1
|
Conduit SE, Pearce W, Bhamra A, Bilanges B, Bozal-Basterra L, Foukas LC, Cobbaut M, Castillo SD, Danesh MA, Adil M, Carracedo A, Graupera M, McDonald NQ, Parker PJ, Cutillas PR, Surinova S, Vanhaesebroeck B. A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease. Nat Commun 2024; 15:7181. [PMID: 39168978 PMCID: PMC11339396 DOI: 10.1038/s41467-024-51354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Primary cilia are antenna-like organelles which sense extracellular cues and act as signalling hubs. Cilia dysfunction causes a heterogeneous group of disorders known as ciliopathy syndromes affecting most organs. Cilia disassembly, the process by which cells lose their cilium, is poorly understood but frequently observed in disease and upon cell transformation. Here, we uncover a role for the PI3Kα signalling enzyme in cilia disassembly. Genetic PI3Kα-hyperactivation, as observed in PIK3CA-related overgrowth spectrum (PROS) and cancer, induced a ciliopathy-like phenotype during mouse development. Mechanistically, PI3Kα and PI3Kβ produce the PIP3 lipid at the cilia transition zone upon disassembly stimulation. PI3Kα activation initiates cilia disassembly through a kinase signalling axis via the PDK1/PKCι kinases, the CEP170 centrosomal protein and the KIF2A microtubule-depolymerising kinesin. Our data suggest diseases caused by PI3Kα-activation may be considered 'Disorders with Ciliary Contributions', a recently-defined subset of ciliopathies in which some, but not all, of the clinical manifestations result from cilia dysfunction.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wayne Pearce
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Benoit Bilanges
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Lazaros C Foukas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mohammad Amin Danesh
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Mahreen Adil
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080, Bilbao, Spain
| | - Mariona Graupera
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Neil Q McDonald
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Peter J Parker
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King's College London, Guy's Campus, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Xie S, Kuang W, Guo M, Yang F, Jin H, Chen X, Yi L, Huo C, Xu Z, Lin A, Liu W, Mao J, Shu Q, Zhou T. m6Am methyltransferase PCIF1 negatively regulates ciliation by inhibiting BICD2 expression. J Cell Biol 2024; 223:e202307002. [PMID: 38526325 PMCID: PMC10965392 DOI: 10.1083/jcb.202307002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/07/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
N6, 2'-O-dimethyladenosine (m6Am) is a widespread RNA modification catalyzed by the methyltransferase PCIF1 (phosphorylated CTD interacting factor 1). Despite its prevalence, the biological functions of m6Am in RNA remain largely elusive. Here, we report a critical role of PCIF1-dependent m6Am RNA modification in ciliogenesis in RPE-1 cells. Our findings demonstrate that PCIF1 acts as a negative regulator of ciliation through its m6Am methyltransferase activity. A quantitative proteomic analysis identifies BICD2 as a downstream target of PCIF1, with PCIF1 depletion resulting in a significant increase in BICD2 levels. BICD2 depletion leads to a significant reduction in ciliation. Crucially, the ciliary phenotype in PCIF1-depleted cells is reversed upon BICD2 knockdown. Further investigations reveal that PCIF1 regulates BICD2 protein levels through its m6Am catalytic activity, which reduces the stability and translation efficiency of BICD2 mRNA. Single-base resolution LC-MS analysis identifies the m6Am site on BICD2 mRNA modified by PCIF1. These findings establish the essential involvement of PCIF1-dependent m6Am modification in ciliogenesis.
Collapse
Affiliation(s)
- Shanshan Xie
- Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Kuang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengzhe Guo
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Feng Yang
- Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Jin
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiying Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yi
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunxiao Huo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhangqi Xu
- Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Liu
- Metabolic Medicine Center, International Institutes of Medicine and the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jianhua Mao
- Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Jeong Y, Oh AR, Jung YH, Gi H, Kim YU, Kim K. Targeting E3 ubiquitin ligases and their adaptors as a therapeutic strategy for metabolic diseases. Exp Mol Med 2023; 55:2097-2104. [PMID: 37779139 PMCID: PMC10618535 DOI: 10.1038/s12276-023-01087-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Posttranslational modification of proteins via ubiquitination determines their activation, translocation, dysregulation, or degradation. This process targets a large number of cellular proteins, affecting all biological pathways involved in the cell cycle, development, growth, and differentiation. Thus, aberrant regulation of ubiquitination is likely associated with several diseases, including various types of metabolic diseases. Among the ubiquitin enzymes, E3 ubiquitin ligases are regarded as the most influential ubiquitin enzymes due to their ability to selectively bind and recruit target substrates for ubiquitination. Continued research on the regulatory mechanisms of E3 ligases and their adaptors in metabolic diseases will further stimulate the discovery of new targets and accelerate the development of therapeutic options for metabolic diseases. In this review, based on recent discoveries, we summarize new insights into the roles of E3 ubiquitin ligases and their adaptors in the pathogenesis of metabolic diseases by highlighting recent evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - HyunJoon Gi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Un Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
4
|
Shin MC, Jung YH, Jeong Y, Oh AR, Lee SB, Kim K. Kctd17-mediated Chop degradation promotes adipogenic differentiation. Biochem Biophys Res Commun 2023; 653:126-132. [PMID: 36868076 DOI: 10.1016/j.bbrc.2023.02.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Obesity is commonly associated with excessive adipogenesis, a process by which preadipocytes undergo differentiation into mature adipocytes; however, the mechanisms underlying adipogenesis are not completely understood. Potassium channel tetramerization domain-containing 17 (Kctd17) belongs to the Kctd superfamily and act as a substrate adaptor of the Cullin 3-RING E3 ubiquitin ligase, which is involved in a wide variety of cell functions. However, its function in the adipose tissue remains largely unknown. Here, we found that Kctd17 expression levels were increased in white adipose tissue, especially in adipocytes, in obese mice compared to lean control mice. Gain or loss of function of Kctd17 in preadipocytes inhibited or promoted adipogenesis, respectively. Furthermore, we found that Kctd17 bound to C/EBP homologous protein (Chop) to target it for ubiquitin-mediated degradation, and this process was likely associated with increased adipogenesis. In conclusion, these data suggest that Kctd17 plays an important role in adipogenesis and can be a novel therapeutic target for obesity.
Collapse
Affiliation(s)
- Min Cheol Shin
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Sang Bae Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
5
|
Oh AR, Jeong Y, Yu J, Minh Tam DT, Kang JK, Jung YH, Im SS, Lee SB, Ryu D, Pajvani UB, Kim K. Hepatocyte Kctd17 Inhibition Ameliorates Glucose Intolerance and Hepatic Steatosis Caused by Obesity-induced Chrebp Stabilization. Gastroenterology 2023; 164:439-453. [PMID: 36402191 PMCID: PMC9975067 DOI: 10.1053/j.gastro.2022.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND & AIMS Obesity predisposes to type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD), but underlying mechanisms are incompletely understood. Potassium channel tetramerization domain-containing protein 17 (Kctd17) levels are increased in livers from obese mice and humans. In this study, we investigated the mechanism of increased Kctd17 and whether it is causal to obesity-induced metabolic complications. METHODS We transduced Rosa26-LSL-Cas9 knockin mice with AAV8-TBG-Cre (Control), AAV8-U6-Kctd17 sgRNA-TBG-Cre (L-Kctd17), AAV8-U6-Oga sgRNA-TBG-Cre (L-Oga), or AAV8-U6-Kctd17/Oga sgRNA-TBG-Cre (DKO). We fed mice a high-fat diet (HFD) and assessed for hepatic glucose and lipid homeostasis. We generated Kctd17, O-GlcNAcase (Oga), or Kctd17/Oga-knockout hepatoma cells by CRISPR-Cas9, and Kctd17-directed antisense oligonucleotide to test therapeutic potential in vivo. We analyzed transcriptomic data from patients with NAFLD. RESULTS Hepatocyte Kctd17 expression was increased in HFD-fed mice due to increased Srebp1c activity. HFD-fed L-Kctd17 or Kctd17 antisense oligonucleotide-treated mice show improved glucose tolerance and hepatic steatosis, whereas forced Kctd17 expression caused glucose intolerance and hepatic steatosis even in lean mice. Kctd17 induced Oga degradation, resulting in increasing carbohydrate response element-binding protein (Chrebp) protein, so concomitant Oga knockout negated metabolic benefits of hepatocyte Kctd17 deletion. In patients with NAFLD, KCTD17 messenger RNA was positively correlated with expression of Chrebp target and other lipogenic genes. CONCLUSIONS Srebp1c-induced hepatocyte Kctd17 expression in obesity disrupted glucose and lipid metabolism by stabilizing Chrebp, and may represent a novel therapeutic target for obesity-induced T2D and NAFLD.
Collapse
Affiliation(s)
- Ah-Reum Oh
- Department of Biological Sciences, College of Medicine, Inha University, Incheon, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Republic of Korea
| | - Yelin Jeong
- Department of Biological Sciences, College of Medicine, Inha University, Incheon, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Republic of Korea
| | - Junjie Yu
- Department of Medicine, Columbia University, New York, New York
| | - Dao Thi Minh Tam
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jin Ku Kang
- Department of Medicine, Columbia University, New York, New York
| | - Young Hoon Jung
- Department of Biological Sciences, College of Medicine, Inha University, Incheon, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sang Bae Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York.
| | - KyeongJin Kim
- Department of Biological Sciences, College of Medicine, Inha University, Incheon, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
6
|
Ma D, Wang F, Teng J, Huang N, Chen J. Structure and function of distal and subdistal appendages of the mother centriole. J Cell Sci 2023; 136:286880. [PMID: 36727648 DOI: 10.1242/jcs.260560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Centrosomes are composed of centrioles surrounded by pericentriolar material. The two centrioles in G1 phase are distinguished by the localization of their appendages in the distal and subdistal regions; the centriole possessing both types of appendage is older and referred to as the mother centriole, whereas the other centriole lacking appendages is the daughter centriole. Both distal and subdistal appendages in vertebrate cells consist of multiple proteins assembled in a hierarchical manner. Distal appendages function mainly in the initial process of ciliogenesis, and subdistal appendages are involved in microtubule anchoring, mitotic spindle regulation and maintenance of ciliary signaling. Mutations in genes encoding components of both appendage types are implicated in ciliopathies and developmental defects. In this Review, we discuss recent advances in knowledge regarding the composition and assembly of centriolar appendages, as well as their roles in development and disease.
Collapse
Affiliation(s)
- Dandan Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Primary Cilia Restrain PI3K-AKT Signaling to Orchestrate Human Decidualization. Int J Mol Sci 2022; 23:ijms232415573. [PMID: 36555215 PMCID: PMC9779442 DOI: 10.3390/ijms232415573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial decidualization plays a pivotal role during early pregnancy. Compromised decidualization has been tightly associated with recurrent implantation failure (RIF). Primary cilium is an antenna-like sensory organelle and acts as a signaling nexus to mediate Hh, Wnt, TGFβ, BMP, FGF, and Notch signaling. However, whether primary cilium is involved in human decidualization is still unknown. In this study, we found that primary cilia are present in human endometrial stromal cells. The ciliogenesis and cilia length are increased by progesterone during in vitro and in vivo decidualization. Primary cilia are abnormal in the endometrium of RIF patients. Based on data from both assembly and disassembly of primary cilia, it has been determined that primary cilium is essential to human decidualization. Trichoplein (TCHP)-Aurora A signaling mediates cilia disassembly during human in vitro decidualization. Mechanistically, primary cilium modulates human decidualization through PTEN-PI3K-AKT-FOXO1 signaling. Our study highlights primary cilium as a novel decidualization-related signaling pathway.
Collapse
|
8
|
Yamakawa D, Tsuboi J, Kasahara K, Matsuda C, Nishimura Y, Kodama T, Katayama N, Watanabe M, Inagaki M. Cilia-Mediated Insulin/Akt and ST2/JNK Signaling Pathways Regulate the Recovery of Muscle Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202632. [PMID: 36373718 PMCID: PMC9811445 DOI: 10.1002/advs.202202632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/20/2022] [Indexed: 06/04/2023]
Abstract
Following injury, skeletal muscle regenerates but fatty tissue accumulation is seen in aged muscle or muscular dystrophies. Fibro/adipogenic progenitors (FAPs) are key players in these events; however, the effect of primary cilia on FAPs remains unclear. Here, it is reported that genetic ablation of trichoplein (TCHP), a ciliary regulator, induces ciliary elongation on FAPs after injury, which promotes muscle regeneration while inhibiting adipogenesis. The defective adipogenic differentiation of FAPs is attributed to dysfunction of cilia-dependent lipid raft dynamics, which is critical for insulin/Akt signaling. It is also found that interleukin (IL) 13 is substantially produced by intramuscular FAPs, which are upregulated by ciliary elongation and contribute to regeneration. Mechanistically, upon injury, long cilia excessively activate the IL33/ST2/JNK axis to enhance IL13 production, facilitating myoblast proliferation and M2 macrophage polarization. The results indicate that FAPs organize the regenerative responses to skeletal muscle injury via cilia-mediated insulin/Akt and ST2/JNK signaling pathways.
Collapse
Affiliation(s)
- Daishi Yamakawa
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Junya Tsuboi
- Department of Gastroenterology and HepatologyMie University Graduate School of MedicineTsuMie514‐8507Japan
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Kousuke Kasahara
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Chise Matsuda
- Department of Oncogenic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Yuhei Nishimura
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Tatsuya Kodama
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Naoyuki Katayama
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masatoshi Watanabe
- Department of Oncogenic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masaki Inagaki
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| |
Collapse
|
9
|
Habeck G, Schweiggert J. Proteolytic control in ciliogenesis: Temporal restriction or early initiation? Bioessays 2022; 44:e2200087. [PMID: 35739619 DOI: 10.1002/bies.202200087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022]
Abstract
Cellular processes are highly dependent on a dynamic proteome that undergoes structural and functional rearrangements to allow swift conversion between different cellular states. By inducing proteasomal degradation of inhibitory or stimulating factors, ubiquitylation is particularly well suited to trigger such transitions. One prominent example is the remodelling of the centrosome upon cell cycle exit, which is required for the formation of primary cilia - antenna-like structures on the surface of most cells that act as integrative hubs for various extracellular signals. Over the last decade, many reports on ubiquitin-related events involved in the regulation of ciliogenesis have emerged. Very often, these processes are considered to be initiated ad hoc, that is, directly before its effect on cilia biogenesis becomes evident. While such a temporal restriction may hold true for the majority of events, there is evidence that some of them are initiated earlier during the cell cycle. Here, we provide an overview of ubiquitin-dependent processes in ciliogenesis and discuss available data that indicate such an early onset of proteolytic regulation within preceding cell cycle stages.
Collapse
Affiliation(s)
- Gregor Habeck
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Jörg Schweiggert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
10
|
Kuang W, Jin H, Yang F, Chen X, Liu J, Li T, Chang Y, Liu M, Xu Z, Huo C, Yan X, Yang Y, Liu W, Shu Q, Xie S, Zhou T. ALKBH3-dependent m 1A demethylation of Aurora A mRNA inhibits ciliogenesis. Cell Discov 2022; 8:25. [PMID: 35277482 PMCID: PMC8917145 DOI: 10.1038/s41421-022-00385-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are antenna-like subcellular structures to act as signaling platforms to regulate many cellular processes and embryonic development. m1A RNA modification plays key roles in RNA metabolism and gene expression; however, the physiological function of m1A modification remains largely unknown. Here we find that the m1A demethylase ALKBH3 significantly inhibits ciliogenesis in mammalian cells by its demethylation activity. Mechanistically, ALKBH3 removes m1A sites on mRNA of Aurora A, a master suppressor of ciliogenesis. Depletion of ALKBH3 enhances Aurora A mRNA decay and inhibits its translation. Moreover, alkbh3 morphants exhibit ciliary defects, including curved body, pericardial edema, abnormal otoliths, and dilation in pronephric ducts in zebrafish embryos, which are significantly rescued by wild-type alkbh3, but not by its catalytically inactive mutant. The ciliary defects caused by ALKBH3 depletion in both vertebrate cells and embryos are also significantly reversed by ectopic expression of Aurora A mRNA. Together, our data indicate that ALKBH3-dependent m1A demethylation has a crucial role in the regulation of Aurora A mRNA, which is essential for ciliogenesis and cilia-associated developmental events in vertebrates.
Collapse
Affiliation(s)
- Wenjun Kuang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Jin
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Yang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiying Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ting Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongxia Chang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhangqi Xu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunxiao Huo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoyi Yan
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuehong Yang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Huang M, Kong X, Tang Z, Lin Z, He R, Cao M, Zhang X. Cell cycle arrest induced by trichoplein depletion is independent of cilia assembly. J Cell Physiol 2022; 237:2703-2712. [PMID: 35147977 DOI: 10.1002/jcp.30693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/15/2023]
Abstract
Cilia assembly and centriole duplication are closely coordinated with cell cycle progression, and inhibition of cilia disassembly impedes cell cycle progression. The centrosomal protein trichoplein (TCHP) has been shown to promote cell cycle progression in the G1 -S phase by disassembling cilia. In this study, we showed that deletion of TCHP not only prevented the progression to the S phase but also resulted in cell cycle exit and entrance into G0 phase. Surprisingly, we found that loss of TCHP-induced G0 arrest could not be reversed by blocking the assembly of cilia. In cells without IFT20 or CEP164, two genes encoding key factors for ciliogenesis, depletion of TCHP still led to G0 arrest. Mechanistically, we also found that TCHP depletion-induced cell cycle arrest was not mediated through a centrosome surveillance mechanism, but inhibition of Rb or concomitant inhibition of both Rb and p53 signaling pathways was required to reverse the cell cycle phenotype. In conclusion, our study provides new insights into the function of TCHP in cell cycle progression.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinlong Kong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaiming Tang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruida He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujuan Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Li W, Wang SS, Shan BQ, Qin JB, Zhao HY, Tian ML, He H, Cheng X, Zhang XH, Jin GH. miR-103-3p targets Ndel1 to regulate neural stem cell proliferation and differentiation. Neural Regen Res 2022; 17:401-408. [PMID: 34269216 PMCID: PMC8463973 DOI: 10.4103/1673-5374.317987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The regulation of adult neural stem cells (NSCs) is critical for lifelong neurogenesis. MicroRNAs (miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, miR-103-3p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells. The results showed that miR-103-3p suppressed neural stem cell proliferation and differentiation, and promoted apoptosis. In addition, miR-103-3p negatively regulated NudE neurodevelopment protein 1-like 1 (Ndel1) expression by binding to the 3' untranslated region of Ndel1. Transduction of neural stem cells with a lentiviral vector overexpressing Ndel1 significantly increased cell proliferation and differentiation, decreased neural stem cell apoptosis, and decreased protein expression levels of Wnt3a, β-catenin, phosphor-GSK-3β, LEF1, c-myc, c-Jun, and cyclin D1, all members of the Wnt/β-catenin signaling pathway. These findings suggest that Ndel1 is a novel miR-103-3p target and that miR-103-3p acts by suppressing neural stem cell proliferation and promoting apoptosis and differentiation. This study was approved by the Animal Ethics Committee of Nantong University, China (approval No. 20200826-003) on August 26, 2020.
Collapse
Affiliation(s)
- Wen Li
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shan-Shan Wang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Bo-Quan Shan
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian-Bing Qin
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - He-Yan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mei-Ling Tian
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hui He
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xin-Hua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Guo-Hua Jin
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
13
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
14
|
Insights into the Regulation of Ciliary Disassembly. Cells 2021; 10:cells10112977. [PMID: 34831200 PMCID: PMC8616418 DOI: 10.3390/cells10112977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
The primary cilium, an antenna-like structure that protrudes out from the cell surface, is present in most cell types. It is a microtubule-based organelle that serves as a mega-signaling center and is important for sensing biochemical and mechanical signals to carry out various cellular processes such as proliferation, migration, differentiation, and many others. At any given time, cilia length is determined by a dynamic balance of cilia assembly and disassembly processes. Abnormally short or long cilia can cause a plethora of human diseases commonly referred to as ciliopathies, including, but not limited to, skeletal malformations, obesity, autosomal dominant polycystic kidney disease, retinal degeneration, and bardet-biedl syndrome. While the process of cilia assembly is studied extensively, the process of cilia disassembly and its biological role(s) are less well understood. This review discusses current knowledge on ciliary disassembly and how different cellular processes and molecular signals converge to carry out this process. This information will help us understand how the process of ciliary disassembly is regulated, identify the key steps that need further investigation, and possibly design therapeutic targets for a subset of ciliopathies that are causally linked to defective ciliary disassembly.
Collapse
|
15
|
Zhu L, Dai S, Lu D, Xu P, Chen L, Han Y, Zhong L, Chang L, Wu Q. Role of NDEL1 and VEGF/VEGFR-2 in Mouse Hippocampus After Status Epilepticus. ASN Neuro 2021; 12:1759091420926836. [PMID: 32423231 PMCID: PMC7238446 DOI: 10.1177/1759091420926836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nuclear-distribution element-like 1 (NDEL1) is associated with the
proliferation and migration of neurons. Vascular endothelial growth
factor (VEGF) in combination with VEGF receptor-2 (VEGFR-2) regulates
the proliferation and migration of neurons. This study was performed
to explore undefined alterations in the expression levels of NDEL1 and
VEGF/VEGFR-2 within the hippocampus after status epilepticus (SE).
Following the creation of pilocarpine-induced epilepsy models using
adolescent male C57BL/6 mice, Western blotting and reverse
transcription quantitative polymerase chain reaction were applied to
assess the levels of NDEL1, VEGF, and VEGFR-2 expression in whole
hippocampi at 1, 2, 3, and 4 weeks post-SE, respectively.
Immunofluorescent labeling was also employed to detect the
colocalization of NDEL1 and VEGF in the hippocampus. Our results
indicated that NDEL1 and VEGF have similar patterns of upregulation
throughout the hippocampus. Upregulation of VEGFR-2 occurred only in
the early stages, and the expression decreased shortly afterward.
NDEL1 and VEGF were coexpressed in the cornu ammonis 3 pyramidal cell,
granular, and polymorph layers of the dentate gyrus in the
hippocampus. This study revealed that NDEL1, VEGF, and VEGFR-2 may
work together and are involved in the pathophysiology in the
hippocampus after SE.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University
| | - Di Lu
- Biomedicine Engineering Research Centre, Kunming Medical University
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University
| |
Collapse
|
16
|
Petsouki E, Gerakopoulos V, Szeto N, Chang W, Humphrey MB, Tsiokas L. FBW7 couples structural integrity with functional output of primary cilia. Commun Biol 2021; 4:1066. [PMID: 34518642 PMCID: PMC8438042 DOI: 10.1038/s42003-021-02504-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
Structural defects in primary cilia have robust effects in diverse tissues and systems. However, how disorders of ciliary length lead to functional outcomes are unknown. We examined the functional role of a ciliary length control mechanism of FBW7-mediated destruction of NDE1, in mesenchymal stem cell (MSC) differentiation. We show that FBW7 functions as a master regulator of both negative (NDE1) and positive (TALPID3) regulators of ciliogenesis, with an overall positive net effect on primary cilia formation, MSC differentiation to osteoblasts, and bone architecture. Deletion of Fbxw7 suppresses ciliation, Hedgehog activity, and differentiation, which are partially rescued in Fbxw7/Nde1-null cells. We also show that NDE1, despite suppressing ciliogenesis, promotes MSC differentiation by increasing the activity of the Hedgehog pathway by direct binding and enhancing GLI2 activity in a cilia-independent manner. We propose that FBW7 controls a protein-protein interaction network coupling ciliary structure and function, which is essential for stem cell differentiation. Petsouki et al. dissect the importance of FBW7-mediated regulation of NDE1 and TALPID3 in mesenchymal stem cells (MSCs). They find that by modulating the abundance of negative (NDE1) and positive (TALPID3) cilia regulators, FBW7 contributes to both the assembly and signaling functions of primary cilia that are necessary for osteoblast differentiation.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vasileios Gerakopoulos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicholas Szeto
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Francisco, San Francisco, CA, USA
| | - Wenhan Chang
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Francisco, San Francisco, CA, USA
| | - Mary Beth Humphrey
- Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Medicine, Oklahoma City Veteran's Affairs Medical Center, Oklahoma City, OK, USA
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
17
|
Goranci-Buzhala G, Mariappan A, Ricci-Vitiani L, Josipovic N, Pacioni S, Gottardo M, Ptok J, Schaal H, Callaini G, Rajalingam K, Dynlacht B, Hadian K, Papantonis A, Pallini R, Gopalakrishnan J. Cilium induction triggers differentiation of glioma stem cells. Cell Rep 2021; 36:109656. [PMID: 34496239 DOI: 10.1016/j.celrep.2021.109656] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) possesses glioma stem cells (GSCs) that promote self-renewal, tumor propagation, and relapse. Understanding the mechanisms of GSCs self-renewal can offer targeted therapeutic interventions. However, insufficient knowledge of GSCs' fundamental biology is a significant bottleneck hindering these efforts. Here, we show that patient-derived GSCs recruit elevated levels of proteins that ensure the temporal cilium disassembly, leading to suppressed ciliogenesis. Depleting the cilia disassembly complex components is sufficient to induce ciliogenesis in a subset of GSCs via relocating platelet-derived growth factor receptor-alpha (PDGFR-α) to a newly induced cilium. Importantly, restoring ciliogenesis enabled GSCs to switch from self-renewal to differentiation. Finally, using an organoid-based glioma invasion assay and brain xenografts in mice, we establish that ciliogenesis-induced differentiation can prevent the infiltration of GSCs into the brain. Our findings illustrate a role for cilium as a molecular switch in determining GSCs' fate and suggest cilium induction as an attractive strategy to intervene in GSCs proliferation.
Collapse
Affiliation(s)
- Gladiola Goranci-Buzhala
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Natasa Josipovic
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, and Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Simone Pacioni
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Marco Gottardo
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Giuliano Callaini
- Department of Life Sciences University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Brian Dynlacht
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, and Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
18
|
Kasahara K, Inagaki M. Primary ciliary signaling: links with the cell cycle. Trends Cell Biol 2021; 31:954-964. [PMID: 34420822 DOI: 10.1016/j.tcb.2021.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Primary cilia are solitary, microtubule-based structures emanating from the surface of most vertebrate cells. Although it is understood that ciliary assembly and disassembly both depend upon and impact cell cycle progression, critical mechanistic details of these links remain unresolved. Accumulating evidence shows that the signaling pathways downstream of receptor tyrosine kinases and lysophosphatidic acid receptors control the dynamics of primary cilia. It has also become clear that primary cilia not only serve as signaling hubs but also regulate the composition of the surrounding membrane, which is likely to affect the response to growth factors. Here, we overview recent advances in understanding the interplay between primary cilia and the cell cycle, with a focus on growth factor signaling pathways.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Physiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
19
|
Grosch M, Brunner K, Ilyaskin AV, Schober M, Staudner T, Schmied D, Stumpp T, Schmidt KN, Madej MG, Pessoa TD, Othmen H, Kubitza M, Osten L, de Vries U, Mair MM, Somlo S, Moser M, Kunzelmann K, Ziegler C, Haerteis S, Korbmacher C, Witzgall R. A polycystin-2 protein with modified channel properties leads to an increased diameter of renal tubules and to renal cysts. J Cell Sci 2021; 134:271186. [PMID: 34345895 PMCID: PMC8435292 DOI: 10.1242/jcs.259013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023] Open
Abstract
Mutations in the PKD2 gene cause autosomal-dominant polycystic kidney disease but the physiological role of polycystin-2, the protein product of PKD2, remains elusive. Polycystin-2 belongs to the transient receptor potential (TRP) family of non-selective cation channels. To test the hypothesis that altered ion channel properties of polycystin-2 compromise its putative role in a control circuit controlling lumen formation of renal tubular structures, we generated a mouse model in which we exchanged the pore loop of polycystin-2 with that of the closely related cation channel polycystin-2L1 (encoded by PKD2L1), thereby creating the protein polycystin-2poreL1. Functional characterization of this mutant channel in Xenopus laevis oocytes demonstrated that its electrophysiological properties differed from those of polycystin-2 and instead resembled the properties of polycystin-2L1, in particular regarding its permeability for Ca2+ ions. Homology modeling of the ion translocation pathway of polycystin-2poreL1 argues for a wider pore in polycystin-2poreL1 than in polycystin-2. In Pkd2poreL1 knock-in mice in which the endogenous polycystin-2 protein was replaced by polycystin-2poreL1 the diameter of collecting ducts was increased and collecting duct cysts developed in a strain-dependent fashion. Summary: Replacement of the pore region of polycystin-2 with that of polycystin-2L1 results in wider renal tubules and polycystic kidney disease, thus demonstrating the essential function of its ion channel properties.
Collapse
Affiliation(s)
- Melanie Grosch
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Katrin Brunner
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael Schober
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Tobias Staudner
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Denise Schmied
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Tina Stumpp
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Kerstin N Schmidt
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - M Gregor Madej
- Department of Biophysics, University of Regensburg, 93053 Regensburg, Germany
| | - Thaissa D Pessoa
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Helga Othmen
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Marion Kubitza
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Larissa Osten
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe de Vries
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Magdalena M Mair
- Faculty of Biology and Preclinical Medicine, University of Regensburg, 93053 Regensburg, Germany
| | - Stefan Somlo
- Departments of Medicine and Genetics, Yale University, New Haven, CT 06520, USA
| | - Markus Moser
- Institute of Experimental Hematology, Technical University of Munich, 81675 Munich, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Christine Ziegler
- Department of Biophysics, University of Regensburg, 93053 Regensburg, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
20
|
Nishimura Y, Yamakawa D, Uchida K, Shiromizu T, Watanabe M, Inagaki M. Primary cilia and lipid raft dynamics. Open Biol 2021; 11:210130. [PMID: 34428960 PMCID: PMC8385361 DOI: 10.1098/rsob.210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Primary cilia, antenna-like structures of the plasma membrane, detect various extracellular cues and transduce signals into the cell to regulate a wide range of functions. Lipid rafts, plasma membrane microdomains enriched in cholesterol, sphingolipids and specific proteins, are also signalling hubs involved in a myriad of physiological functions. Although impairment of primary cilia and lipid rafts is associated with various diseases, the relationship between primary cilia and lipid rafts is poorly understood. Here, we review a newly discovered interaction between primary cilia and lipid raft dynamics that occurs during Akt signalling in adipogenesis. We also discuss the relationship between primary cilia and lipid raft-mediated Akt signalling in cancer biology. This review provides a novel perspective on primary cilia in the regulation of lipid raft dynamics.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Katsunori Uchida
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
21
|
Arslanhan MD, Rauniyar N, Yates JR, Firat-Karalar EN. Aurora Kinase A proximity map reveals centriolar satellites as regulators of its ciliary function. EMBO Rep 2021; 22:e51902. [PMID: 34169630 PMCID: PMC8339716 DOI: 10.15252/embr.202051902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Aurora kinase A (AURKA) is a conserved kinase that plays crucial roles in numerous cellular processes. Although AURKA overexpression is frequent in human cancers, its pleiotropic functions and multifaceted regulation present challenges in its therapeutic targeting. Key to overcoming these challenges is to identify and characterize the full range of AURKA interactors, which are often weak and transient. Previous proteomic studies were limited in monitoring dynamic and non-mitotic AURKA interactions. Here, we generate the proximity interactome of AURKA in asynchronous cells, which consists of 440 proteins involving multiple biological processes and cellular compartments. Importantly, AURKA has extensive proximate and physical interactions to centriolar satellites, key regulators of the primary cilium. Loss-of-function experiments identify satellites as negative regulators of AURKA activity, abundance, and localization in quiescent cells. Notably, loss of satellites activates AURKA at the basal body, decreases centrosomal IFT88 levels, and causes ciliogenesis defects. Collectively, our results provide a resource for dissecting spatiotemporal regulation of AURKA and uncover its proteostatic regulation by satellites as a new mechanism for its ciliary functions.
Collapse
Affiliation(s)
- Melis D Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Navin Rauniyar
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
22
|
Angrisani A, Di Fiore A, De Smaele E, Moretti M. The emerging role of the KCTD proteins in cancer. Cell Commun Signal 2021; 19:56. [PMID: 34001146 PMCID: PMC8127222 DOI: 10.1186/s12964-021-00737-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
The human family of Potassium (K+) Channel Tetramerization Domain (KCTD) proteins counts 25 members, and a significant number of them are still only partially characterized. While some of the KCTDs have been linked to neurological disorders or obesity, a growing tally of KCTDs are being associated with cancer hallmarks or involved in the modulation of specific oncogenic pathways. Indeed, the potential relevance of the variegate KCTD family in cancer warrants an updated picture of the current knowledge and highlights the need for further research on KCTD members as either putative therapeutic targets, or diagnostic/prognostic markers. Homology between family members, capability to participate in ubiquitination and degradation of different protein targets, ability to heterodimerize between members, role played in the main signalling pathways involved in development and cancer, are all factors that need to be considered in the search for new key players in tumorigenesis. In this review we summarize the recent published evidence on KCTD members' involvement in cancer. Furthermore, by integrating this information with data extrapolated from public databases that suggest new potential associations with cancers, we hypothesize that the number of KCTD family members involved in tumorigenesis (either as positive or negative modulator) may be bigger than so far demonstrated. Video abstract.
Collapse
Affiliation(s)
| | - Annamaria Di Fiore
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Ho EK, Stearns T. Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling. Development 2021; 148:dev195552. [PMID: 33914866 PMCID: PMC8126410 DOI: 10.1242/dev.195552] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms of vertebrate Hedgehog signaling are linked to the biology of the primary cilium, an antenna-like organelle that projects from the surface of most vertebrate cell types. Although the advantages of restricting signal transduction to cilia are often noted, the constraints imposed are less frequently considered, and yet they are central to how Hedgehog signaling operates in developing tissues. In this Review, we synthesize current understanding of Hedgehog signal transduction, ligand secretion and transport, and cilia dynamics to explore the temporal and spatial constraints imposed by the primary cilium on Hedgehog signaling in vivo.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Developmental Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Pejskova P, Reilly ML, Bino L, Bernatik O, Dolanska L, Ganji RS, Zdrahal Z, Benmerah A, Cajanek L. KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling. J Cell Biol 2021; 219:151721. [PMID: 32348467 PMCID: PMC7265313 DOI: 10.1083/jcb.201904107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/20/2019] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Primary cilia play critical roles in development and disease. Their assembly and disassembly are tightly coupled to cell cycle progression. Here, we present data identifying KIF14 as a regulator of cilia formation and Hedgehog (HH) signaling. We show that RNAi depletion of KIF14 specifically leads to defects in ciliogenesis and basal body (BB) biogenesis, as its absence hampers the efficiency of primary cilium formation and the dynamics of primary cilium elongation, and disrupts the localization of the distal appendage proteins SCLT1 and FBF1 and components of the IFT-B complex. We identify deregulated Aurora A activity as a mechanism contributing to the primary cilium and BB formation defects seen after KIF14 depletion. In addition, we show that primary cilia in KIF14-depleted cells are defective in response to HH pathway activation, independently of the effects of Aurora A. In sum, our data point to KIF14 as a critical node connecting cell cycle machinery, effective ciliogenesis, and HH signaling.
Collapse
Affiliation(s)
- Petra Pejskova
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris University, Imagine Institute, Paris, France.,Paris Diderot University, Paris, France
| | - Lucia Bino
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Ondrej Bernatik
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Linda Dolanska
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | | | - Zbynek Zdrahal
- Central European Institute of Technology, Brno, Czech Republic
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris University, Imagine Institute, Paris, France
| | - Lukas Cajanek
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
25
|
Marescal O, Cheeseman IM. Cellular Mechanisms and Regulation of Quiescence. Dev Cell 2021; 55:259-271. [PMID: 33171109 DOI: 10.1016/j.devcel.2020.09.029] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Quiescence is a state of reversible proliferative arrest in which cells are not actively dividing and yet retain the capacity to reenter the cell cycle upon receiving an appropriate stimulus. Quiescent cells are remarkably diverse-they reside in different locations throughout the body, serve distinct roles, and are activated by a variety of signals. Despite this diversity, all quiescent cells must be able to persist in a nondividing state without compromising their proliferative potential, which requires changes to core cellular programs. How drastically different cell types are able to implement extensive changes to their gene-expression programs, metabolism, and cellular structures to induce a common cellular state is a fascinating question in cell and developmental biology. In this review, we explore the diversity of quiescent cells and highlight the unifying characteristics that define the quiescent state.
Collapse
Affiliation(s)
- Océane Marescal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
26
|
Santoni M, Piva F, Cimadamore A, Giulietti M, Battelli N, Montironi R, Cosmai L, Porta C. Exploring the Spectrum of Kidney Ciliopathies. Diagnostics (Basel) 2020; 10:E1099. [PMID: 33339422 PMCID: PMC7766105 DOI: 10.3390/diagnostics10121099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022] Open
Abstract
Ciliopathies are a group of multi-organ diseases caused by the disruption of the primary cilium. This event leads to a variety of kidney disorders, including nephronophthisis, renal cystic dysplasia, and renal cell carcinoma (RCC). Primary cilium contributes to the regulation of the cell cycle and protein homeostasis, that is, the balance between protein synthesis and degradation by acting on the ubiquitin-proteasome system, autophagy, and mTOR signaling. Many proteins are involved in renal ciliopathies. In particular, fibrocystin (PKHD1) is involved in autosomal recessive polycystic kidney disease (ARPKD), while polycystin-1 (PKD1) and polycystin-2 (PKD2) are implicated in autosomal dominant polycystic kidney disease (ADPKD). Moreover, primary cilia are associated with essential signaling pathways, such as Hedgehog, Wnt, and Platelet-Derived Growth Factor (PDGF). In this review, we focused on the ciliopathies associated with kidney diseases, exploring genes and signaling pathways associated with primary cilium and the potential role of cilia as therapeutic targets in renal disorders.
Collapse
Affiliation(s)
- Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (F.P.); (M.G.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy;
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (F.P.); (M.G.)
| | | | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy;
| | - Laura Cosmai
- Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Fatebenefratelli Hospital, 20121 Milan, Italy;
| | - Camillo Porta
- Chair of Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘A. Moro’, 70121 Bari, Italy;
- Division of Medical Oncology, A.O.U. ConsorzialePoliclinico di Bari, 70124 Bari, Italy
| |
Collapse
|
27
|
Failler M, Giro-Perafita A, Owa M, Srivastava S, Yun C, Kahler DJ, Unutmaz D, Esteva FJ, Sánchez I, Dynlacht BD. Whole-genome screen identifies diverse pathways that negatively regulate ciliogenesis. Mol Biol Cell 2020; 32:169-185. [PMID: 33206585 PMCID: PMC8120696 DOI: 10.1091/mbc.e20-02-0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We performed a high-throughput whole-genome RNAi screen to identify novel inhibitors of ciliogenesis in normal and basal breast cancer cells. Our screen uncovered a previously undisclosed, extensive network of genes linking integrin signaling and cellular adhesion to the extracellular matrix (ECM) with inhibition of ciliation in both normal and cancer cells. Surprisingly, a cohort of genes encoding ECM proteins was also identified. We characterized several ciliation inhibitory genes and showed that their silencing was accompanied by altered cytoskeletal organization and induction of ciliation, which restricts cell growth and migration in normal and breast cancer cells. Conversely, supplying an integrin ligand, vitronectin, to the ECM rescued the enhanced ciliation observed on silencing this gene. Aberrant ciliation could also be suppressed through hyperactivation of the YAP/TAZ pathway, indicating a potential mechanistic basis for our findings. Our findings suggest an unanticipated reciprocal relationship between ciliation and cellular adhesion to the ECM and provide a resource that could vastly expand our understanding of controls involving “outside-in” and “inside-out” signaling that restrain cilium assembly.
Collapse
Affiliation(s)
- Marion Failler
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Ariadna Giro-Perafita
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Mikito Owa
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Shalini Srivastava
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Chi Yun
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - David J Kahler
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine and University of Connecticut School of Medicine, Farmington, CT 06031
| | - Francisco J Esteva
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Irma Sánchez
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Brian D Dynlacht
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
28
|
Wang B, Liang Z, Liu P. Functional aspects of primary cilium in signaling, assembly and microenvironment in cancer. J Cell Physiol 2020; 236:3207-3219. [PMID: 33107052 PMCID: PMC7984063 DOI: 10.1002/jcp.30117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/16/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
The primary cilium is an antennae‐like structure extent outside the cell surface. It has an important role in regulating cell‐signaling transduction to affect proliferation, differentiation and migration. Evidence is accumulating that ciliary defects lead to ciliopathies and ciliary deregulation also play crucial roles in cancer formation and progression. Interestingly, restoring the cilia can suppress proliferation in some cancer cell. However, t he role of primary cilia in cancer still be debated. In this article, we review the role of the primary cilium in cancer through architecture, signaling pathways, cilia assembly and disassembly regulators, and summarized the new findings of the primary cilium in tumor microenvironments and different cancers, highlighting novel possibilities for therapeutic target in cancer.
Collapse
Affiliation(s)
- Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheyong Liang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
29
|
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J 2020; 477:3541-3565. [PMID: 32970140 PMCID: PMC7518857 DOI: 10.1042/bcj20200277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E. Conduit
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|
30
|
Halder P, Khatun S, Majumder S. Freeing the brake: Proliferation needs primary cilium to disassemble. J Biosci 2020. [DOI: 10.1007/s12038-020-00090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Shiromizu T, Yuge M, Kasahara K, Yamakawa D, Matsui T, Bessho Y, Inagaki M, Nishimura Y. Targeting E3 Ubiquitin Ligases and Deubiquitinases in Ciliopathy and Cancer. Int J Mol Sci 2020; 21:E5962. [PMID: 32825105 PMCID: PMC7504095 DOI: 10.3390/ijms21175962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Kousuke Kasahara
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Daishi Yamakawa
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Masaki Inagaki
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| |
Collapse
|
32
|
Martello A, Lauriola A, Mellis D, Parish E, Dawson JC, Imrie L, Vidmar M, Gammoh N, Mitić T, Brittan M, Mills NL, Carragher NO, D'Arca D, Caporali A. Trichoplein binds PCM1 and controls endothelial cell function by regulating autophagy. EMBO Rep 2020; 21:e48192. [PMID: 32337819 PMCID: PMC7332983 DOI: 10.15252/embr.201948192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an essential cellular quality control process that has emerged as a critical one for vascular homeostasis. Here, we show that trichoplein (TCHP) links autophagy with endothelial cell (EC) function. TCHP localizes to centriolar satellites, where it binds and stabilizes PCM1. Loss of TCHP leads to delocalization and proteasome-dependent degradation of PCM1, further resulting in degradation of PCM1's binding partner GABARAP. Autophagic flux under basal conditions is impaired in THCP-depleted ECs, and SQSTM1/p62 (p62) accumulates. We further show that TCHP promotes autophagosome maturation and efficient clearance of p62 within lysosomes, without affecting their degradative capacity. Reduced TCHP and high p62 levels are detected in primary ECs from patients with coronary artery disease. This phenotype correlates with impaired EC function and can be ameliorated by NF-κB inhibition. Moreover, Tchp knock-out mice accumulate of p62 in the heart and cardiac vessels correlating with reduced cardiac vascularization. Taken together, our data reveal that TCHP regulates endothelial cell function via an autophagy-mediated mechanism.
Collapse
Affiliation(s)
- Andrea Martello
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Angela Lauriola
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - David Mellis
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Elisa Parish
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - John C Dawson
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Lisa Imrie
- Centre for Synthetic and Systems Biology (SynthSys)University of EdinburghEdinburghUK
| | - Martina Vidmar
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Noor Gammoh
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tijana Mitić
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Nicholas L Mills
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
- Usher InstituteUniversity of EdinburghEdinburghUK
| | - Neil O Carragher
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| |
Collapse
|
33
|
GCAP neuronal calcium sensor proteins mediate photoreceptor cell death in the rd3 mouse model of LCA12 congenital blindness by involving endoplasmic reticulum stress. Cell Death Dis 2020; 11:62. [PMID: 31980596 PMCID: PMC6981271 DOI: 10.1038/s41419-020-2255-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
Loss-of-function mutations in the retinal degeneration 3 (RD3) gene cause inherited retinopathy with impaired rod and cone function and fast retinal degeneration in patients and in the natural strain of rd3 mice. The underlying physiopathology mechanisms are not well understood. We previously proposed that guanylate cyclase-activating proteins (GCAPs) might be key Ca2+-sensors mediating the physiopathology of this disorder, based on the demonstrated toxicity of GCAP2 when blocked in its Ca2+-free form at photoreceptor inner segments. We here show that the retinal degeneration in rd3 mice is substantially delayed by GCAPs ablation. While the number of retinal photoreceptor cells is halved in 6 weeks in rd3 mice, it takes 8 months to halve in rd3/rd3 GCAPs-/- mice. Although this substantial morphological rescue does not correlate with recovery of visual function due to very diminished guanylate cyclase activity in rd3 mice, it is very informative of the mechanisms underlying photoreceptor cell death. By showing that GCAP2 is mostly in its Ca2+-free-phosphorylated state in rd3 mice, we infer that the [Ca2+]i at rod inner segments is permanently low. GCAPs are therefore retained at the inner segment in their Ca2+-free, guanylate cyclase activator state. We show that in this conformational state GCAPs induce endoplasmic reticulum (ER) stress, mitochondrial swelling, and cell death. ER stress and mitochondrial swelling are early hallmarks of rd3 retinas preceding photoreceptor cell death, that are substantially rescued by GCAPs ablation. By revealing the involvement of GCAPs-induced ER stress in the physiopathology of Leber's congenital amaurosis 12 (LCA12), this work will aid to guide novel therapies to preserve retinal integrity in LCA12 patients to expand the window for gene therapy intervention to restore vision.
Collapse
|
34
|
Nayak SC, Radha V. C3G localizes to mother centriole dependent on cenexin, and regulates centrosome duplication and primary cilia length. J Cell Sci 2020; 133:jcs.243113. [DOI: 10.1242/jcs.243113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
C3G (RapGEF1) plays a role in cell differentiation and is essential for early embryonic development in mice. In this study, we identify C3G as a centrosomal protein colocalizing with cenexin at the mother centriole in interphase cells. C3G interacts through its catalytic domain with cenexin, and they show interdependence for localization to the centrosome. C3G depletion caused a decrease in cellular cenexin levels. Centrosomal localization is lost as myocytes differentiate to form myotubes. Stable clone of cells depleted of C3G by CRISPR/Cas9 showed the presence of supernumerary centrioles. Overexpression of C3G, or a catalytically active deletion construct inhibited centrosome duplication. Cilia length is longer in C3G knockout cells, and the phenotype could be reverted upon reintroduction of C3G or its catalytic domain. Association of C3G with the basal body is dynamic, decreasing upon serum starvation, and increasing upon reentry into the cell cycle. C3G inhibits cilia formation and length dependent on its catalytic activity. We conclude that C3G inhibits centrosome duplication and maintains ciliary homeostasis, properties that may be important for its role in embryonic development.
Collapse
Affiliation(s)
- Sanjeev Chavan Nayak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad – 500 007, India
| | - Vegesna Radha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad – 500 007, India
| |
Collapse
|
35
|
Hossain D, Barbelanne M, Tsang WY. Requirement of NPHP5 in the hierarchical assembly of basal feet associated with basal bodies of primary cilia. Cell Mol Life Sci 2020; 77:195-212. [PMID: 31177295 PMCID: PMC11104825 DOI: 10.1007/s00018-019-03181-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/13/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
During ciliogenesis, the mother centriole transforms into a basal body competent to nucleate a cilium. The mother centriole and basal body possess sub-distal appendages (SDAs) and basal feet (BF), respectively. SDAs and BF are thought to be equivalent structures. In contrast to SDA assembly, little is known about the players involved in BF assembly and its assembly order. Furthermore, the contribution of BF to ciliogenesis is not understood. Here, we found that SDAs are distinguishable from BF and that the protein NPHP5 is a novel SDA and BF component. Remarkably, NPHP5 is specifically required for BF assembly in cells able to form basal bodies but is dispensable for SDA assembly. Determination of the hierarchical assembly reveals that NPHP5 cooperates with a subset of SDA/BF proteins to organize BF. The assembly pathway of BF is similar but not identical to that of SDA. Loss of NPHP5 or a BF protein simultaneously inhibits BF assembly and primary ciliogenesis, and these phenotypes could be rescued by manipulating the expression of certain components in the BF assembly pathway. These findings define a novel role for NPHP5 in specifically regulating BF assembly, a process which is tightly coupled to primary ciliogenesis.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Marine Barbelanne
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - William Y Tsang
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada.
| |
Collapse
|
36
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
37
|
Kashihara H, Chiba S, Kanno SI, Suzuki K, Yano T, Tsukita S. Cep128 associates with Odf2 to form the subdistal appendage of the centriole. Genes Cells 2019; 24:231-243. [PMID: 30623524 DOI: 10.1111/gtc.12668] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 12/13/2022]
Abstract
The mother centriole in a cell has two appendages, the distal appendage (DA) and subdistal appendage (SDA), which have roles in generating cilia and organizing the cellular microtubular network, respectively. In the knockout (KO) cells of Odf2, the component of the DA and SDA, both appendages simultaneously disappear. However, the molecular mechanisms by which the DA and SDA form independently but close to each other downstream of Odf2 are unknown. Here, using super-resolution structured illumination microscopy (SR-SIM), we found that the signal for GFP-tagged Odf2 overlapped considerably with that of immunofluorescently labeled Cep128. We further found that Cep128 knockdown (KD) caused the dissociation of other SDA components from the centriole, including centriolin, Ndel1, ninein and Cep170, whereas Odf2 was still associated with the centriole. In contrast, the DA components remained associated with the centriole in Cep128 KD cells. Consistent with this observation, we identified Cep128 as an Odf2-interacting protein by immunoprecipitation. Taken with the finding that Cep128 deletion decreased the stability of centriolar microtubules, our results indicate that Cep128 associates with Odf2 in the hierarchical assembly of SDA components to elicit the microtubule-organizing function.
Collapse
Affiliation(s)
| | - Shuhei Chiba
- Graduate School of Medicine, Osaka University, Osaka, Japan.,Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shin-Ichiro Kanno
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Koya Suzuki
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Yano
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | | |
Collapse
|
38
|
Higgins M, Obaidi I, McMorrow T. Primary cilia and their role in cancer. Oncol Lett 2019; 17:3041-3047. [PMID: 30867732 PMCID: PMC6396132 DOI: 10.3892/ol.2019.9942] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/24/2018] [Indexed: 01/25/2023] Open
Abstract
Primary cilia are microtubule-based organelles that are expressed on almost all mammalian cells. It has become apparent that these structures are important signaling hubs that serve crucial roles in Wnt, hedgehog, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and Notch signaling pathways. A number of diseases have been found to involve dysfunctional primary cilia; collectively these diseases are called ciliopathies. In recent years, there has been more focus on the association between primary cilia and cancer, including renal, pancreatic and breast cancer. Numerous studies have demonstrated that various types of cancer cells fail to express cilia. Notably, it has also been indicated that a number of renal carcinogens induce a significant loss of cilia in renal epithelial cells. The present review focuses on the existing literature regarding primary cilia and their involvement with cancer signaling pathways, providing a brief overview of the structural features and functions of primary cilia, then discussing the evidence associating primary cilia with cancer, and presenting the available information on the ERK/MAPK, hedgehog and Wnt signaling pathways, and their involvement in primary cilia in association with cancer.
Collapse
Affiliation(s)
- Michael Higgins
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ismael Obaidi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tara McMorrow
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
39
|
Abstract
The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA;
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
40
|
Nishimura Y, Kasahara K, Shiromizu T, Watanabe M, Inagaki M. Primary Cilia as Signaling Hubs in Health and Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801138. [PMID: 30643718 PMCID: PMC6325590 DOI: 10.1002/advs.201801138] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Indexed: 05/13/2023]
Abstract
Primary cilia detect extracellular cues and transduce these signals into cells to regulate proliferation, migration, and differentiation. Here, the function of primary cilia as signaling hubs of growth factors and morphogens is in focus. First, the molecular mechanisms regulating the assembly and disassembly of primary cilia are described. Then, the role of primary cilia in mediating growth factor and morphogen signaling to maintain human health and the potential mechanisms by which defects in these pathways contribute to human diseases, such as ciliopathy, obesity, and cancer are described. Furthermore, a novel signaling pathway by which certain growth factors stimulate cell proliferation through suppression of ciliogenesis is also described, suggesting novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Kousuke Kasahara
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Takashi Shiromizu
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masatoshi Watanabe
- Department of Oncologic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masaki Inagaki
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| |
Collapse
|
41
|
NISHIMURA Y, KASAHARA K, INAGAKI M. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:479-493. [PMID: 31611503 PMCID: PMC6819152 DOI: 10.2183/pjab.95.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Intermediate filaments (IFs), in coordination with microfilaments and microtubules, form the structural framework of the cytoskeleton and nucleus, thereby providing mechanical support against cellular stresses and anchoring intracellular organelles in place. The assembly and disassembly of IFs are mainly regulated by the phosphorylation of IF proteins. These phosphorylation states can be tracked using antibodies raised against phosphopeptides in the target proteins. IFs exert their functions through interactions with not only structural proteins, but also non-structural proteins involved in cell signaling, such as stress responses, apoptosis, and cell proliferation. This review highlights findings related to how IFs regulate cell division through phosphorylation cascades and how trichoplein, a centriolar protein originally identified as a keratin-associated protein, regulates the cell cycle through primary cilium formation.
Collapse
Affiliation(s)
- Yuhei NISHIMURA
- Departments of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kousuke KASAHARA
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki INAGAKI
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
42
|
Chowdhury P, Powell RT, Stephan C, Uray IP, Talley T, Karki M, Tripathi DN, Park YS, Mancini MA, Davies P, Dere R. Bexarotene - a novel modulator of AURKA and the primary cilium in VHL-deficient cells. J Cell Sci 2018; 131:jcs.219923. [PMID: 30518623 PMCID: PMC6307881 DOI: 10.1242/jcs.219923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022] Open
Abstract
Loss of the gene von Hippel–Lindau (VHL) is associated with loss of primary cilia and is causally linked to elevated levels of Aurora kinase A (AURKA). We developed an image-based high-throughput screening (HTS) assay using a dual-labeling image analysis strategy that identifies both the cilium and the basal body. By using this strategy, we screened small-molecule compounds for the targeted rescue of cilia defects associated with VHL deficiency with high accuracy and reproducibility. Bexarotene was identified and validated as a positive regulator of the primary cilium. Importantly, the inability of an alternative retinoid X receptor (RXR) agonist to rescue ciliogenesis, in contrast to bexarotene, suggested that multiple bexarotene-driven mechanisms were responsible for the rescue. We found that bexarotene decreased AURKA expression in VHL-deficient cells, thereby restoring the ability of these cells to ciliate in the absence of VHL. Finally, bexarotene treatment reduced the propensity of subcutaneous lesions to develop into tumors in a mouse xenograft model of renal cell carcinoma (RCC), with a concomitant decrease in activated AURKA, highlighting the potential of bexarotene treatment as an intervention strategy in the clinic to manage renal cystogenesis associated with VHL deficiency and elevated AURKA expression. Highlighted Article: An image-based screen using a dual labeling strategy identified bexarotene, a rexinoid, as a novel modulator of the primary cilium in VHL-deficient cells.
Collapse
Affiliation(s)
- Pratim Chowdhury
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Reid T Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Ivan P Uray
- Department of Clinical Oncology, University of Debrecen, Debrecen 4032, Hungary
| | - Tia Talley
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Durga Nand Tripathi
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Sung Park
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Davies
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
43
|
Ritter A, Louwen F, Yuan J. Deficient primary cilia in obese adipose-derived mesenchymal stem cells: obesity, a secondary ciliopathy? Obes Rev 2018; 19:1317-1328. [PMID: 30015415 DOI: 10.1111/obr.12716] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
Obesity alters the composition, structure and function of adipose tissue, characterized by chronic inflammation, insulin resistance and metabolic dysfunction. Adipose-derived mesenchymal stem cells (ASCs) are responsible for cell renewal, spontaneous repair and immunomodulation in adipose tissue. Increasing evidence highlights that ASCs are deficient in obesity, and the underlying mechanisms are not well understood. We have recently shown that obese ASCs have defective primary cilia, which are shortened and unable to properly respond to stimuli. Impaired cilia compromise ASC functions. This work suggests an intertwined connection of obesity, defective cilia and dysfunctional ASCs. We have here discussed the current data regarding defective cilia in various cell types in obesity. Based on these observations, we hypothesize that obesity, a systemic chronic metainflammation, could impair cilia in diverse ciliated cells, like pancreatic islet cells, stem cells and hypothalamic neurons, making these critical cells dysfunctional by shutting down their signal sensors and transducers. In this context, obesity may represent a secondary form of ciliopathy induced by obesity-related inflammation and metabolic dysfunction. Reactivation of ciliated cells might be an alternative strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- A Ritter
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - F Louwen
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
44
|
Wang Z, Ma Z, Cao J. Effects of Repeated Aurora-A siRNA Transfection on Cilia Generation and Proliferation of SK-MES-1 or A549 Cells. Cancer Biother Radiopharm 2018; 33:110-117. [PMID: 29641257 DOI: 10.1089/cbr.2017.2297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Suppression of Aurora kinase A (Aurora-A, AURKA) by siRNA of Aurora-A (siAurora-A, siA) has been used in lung tumor treatment. However, the dose and frequency of gene transfection still need to be confirmed further. We imitated multiple administration of solid tumor and attempted to make out the effects of thrice transfection of siAurora-A on cilia generation and apoptosis of SK-MES-1 cells (SK) or A549 cells. METHODS The Aurora-A mRNA levels of cells cultured with serum for 6 d or without serum for 2, 4, or 6 d were examined with real-time quantitative PCR; Cells were transfected single or repeatedly with siAurora-A or siControl (siC), their Aurora-A mRNA levels were determined with PCR; Their cilia were examined with immunohistochemistry. Cell viability was measured with the MTT assay. Protein expression was analyzed with western blot. RESULTS Cell viability showed a downward trend along with the prolongation of starvation time to the second, fourth, and even to the sixth day in both types of cells. But, the expression level of Aurora-A mRNA flipped to rise at the sixth day instead of decreasing at the fourth day. Protein expression trend of total Aurora-A in the two groups was consistent with Aurora-A mRNA expression trend. Compared with siC-3 group (transfected three times with siControl), siAurora-A significantly reduced the Aurora-A mRNA expression in siA-3 group (transfected three times with siAurora-A). Similarly, the cell viability of siA-3 group was lower than that of siC-3 group. The cell viability of siC-3 group was higher than that of serum-free-6d group, but, levels of Aurora-A mRNA expression of siC-3 group had no difference with serum-free-6d group. Finally, among groups transfected once or three times or starved for 6 d, there was no significant difference of ciliated cell proportions in both types of cells respectively. CONCLUSIONS Repeated siAurora-A transfection decreased Aurora-A expression that resulted in effective suppression proliferation of SK-MES-1 or A549 cells, but did not affect cilia generation.
Collapse
Affiliation(s)
- Zhonghua Wang
- 1 Department of Respiratory Medicine, General Hospital of Command , Shenyang, China .,2 Department of Histology and Embryology, Shenyang Medical , Shenyang, China
| | - Zhuang Ma
- 1 Department of Respiratory Medicine, General Hospital of Command , Shenyang, China
| | - Jianping Cao
- 1 Department of Respiratory Medicine, General Hospital of Command , Shenyang, China
| |
Collapse
|
45
|
Abstract
The primary cilium is an antenna-like organelle assembled on most types of quiescent and differentiated mammalian cells. This immotile structure is essential for interpreting extracellular signals that regulate growth, development and homeostasis. As such, ciliary defects produce a spectrum of human diseases, termed ciliopathies, and deregulation of this important organelle also plays key roles during tumor formation and progression. Recent studies have begun to clarify the key mechanisms that regulate ciliary assembly and disassembly in both normal and tumor cells, highlighting new possibilities for therapeutic intervention. Here, we review these exciting new findings, discussing the molecular factors involved in cilium formation and removal, the intrinsic and extrinsic control of cilium assembly and disassembly, and the relevance of these processes to mammalian cell growth and disease.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
46
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
47
|
Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem J 2018; 475:2329-2353. [PMID: 30064990 PMCID: PMC6068341 DOI: 10.1042/bcj20170453] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
The cilium, once considered a vestigial structure, is a conserved, microtubule-based organelle critical for transducing extracellular chemical and mechanical signals that control cell polarity, differentiation, and proliferation. The cilium undergoes cycles of assembly and disassembly that are controlled by complex inter-relationships with the cytoskeleton. Microtubules form the core of the cilium, the axoneme, and are regulated by post-translational modifications, associated proteins, and microtubule dynamics. Although actin and septin cytoskeletons are not major components of the axoneme, they also regulate cilium organization and assembly state. Here, we discuss recent advances on how these different cytoskeletal systems affect cilium function, structure, and organization.
Collapse
|
48
|
EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase. Nat Commun 2018; 9:758. [PMID: 29472535 PMCID: PMC5823934 DOI: 10.1038/s41467-018-03117-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Ciliogenesis is generally inhibited in dividing cells, however, it has been unclear which signaling cascades regulate the phenomenon. Here, we report that epidermal growth factor receptor (EGFR) kinase suppresses ciliogenesis by directly phosphorylating the deubiquitinase USP8 on Tyr-717 and Tyr-810 in RPE1 cells. These phosphorylations elevate the deubiquitinase activity, which then stabilizes the trichoplein-Aurora A pathway, an inhibitory mechanism of ciliogenesis. EGFR knockdown and serum starvation result in ciliogenesis through downregulation of the USP8-trichoplein-Aurora A signal. Moreover, primary cilia abrogation, which is induced upon IFT20 or Cep164 depletion, ameliorates the cell cycle arrest of EGFR knockdown cells. The present data reveal that the EGFR-USP8-trichoplein-Aurora A axis is a critical signaling cascade that restricts ciliogenesis in dividing cells, and functions to facilitate cell proliferation. We further show that usp8 knockout zebrafish develops ciliopathy-related phenotypes including cystic kidney, suggesting that USP8 is a regulator of ciliogenesis in vertebrates.
Collapse
|
49
|
Kim K, Ryu D, Dongiovanni P, Ozcan L, Nayak S, Ueberheide B, Valenti L, Auwerx J, Pajvani UB. Degradation of PHLPP2 by KCTD17, via a Glucagon-Dependent Pathway, Promotes Hepatic Steatosis. Gastroenterology 2017; 153:1568-1580.e10. [PMID: 28859855 PMCID: PMC5705280 DOI: 10.1053/j.gastro.2017.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Obesity-induced nonalcoholic fatty liver disease (NAFLD) develops, in part, via excess insulin-stimulated hepatic de novo lipogenesis, which increases, paradoxically, in patients with obesity-induced insulin resistance. Pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) terminates insulin signaling by dephosphorylating Akt; levels of PHLPP2 are reduced in livers from obese mice. We investigated whether loss of hepatic PHLPP2 is sufficient to induce fatty liver in mice, mechanisms of PHLPP2 degradation in fatty liver, and expression of genes that regulate PHLPP2 in livers of patients with NAFLD. METHODS C57BL/6J mice (controls), obese db/db mice, and mice with liver-specific deletion of PHLPP2 (L-PHLPP2) fed either normal chow or high-fat diet (HFD) were analyzed for metabolic phenotypes, including glucose tolerance and hepatic steatosis. PHLPP2-deficient primary hepatocytes or CRISPR/Cas9-mediated PHLPP2-knockout hepatoma cells were analyzed for insulin signaling and gene expression. We performed mass spectrometry analyses of liver tissues from C57BL/6J mice transduced with Ad-HA-Flag-PHLPP2 to identify posttranslational modifications to PHLPP2 and proteins that interact with PHLPP2. We measured levels of mRNAs by quantitative reverse transcription polymerase chain reaction in liver biopsies from patients with varying degrees of hepatic steatosis. RESULTS PHLPP2-knockout hepatoma cells and hepatocytes from L-PHLPP2 mice showed normal initiation of insulin signaling, but prolonged insulin action. Chow-fed L-PHLPP2 mice had normal glucose tolerance but hepatic steatosis. In HFD-fed C57BL/6J or db/db obese mice, endogenous PHLPP2 was degraded by glucagon and PKA-dependent phosphorylation of PHLPP2 (at Ser1119 and Ser1210), which led to PHLPP2 binding to potassium channel tetramerization domain containing 17 (KCTD17), a substrate-adaptor for Cul3-RING ubiquitin ligases. Levels of KCTD17 mRNA were increased in livers of HFD-fed C57BL/6J or db/db obese mice and in liver biopsies patients with NAFLD, compared with liver tissues from healthy control mice or patients without steatosis. Knockdown of KCTD17 with small hairpin RNA in primary hepatocytes increased PHLPP2 protein but not Phlpp2 mRNA, indicating that KCTD17 mediates PHLPP2 degradation. KCTD17 knockdown in obese mice prevented PHLPP2 degradation and decreased expression of lipogenic genes. CONCLUSIONS In mouse models of obesity, we found that PHLPP2 degradation induced lipogenesis without affecting gluconeogenesis. KCTD17, which is up-regulated in liver tissues of obese mice and patients with NAFLD, binds to phosphorylated PHLPP2 to target it for ubiquitin-mediated degradation; this increases expression of genes that regulate lipogenesis to promote hepatic steatosis. Inhibitors of this pathway might be developed for treatment of patients with NAFLD.
Collapse
Affiliation(s)
- KyeongJin Kim
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland,Department of Korean Medical Science, School of Korean Medicine and Healthy-Aging Korean Medical Research Center, Pusan National University, Republic of Korea
| | - Paola Dongiovanni
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, DEPT, Università degli Studi di Milano, Milano, Italy
| | - Lale Ozcan
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Shruti Nayak
- Proteomics Laboratory, Division of Advanced Research and Technologies, New York University School of Medicine
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research and Technologies, New York University School of Medicine,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, DEPT, Università degli Studi di Milano, Milano, Italy
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|
50
|
DeVaul N, Koloustroubis K, Wang R, Sperry AO. A novel interaction between kinase activities in regulation of cilia formation. BMC Cell Biol 2017; 18:33. [PMID: 29141582 PMCID: PMC5688660 DOI: 10.1186/s12860-017-0149-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023] Open
Abstract
Background The primary cilium is an extension of the cell membrane that encloses a microtubule-based axoneme. Primary cilia are essential for transmission of environmental cues that determine cell fate. Disruption of primary cilia function is the molecular basis of numerous developmental disorders. Despite their biological importance, the mechanisms governing their assembly and disassembly are just beginning to be understood. Cilia growth and disassembly are essential events when cells exit and reenter into the cell cycle. The kinases never in mitosis-kinase 2 (Nek2) and Aurora A (AurA) act to depolymerize cilia when cells reenter the cell cycle from G0. Results Coexpression of either kinase with its kinase dead companion [AurA with kinase dead Nek2 (Nek2 KD) or Nek2 with kinase dead AurA (AurA KD)] had different effects on cilia depending on whether cilia are growing or shortening. AurA and Nek2 are individually able to shorten cilia when cilia are growing but both are required when cilia are being absorbed. The depolymerizing activity of each kinase is increased when coexpressed with the kinase dead version of the other kinase but only when cilia are assembling. Additionally, the two kinases act additively when cilia are assembling but not disassembling. Inhibition of AurA increases cilia number while inhibition of Nek2 significantly stimulates cilia length. The complex functional relationship between the two kinases reflects their physical interaction. Further, we identify a role for a PP1 binding protein, PPP1R42, in inhibiting Nek2 and increasing ciliation of ARPE-19 cells. Conclusion We have uncovered a novel functional interaction between Nek2 and AurA that is dependent on the growth state of cilia. This differential interdependence reflects opposing regulation when cilia are growing or shortening. In addition to interaction between the kinases to regulate ciliation, the PP1 binding protein PPP1R42 directly inhibits Nek2 independent of PP1 indicating another level of regulation of this kinase. In summary, we demonstrate a complex interplay between Nek2 and AurA kinases in regulation of ciliation in ARPE-19 cells. Electronic supplementary material The online version of this article (10.1186/s12860-017-0149-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole DeVaul
- Laboratory of Biochemistry and Genetics, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katerina Koloustroubis
- Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Rong Wang
- Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Ann O Sperry
- Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA.
| |
Collapse
|