1
|
Sébastien M, Paquette AL, Prowse ENP, Hendricks AG, Brouhard GJ. Doublecortin restricts neuronal branching by regulating tubulin polyglutamylation. Nat Commun 2025; 16:1749. [PMID: 39966472 PMCID: PMC11836384 DOI: 10.1038/s41467-025-56951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Doublecortin is a neuronal microtubule-associated protein that regulates microtubule structure in neurons. Mutations in Doublecortin cause lissencephaly and subcortical band heterotopia by impairing neuronal migration. We use CRISPR/Cas9 to knock-out the Doublecortin gene in induced pluripotent stem cells and differentiate the cells into cortical neurons. DCX-KO neurons show reduced velocities of nuclear movements and an increased number of neurites early in neuronal development, consistent with previous findings. Neurite branching is regulated by a host of microtubule-associated proteins, as well as by microtubule polymerization dynamics. However, EB comet dynamics are unchanged in DCX-KO neurons. Rather, we observe a significant reduction in α-tubulin polyglutamylation in DCX-KO neurons. Polyglutamylation levels and neuronal branching are rescued by expression of Doublecortin or of TTLL11, an α-tubulin glutamylase. Using U2OS cells as an orthogonal model system, we show that DCX and TTLL11 act synergistically to promote polyglutamylation. We propose that Doublecortin acts as a positive regulator of α-tubulin polyglutamylation and restricts neurite branching. Our results indicate an unexpected role for Doublecortin in the homeostasis of the tubulin code.
Collapse
Affiliation(s)
- Muriel Sébastien
- Department of Biology, McGill University, Montréal, QC, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | | | - Emily N P Prowse
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Gary J Brouhard
- Department of Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Rao L, Liu X, Berger F, McKenney RJ, Arnold M, Stengel K, Sidoli S, Gennerich A. The Power of Three: Dynactin associates with three dyneins under load for greater force production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632506. [PMID: 39868132 PMCID: PMC11761377 DOI: 10.1101/2025.01.14.632506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cytoplasmic dynein is an essential microtubule motor protein that powers organelle transport and mitotic spindle assembly. Its activity depends on dynein-dynactin-cargo adaptor complexes, such as dynein-dynactin-BicD2 (DDB), which typically function with two dynein motors. We show that mechanical tension recruits a third dynein motor via an auxiliary BicD adaptor binding the light intermediate chain of the third dynein, stabilizing multi-dynein assemblies and enhancing force generation. Lis1 prevents dynein from transitioning into a force-limiting phi-like conformation, allowing single-dynein DDB to sustain forces up to ~4.5 pN, whereas force generation often ends at ~2.5 pN without Lis1. Complexes with two or three dyneins generate ~7 pN and ~9 pN, respectively, consistent with a staggered motor arrangement that enhances collective output. Under load, DDB primarily takes ~8 nm steps, challenging existing dynein coordination models. These findings reveal adaptive mechanisms that enable robust intracellular transport under varying mechanical demands.
Collapse
|
3
|
Durairajan SSK, Selvarasu K, Singh AK, Patnaik S, Iyaswamy A, Jaiswal Y, Williams LL, Huang JD. Unraveling the interplay of kinesin-1, tau, and microtubules in neurodegeneration associated with Alzheimer's disease. Front Cell Neurosci 2024; 18:1432002. [PMID: 39507380 PMCID: PMC11537874 DOI: 10.3389/fncel.2024.1432002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is marked by the gradual and age-related deterioration of nerve cells in the central nervous system. The histopathological features observed in the brain affected by AD are the aberrant buildup of extracellular and intracellular amyloid-β and the formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Axonal transport is a fundamental process for cargo movement along axons and relies on molecular motors like kinesins and dyneins. Kinesin's responsibility for transporting crucial cargo within neurons implicates its dysfunction in the impaired axonal transport observed in AD. Impaired axonal transport and dysfunction of molecular motor proteins, along with dysregulated signaling pathways, contribute significantly to synaptic impairment and cognitive decline in AD. Dysregulation in tau, a microtubule-associated protein, emerges as a central player, destabilizing microtubules and disrupting the transport of kinesin-1. Kinesin-1 superfamily members, including kinesin family members 5A, 5B, and 5C, and the kinesin light chain, are intricately linked to AD pathology. However, inconsistencies in the abundance of kinesin family members in AD patients underline the necessity for further exploration into the mechanistic impact of these motor proteins on neurodegeneration and axonal transport disruptions across a spectrum of neurological conditions. This review underscores the significance of kinesin-1's anterograde transport in AD. It emphasizes the need for investigations into the underlying mechanisms of the impact of motor protein across various neurological conditions. Despite current limitations in scientific literature, our study advocates for targeting kinesin and autophagy dysfunctions as promising avenues for novel therapeutic interventions and diagnostics in AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Yogini Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Jian-Dong Huang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
4
|
Nagpal S, Swaminathan K, Beaudet D, Verdier M, Wang S, Berger CL, Berger F, Hendricks AG. Optogenetic control of kinesin-1, -2, -3 and dynein reveals their specific roles in vesicular transport. Cell Rep 2024; 43:114649. [PMID: 39159044 PMCID: PMC11416726 DOI: 10.1016/j.celrep.2024.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Each cargo in a cell employs a unique set of motor proteins for its transport. To dissect the roles of each type of motor, we developed optogenetic inhibitors of endogenous kinesin-1, -2, -3 and dynein motors and examined their effect on the transport of early endosomes, late endosomes, and lysosomes. While kinesin-1, -3, and dynein transport vesicles at all stages of endocytosis, kinesin-2 primarily drives late endosomes and lysosomes. Transient optogenetic inhibition of kinesin-1 or dynein causes both early and late endosomes to move more processively by relieving competition with opposing motors. Kinesin-2 and -3 support long-range transport, and optogenetic inhibition reduces the distances that their cargoes move. These results suggest that the directionality of transport is controlled through regulating kinesin-1 and dynein activity. On vesicles transported by several kinesin and dynein motors, modulating the activity of a single type of motor on the cargo is sufficient to direct motility.
Collapse
Affiliation(s)
- Sahil Nagpal
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | | | - Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Maud Verdier
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; Department of Biomedical Engineering and Health, Episen, Université Paris-Est Créteil, 94010 Créteil Cedex, France
| | - Samuel Wang
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405-0075, USA
| | - Florian Berger
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
5
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Beaudet D, Berger CL, Hendricks AG. The types and numbers of kinesins and dyneins transporting endocytic cargoes modulate their motility and response to tau. J Biol Chem 2024; 300:107323. [PMID: 38677516 PMCID: PMC11130734 DOI: 10.1016/j.jbc.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Han Y, Li M, Zhao B, Wang H, Liu Y, Liu Z, Xu J, Yang R. MARK2 phosphorylates KIF13A at a 14-3-3 binding site to polarize vesicular transport of transferrin receptor within dendrites. Proc Natl Acad Sci U S A 2024; 121:e2316266121. [PMID: 38709923 PMCID: PMC11098127 DOI: 10.1073/pnas.2316266121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here, we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a unique kinesin-based mechanism for polarized transport of vesicles to dendrites.
Collapse
Affiliation(s)
- Yue Han
- Institute of Neuroscience, Translational Medicine Institute, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
| | - Min Li
- Institute of Neuroscience, Translational Medicine Institute, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
| | - Bingqing Zhao
- Institute of Neuroscience, Translational Medicine Institute, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
| | - Huichao Wang
- Institute of Neuroscience, Translational Medicine Institute, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
| | - Yan Liu
- Institute of Neuroscience, Translational Medicine Institute, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
| | - Zhijun Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province710061, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
| | - Rui Yang
- Institute of Neuroscience, Translational Medicine Institute, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an710061, China
- The Jungers Center for Neurosciences Research, The Department of Neurology, Oregon Health & Science University, Portland, OR97239-3098
| |
Collapse
|
8
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 PMCID: PMC10930463 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | | |
Collapse
|
9
|
Han Y, Li M, Zhao B, Wang H, Liu Y, Liu Z, Xu J, Yang R. MARK2 phosphorylates KIF13A at a 14-3-3 binding site to polarize vesicular transport of transferrin receptor within dendrites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548513. [PMID: 38105964 PMCID: PMC10723257 DOI: 10.1101/2023.07.11.548513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a novel kinesin-based mechanism for polarized transport of vesicles to dendrites. Significance Our findings suggest that at least one type of vesicles, those containing transferrin receptor, travel exclusively to dendrites and are excluded from axons because the kinase MARK2 phosphorylates the kinesin KIF13A to promote its separation from vesicles at the proximal axon, preventing vesicle transport into axons, such that they travel only to dendrites. Future studies should explore how this mechanism of polarized vesicle transport supports neuronal function.
Collapse
|
10
|
Helmer P, Vallee RB. A two-kinesin mechanism controls neurogenesis in the developing brain. Commun Biol 2023; 6:1219. [PMID: 38040957 PMCID: PMC10692124 DOI: 10.1038/s42003-023-05604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
During the course of brain development, Radial Glial Progenitor (RGP) cells give rise to most of the neurons required for a functional cortex. RGPs can undergo symmetric divisions, which result in RGP duplication, or asymmetric divisions, which result in one RGP as well as one to four neurons. The control of this balance is not fully understood, but must be closely regulated to produce the cells required for a functioning cortex, and to maintain the stem cell pool. In this study, we show that the balance between symmetric and asymmetric RGP divisions is in part regulated by the actions of two kinesins, Kif1A and Kif13B, which we find have opposing roles in neurogenesis through their action on the mitotic spindle in dividing RGPs. We find that Kif1A promotes neurogenesis, whereas Kif13B promotes symmetric, non-neurogenic divisions. Interestingly, the two kinesins are closely related in structure, and members of the same kinesin-3 subfamily, thus their opposing effects on spindle orientation appear to represent a novel mechanism for the regulation of neurogenesis.
Collapse
Affiliation(s)
- Paige Helmer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Biological Sciences, Columbia University, New York, NY, 10032, USA.
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Biological Sciences, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Hildebrandt RP, Moss KR, Janusz-Kaminska A, Knudson LA, Denes LT, Saxena T, Boggupalli DP, Li Z, Lin K, Bassell GJ, Wang ET. Muscleblind-like proteins use modular domains to localize RNAs by riding kinesins and docking to membranes. Nat Commun 2023; 14:3427. [PMID: 37296096 PMCID: PMC10256740 DOI: 10.1038/s41467-023-38923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.
Collapse
Affiliation(s)
- Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kathryn R Moss
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Luke A Knudson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lance T Denes
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Tanvi Saxena
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Devi Prasad Boggupalli
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Zhuangyue Li
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kun Lin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Shelke GV, Williamson CD, Jarnik M, Bonifacino JS. Inhibition of endolysosome fusion increases exosome secretion. J Cell Biol 2023; 222:e202209084. [PMID: 37213076 PMCID: PMC10202829 DOI: 10.1083/jcb.202209084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/04/2023] [Accepted: 03/17/2023] [Indexed: 05/23/2023] Open
Abstract
Exosomes are small vesicles that are secreted from cells to dispose of undegraded materials and mediate intercellular communication. A major source of exosomes is intraluminal vesicles within multivesicular endosomes that undergo exocytic fusion with the plasma membrane. An alternative fate of multivesicular endosomes is fusion with lysosomes, resulting in degradation of the intraluminal vesicles. The factors that determine whether multivesicular endosomes fuse with the plasma membrane or with lysosomes are unknown. In this study, we show that impairment of endolysosomal fusion by disruption of a pathway involving the BLOC-one-related complex (BORC), the small GTPase ARL8, and the tethering factor HOPS increases exosome secretion by preventing the delivery of intraluminal vesicles to lysosomes. These findings demonstrate that endolysosomal fusion is a critical determinant of the amount of exosome secretion and suggest that suppression of the BORC-ARL8-HOPS pathway could be used to boost exosome yields in biotechnology applications.
Collapse
Affiliation(s)
- Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D. Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Zehrbach NM, Dubois F, Turner CE. Paxillin regulates Rab5-mediated vesicle motility through modulating microtubule acetylation. Mol Biol Cell 2023; 34:ar65. [PMID: 37043310 PMCID: PMC10295489 DOI: 10.1091/mbc.e22-10-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Rab GTPase-mediated vesicle trafficking of cell surface proteins, including integrins, through endocytic and recycling pathways is important in controlling cell-extracellular matrix interactions during cell migration. The focal adhesion adaptor protein, paxillin, plays a central role in regulating adhesion dynamics and was previously shown to promote anterograde vesicle trafficking through modulation of microtubule acetylation via its inhibition of the deacetylase HDAC6. The role of paxillin in retrograde trafficking is unknown. Herein, we identified a role for paxillin in the modulation of the Rab5 GTPase, which is necessary for regulating early endosome dynamics and focal adhesion turnover. Using MDA-MB-231 breast cancer cells and paxillin (-/-) fibroblasts, paxillin was shown to impact Rab5-associated vesicle size and distribution, as well as Rab5 GTPase activity, through its modulation of HDAC6. Using a combination of real-time imaging and particle tracking analysis, paxillin was shown to promote Rab5-associated vesicle motility through inhibition of HDAC6-mediated micro-tubule deacetylation, along with the localization of active integrin to focal adhesions.
Collapse
Affiliation(s)
- Nicholas M. Zehrbach
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Fatemeh Dubois
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
14
|
Prowse ENP, Chaudhary AR, Sharon D, Hendricks AG. Huntingtin S421 phosphorylation increases kinesin and dynein engagement on early endosomes and lysosomes. Biophys J 2023; 122:1168-1184. [PMID: 36772794 PMCID: PMC10111264 DOI: 10.1016/j.bpj.2023.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Huntingtin (HTT) is a scaffolding protein that recruits motor proteins to vesicular cargoes, enabling it to regulate kinesin-1, dynein, and myosin-VI-dependent transport. To maintain the native stoichiometry of HTT with its interacting partners, we used CRISPR/Cas9 to induce a phosphomimetic mutation of the endogenous HTT at S421 (HTT-S421D). Using single-particle tracking, optical tweezers, and immunofluorescence, we examined the effects of this mutation on the motility of early endosomes and lysosomes. In HTT-S421D cells, lysosomes exhibit longer displacements and higher processive fractions compared with wild-type (HTT-WT) cells. Kinesins and dyneins exert greater forces on early endosomes and lysosomes in cells expressing HTT-S421D. In addition, endosomes bind to microtubules faster and are more resistant to detachment under load. The recruitment of kinesins and dyneins to microtubules is enhanced in HTT-S421D cells. In contrast, overexpression of HTT had variable effects on the processivity, displacement, and directional bias of both early endosomes and lysosomes. These data indicate that phosphorylation of the endogenous HTT causes early endosomes and lysosomes to move longer distances and more processively by recruiting and activating both kinesin-1 and dynein.
Collapse
Affiliation(s)
- Emily N P Prowse
- Bioengineering Department, McGill University, Montreal, Quebec, Canada
| | | | - David Sharon
- Bioengineering Department, McGill University, Montreal, Quebec, Canada
| | - Adam G Hendricks
- Bioengineering Department, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Cho HD, Nhàn NTT, Zhou C, Tu K, Nguyen T, Sarich NA, Yamada KH. KIF13B mediates VEGFR2 recycling to modulate vascular permeability. Cell Mol Life Sci 2023; 80:91. [PMID: 36928770 PMCID: PMC10165967 DOI: 10.1007/s00018-023-04752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Excessive vascular endothelial growth factor-A (VEGF-A) signaling induces vascular leakage and angiogenesis in diseases. VEGFR2 trafficking to the cell surface, mediated by kinesin-3 family protein KIF13B, is essential to respond to VEGF-A when inducing angiogenesis. However, the precise mechanism of how KIF13B regulates VEGF-induced signaling and its effects on endothelial permeability is largely unknown. Here we show that KIF13B-mediated recycling of internalized VEGFR2 through Rab11-positive recycling vesicle regulates endothelial permeability. Phosphorylated VEGFR2 at the cell-cell junction was internalized and associated with KIF13B in Rab5-positive early endosomes. KIF13B mediated VEGFR2 recycling through Rab11-positive recycling vesicle. Inhibition of the function of KIF13B attenuated phosphorylation of VEGFR2 at Y951, SRC at Y416, and VE-cadherin at Y685, which are necessary for endothelial permeability. Failure of VEGFR2 trafficking to the cell surface induced accumulation and degradation of VEGFR2 in lysosomes. Furthermore, in the animal model of the blinding eye disease wet age-related macular degeneration (AMD), inhibition of KIF13B-mediated VEGFR2 trafficking also mitigated vascular leakage. Thus, the present results identify the fundamental role of VEGFR2 recycling to the cell surface in mediating vascular permeability, which suggests a promising strategy for mitigating vascular leakage associated with inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
- Department of Food and Nutrition, Sunchon National University, Sunchon, 57922, Republic of Korea
| | - Nguyễn Thị Thanh Nhàn
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Christopher Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kayeman Tu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Nicolene A Sarich
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
16
|
Lazo OM, Schiavo G. Rab10 regulates the sorting of internalised TrkB for retrograde axonal transport. eLife 2023; 12:81532. [PMID: 36897066 PMCID: PMC10005780 DOI: 10.7554/elife.81532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Neurons process real-time information from axon terminals to coordinate gene expression, growth, and plasticity. Inputs from distal axons are encoded as a stream of endocytic organelles, termed signalling endosomes, targeted to the soma. Formation of these organelles depends on target-derived molecules, such as brain-derived neurotrophic factor (BDNF), which is recognised by TrkB receptors on the plasma membrane, endocytosed, and transported to the cell body along the microtubules network. Notwithstanding its physiological and neuropathological importance, the mechanism controlling the sorting of TrkB to signalling endosomes is currently unknown. In this work, we use primary mouse neurons to uncover the small GTPase Rab10 as critical for TrkB sorting and propagation of BDNF signalling from axon terminals to the soma. Our data demonstrate that Rab10 defines a novel membrane compartment that is rapidly mobilised towards the axon terminal upon BDNF stimulation, enabling the axon to fine-tune retrograde signalling depending on BDNF availability at the synapse. These results help clarifying the neuroprotective phenotype recently associated to Rab10 polymorphisms in Alzheimer's disease and provide a new therapeutic target to halt neurodegeneration.
Collapse
Affiliation(s)
- Oscar Marcelo Lazo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| |
Collapse
|
17
|
Garbouchian A, Montgomery AC, Gilbert SP, Bentley M. KAP is the neuronal organelle adaptor for Kinesin-2 KIF3AB and KIF3AC. Mol Biol Cell 2022; 33:ar133. [PMID: 36200888 PMCID: PMC9727798 DOI: 10.1091/mbc.e22-08-0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kinesin-driven organelle transport is crucial for neuron development and maintenance, yet the mechanisms by which kinesins specifically bind their organelle cargoes remain undefined. In contrast to other transport kinesins, the neuronal function and specific organelle adaptors of heterodimeric Kinesin-2 family members KIF3AB and KIF3AC remain unknown. We developed a novel microscopy-based assay to define protein-protein interactions in intact neurons. The experiments found that both KIF3AB and KIF3AC bind kinesin-associated protein (KAP). These interactions are mediated by the distal C-terminal tail regions and not the coiled-coil domain. We used live-cell imaging in cultured hippocampal neurons to define the localization and trafficking parameters of KIF3AB and KIF3AC organelle populations. We discovered that KIF3AB/KAP and KIF3AC/KAP bind the same organelle populations and defined their transport parameters in axons and dendrites. The results also show that ∼12% of KIF3 organelles contain the RNA-binding protein adenomatous polyposis coli. These data point toward a model in which KIF3AB and KIF3AC use KAP as their neuronal organelle adaptor and that these kinesins mediate transport of a range of organelles.
Collapse
Affiliation(s)
- Alex Garbouchian
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andrew C. Montgomery
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Susan P. Gilbert
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Marvin Bentley
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180,*Address correspondence to: Marvin Bentley ()
| |
Collapse
|
18
|
Schelski M, Bradke F. Microtubule retrograde flow retains neuronal polarization in a fluctuating state. SCIENCE ADVANCES 2022; 8:eabo2336. [PMID: 36332023 PMCID: PMC9635824 DOI: 10.1126/sciadv.abo2336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In developing vertebrate neurons, a neurite is formed by more than a hundred microtubules. While individual microtubules are dynamic, the microtubule array has been regarded as stationary. Using live-cell imaging of neurons in culture or in brain slices, combined with photoconversion techniques and pharmacological manipulations, we uncovered that the microtubule array flows retrogradely within neurites to the soma. This flow drives cycles of microtubule density, a hallmark of the fluctuating state before axon formation, thereby inhibiting neurite growth. The motor protein dynein fuels this process. Shortly after axon formation, microtubule retrograde flow slows down in the axon, reducing microtubule density cycles and enabling axon extension. Thus, keeping neurites short is an active process. Microtubule retrograde flow is a previously unknown type of cytoskeletal dynamics, which changes the hitherto axon-centric view of neuronal polarization.
Collapse
Affiliation(s)
- Max Schelski
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
- International Max Planck Research School for Brain and Behavior, University of Bonn, Bonn, Germany
| | - Frank Bradke
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| |
Collapse
|
19
|
Balabanian L, Lessard DV, Swaminathan K, Yaninska P, Sébastien M, Wang S, Stevens PW, Wiseman PW, Berger CL, Hendricks AG. Tau differentially regulates the transport of early endosomes and lysosomes. Mol Biol Cell 2022; 33:ar128. [PMID: 36129768 PMCID: PMC9634973 DOI: 10.1091/mbc.e22-01-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Microtubule-associated proteins (MAPs) modulate the motility of kinesin and dynein along microtubules to control the transport of vesicles and organelles. The neuronal MAP tau inhibits kinesin-dependent transport. Phosphorylation of tau at Tyr-18 by fyn kinase results in weakened inhibition of kinesin-1. We examined the motility of early endosomes and lysosomes in cells expressing wild-type (WT) tau and phosphomimetic Y18E tau. We quantified the effects on motility as a function of the tau expression level. Lysosome motility is strongly inhibited by tau. Y18E tau preferentially inhibits lysosomes in the cell periphery, while centrally located lysosomes are less affected. Early endosomes are more sensitive to tau than lysosomes and are inhibited by both WT and Y18E tau. Our results show that different cargoes have disparate responses to tau, likely governed by the types of kinesin motors driving their transport. In support of this model, kinesin-1 and -3 are strongly inhibited by tau while kinesin-2 and dynein are less affected. In contrast to kinesin-1, we find that kinesin-3 is strongly inhibited by phosphorylated tau.
Collapse
Affiliation(s)
- Linda Balabanian
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Dominique V. Lessard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | | | - Pamela Yaninska
- Chemistry and Physics, McGill University, Montreal, QC H3A 0E9, Canada
| | - Muriel Sébastien
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Samuel Wang
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Piper W. Stevens
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Paul W. Wiseman
- Chemistry and Physics, McGill University, Montreal, QC H3A 0E9, Canada
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Adam G. Hendricks
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada,*Address correspondence to: Adam G. Hendricks ()
| |
Collapse
|
20
|
Yap CC, Digilio L, McMahon LP, Wang T, Winckler B. Dynein Is Required for Rab7-Dependent Endosome Maturation, Retrograde Dendritic Transport, and Degradation. J Neurosci 2022; 42:4415-4434. [PMID: 35474277 PMCID: PMC9172292 DOI: 10.1523/jneurosci.2530-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
In all cell types, endocytosed cargo is transported along a set of endosomal compartments, which are linked maturationally from early endosomes (EEs) via late endosomes (LEs) to lysosomes. Lysosomes are critical for degradation of proteins that enter through endocytic as well as autophagic pathways. Rab7 is the master regulator of early-to-late endosome maturation, motility, and fusion with lysosomes. We previously showed that most degradative lysosomes are localized in the soma and in the first 25 µm of the dendrite and that bulk degradation of dendritic membrane proteins occurs in/near the soma. Dendritic late endosomes therefore move retrogradely in a Rab7-dependent manner for fusion with somatic lysosomes. We now used cultured E18 rat hippocampal neurons of both sexes to determine which microtubule motor is responsible for degradative flux of late endosomes. Based on multiple approaches (inhibiting dynein/dynactin itself or inhibiting dynein recruitment to endosomes by expressing the C-terminus of the Rab7 effector, RILP), we now demonstrate that net retrograde flux of late endosomes in dendrites is supported by dynein. Inhibition of dynein also delays maturation of somatic endosomes, as evidenced by excessive accumulation of Rab7. In addition, degradation of dendritic cargos is inhibited. Our results also suggest that GDP-GTP cycling of Rab7 appears necessary not only for endosomal maturation but also for fusion with lysosomes subsequent to arrival in the soma. In conclusion, Rab7-dependent dynein/dynactin recruitment to dendritic endosomes plays multifaceted roles in dendritic endosome maturation as well as retrograde transport of late endosomes to sustain normal degradative flux.SIGNIFICANCE STATEMENT Lysosomes are critical for degradation of membrane and extracellular proteins that enter through endocytosis. Lysosomes are also the endpoint of autophagy and thus responsible for protein and organelle homeostasis. Endosomal-lysosomal dysfunction is linked to neurodegeneration and aging. We identify roles in dendrites for two proteins with links to human diseases, Rab7 and dynein. Our previous work identified a process that requires directional retrograde transport in dendrites, namely, efficient degradation of short-lived membrane proteins. Based on multiple approaches, we demonstrate that Rab7-dependent recruitment of dynein motors supports net retrograde transport to lysosomes and is needed for endosome maturation. Our data also suggest that GDP-GTP cycling of Rab7 is required for fusion with lysosomes and degradation, subsequent to arrival in the soma.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Lloyd P McMahon
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
21
|
Birdsall V, Kirwan K, Zhu M, Imoto Y, Wilson SM, Watanabe S, Waites CL. Axonal transport of Hrs is activity dependent and facilitates synaptic vesicle protein degradation. Life Sci Alliance 2022; 5:5/10/e202000745. [PMID: 35636965 PMCID: PMC9152131 DOI: 10.26508/lsa.202000745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
This study describes an activity-dependent mechanism for transporting ESCRT-0 protein Hrs to synaptic vesicle (SV) pools, facilitating SV protein degradation in response to increased neuronal firing. Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy and functional synapses. SV protein turnover is driven by neuronal activity in an endosomal sorting complex required for transport (ESCRT)-dependent manner. Here, we characterize a critical step in this process: axonal transport of ESCRT-0 component Hrs, necessary for sorting proteins into the ESCRT pathway and recruiting downstream ESCRT machinery to catalyze multivesicular body (MVB) formation. We find that neuronal activity stimulates the formation of presynaptic endosomes and MVBs, as well as the motility of Hrs+ vesicles in axons and their delivery to SV pools. Hrs+ vesicles co-transport ESCRT-0 component STAM1 and comprise a subset of Rab5+ vesicles, likely representing pro-degradative early endosomes. Furthermore, we identify kinesin motor protein KIF13A as essential for the activity-dependent transport of Hrs to SV pools and the degradation of SV membrane proteins. Together, these data demonstrate a novel activity- and KIF13A-dependent mechanism for mobilizing axonal transport of ESCRT machinery to facilitate the degradation of SV membrane proteins.
Collapse
Affiliation(s)
- Veronica Birdsall
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Konner Kirwan
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Mei Zhu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Scott M Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA .,Department of Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Nassal JP, Murphy FH, Toonen RF, Verhage M. Differential axonal trafficking of Neuropeptide Y-, LAMP1-, and RAB7-tagged organelles in vivo. eLife 2022; 11:81721. [PMID: 36459486 PMCID: PMC9718525 DOI: 10.7554/elife.81721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Different organelles traveling through neurons exhibit distinct properties in vitro, but this has not been investigated in the intact mammalian brain. We established simultaneous dual color two-photon microscopy to visualize the trafficking of Neuropeptide Y (NPY)-, LAMP1-, and RAB7-tagged organelles in thalamocortical axons imaged in mouse cortex in vivo. This revealed that LAMP1- and RAB7-tagged organelles move significantly faster than NPY-tagged organelles in both anterograde and retrograde direction. NPY traveled more selectively in anterograde direction than LAMP1 and RAB7. By using a synapse marker and a calcium sensor, we further investigated the transport dynamics of NPY-tagged organelles. We found that these organelles slow down and pause at synapses. In contrast to previous in vitro studies, a significant increase of transport speed was observed after spontaneous activity and elevated calcium levels in vivo as well as electrically stimulated activity in acute brain slices. Together, we show a remarkable diversity in speeds and properties of three axonal organelle marker in vivo that differ from properties previously observed in vitro.
Collapse
Affiliation(s)
- Joris P Nassal
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU University Medical CenterAmsterdamNetherlands
| | - Fiona H Murphy
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU University Medical CenterAmsterdamNetherlands
| | - Ruud F Toonen
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU University Medical CenterAmsterdamNetherlands
| | - Matthijs Verhage
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU University Medical CenterAmsterdamNetherlands
| |
Collapse
|
23
|
Montgomery A, Garbouchian A, Bentley M. Visualizing Vesicle-Bound Kinesins in Cultured Hippocampal Neurons. Methods Mol Biol 2022; 2431:239-247. [PMID: 35412280 DOI: 10.1007/978-1-0716-1990-2_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eukaryotic cells use microtubule-based vesicle transport to exchange molecules between compartments. Kinesin family members mediate all microtubule plus end-directed vesicle transport. Of the 45 kinesins expressed in humans, some 20 mediate microtubule plus-end directed vesicle transport. Here we describe a technique to visualize vesicle-bound kinesins in cultured hippocampal neurons. The method involves the expression of the vesicle-binding tail domain while minimizing the cytoplasmic pool. Using this approach drastically improves vesicle labeling compared to full-length kinesins. This tool is useful for systematically comparing the localization of different kinesins in the same cell type and for identifying cargo proteins that reside in vesicles moved by a specific kinesin family member. While we describe the assay in cultured hippocampal neurons, we expect it to be easily transferable to other eukaryotic cell types.
Collapse
Affiliation(s)
- Andrew Montgomery
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alex Garbouchian
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
24
|
Waters SB, Dominguez JR, Cho HD, Sarich NA, Malik AB, Yamada KH. KIF13B-mediated VEGFR2 trafficking is essential for vascular leakage and metastasis in vivo. Life Sci Alliance 2022; 5:e202101170. [PMID: 34670814 PMCID: PMC8548263 DOI: 10.26508/lsa.202101170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
VEGF-A induces vascular leakage and angiogenesis via activating the cell surface localized receptor VEGF receptor 2 (VEGFR2). The amount of available VEGFR2 at the cell surface is however tightly regulated by trafficking of VEGFR2 by kinesin family 13 B (KIF13B), a plus-end kinesin motor, to the plasma membrane of endothelial cells (ECs). Competitive inhibition of interaction between VEGFR2 and KIF13B by a peptide kinesin-derived angiogenesis inhibitor (KAI) prevented pathological angiogenesis in models of cancer and eye disease associated with defective angiogenesis. Here, we show the protective effects of KAI in VEGF-A-induced vascular leakage and cancer metastasis. Using an EC-specific KIF13B knockout (Kif13b iECKO ) mouse model, we demonstrated the function of EC expressed KIF13B in mediating VEGF-A-induced vascular leakage, angiogenesis, tumor growth, and cancer metastasis. Thus, KIF13B-mediated trafficking of VEGFR2 to the endothelial surface has an essential role in pathological angiogenesis induced by VEGF-A, and is therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Stephen B Waters
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Joseph R Dominguez
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hyun-Dong Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Nicolene A Sarich
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Ganguly A, Sharma R, Boyer NP, Wernert F, Phan S, Boassa D, Parra L, Das U, Caillol G, Han X, Yates JR, Ellisman MH, Leterrier C, Roy S. Clathrin packets move in slow axonal transport and deliver functional payloads to synapses. Neuron 2021; 109:2884-2901.e7. [PMID: 34534453 PMCID: PMC8457040 DOI: 10.1016/j.neuron.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022]
Abstract
In non-neuronal cells, clathrin has established roles in endocytosis, with clathrin cages enclosing plasma membrane infoldings, followed by rapid disassembly and reuse of monomers. However, in neurons, clathrin is conveyed in slow axonal transport over days to weeks, and the underlying transport/targeting mechanisms, mobile cargo structures, and even its precise presynaptic localization and physiologic role are unclear. Combining live imaging, photobleaching/conversion, mass spectrometry, electron microscopy, and super-resolution imaging, we found that unlike in dendrites, where clathrin cages rapidly assemble and disassemble, in axons, clathrin and related proteins organize into stable "transport packets" that are unrelated to endocytosis and move intermittently on microtubules, generating an overall slow anterograde flow. At synapses, multiple clathrin packets abut synaptic vesicle (SV) clusters, and clathrin packets also exchange between synaptic boutons in a microtubule-dependent "superpool." Within synaptic boundaries, clathrin is surprisingly dynamic, continuously exchanging between local clathrin assemblies, and its depletion impairs SV recycling. Our data provide a conceptual framework for understanding clathrin trafficking and presynaptic targeting that has functional implications.
Collapse
Affiliation(s)
- Archan Ganguly
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Rohan Sharma
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas P Boyer
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Florian Wernert
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Sébastien Phan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Leonardo Parra
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Utpal Das
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ghislaine Caillol
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Xuemei Han
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mark H Ellisman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | | | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Dilsizoglu Senol A, Samarani M, Syan S, Guardia CM, Nonaka T, Liv N, Latour-Lambert P, Hasegawa M, Klumperman J, Bonifacino JS, Zurzolo C. α-Synuclein fibrils subvert lysosome structure and function for the propagation of protein misfolding between cells through tunneling nanotubes. PLoS Biol 2021; 19:e3001287. [PMID: 34283825 PMCID: PMC8291706 DOI: 10.1371/journal.pbio.3001287] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/13/2021] [Indexed: 01/06/2023] Open
Abstract
The accumulation of α-synuclein (α-syn) aggregates in specific brain regions is a hallmark of synucleinopathies including Parkinson disease (PD). α-Syn aggregates propagate in a "prion-like" manner and can be transferred inside lysosomes to recipient cells through tunneling nanotubes (TNTs). However, how lysosomes participate in the spreading of α-syn aggregates is unclear. Here, by using super-resolution (SR) and electron microscopy (EM), we find that α-syn fibrils affect the morphology of lysosomes and impair their function in neuronal cells. In addition, we demonstrate that α-syn fibrils induce peripheral redistribution of lysosomes, likely mediated by transcription factor EB (TFEB), increasing the efficiency of α-syn fibrils' transfer to neighboring cells. We also show that lysosomal membrane permeabilization (LMP) allows the seeding of soluble α-syn in cells that have taken up α-syn fibrils from the culture medium, and, more importantly, in healthy cells in coculture, following lysosome-mediated transfer of the fibrils. Moreover, we demonstrate that seeding occurs mainly at lysosomes in both donor and acceptor cells, after uptake of α-syn fibrils from the medium and following their transfer, respectively. Finally, by using a heterotypic coculture system, we determine the origin and nature of the lysosomes transferred between cells, and we show that donor cells bearing α-syn fibrils transfer damaged lysosomes to acceptor cells, while also receiving healthy lysosomes from them. These findings thus contribute to the elucidation of the mechanism by which α-syn fibrils spread through TNTs, while also revealing the crucial role of lysosomes, working as a Trojan horse for both seeding and propagation of disease pathology.
Collapse
Affiliation(s)
- Aysegul Dilsizoglu Senol
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et de l’Infection, Institut Pasteur, Paris, France
| | - Maura Samarani
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et de l’Infection, Institut Pasteur, Paris, France
| | - Sylvie Syan
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et de l’Infection, Institut Pasteur, Paris, France
| | - Carlos M. Guardia
- Neurosciences and Cellular and Structural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Patricia Latour-Lambert
- Dynamique des Interaction Hôte–Pathogène, Département de Biologie Cellulaire et de l’Infection, Institut Pasteur, Paris, France
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et de l’Infection, Institut Pasteur, Paris, France
| |
Collapse
|
27
|
Gutiérrez Y, López-García S, Lario A, Gutiérrez-Eisman S, Delevoye C, Esteban JA. KIF13A drives AMPA receptor synaptic delivery for long-term potentiation via endosomal remodeling. J Cell Biol 2021; 220:212112. [PMID: 33999113 PMCID: PMC8129809 DOI: 10.1083/jcb.202003183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/16/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
The regulated trafficking of AMPA-type glutamate receptors (AMPARs) from dendritic compartments to the synaptic membrane in response to neuronal activity is a core mechanism for long-term potentiation (LTP). However, the contribution of the microtubule cytoskeleton to this synaptic transport is still unknown. In this work, using electrophysiological, biochemical, and imaging techniques, we have found that one member of the kinesin-3 family of motor proteins, KIF13A, is specifically required for the delivery of AMPARs to the spine surface during LTP induction. Accordingly, KIF13A depletion from hippocampal slices abolishes LTP expression. We also identify the vesicular protein centaurin-α1 as part of a motor transport machinery that is engaged with KIF13A and AMPARs upon LTP induction. Finally, we determine that KIF13A is responsible for the remodeling of Rab11-FIP2 endosomal structures in the dendritic shaft during LTP. Overall, these results identify specific kinesin molecular motors and endosomal transport machinery that catalyzes the dendrite-to-synapse translocation of AMPA receptors during synaptic plasticity.
Collapse
Affiliation(s)
- Yolanda Gutiérrez
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Sergio López-García
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Argentina Lario
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Silvia Gutiérrez-Eisman
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Cédric Delevoye
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Cell and Tissue Imaging Facility, Paris, France
| | - José A Esteban
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
28
|
Aiken J, Holzbaur ELF. Cytoskeletal regulation guides neuronal trafficking to effectively supply the synapse. Curr Biol 2021; 31:R633-R650. [PMID: 34033795 DOI: 10.1016/j.cub.2021.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development and proper function of the brain requires the formation of highly complex neuronal circuitry. These circuits are shaped from synaptic connections between neurons and must be maintained over a lifetime. The formation and continued maintenance of synapses requires accurate trafficking of presynaptic and postsynaptic components along the axon and dendrite, respectively, necessitating deliberate and specialized delivery strategies to replenish essential synaptic components. Maintenance of synaptic transmission also requires readily accessible energy stores, produced in part by localized mitochondria, that are tightly regulated with activity level. In this review, we focus on recent developments in our understanding of the cytoskeletal environment of axons and dendrites, examining how local regulation of cytoskeletal dynamics and organelle trafficking promotes synapse-specific delivery and plasticity. These new insights shed light on the complex and coordinated role that cytoskeletal elements play in establishing and maintaining neuronal circuitry.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Morgan AJ, Galione A. Lysosomal agents inhibit store-operated Ca 2+ entry. J Cell Sci 2021; 134:224094. [PMID: 33328326 PMCID: PMC7860125 DOI: 10.1242/jcs.248658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
Pharmacological manipulation of lysosome membrane integrity or ionic movements is a key strategy for probing lysosomal involvement in cellular processes. However, we have found an unexpected inhibition of store-operated Ca2+ entry (SOCE) by these agents. Dipeptides [glycyl-L-phenylalanine 2-naphthylamide (GPN) and L-leucyl-L-leucine methyl ester] that are inducers of lysosomal membrane permeabilization (LMP) uncoupled endoplasmic reticulum Ca2+-store depletion from SOCE by interfering with Stim1 oligomerization and/or Stim1 activation of Orai. Similarly, the K+/H+ ionophore, nigericin, that rapidly elevates lysosomal pH, also inhibited SOCE in a Stim1-dependent manner. In contrast, other strategies for manipulating lysosomes (bafilomycin A1, lysosomal re-positioning) had no effect upon SOCE. Finally, the effects of GPN on SOCE and Stim1 was reversed by a dynamin inhibitor, dynasore. Our data show that lysosomal agents not only release Ca2+ from stores but also uncouple this release from the normal recruitment of Ca2+ influx. Summary: Lysosomal agents uncouple ER Ca2+-release from store-operated Ca2+ entry, predominantly by inhibiting Stim1 oligomerization and its activation of Orai.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
30
|
In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1. Proc Natl Acad Sci U S A 2021; 118:2010054118. [PMID: 33443153 PMCID: PMC7817218 DOI: 10.1073/pnas.2010054118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1's functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1's enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.
Collapse
|
31
|
Tancini B, Buratta S, Delo F, Sagini K, Chiaradia E, Pellegrino RM, Emiliani C, Urbanelli L. Lysosomal Exocytosis: The Extracellular Role of an Intracellular Organelle. MEMBRANES 2020; 10:E406. [PMID: 33316913 PMCID: PMC7764620 DOI: 10.3390/membranes10120406] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes are acidic cell compartments containing a large set of hydrolytic enzymes. These lysosomal hydrolases degrade proteins, lipids, polysaccharides, and nucleic acids into their constituents. Materials to be degraded can reach lysosomes either from inside the cell, by autophagy, or from outside the cell, by different forms of endocytosis. In addition to their degradative functions, lysosomes are also able to extracellularly release their contents by lysosomal exocytosis. These organelles move from the perinuclear region along microtubules towards the proximity of the plasma membrane, then the lysosomal and plasma membrane fuse together via a Ca2+-dependent process. The fusion of the lysosomal membrane with plasma membrane plays an important role in plasma membrane repair, while the secretion of lysosomal content is relevant for the remodelling of extracellular matrix and release of functional substrates. Lysosomal storage disorders (LSDs) and age-related neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, share as a pathological feature the accumulation of undigested material within organelles of the endolysosomal system. Recent studies suggest that lysosomal exocytosis stimulation may have beneficial effects on the accumulation of these unprocessed aggregates, leading to their extracellular elimination. However, many details of the molecular machinery required for lysosomal exocytosis are only beginning to be unravelled. Here, we are going to review the current literature on molecular mechanisms and biological functions underlying lysosomal exocytosis, to shed light on the potential of lysosomal exocytosis stimulation as a therapeutic approach.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy;
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| |
Collapse
|
32
|
Tang T, Yang ZY, Wang D, Yang XY, Wang J, Li L, Wen Q, Gao L, Bian XW, Yu SC. The role of lysosomes in cancer development and progression. Cell Biosci 2020; 10:131. [PMID: 33292489 PMCID: PMC7677787 DOI: 10.1186/s13578-020-00489-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
Lysosomes are an important component of the inner membrane system and participate in numerous cell biological processes, such as macromolecular degradation, antigen presentation, intracellular pathogen destruction, plasma membrane repair, exosome release, cell adhesion/migration and apoptosis. Thus, lysosomes play important roles in cellular activity. In addition, previous studies have shown that lysosomes may play important roles in cancer development and progression through the abovementioned biological processes and that the functional status and spatial distribution of lysosomes are closely related to cancer cell proliferation, energy metabolism, invasion and metastasis, immune escape and tumor-associated angiogenesis. Therefore, identifying the factors and mechanisms that regulate the functional status and spatial distribution of lysosomes and elucidating the relationship between lysosomes and the development and progression of cancer can provide important information for cancer diagnosis and prognosis prediction and may yield new therapeutic targets. This study briefly reviews the above information and explores the potential value of lysosomes in cancer therapy.
Collapse
Affiliation(s)
- Tao Tang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ze-Yu Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xian-Yan Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lin Li
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Wen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xiu-Wu Bian
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
33
|
Peng X, Yang L, Ma Y, Li Y, Li H. Focus on the morphogenesis, fate and the role in tumor progression of multivesicular bodies. Cell Commun Signal 2020; 18:122. [PMID: 32771015 PMCID: PMC7414566 DOI: 10.1186/s12964-020-00619-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022] Open
Abstract
Multivesicular bodies (MVBs) are endosome organelles that are gradually attracting research attention. Initially, MVBs were considered as important components of the endosomal-lysosomal degradation pathway. In recent years, with an increase in extracellular vesicle (EV) research, the biogenesis, fate, and pathological effects of MVBs have been increasingly studied. However, the mechanisms by which MVBs are sorted to the lysosome and plasma membrane remain unclear. In addition, whether the trafficking of MVBs can determine whether exosomes are released from cells, the factors are involved in cargo loading and regulating the fate of MVBs, and the roles that MVBs play in the development of disease are unknown. Consequently, this review focuses on the mechanism of MVB biogenesis, intraluminal vesicle formation, sorting of different cargoes, and regulation of their fate. We also discuss the mechanisms of emerging amphisome-dependent secretion and degradation. In addition, we highlight the contributions of MVBs to the heterogeneity of EVs, and their important roles in cancer. Thus, we attempt to unravel the various functions of MVBs in the cell and their multiple roles in tumor progression. Video Abstract
Collapse
Affiliation(s)
- Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
34
|
Davis LC, Morgan AJ, Galione A. NAADP-regulated two-pore channels drive phagocytosis through endo-lysosomal Ca 2+ nanodomains, calcineurin and dynamin. EMBO J 2020; 39:e104058. [PMID: 32510172 PMCID: PMC7360967 DOI: 10.15252/embj.2019104058] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophages clear pathogens by phagocytosis and lysosomes that fuse with phagosomes are traditionally regarded as to a source of membranes and luminal degradative enzymes. Here, we reveal that endo-lysosomes act as platforms for a new phagocytic signalling pathway in which FcγR activation recruits the second messenger NAADP and thereby promotes the opening of Ca2+ -permeable two-pore channels (TPCs). Remarkably, phagocytosis is driven by these local endo-lysosomal Ca2+ nanodomains rather than global cytoplasmic or ER Ca2+ signals. Motile endolysosomes contact nascent phagosomes to promote phagocytosis, whereas endo-lysosome immobilization prevents it. We show that TPC-released Ca2+ rapidly activates calcineurin, which in turn dephosphorylates and activates the GTPase dynamin-2. Finally, we find that different endo-lysosomal Ca2+ channels play diverse roles, with TPCs providing a universal phagocytic signal for a wide range of particles and TRPML1 being only required for phagocytosis of large targets.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020; 9:cells9051131. [PMID: 32375321 PMCID: PMC7290337 DOI: 10.3390/cells9051131] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
Collapse
Affiliation(s)
- Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jordan J. Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
- Correspondence: ; Tel.: +1-(506)-636-6973
| |
Collapse
|
36
|
Reversible association with motor proteins (RAMP): A streptavidin-based method to manipulate organelle positioning. PLoS Biol 2019; 17:e3000279. [PMID: 31100061 PMCID: PMC6542540 DOI: 10.1371/journal.pbio.3000279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/30/2019] [Accepted: 05/03/2019] [Indexed: 01/18/2023] Open
Abstract
We report the development and characterization of a method, named reversible association with motor proteins (RAMP), for manipulation of organelle positioning within the cytoplasm. RAMP consists of coexpressing in cultured cells (i) an organellar protein fused to the streptavidin-binding peptide (SBP) and (ii) motor, neck, and coiled-coil domains from a plus-end-directed or minus-end-directed kinesin fused to streptavidin. The SBP-streptavidin interaction drives accumulation of organelles at the plus or minus end of microtubules, respectively. Importantly, competition of the streptavidin-SBP interaction by the addition of biotin to the culture medium rapidly dissociates the motor construct from the organelle, allowing restoration of normal patterns of organelle transport and distribution. A distinctive feature of this method is that organelles initially accumulate at either end of the microtubule network in the initial state and are subsequently released from this accumulation, allowing analyses of the movement of a synchronized population of organelles by endogenous motors.
Collapse
|
37
|
Mohan N, Sorokina EM, Verdeny IV, Alvarez AS, Lakadamyali M. Detyrosinated microtubules spatially constrain lysosomes facilitating lysosome-autophagosome fusion. J Cell Biol 2018; 218:632-643. [PMID: 30567713 PMCID: PMC6363446 DOI: 10.1083/jcb.201807124] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Detyrosinated microtubules constitute a minor subpopulation of microtubules in epithelial cells. Lysosomes are specifically enriched on detyrosinated microtubules through a kinesin-1–dependent mechanism. This spatial constraining of lysosomes to a subset of microtubules enables them to efficiently encounter and fuse with autophagosomes to initiate autophagy. Microtubule post-translational modifications impart functional diversity to microtubules by affecting their dynamics, organization, and interaction with proteins. Using super-resolution microscopy, we show that only a small subpopulation of microtubules are detyrosinated in epithelial cells, while acetylated and tyrosinated microtubules comprise the majority of all microtubules. Surprisingly, lysosomes are enriched by approximately threefold on detyrosinated microtubules. Further, their motility on detyrosinated microtubules is impaired, showing shorter runs and more frequent and longer pauses. Lysosome enrichment is mediated through a kinesin-1–dependent mechanism, since knocking down this motor abolishes enrichment. Finally, correlative live-cell and super-resolution microscopy showed that lysosomes interact with autophagosomes on detyrosinated microtubules. Removal of detyrosinated microtubules or knockdown of kinesin-1 leads to a decrease in the percentage of autolysosomes, a fusion intermediate of autophagosomes and lysosomes. Taken together, our data reveal a new role of detyrosinated microtubules as hubs that spatially concentrate lysosomes on a small subset of microtubules and facilitate their interaction and fusion with autophagosomes to initiate autophagy.
Collapse
Affiliation(s)
- Nitin Mohan
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elena M Sorokina
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ione Vilanova Verdeny
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel Sandoval Alvarez
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA .,Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
38
|
Kinesin-1 Proteins KIF5A, -5B, and -5C Promote Anterograde Transport of Herpes Simplex Virus Enveloped Virions in Axons. J Virol 2018; 92:JVI.01269-18. [PMID: 30068641 DOI: 10.1128/jvi.01269-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023] Open
Abstract
Herpes simplex virus (HSV) and other alphaherpesviruses must spread from sites of viral latency in sensory ganglia to peripheral tissues, where the viruses can replicate to higher titers before spreading to other hosts. These viruses move in neuronal axons from ganglia to the periphery propelled by kinesin motors moving along microtubules. Two forms of HSV particles undergo this anterograde transport in axons: (i) unenveloped capsids that become enveloped after reaching axon tips and (ii) enveloped virions that are transported within membrane vesicles in axons. Fundamental to understanding this axonal transport is the question of which of many different axonal kinesins convey HSV particles. Knowing which kinesins promote axonal transport would provide clues to the identity of HSV proteins that tether onto kinesins. Prominent among axonal kinesins are the kinesin-1 (KIF5A, -5B, and -5C) and kinesin-3 (e.g., KIF1A and -1B) families. We characterized fluorescent forms of cellular cargo molecules to determine if enveloped HSV particles were present in the vesicles containing these cargos. Kinesin-1 cargo proteins were present in vesicles containing HSV particles, but not kinesin-3 cargos. Fluorescent kinesin-1 protein KIF5C extensively colocalized with HSV particles, while fluorescent kinesin-1 KIF1A did not. Silencing of kinesin-1 proteins KIF5A, -5B, and -5C or light chains KLC1 and KLC2 inhibited the majority of HSV anterograde transport, while silencing of KIF1A had little effect on HSV transport in axons. We concluded that kinesin-1 proteins are important in the anterograde transport of the majority of HSV enveloped virions in neuronal axons and kinesin-3 proteins are less important.IMPORTANCE Herpes simplex virus (HSV) and other alphaherpesviruses, such as varicella-zoster virus, depend upon the capacity to navigate in neuronal axons. To do this, virus particles tether onto dyneins and kinesins that motor along microtubules from axon tips to neuronal cell bodies (retrograde) or from cell bodies to axon tips (anterograde). Following reactivation from latency, alphaherpesviruses absolutely depend upon anterograde transport of virus particles in axons in order to reinfect peripheral tissues and spread to other hosts. Which of the many axonal kinesins transport HSV in axons is not clear. We characterized fluorescent cellular cargo molecules and kinesins to provide evidence that HSV enveloped particles are ferried by kinesin-1 proteins KIF5A, -5B, and -5C and their light chains, KLC1 and KLC2, in axons. Moreover, we obtained evidence that kinesin-1 proteins are functionally important in anterograde transport of HSV virions by silencing these proteins.
Collapse
|
39
|
Lim L, Pakan JMP, Selten MM, Marques-Smith A, Llorca A, Bae SE, Rochefort NL, Marín O. Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nat Neurosci 2018; 21:920-931. [PMID: 29915195 PMCID: PMC6061935 DOI: 10.1038/s41593-018-0162-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb-a gene that is preferentially expressed by these cells-cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex.
Collapse
Affiliation(s)
- Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Janelle M P Pakan
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Center for Behavioral Brain Sciences, Institute of Cognitive Neurology and Dementia Research, German Center for Neurodegenerative Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Martijn M Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - André Marques-Smith
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sung Eun Bae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Nathalie L Rochefort
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
40
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
41
|
Chen X, Wu YW. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning. Angew Chem Int Ed Engl 2018; 57:6796-6799. [PMID: 29637703 PMCID: PMC6032859 DOI: 10.1002/anie.201800140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/18/2018] [Indexed: 11/10/2022]
Abstract
The spatiotemporal dynamics of proteins and organelles play an important role in controlling diverse cellular processes. Optogenetic tools using photosensitive proteins and chemically induced dimerization (CID), which allow control of protein dimerization, have been used to elucidate the dynamics of biological systems and to dissect the complicated biological regulatory networks. However, the inherent limitations of current optogenetic and CID systems remain a significant challenge for the fine‐tuning of cellular activity at precise times and locations. Herein, we present a novel chemo‐optogenetic approach, photoswitchable chemically induced dimerization (psCID), for controlling cellular function by using blue light in a rapid and reversible manner. Moreover, psCID is tunable; that is, the dimerization and dedimerization degrees can be fine‐tuned by applying different doses of illumination. Using this approach, we control the localization of proteins and positioning of organelles in live cells with high spatial (μm) and temporal (ms) precision.
Collapse
Affiliation(s)
- Xi Chen
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany.,Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.,Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany.,Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.,Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
42
|
Chen X, Wu YW. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xi Chen
- Chemical Genomics Centre of the Max Planck Society; Otto-Hahn-Str. 15 44227 Dortmund Germany
- Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
- Department of Chemistry; Umeå University; 90187 Umeå Sweden
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max Planck Society; Otto-Hahn-Str. 15 44227 Dortmund Germany
- Max Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
- Department of Chemistry; Umeå University; 90187 Umeå Sweden
| |
Collapse
|
43
|
Liao EH, Gray L, Tsurudome K, El-Mounzer W, Elazzouzi F, Baim C, Farzin S, Calderon MR, Kauwe G, Haghighi AP. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction. PLoS Genet 2018; 14:e1007184. [PMID: 29373576 PMCID: PMC5802963 DOI: 10.1371/journal.pgen.1007184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 02/07/2018] [Accepted: 01/03/2018] [Indexed: 11/18/2022] Open
Abstract
Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons.
Collapse
Affiliation(s)
- Edward H. Liao
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Lindsay Gray
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Kazuya Tsurudome
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | | | - Fatima Elazzouzi
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Christopher Baim
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Sarah Farzin
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Mario R. Calderon
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - A. Pejmun Haghighi
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Department of Physiology, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
44
|
Dey S, Banker G, Ray K. Anterograde Transport of Rab4-Associated Vesicles Regulates Synapse Organization in Drosophila. Cell Rep 2017; 18:2452-2463. [PMID: 28273459 DOI: 10.1016/j.celrep.2017.02.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 11/29/2022] Open
Abstract
Local endosomal recycling at synapses is essential to maintain neurotransmission. Rab4GTPase, found on sorting endosomes, is proposed to balance the flow of vesicles among endocytic, recycling, and degradative pathways in the presynaptic compartment. Here, we report that Rab4-associated vesicles move bidirectionally in Drosophila axons but with an anterograde bias, resulting in their moderate enrichment at the synaptic region of the larval ventral ganglion. Results from FK506 binding protein (FKBP) and FKBP-Rapamycin binding domain (FRB) conjugation assays in rat embryonic fibroblasts together with genetic analyses in Drosophila indicate that an association with Kinesin-2 (mediated by the tail domain of Kinesin-2α/KIF3A/KLP64D subunit) moves Rab4-associated vesicles toward the synapse. Reduction in the anterograde traffic of Rab4 causes an expansion of the volume of the synapse-bearing region in the ventral ganglion and increases the motility of Drosophila larvae. These results suggest that Rab4-dependent vesicular traffic toward the synapse plays a vital role in maintaining synaptic balance in this neuronal network.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
45
|
Ca 2+ signals initiate at immobile IP 3 receptors adjacent to ER-plasma membrane junctions. Nat Commun 2017; 8:1505. [PMID: 29138405 PMCID: PMC5686115 DOI: 10.1038/s41467-017-01644-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/06/2017] [Indexed: 11/08/2022] Open
Abstract
IP3 receptors (IP3Rs) release Ca2+ from the ER when they bind IP3 and Ca2+. The spatial organization of IP3Rs determines both the propagation of Ca2+ signals between IP3Rs and the selective regulation of cellular responses. Here we use gene editing to fluorescently tag endogenous IP3Rs, and super-resolution microscopy to determine the geography of IP3Rs and Ca2+ signals within living cells. We show that native IP3Rs cluster within ER membranes. Most IP3R clusters are mobile, moved by diffusion and microtubule motors. Ca2+ signals are generated by a small population of immobile IP3Rs. These IP3Rs are licensed to respond, but they do not readily mix with mobile IP3Rs. The licensed IP3Rs reside alongside ER-plasma membrane junctions where STIM1, which regulates store-operated Ca2+ entry, accumulates after depletion of Ca2+ stores. IP3Rs tethered close to ER-plasma membrane junctions are licensed to respond and optimally placed to be activated by endogenous IP3 and to regulate Ca2+ entry. IP3 receptors mediate Ca2+ release from the endoplasmic reticulum. Here the authors show that only a small fraction of IP3 receptors initiate Ca2+ signals; these immobile IP3 receptors adjacent to the plasma membrane are optimally placed to control STIM1-dependent Ca2+ entry.
Collapse
|
46
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
47
|
Bonifacino JS, Neefjes J. Moving and positioning the endolysosomal system. Curr Opin Cell Biol 2017; 47:1-8. [PMID: 28231489 PMCID: PMC5537022 DOI: 10.1016/j.ceb.2017.01.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/18/2022]
Abstract
The endolysosomal system is extremely dynamic, yet highly organized. The spatio-temporal distribution of endolysosomal organelles depends on transport driven by microtubule motors such as kinesins and dynein, and by actin-based myosin motors. It has recently become appreciated that interactions with motors are controlled by contacts with other organelles, particularly the endoplasmic reticulum (ER). The ER also controls the concentration of endolysosomal organelles in the perinuclear area, as well as their fission and fusion, through a complex system of tethering proteins. Dynamic interactions go both ways, as contacts with endosomes can influence the movement of the ER and peroxisomes. The dynamics of endolysosomal organelles should thus no longer be studied in isolation, but in the context of the whole endomembrane system.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jacques Neefjes
- Department of Chemical Immunology, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
48
|
Ayloo S, Guedes-Dias P, Ghiretti AE, Holzbaur ELF. Dynein efficiently navigates the dendritic cytoskeleton to drive the retrograde trafficking of BDNF/TrkB signaling endosomes. Mol Biol Cell 2017; 28:2543-2554. [PMID: 28720664 PMCID: PMC5597326 DOI: 10.1091/mbc.e17-01-0068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/30/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Optogenetic recruitment of dynein and kinesin motors to peroxisomes within hippocampal neurons demonstrates that dynein can more efficiently navigate the bipolar dendritic cytoskeleton. Dynein-driven transport is enhanced by dynamic microtubules in both axons and dendrites and efficiently translocates endogenous cargo from dendrites to soma. The efficient transport of cargoes within axons and dendrites is critical for neuronal function. Although we have a basic understanding of axonal transport, much less is known about transport in dendrites. We used an optogenetic approach to recruit motor proteins to cargo in real time within axons or dendrites in hippocampal neurons. Kinesin-1, a robust axonal motor, moves cargo less efficiently in dendrites. In contrast, cytoplasmic dynein efficiently navigates both axons and dendrites; in both compartments, dynamic microtubule plus ends enhance dynein-dependent transport. To test the predictions of the optogenetic assay, we examined the contribution of dynein to the motility of an endogenous dendritic cargo and found that dynein inhibition eliminates the retrograde bias of BDNF/TrkB trafficking. However, inhibition of microtubule dynamics has no effect on BDNF/TrkB motility, suggesting that dendritic kinesin motors may cooperate with dynein to drive the transport of signaling endosomes into the soma. Collectively our data highlight compartment-specific differences in kinesin activity that likely reflect specialized tuning for localized cytoskeletal determinants, whereas dynein activity is less compartment specific but is more responsive to changes in microtubule dynamics.
Collapse
Affiliation(s)
- Swathi Ayloo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104.,Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Pedro Guedes-Dias
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amy E Ghiretti
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Erika L F Holzbaur
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
49
|
BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc Natl Acad Sci U S A 2017; 114:E2955-E2964. [PMID: 28320970 DOI: 10.1073/pnas.1616363114] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.
Collapse
|
50
|
Mondal P, Khamo JS, Krishnamurthy VV, Cai Q, Zhang K. Drive the Car(go)s-New Modalities to Control Cargo Trafficking in Live Cells. Front Mol Neurosci 2017; 10:4. [PMID: 28163671 PMCID: PMC5247435 DOI: 10.3389/fnmol.2017.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission is a fundamental molecular process underlying learning and memory. Successful synaptic transmission involves coupled interaction between electrical signals (action potentials) and chemical signals (neurotransmitters). Defective synaptic transmission has been reported in a variety of neurological disorders such as Autism and Alzheimer’s disease. A large variety of macromolecules and organelles are enriched near functional synapses. Although a portion of macromolecules can be produced locally at the synapse, a large number of synaptic components especially the membrane-bound receptors and peptide neurotransmitters require active transport machinery to reach their sites of action. This spatial relocation is mediated by energy-consuming, motor protein-driven cargo trafficking. Properly regulated cargo trafficking is of fundamental importance to neuronal functions, including synaptic transmission. In this review, we discuss the molecular machinery of cargo trafficking with emphasis on new experimental strategies that enable direct modulation of cargo trafficking in live cells. These strategies promise to provide insights into a quantitative understanding of cargo trafficking, which could lead to new intervention strategies for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | | | - Qi Cai
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|