. In human cells daughter centrioles are assembled adjacent to existing centrioles in S-phase and reach their full functionality with the formation of distal and subdistal appendages one-and-a-half cell cycle later, as they exit their second mitosis. Current models postulate that the centriolar protein centrobin acts as placeholder for distal appendage proteins that must be removed to complete distal appendage formation. Here, we investigated in non-transformed human epithelial RPE1 cells the mechanisms controlling centrobin removal and its effect on distal appendage formation. Our data are consistent with a speculative model in which centrobin is removed from older centrioles due to a higher affinity for the newly born daughter centrioles, under the control of the centrosomal kinase Plk1. This removal also depends on the presence of subdistal appendage proteins on the oldest centriole. Removing centrobin, however, is not required for the recruitment of distal appendage proteins, even though this process is equally dependent on Plk1. We conclude that Plk1 kinase regulates centrobin removal and distal appendage formation during centriole maturation via separate pathways.
Collapse
Affiliation(s)
- Morgan Le Roux-Bourdieu
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
13
|
Ma D, Wang F, Wang R, Hu Y, Chen Z, Huang N, Tian Y, Xia Y, Teng J, Chen J. α-/γ-Taxilin are required for centriolar subdistal appendage assembly and microtubule organization. eLife 2022; 11:73252. [PMID: 35119360 PMCID: PMC8816381 DOI: 10.7554/elife.73252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
The centrosome composed of a pair of centrioles (mother and daughter) and pericentriolar material, and is mainly responsible for microtubule nucleation and anchorage in animal cells. The subdistal appendage (SDA) is a centriolar structure located at the mother centriole’s subdistal region, and it functions in microtubule anchorage. However, the molecular composition and detailed structure of the SDA remain largely unknown. Here, we identified α-taxilin and γ-taxilin as new SDA components that form a complex via their coiled-coil domains and that serve as a new subgroup during SDA hierarchical assembly. The taxilins’ SDA localization is dependent on ODF2, and α-taxilin recruits CEP170 to the SDA. Functional analyses suggest that α- and γ-taxilin are responsible for SDA structural integrity and centrosomal microtubule anchorage during interphase and for proper spindle orientation during metaphase. Our results shed light on the molecular components and functional understanding of the SDA hierarchical assembly and microtubule organization.
Collapse
Affiliation(s)
- Dandan Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Rongyi Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yingchun Hu
- Core Facilities College of Life Sciences, Peking University, Beijing, China
| | - Zhiquan Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Ning Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yonglu Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yuqing Xia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Junlin Teng
- Core Facilities College of Life Sciences, Peking University, Beijing, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China
| |
Collapse
|
14
|
Blanco-Ameijeiras J, Lozano-Fernández P, Martí E. Centrosome maturation - in tune with the cell cycle. J Cell Sci 2022; 135:274149. [PMID: 35088834 DOI: 10.1242/jcs.259395] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centres, playing essential roles in the organization of the cytoskeleton during interphase, and in the mitotic spindle, which controls chromosome segregation, during cell division. Centrosomes also act as the basal body of cilia, regulating cilium length and affecting extracellular signal reception as well as the integration of intracellular signalling pathways. Centrosomes are self-replicative and duplicate once every cell cycle to generate two centrosomes. The core support structure of the centrosome consists of two molecularly distinct centrioles. The mother (mature) centriole exhibits accessory appendages and is surrounded by both pericentriolar material and centriolar satellites, structures that the daughter (immature) centriole lacks. In this Review, we discuss what is currently known about centrosome duplication, its dialogue with the cell cycle and the sequential acquisition of specific components during centriole maturation. We also describe our current understanding of the mature centriolar structures that are required to build a cilium. Altogether, the built-in centrosome asymmetries that stem from the two centrosomes inheriting molecularly different centrioles sets the foundation for cell division being an intrinsically asymmetric process.
Collapse
Affiliation(s)
- Jose Blanco-Ameijeiras
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Pilar Lozano-Fernández
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
15
|
Tapia Contreras C, Hoyer-Fender S. The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility. Cells 2021; 10:2266. [PMID: 34571916 PMCID: PMC8471410 DOI: 10.3390/cells10092266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An articular structure is formed around the centriole pair known as the connecting piece, situated in the neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, in short, HTCA. Finally, the sperm tail grows out from the distal centriole that is now transformed into the basal body of the flagellum. However, a centriole pair is found in nearly all cells of the body. In somatic cells, it accumulates a large mass of proteins, the pericentriolar material (PCM), that together constitute the centrosome, which is the main microtubule-organizing center of the cell, essential not only for the structuring of the cytoskeleton and the overall cellular organization but also for mitotic spindle formation and chromosome segregation. However, in post-mitotic (G1 or G0) cells, the centrosome is transformed into the basal body. In this case, one of the centrioles, which is always the oldest or mother centriole, grows the axoneme of a cilium. Most cells of the body carry a single cilium known as the primary cilium that serves as an antenna sensing the cell's environment. Besides, specialized cells develop multiple motile cilia differing in substructure from the immotile primary cilia that are essential in moving fluids or cargos over the cellular surface. Impairment of cilia formation causes numerous severe syndromes that are collectively subsumed as ciliopathies. This comparative overview serves to illustrate the molecular mechanisms of basal body formation, their similarities, and dissimilarities, in somatic versus male germ cells, by discussing the involved proteins/genes and their expression, localization, and function. The review, thus, aimed to provide a deeper knowledge of the molecular players that is essential for the expansion of clinical diagnostics and treatment of male fertility disorders.
Collapse
Affiliation(s)
| | - Sigrid Hoyer-Fender
- Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
16
|
Saito H, Matsukawa-Usami F, Fujimori T, Kimura T, Ide T, Yamamoto T, Shibata T, Onoue K, Okayama S, Yonemura S, Misaki K, Soba Y, Kakui Y, Sato M, Toya M, Takeichi M. Tracheal motile cilia in mice require CAMSAP3 for formation of central microtubule pair and coordinated beating. Mol Biol Cell 2021; 32:ar12. [PMID: 34319756 PMCID: PMC8684751 DOI: 10.1091/mbc.e21-06-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Motile cilia of multiciliated epithelial cells undergo synchronized beating to produce fluid flow along the luminal surface of various organs. Each motile cilium consists of an axoneme and a basal body (BB), which are linked by a “transition zone” (TZ). The axoneme exhibits a characteristic 9+2 microtubule arrangement important for ciliary motion, but how this microtubule system is generated is not yet fully understood. Here we show that calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), a protein that can stabilize the minus-end of a microtubule, concentrates at multiple sites of the cilium–BB complex, including the upper region of the TZ or the axonemal basal plate (BP) where the central pair of microtubules (CP) initiates. CAMSAP3 dysfunction resulted in loss of the CP and partial distortion of the BP, as well as the failure of multicilia to undergo synchronized beating. These findings suggest that CAMSAP3 plays pivotal roles in the formation or stabilization of the CP by localizing at the basal region of the axoneme and thereby supports the coordinated motion of multicilia in airway epithelial cells.
Collapse
Affiliation(s)
- Hiroko Saito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Fumiko Matsukawa-Usami
- Division of Embryology, National Institute for Basic Biology, and Department of Basic Biology, School of Life Science, SOKENDAI, the Graduate University for Advanced Studies, Okazaki, 444-8787 Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, and Department of Basic Biology, School of Life Science, SOKENDAI, the Graduate University for Advanced Studies, Okazaki, 444-8787 Japan
| | - Toshiya Kimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takaki Yamamoto
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Satoko Okayama
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kazuyo Misaki
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Yurina Soba
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo 169-0051, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan
| | - Mika Toya
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
17
|
Nakayama S, Yano T, Namba T, Konishi S, Takagishi M, Herawati E, Nishida T, Imoto Y, Ishihara S, Takahashi M, Furuta K, Oiwa K, Tamura A, Tsukita S. Planar cell polarity induces local microtubule bundling for coordinated ciliary beating. J Cell Biol 2021; 220:212042. [PMID: 33929515 PMCID: PMC8094116 DOI: 10.1083/jcb.202010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)-dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.
Collapse
Affiliation(s)
- Shogo Nakayama
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Yano
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshinori Namba
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Konishi
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Takagishi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Elisa Herawati
- Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tomoki Nishida
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Yasuo Imoto
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Shuji Ishihara
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Ken'ya Furuta
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Kazuhiro Oiwa
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Atsushi Tamura
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Sachiko Tsukita
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| |
Collapse
|
18
|
Usami FM, Arata M, Shi D, Oka S, Higuchi Y, Tissir F, Takeichi M, Fujimori T. Intercellular and intracellular cilia orientation is coordinated by CELSR1 and CAMSAP3 in oviduct multi-ciliated cells. J Cell Sci 2021; 134:jcs.257006. [PMID: 33468623 DOI: 10.1242/jcs.257006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanisms by which cilia orientation is coordinated within and between multi-ciliated cells (MCCs) are not fully understood. In the mouse oviduct, MCCs exhibit a characteristic basal body (BB) orientation and microtubule gradient along the tissue axis. The intracellular polarities were moderately maintained in cells lacking CELSR1 (cadherin EGF LAG seven-pass G-type receptor 1), a planar cell polarity (PCP) factor involved in tissue polarity regulation, although the intercellular coordination of the polarities was disrupted. However, CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a microtubule minus-end regulator, was found to be critical for determining the intracellular BB orientation. CAMSAP3 localized to the base of cilia in a polarized manner, and its mutation led to the disruption of intracellular coordination of BB orientation, as well as the assembly of microtubules interconnecting BBs, without affecting PCP factor localization. Thus, both CELSR1 and CAMSAP3 are responsible for BB orientation but in distinct ways; their cooperation should therefore be critical for generating functional multi-ciliated tissues.
Collapse
Affiliation(s)
- Fumiko Matsukawa Usami
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan.,Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Masaki Arata
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan.,Graduate School of Science, Nagoya University, Nagoya, 464-8601 Japan
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Sanae Oka
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Yoko Higuchi
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology Unit, Avenue Mounier 73, Box B1.73.16, Brussels 1200, Belgium
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan .,Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| |
Collapse
|
19
|
Evolution of the centrosome, from the periphery to the center. Curr Opin Struct Biol 2020; 66:96-103. [PMID: 33242728 DOI: 10.1016/j.sbi.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/24/2022]
Abstract
Centrosomes are central organelles that organize microtubules (MTs) in animals, fungi and several other eukaryotic lineages. Despite an important diversity of structure, the centrosomes of different lineages share the same functions and part of their molecular components. To uncover how divergent centrosomes are related to each other, we need to trace the evolutionary history of MT organization. Careful assessment of cytoskeletal architecture in extant eukaryotic species can help us infer the ancestral state and identify the subsequent changes that took place during evolution. This led to the finding that the last common ancestor of all eukaryotes was very likely a biflagellate cell with a surprisingly complex cytoskeletal organization. Centrosomes are likely derived from the basal bodies of such flagellate, but when and how many times this happened remains unclear. Here, we discuss different hypotheses for how centrosomes evolved in a eukaryotic lineage called Amorphea, to which animals, fungi and amoebozoans belong.
Collapse
|
20
|
Brücker L, Kretschmer V, May-Simera HL. The entangled relationship between cilia and actin. Int J Biochem Cell Biol 2020; 129:105877. [PMID: 33166678 DOI: 10.1016/j.biocel.2020.105877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory cell organelles that are vital for tissue and organ development. They act as an antenna, receiving and transducing signals, enabling communication between cells. Defects in ciliogenesis result in severe genetic disorders collectively termed ciliopathies. In recent years, the importance of the direct and indirect involvement of actin regulators in ciliogenesis came into focus as it was shown that F-actin polymerisation impacts ciliation. The ciliary basal body was further identified as both a microtubule and actin organising centre. In the current review, we summarize recent studies on F-actin in and around primary cilia, focusing on different actin regulators and their effect on ciliogenesis, from the initial steps of basal body positioning and regulation of ciliary assembly and disassembly. Since primary cilia are also involved in several intracellular signalling pathways such as planar cell polarity (PCP), subsequently affecting actin rearrangements, the multiple effectors of this pathway are highlighted in more detail with a focus on the feedback loops connecting actin networks and cilia proteins. Finally, we elucidate the role of actin regulators in the development of ciliopathy symptoms and cancer.
Collapse
Affiliation(s)
- Lena Brücker
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Viola Kretschmer
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Helen Louise May-Simera
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
21
|
Nguyen QPH, Liu Z, Albulescu A, Ouyang H, Zlock L, Coyaud E, Laurent E, Finkbeiner W, Moraes TJ, Raught B, Mennella V. Comparative Super-Resolution Mapping of Basal Feet Reveals a Modular but Distinct Architecture in Primary and Motile Cilia. Dev Cell 2020; 55:209-223.e7. [PMID: 33038334 DOI: 10.1016/j.devcel.2020.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/18/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
Abstract
In situ molecular architecture analysis of organelles and protein assemblies is essential to understanding the role of individual components and their cellular function, and to engineering new molecular functionalities. Through a super-resolution-driven approach, here we characterize the organization of the ciliary basal foot, an appendage of basal bodies whose main role is to provide a point of anchoring to the microtubule cytoskeleton. Quantitative image analysis shows that the basal foot is organized into three main regions linked by elongated coiled-coil proteins, revealing a conserved modular architecture in primary and motile cilia, but showing distinct features reflecting its specialized functions. Using domain-specific BioID proximity labeling and super-resolution imaging, we identify CEP112 as a basal foot protein and other candidate components of this assembly, aiding future investigations on the role of basal foot across different cilia systems.
Collapse
Affiliation(s)
- Quynh P H Nguyen
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Zhen Liu
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Alexandra Albulescu
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Hong Ouyang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Lorna Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L8, Canada
| | - Estelle Laurent
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L8, Canada
| | - Walter Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Theo J Moraes
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Brian Raught
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L8, Canada
| | - Vito Mennella
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; NIHR Southampton Biomedical Research Center, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
22
|
Chong WM, Wang WJ, Lo CH, Chiu TY, Chang TJ, Liu YP, Tanos B, Mazo G, Tsou MFB, Jane WN, Yang TT, Liao JC. Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. eLife 2020; 9:53580. [PMID: 32242819 PMCID: PMC7173962 DOI: 10.7554/elife.53580] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Subdistal appendages (sDAPs) are centriolar elements that are observed proximal to the distal appendages (DAPs) in vertebrates. Despite the obvious presence of sDAPs, structural and functional understanding of them remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring, respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework for sDAPs that sheds light on functional understanding, surprisingly revealing coupling between DAPs and sDAPs.
Collapse
Affiliation(s)
- Weng Man Chong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Chien-Hui Lo
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Tzu-Yuan Chiu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Jui Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - You-Pi Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Barbara Tanos
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Gregory Mazo
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, United States
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - T Tony Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
NANOG/NANOGP8 Localizes at the Centrosome and is Spatiotemporally Associated with Centriole Maturation. Cells 2020; 9:cells9030692. [PMID: 32168958 PMCID: PMC7140602 DOI: 10.3390/cells9030692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
NANOG is a transcription factor involved in the regulation of pluripotency and stemness. The functional paralog of NANOG, NANOGP8, differs from NANOG in only three amino acids and exhibits similar reprogramming activity. Given the transcriptional regulatory role played by NANOG, the nuclear localization of NANOG/NANOGP8 has primarily been considered to date. In this study, we investigated the intriguing extranuclear localization of NANOG and demonstrated that a substantial pool of NANOG/NANOGP8 is localized at the centrosome. Using double immunofluorescence, the colocalization of NANOG protein with pericentrin was identified by two independent anti-NANOG antibodies among 11 tumor and non-tumor cell lines. The validity of these observations was confirmed by transient expression of GFP-tagged NANOG, which also colocalized with pericentrin. Mass spectrometry of the anti-NANOG immunoprecipitated samples verified the antibody specificity and revealed the expression of both NANOG and NANOGP8, which was further confirmed by real-time PCR. Using cell fractionation, we show that a considerable amount of NANOG protein is present in the cytoplasm of RD and NTERA-2 cells. Importantly, cytoplasmic NANOG was unevenly distributed at the centrosome pair during the cell cycle and colocalized with the distal region of the mother centriole, and its presence was markedly associated with centriole maturation. Along with the finding that the centrosomal localization of NANOG/NANOGP8 was detected in various tumor and non-tumor cell types, these results provide the first evidence suggesting a common centrosome-specific role of NANOG.
Collapse
|
24
|
Viol L, Hata S, Pastor-Peidro A, Neuner A, Murke F, Wuchter P, Ho AD, Giebel B, Pereira G. Nek2 kinase displaces distal appendages from the mother centriole prior to mitosis. J Cell Biol 2020; 219:e201907136. [PMID: 32211891 PMCID: PMC7055001 DOI: 10.1083/jcb.201907136] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/25/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Distal appendages (DAs) of the mother centriole are essential for the initial steps of ciliogenesis in G1/G0 phase of the cell cycle. DAs are released from centrosomes in mitosis by an undefined mechanism. Here, we show that specific DAs lose their centrosomal localization at the G2/M transition in a manner that relies upon Nek2 kinase activity to ensure low DA levels at mitotic centrosomes. Overexpression of active Nek2A, but not kinase-dead Nek2A, prematurely displaced DAs from the interphase centrosomes of immortalized retina pigment epithelial (RPE1) cells. This dramatic impact was also observed in mammary epithelial cells with constitutively high levels of Nek2. Conversely, Nek2 knockout led to incomplete dissociation of DAs and cilia in mitosis. As a consequence, we observed the presence of a cilia remnant that promoted the asymmetric inheritance of ciliary signaling components and supported cilium reassembly after cell division. Together, our data establish Nek2 as an important kinase that regulates DAs before mitosis.
Collapse
Affiliation(s)
- Linda Viol
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- German Cancer Research Centre, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, Heidelberg, Germany
| | - Shoji Hata
- Centre for Cell and Molecular Biology, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, University of Heidelberg, Heidelberg, Germany
| | - Ana Pastor-Peidro
- Centre for Cell and Molecular Biology, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, University of Heidelberg, Heidelberg, Germany
| | - Annett Neuner
- Centre for Cell and Molecular Biology, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, University of Heidelberg, Heidelberg, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Patrick Wuchter
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anthony D. Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gislene Pereira
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- German Cancer Research Centre, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, Heidelberg, Germany
| |
Collapse
|
25
|
Nayak SC, Radha V. C3G localizes to mother centriole dependent on cenexin, and regulates centrosome duplication and primary cilia length. J Cell Sci 2020; 133:jcs.243113. [DOI: 10.1242/jcs.243113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
C3G (RapGEF1) plays a role in cell differentiation and is essential for early embryonic development in mice. In this study, we identify C3G as a centrosomal protein colocalizing with cenexin at the mother centriole in interphase cells. C3G interacts through its catalytic domain with cenexin, and they show interdependence for localization to the centrosome. C3G depletion caused a decrease in cellular cenexin levels. Centrosomal localization is lost as myocytes differentiate to form myotubes. Stable clone of cells depleted of C3G by CRISPR/Cas9 showed the presence of supernumerary centrioles. Overexpression of C3G, or a catalytically active deletion construct inhibited centrosome duplication. Cilia length is longer in C3G knockout cells, and the phenotype could be reverted upon reintroduction of C3G or its catalytic domain. Association of C3G with the basal body is dynamic, decreasing upon serum starvation, and increasing upon reentry into the cell cycle. C3G inhibits cilia formation and length dependent on its catalytic activity. We conclude that C3G inhibits centrosome duplication and maintains ciliary homeostasis, properties that may be important for its role in embryonic development.
Collapse
Affiliation(s)
- Sanjeev Chavan Nayak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad – 500 007, India
| | - Vegesna Radha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad – 500 007, India
| |
Collapse
|
26
|
Hossain D, Barbelanne M, Tsang WY. Requirement of NPHP5 in the hierarchical assembly of basal feet associated with basal bodies of primary cilia. Cell Mol Life Sci 2020; 77:195-212. [PMID: 31177295 PMCID: PMC11104825 DOI: 10.1007/s00018-019-03181-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/13/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
During ciliogenesis, the mother centriole transforms into a basal body competent to nucleate a cilium. The mother centriole and basal body possess sub-distal appendages (SDAs) and basal feet (BF), respectively. SDAs and BF are thought to be equivalent structures. In contrast to SDA assembly, little is known about the players involved in BF assembly and its assembly order. Furthermore, the contribution of BF to ciliogenesis is not understood. Here, we found that SDAs are distinguishable from BF and that the protein NPHP5 is a novel SDA and BF component. Remarkably, NPHP5 is specifically required for BF assembly in cells able to form basal bodies but is dispensable for SDA assembly. Determination of the hierarchical assembly reveals that NPHP5 cooperates with a subset of SDA/BF proteins to organize BF. The assembly pathway of BF is similar but not identical to that of SDA. Loss of NPHP5 or a BF protein simultaneously inhibits BF assembly and primary ciliogenesis, and these phenotypes could be rescued by manipulating the expression of certain components in the BF assembly pathway. These findings define a novel role for NPHP5 in specifically regulating BF assembly, a process which is tightly coupled to primary ciliogenesis.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Marine Barbelanne
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - William Y Tsang
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada.
| |
Collapse
|
27
|
Cabrillana ME, Bocanegra V, Monclus MA, Lancellotti TS, Simón L, Funes AK, Colombo R, Ruiz Estrabón M, Vincenti AE, Oliva R, Fornés MW. ODF1, sperm flagelar protein is expressed in kidney collecting ducts of rats. Heliyon 2019; 5:e02932. [PMID: 31867458 PMCID: PMC6906709 DOI: 10.1016/j.heliyon.2019.e02932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 11/15/2022] Open
Abstract
ODF1 has been described as an exclusively expressed testicular protein and is located in the outer dense fibers along the sperm tail. ODF1 has been involved in the sperm motility and in the development of the flagellum, but the function of ODF1 is not already clear. Other ODF proteins, such as ODF2 have been characterized in other tissues like the basal body of the kidney primary cilium, but so far only the mRNA of ODF1 has been described in other tissues. These observations let us to hypothesize that the expression of the protein ODF1 could not be limited to the testis. Therefore, in the present work we proposed to evaluate if the ODF1 protein could also be present in tissues other than the testis. Here we demonstrated through western blot, immunofluorescence, and RT-PCR techniques that the protein and mRNA of ODF1 have been identified in the rat kidney. Finally, the presence of ODF1 in kidney has also been confirmed through proteomic analysis using mass spectrometry. The results derived from these different complementary approaches indicate that, to our knowledge and for the first time, ODF1 is demonstrated to be present in an additional organ different to testis. This results raise new questions about potential other functions and locations of the ODF1 protein.
Collapse
Affiliation(s)
- M E Cabrillana
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - V Bocanegra
- IMBECU-CONICET, UNCuyo (National University of Cuyo), 5500, Mendoza, Argentina
| | - M A Monclus
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - Te Saez Lancellotti
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - L Simón
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - A K Funes
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - R Colombo
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - M Ruiz Estrabón
- Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - A E Vincenti
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - R Oliva
- Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, And Hospital Clinic, Molecular Biology of Reproduction and Development Research Group, 08036, Barcelona, Spain
| | - M W Fornés
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| |
Collapse
|
28
|
Lamri L, Twan WK, Katoh TA, Botilde Y, Takaoka K, Ikawa Y, Nishimura H, Fukumoto A, Minegishi K, Mizuno K, Hamada H. Ciliogenesis-coupled accumulation of IFT-B proteins in a novel cytoplasmic compartment. Genes Cells 2019; 24:731-745. [PMID: 31554018 DOI: 10.1111/gtc.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
Cluap1/IFT38 is a ciliary protein that belongs to the IFT-B complex and is required for ciliogenesis. In this study, we have examined the behaviors of Cluap1 protein in nonciliated and ciliated cells. In proliferating cells, Cluap1 is located at the distal appendage of the mother centriole. When cells are induced to form cilia, Cluap1 is found in a novel noncentriolar compartment, the cytoplasmic IFT spot, which mainly exists once in a cell. Other IFT-B proteins such as IFT46 and IFT88 are colocalized in this spot. The cytoplasmic IFT spot is present in mouse embryonic fibroblasts (MEFs) but is absent in ciliogenesis-defective MEFs lacking Cluap1, Kif3a or Odf2. The cytoplasmic IFT spot is also found in mouse embryos but is absent in the Cluap1 mutant embryo. When MEFs are induced to form cilia, the cytoplasmic IFT spot appears at an early step of ciliogenesis but starts to disappear when ciliogenesis is mostly completed. These results suggest that IFT-B proteins such as Cluap1 accumulate in a previously undescribed cytoplasmic compartment during ciliogenesis.
Collapse
Affiliation(s)
- Lynda Lamri
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Wang Kyaw Twan
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takanobu A Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yanick Botilde
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yayoi Ikawa
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiromi Nishimura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akemi Fukumoto
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Katsura Minegishi
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
29
|
Mönnich M, Borgeskov L, Breslin L, Jakobsen L, Rogowski M, Doganli C, Schrøder JM, Mogensen JB, Blinkenkjær L, Harder LM, Lundberg E, Geimer S, Christensen ST, Andersen JS, Larsen LA, Pedersen LB. CEP128 Localizes to the Subdistal Appendages of the Mother Centriole and Regulates TGF-β/BMP Signaling at the Primary Cilium. Cell Rep 2019. [PMID: 29514088 DOI: 10.1016/j.celrep.2018.02.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling. Loss of CEP128 did not grossly affect centrosomal or ciliary structure but caused impaired transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) signaling in zebrafish and at the primary cilium in cultured mammalian cells. This phenotype is likely the result of defective vesicle trafficking at the cilium as ciliary localization of RAB11 was impaired upon loss of CEP128, and quantitative phosphoproteomics revealed that CEP128 loss affects TGF-β1-induced phosphorylation of multiple proteins that regulate cilium-associated vesicle trafficking.
Collapse
Affiliation(s)
- Maren Mönnich
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Louise Borgeskov
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Loretta Breslin
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lis Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Michaela Rogowski
- Cell Biology/Electron Microscopy, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Canan Doganli
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jacob M Schrøder
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Johanne B Mogensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Louise Blinkenkjær
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lea M Harder
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Emma Lundberg
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, SE-171 21 Stockholm, Sweden
| | - Stefan Geimer
- Cell Biology/Electron Microscopy, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
30
|
Uzbekov R, Alieva I. Who are you, subdistal appendages of centriole? Open Biol 2019; 8:rsob.180062. [PMID: 30045886 PMCID: PMC6070718 DOI: 10.1098/rsob.180062] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
This review summarizes data that assign morphological, biochemical and functional characteristics of two types of structures that are associated with centrioles: distal appendages and subdistal appendages. The description of centriole subdistal appendages is often a matter of confusion, both due to the numerous names used to describe these structures and because of their variability among species and cell types. Thus, we have summarized our current knowledge in this review. We conclude that distal appendages and subdistal appendages are fundamentally different in composition and function in the cell. While in centrioles there are always nine distal appendages, the number of subdistal appendages can vary depending on the type of cells and their functional state.
Collapse
Affiliation(s)
- Rustem Uzbekov
- Faculté de Médecine, Université de Tours, 10 Boulevard Tonnellé, 37032 Tours, France .,Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye gory 73, 119234 Moscow, Russia
| | - Irina Alieva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskye gory 1-40, 119992 Moscow, Russia
| |
Collapse
|
31
|
Bowler M, Kong D, Sun S, Nanjundappa R, Evans L, Farmer V, Holland A, Mahjoub MR, Sui H, Loncarek J. High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat Commun 2019; 10:993. [PMID: 30824690 PMCID: PMC6397210 DOI: 10.1038/s41467-018-08216-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Centrioles are vital cellular structures that form centrosomes and cilia. The formation and function of cilia depends on a set of centriole's distal appendages. In this study, we use correlative super resolution and electron microscopy to precisely determine where distal appendage proteins localize in relation to the centriole microtubules and appendage electron densities. Here we characterize a novel distal appendage protein ANKRD26 and detail, in high resolution, the initial steps of distal appendage assembly. We further show that distal appendages undergo a dramatic ultra-structural reorganization before mitosis, during which they temporarily lose outer components, while inner components maintain a nine-fold organization. Finally, using electron tomography we reveal that mammalian distal appendages associate with two centriole microtubule triplets via an elaborate filamentous base and that they appear as almost radial finger-like protrusions. Our findings challenge the traditional portrayal of mammalian distal appendage as a pinwheel-like structure that is maintained throughout mitosis.
Collapse
Affiliation(s)
- Mathew Bowler
- Laboratory of Protein Dynamics and Signaling, NIH/NCI/CCR, Frederick, Maryland, 21702, USA
- Optical Microscopy and Analysis Laboratory, NIH/NCI/CCR, Frederick, Maryland, 21702, USA
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, NIH/NCI/CCR, Frederick, Maryland, 21702, USA
| | - Shufeng Sun
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Rashmi Nanjundappa
- Department of Medicine (Nephrology Division), Washington University, St Louis, 63110, MO, USA
| | - Lauren Evans
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Veronica Farmer
- Laboratory of Protein Dynamics and Signaling, NIH/NCI/CCR, Frederick, Maryland, 21702, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, 37235, TN, USA
| | - Andrew Holland
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St Louis, 63110, MO, USA
- Department of Cell Biology and Physiology, Washington University, St Louis, 12201, MO, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
- Department of Biomedical Sciences, School of Public Health, University of Albany, Albany, NY, 12201, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI/CCR, Frederick, Maryland, 21702, USA.
| |
Collapse
|
32
|
Kashihara H, Chiba S, Kanno SI, Suzuki K, Yano T, Tsukita S. Cep128 associates with Odf2 to form the subdistal appendage of the centriole. Genes Cells 2019; 24:231-243. [PMID: 30623524 DOI: 10.1111/gtc.12668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 12/13/2022]
Abstract
The mother centriole in a cell has two appendages, the distal appendage (DA) and subdistal appendage (SDA), which have roles in generating cilia and organizing the cellular microtubular network, respectively. In the knockout (KO) cells of Odf2, the component of the DA and SDA, both appendages simultaneously disappear. However, the molecular mechanisms by which the DA and SDA form independently but close to each other downstream of Odf2 are unknown. Here, using super-resolution structured illumination microscopy (SR-SIM), we found that the signal for GFP-tagged Odf2 overlapped considerably with that of immunofluorescently labeled Cep128. We further found that Cep128 knockdown (KD) caused the dissociation of other SDA components from the centriole, including centriolin, Ndel1, ninein and Cep170, whereas Odf2 was still associated with the centriole. In contrast, the DA components remained associated with the centriole in Cep128 KD cells. Consistent with this observation, we identified Cep128 as an Odf2-interacting protein by immunoprecipitation. Taken with the finding that Cep128 deletion decreased the stability of centriolar microtubules, our results indicate that Cep128 associates with Odf2 in the hierarchical assembly of SDA components to elicit the microtubule-organizing function.
Collapse
Affiliation(s)
| | - Shuhei Chiba
- Graduate School of Medicine, Osaka University, Osaka, Japan.,Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shin-Ichiro Kanno
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Koya Suzuki
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Yano
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | | |
Collapse
|
33
|
Hossain D, Tsang WY. The role of ubiquitination in the regulation of primary cilia assembly and disassembly. Semin Cell Dev Biol 2018; 93:145-152. [PMID: 30213760 DOI: 10.1016/j.semcdb.2018.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023]
Abstract
The primary cilium is a cellular antenna found on the surface of many eukaryotic cells, whose main role is to sense and transduce signals that regulate growth, development, and differentiation. Although once believed to be a vestigial organelle without important function, it has become clear that defects in primary cilium are responsible for a wide variety of genetic diseases affecting many organs and tissues, including the brain, eyes, heart, kidneys, liver, and pancreas. The primary cilium is mainly present in quiescent and differentiated cells, and controls must exist to ensure that this organelle is assembled or disassembled at the right time. Although many protein components required for building the cilium have been identified, mechanistic details of how these proteins are spatially and temporally regulated and how these regulations are connected to external cues are beginning to emerge. This review article highlights the role of ubiquitination and in particular, E3 ubiquitin ligases and deubiquitinases, in the control of primary cilia assembly and disassembly.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montréal, Montreal, Quebec, H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montréal, Montreal, Quebec, H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
34
|
Bornens M. Cell polarity: having and making sense of direction-on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biol 2018; 8:180052. [PMID: 30068565 PMCID: PMC6119866 DOI: 10.1098/rsob.180052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is evolutionarily conserved. I assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception, integration of these two activities being an evolutionarily constrained function. Metazoans are unique in making cohesive multicellular organisms through complete cell divisions. They evolved a primary cilium/centrosome (PC/C) organ, ensuring similar functions to the basal body/flagellum of unicellular eukaryotes, but in different cells, or in the same cell at different moments. The possibility that this innovation contributed to the evolution of individuality, in being instrumental in the early specification of the germ line during development, is further discussed. Then, using the example of highly regenerative organisms like planarians, which have lost PC/C organ in dividing cells, I discuss the possibility that part of the remodelling necessary to reach a new higher-level unit of selection in multi-cellular organisms has been triggered by conflicts among individual cell polarities to reach an organismic polarity. Finally, I briefly consider organisms with a sensorimotor organ like the brain that requires exceedingly elongated polarized cells for its activity. I conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans had far-reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS - UMR 144, 75005 Paris, France
| |
Collapse
|
35
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
36
|
Endicott SJ, Brueckner M. NUP98 Sets the Size-Exclusion Diffusion Limit through the Ciliary Base. Curr Biol 2018; 28:1643-1650.e3. [PMID: 29731308 DOI: 10.1016/j.cub.2018.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
The primary cilium maintains a well-regulated complement of soluble and membrane proteins, allowing it to mediate a variety of signaling pathways that are essential for development and tissue homeostasis [1-3]. Entry into the cilium is regulated at the base, where a complex containing nucleoporins, referred to as the "ciliary pore complex" (CPC), has been proposed to set a size-exclusion limit for soluble molecule diffusion into the cilium [4-6]. Here, using a fluorescence-based diffusion trap system, we demonstrate that NUP98, a component of the phenylalanine-glycine (FG) hydrogel permeability barrier at the nuclear pore complex [7, 8], limits the diffusion of soluble molecules >70 kDa into the cilium in cultured mammalian cells. Small interfering RNA (siRNA)-mediated knockdown of NUP98 increases the rate of diffusion of molecules >100 kDa into the cilium. The tubulin heterodimer, the building block of the axoneme [9, 10], is approximately 100 kDa in size. After knockdown of NUP98, cilia become shorter, and their length is more sensitive to changes in cytoplasmic soluble tubulin levels. These data indicate a novel function of the ciliary pore complex, limiting diffusion of soluble tubulin between the ciliary matrix and the cytosol, allowing the cilium to regulate its length independently of cytosolic microtubule dynamics.
Collapse
Affiliation(s)
- S Joseph Endicott
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Martina Brueckner
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Wang C, Li J, Takemaru KI, Jiang X, Xu G, Wang B. Centrosomal protein Dzip1l binds Cby, promotes ciliary bud formation, and acts redundantly with Bromi to regulate ciliogenesis in the mouse. Development 2018; 145:dev.164236. [PMID: 29487109 DOI: 10.1242/dev.164236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/14/2022]
Abstract
The primary cilium is a microtubule-based organelle required for Hedgehog (Hh) signaling and consists of a basal body, a ciliary axoneme and a compartment between the first two structures, called the transition zone (TZ). The TZ serves as a gatekeeper to control protein composition in cilia, but less is known about its role in ciliary bud formation. Here, we show that centrosomal protein Dzip1l is required for Hh signaling between Smoothened and Sufu. Dzip1l colocalizes with basal body appendage proteins and Rpgrip1l, a TZ protein. Loss of Dzip1l results in reduced ciliogenesis and dysmorphic cilia in vivo Dzip1l interacts with, and acts upstream of, Cby, an appendage protein, in ciliogenesis. Dzip1l also has overlapping functions with Bromi (Tbc1d32) in ciliogenesis, cilia morphogenesis and neural tube patterning. Loss of Dzip1l arrests ciliogenesis at the stage of ciliary bud formation from the TZ. Consistent with this, Dzip1l mutant cells fail to remove the capping protein Cp110 (Ccp110) from the distal end of mother centrioles and to recruit Rpgrip1l to the TZ. Therefore, Dzip1l promotes ciliary bud formation and is required for the integrity of the TZ.
Collapse
Affiliation(s)
- Chengbing Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| | - Jia Li
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Xiaogang Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA .,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| |
Collapse
|
38
|
Yang K, Tylkowski MA, Hüber D, Contreras CT, Hoyer-Fender S. ODF2/Cenexin maintains centrosome cohesion by restricting β-catenin accumulation. J Cell Sci 2018; 131:jcs.220954. [DOI: 10.1242/jcs.220954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
The centrosome, as the main microtubule organizing center, safeguards chromosome segregation by constituting the bipolar spindle. Centrosome aberrations are causally related to chromosome segregation disorders, both characterizing cancer cells. Thus, restriction to only one centrosome per cell, and cell cycle dependent duplication is mandatory. Duplicated centrosomes remain physically connected to function as a single entity, until onset of mitosis when centrosome disjunction is licensed by disassembly of linker proteins and accumulation of β-catenin. The crucial role β-catenin plays in centrosome disjunction inevitably demands for restricting its premature accumulation. ODF2/Cenexin is an essential centrosomal component but its relevance for the interphase centrosome has not been elucidated. We show here, that ODF2/Cenexin plays a central role in centrosome cohesion. Depletion of ODF2/Cenexin induces premature centrosome splitting and formation of tripolar spindles that are likely caused by the observed accumulation of centrosomal β-catenin. Our data collectively indicate that ODF2/Cenexin restricts β-catenin accumulation at the centrosome thus preventing premature centrosome disjunction.
Collapse
Affiliation(s)
- Kefei Yang
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Marco Andreas Tylkowski
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Daniela Hüber
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Constanza Tapia Contreras
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
39
|
Loncarek J, Bettencourt-Dias M. Building the right centriole for each cell type. J Cell Biol 2017; 217:823-835. [PMID: 29284667 PMCID: PMC5839779 DOI: 10.1083/jcb.201704093] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
Loncarek and Bettencourt-Dias review molecular mechanisms of centriole biogenesis amongst different organisms and cell types. The centriole is a multifunctional structure that organizes centrosomes and cilia and is important for cell signaling, cell cycle progression, polarity, and motility. Defects in centriole number and structure are associated with human diseases including cancer and ciliopathies. Discovery of the centriole dates back to the 19th century. However, recent advances in genetic and biochemical tools, development of high-resolution microscopy, and identification of centriole components have accelerated our understanding of its assembly, function, evolution, and its role in human disease. The centriole is an evolutionarily conserved structure built from highly conserved proteins and is present in all branches of the eukaryotic tree of life. However, centriole number, size, and organization varies among different organisms and even cell types within a single organism, reflecting its cell type–specialized functions. In this review, we provide an overview of our current understanding of centriole biogenesis and how variations around the same theme generate alternatives for centriole formation and function.
Collapse
Affiliation(s)
- Jadranka Loncarek
- Cell Cycle Regulation Lab, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD
| |
Collapse
|
40
|
Bernabé-Rubio M, Alonso MA. Routes and machinery of primary cilium biogenesis. Cell Mol Life Sci 2017; 74:4077-4095. [PMID: 28624967 PMCID: PMC11107551 DOI: 10.1007/s00018-017-2570-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Primary cilia are solitary, microtubule-based protrusions of the cell surface that play fundamental roles as photosensors, mechanosensors and biochemical sensors. Primary cilia dysfunction results in a long list of developmental and degenerative disorders that combine to give rise to a large spectrum of human diseases affecting almost any major body organ. Depending on the cell type, primary ciliogenesis is initiated intracellularly, as in fibroblasts, or at the cell surface, as in renal polarized epithelial cells. In this review, we have focused on the routes of primary ciliogenesis placing particular emphasis on the recently described pathway in renal polarized epithelial cells by which the midbody remnant resulting from a previous cell division event enables the centrosome for initiation of primary cilium assembly. The protein machinery implicated in primary cilium formation in epithelial cells, including the machinery best known for its involvement in establishing cell polarity and polarized membrane trafficking, is also discussed.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
41
|
Li W, Yi P, Zhu Z, Zhang X, Li W, Ou G. Centriole translocation and degeneration during ciliogenesis in Caenorhabditis elegans neurons. EMBO J 2017; 36:2553-2566. [PMID: 28743734 DOI: 10.15252/embj.201796883] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
Neuronal cilia that are formed at the dendritic endings of sensory neurons are essential for sensory perception. However, it remains unclear how the centriole-derived basal body is positioned to form a template for cilium formation. Using fluorescence time-lapse microscopy, we show that the centriole translocates from the cell body to the dendrite tip in the Caenorhabditis elegans sensory neurons. The centriolar protein SAS-5 interacts with the dynein light-chain LC8 and conditional mutations of cytoplasmic dynein-1 block centriole translocation and ciliogenesis. The components of the central tube are essential for the biogenesis of centrioles, which later drive ciliogenesis in the dendrite; however, the centriole loses these components at the late stage of centriole translocation and subsequently recruits transition zone and intraflagellar transport proteins. Together, our results provide a comprehensive model of ciliogenesis in sensory neurons and reveal the importance of the dynein-dependent centriole translocation in this process.
Collapse
Affiliation(s)
- Wenjing Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Xianliang Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Wei Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
42
|
Herawati E, Taniguchi D, Kanoh H, Tateishi K, Ishihara S, Tsukita S. Multiciliated cell basal bodies align in stereotypical patterns coordinated by the apical cytoskeleton. J Cell Biol 2017; 214:571-86. [PMID: 27573463 PMCID: PMC5004441 DOI: 10.1083/jcb.201601023] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
Herawati et al. developed a long-term and high-resolution live imaging system for cultured mouse tracheal multiciliated cells. Using both experimental and theoretical studies, they reveal the developmental principle of ciliary basal body alignment directed by apical cytoskeletons. Multiciliated cells (MCCs) promote fluid flow through coordinated ciliary beating, which requires properly organized basal bodies (BBs). Airway MCCs have large numbers of BBs, which are uniformly oriented and, as we show here, align linearly. The mechanism for BB alignment is unexplored. To study this mechanism, we developed a long-term and high-resolution live-imaging system and used it to observe green fluorescent protein–centrin2–labeled BBs in cultured mouse tracheal MCCs. During MCC differentiation, the BB array adopted four stereotypical patterns, from a clustering “floret” pattern to the linear “alignment.” This alignment process was correlated with BB orientations, revealed by double immunostaining for BBs and their asymmetrically associated basal feet (BF). The BB alignment was disrupted by disturbing apical microtubules with nocodazole and by a BF-depleting Odf2 mutation. We constructed a theoretical model, which indicated that the apical cytoskeleton, acting like a viscoelastic fluid, provides a self-organizing mechanism in tracheal MCCs to align BBs linearly for mucociliary transport.
Collapse
Affiliation(s)
- Elisa Herawati
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Taniguchi
- Department of Physics, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan
| | - Hatsuho Kanoh
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuhiro Tateishi
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shuji Ishihara
- Department of Physics, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Huang N, Xia Y, Zhang D, Wang S, Bao Y, He R, Teng J, Chen J. Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68. Nat Commun 2017; 8:15057. [PMID: 28422092 PMCID: PMC5399293 DOI: 10.1038/ncomms15057] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
In animal cells, the centrosome is the main microtubule-organizing centre where microtubules are nucleated and anchored. The centriole subdistal appendages (SDAs) are the key structures that anchor microtubules in interphase cells, but the composition and assembly mechanisms of SDAs are not well understood. Here, we reveal that centrosome-binding proteins, coiled-coil domain containing (CCDC) 120 and CCDC68 are two novel SDA components required for hierarchical SDA assembly in human cells. CCDC120 is anchored to SDAs by ODF2 and recruits CEP170 and Ninein to the centrosome through different coiled-coil domains at its N terminus. CCDC68 is a CEP170-interacting protein that competes with CCDC120 in recruiting CEP170 to SDAs. Furthermore, CCDC120 and CCDC68 are required for centrosome microtubule anchoring. Our findings elucidate the molecular basis for centriole SDA hierarchical assembly and microtubule anchoring in human interphase cells.
Collapse
Affiliation(s)
- Ning Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuqing Xia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Donghui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Song Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yitian Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Runsheng He
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development. Sci Rep 2017; 7:43783. [PMID: 28272499 PMCID: PMC5363704 DOI: 10.1038/srep43783] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks.
Collapse
|
45
|
Ishikawa H, Marshall WF. Intraflagellar Transport and Ciliary Dynamics. Cold Spring Harb Perspect Biol 2017; 9:9/3/a021998. [PMID: 28249960 DOI: 10.1101/cshperspect.a021998] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cilia and flagella are microtubule-based organelles whose assembly requires a motile process, known as intraflagellar transport (IFT), to bring tubulin and other components to the distal tip of the growing structure. The IFT system uses a multiprotein complex with components that appear to be specialized for the transport of different sets of cargo proteins. The mechanisms by which cargo is selected for ciliary import and transport by IFT remain an area of active research. The complex dynamics of cilia and flagella are under constant regulation to ensure proper length control, and this regulation appears to involve regulation at the stage of IFT injection into the flagellum, as well as regulation of flagellar disassembly and, possibly, of cargo binding. Cilia and flagella thus represent a convenient model system to study how multiple motile and signaling pathways cooperate to control the assembly and dynamics of a complex cellular structure.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
46
|
Garcia-Gonzalo FR, Reiter JF. Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028134. [PMID: 27770015 DOI: 10.1101/cshperspect.a028134] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cilia are plasma membrane protrusions that act as cellular propellers or antennae. To perform these functions, cilia must maintain a composition distinct from those of the contiguous cytosol and plasma membrane. The specialized composition of the cilium depends on the ciliary gate, the region at the ciliary base separating the cilium from the rest of the cell. The ciliary gate's main structural features are electron dense struts connecting microtubules to the adjacent membrane. These structures include the transition fibers, which connect the distal basal body to the base of the ciliary membrane, and the Y-links, which connect the proximal axoneme and ciliary membrane within the transition zone. Both transition fibers and Y-links form early during ciliogenesis and play key roles in ciliary assembly and trafficking. Accordingly, many human ciliopathies are caused by mutations that perturb ciliary gate function.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
47
|
Morlon-Guyot J, Francia ME, Dubremetz JF, Daher W. Towards a molecular architecture of the centrosome in Toxoplasma gondii. Cytoskeleton (Hoboken) 2017; 74:55-71. [PMID: 28026138 DOI: 10.1002/cm.21353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis. The pathogenicity of this unicellular parasite is tightly linked to its ability to efficiently proliferate within its host. Tachyzoites, the fast dividing form of the parasite, divide by endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. The successful completion of endodyogeny relies on the temporal and spatial coordination of a plethora of simultaneous events. It has been shown that the Toxoplasma centrosome serves as signaling hub which nucleates spindle microtubules during mitosis and organizes the scaffolding of daughter cells components during cytokinesis. In addition, the centrosome is essential for inheriting both the apicoplast (a chloroplast-like organelle) and the Golgi apparatus. A growing body of evidence supports the notion that the T. gondii centrosome diverges in protein composition, structure and organization from its counterparts in higher eukaryotes making it an attractive source of potentially druggable targets. Here, we summarize the current knowledge on T. gondii centrosomal proteins and extend the putative centrosomal protein repertoire by in silico identification of mammalian centrosomal protein orthologs. We propose a working model for the organization and architecture of the centrosome in Toxoplasma parasites. Experimental validation of our proposed model will uncover how each predicted protein translates into the biology of centrosome, cytokinesis, karyokinesis, and organelle inheritance in Toxoplasma parasites.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Maria E Francia
- Molecular Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Jean-François Dubremetz
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
48
|
Abstract
Many animal cells assemble single cilia involved in motile and/or sensory functions. In contrast, multiciliated cells (MCCs) assemble up to 300 motile cilia that beat in a coordinate fashion to generate a directional fluid flow. In the human airways, the brain, and the oviduct, MCCs allow mucus clearance, cerebrospinal fluid circulation, and egg transportation, respectively. Impairment of MCC function leads to chronic respiratory infections and increased risks of hydrocephalus and female infertility. MCC differentiation during development or repair involves the activation of a regulatory cascade triggered by the inhibition of Notch activity in MCC progenitors. The downstream events include the simultaneous assembly of a large number of basal bodies (BBs)-from which cilia are nucleated-in the cytoplasm of the differentiating MCCs, their migration and docking at the plasma membrane associated to an important remodeling of the actin cytoskeleton, and the assembly and polarization of motile cilia. The direction of ciliary beating is coordinated both within cells and at the tissue level by a combination of planar polarity cues affecting BB position and hydrodynamic forces that are both generated and sensed by the cilia. Herein, we review the mechanisms controlling the specification and differentiation of MCCs and BB assembly and organization at the apical surface, as well as ciliary assembly and coordination in MCCs.
Collapse
Affiliation(s)
- Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR8197, 75005 Paris, France
| | - Juliette Azimzadeh
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592, Université Paris-Diderot, 75013 Paris, France
| |
Collapse
|
49
|
Bauer M, Cubizolles F, Schmidt A, Nigg EA. Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. EMBO J 2016; 35:2152-2166. [PMID: 27539480 PMCID: PMC5048348 DOI: 10.15252/embj.201694462] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022] Open
Abstract
Centrioles are essential for the formation of centrosomes and cilia. While numerical and/or structural centrosomes aberrations are implicated in cancer, mutations in centriolar and centrosomal proteins are genetically linked to ciliopathies, microcephaly, and dwarfism. The evolutionarily conserved mechanisms underlying centrosome biogenesis are centered on a set of key proteins, including Plk4, Sas-6, and STIL, whose exact levels are critical to ensure accurate reproduction of centrioles during cell cycle progression. However, neither the intracellular levels of centrosomal proteins nor their stoichiometry within centrosomes is presently known. Here, we have used two complementary approaches, targeted proteomics and EGFP-tagging of centrosomal proteins at endogenous loci, to measure protein abundance in cultured human cells and purified centrosomes. Our results provide a first assessment of the absolute and relative amounts of major components of the human centrosome. Specifically, they predict that human centriolar cartwheels comprise up to 16 stacked hubs and 1 molecule of STIL for every dimer of Sas-6. This type of quantitative information will help guide future studies of the molecular basis of centrosome assembly and function.
Collapse
Affiliation(s)
- Manuel Bauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
50
|
Inaba H, Goto H, Kasahara K, Kumamoto K, Yonemura S, Inoko A, Yamano S, Wanibuchi H, He D, Goshima N, Kiyono T, Hirotsune S, Inagaki M. Ndel1 suppresses ciliogenesis in proliferating cells by regulating the trichoplein-Aurora A pathway. J Cell Biol 2016; 212:409-23. [PMID: 26880200 PMCID: PMC4754717 DOI: 10.1083/jcb.201507046] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ndel1, a protein located at the subdistal appendage of mother centriole, functions as an upstream regulator of the trichoplein–Aurora A pathway that suppresses ciliogenesis in proliferating cells. Primary cilia protrude from the surface of quiescent cells and disassemble at cell cycle reentry. We previously showed that ciliary reassembly is suppressed by trichoplein-mediated Aurora A activation pathway in growing cells. Here, we report that Ndel1, a well-known modulator of dynein activity, localizes at the subdistal appendage of the mother centriole, which nucleates a primary cilium. In the presence of serum, Ndel1 depletion reduces trichoplein at the mother centriole and induces unscheduled primary cilia formation, which is reverted by forced trichoplein expression or coknockdown of KCTD17 (an E3 ligase component protein for trichoplein). Serum starvation induced transient Ndel1 degradation, subsequent to the disappearance of trichoplein at the mother centriole. Forced expression of Ndel1 suppressed trichoplein degradation and axonemal microtubule extension during ciliogenesis, similar to trichoplein induction or KCTD17 knockdown. Most importantly, the proportion of ciliated and quiescent cells was increased in the kidney tubular epithelia of newborn Ndel1-hypomorphic mice. Thus, Ndel1 acts as a novel upstream regulator of the trichoplein–Aurora A pathway to inhibit primary cilia assembly.
Collapse
Affiliation(s)
- Hironori Inaba
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Kanako Kumamoto
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shigenobu Yonemura
- Center for Life Science Technologies (Ultrastructural Research Team), Institute of Physical and Chemical Research, Kobe 650-0047, Japan
| | - Akihito Inoko
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Shotaro Yamano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Dongwei He
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|