1
|
Tiku V, Fakih Z, Tatsuta T, Jung M, Rapaport D, Dimmer KS. Characterization of the putative yeast mitochondrial triacylglycerol lipase Tgl2. J Biol Chem 2025; 301:108217. [PMID: 39863106 PMCID: PMC11889585 DOI: 10.1016/j.jbc.2025.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health. Enzymes like lipases mobilize these TAGs according to cellular needs. Neutral lipids have not yet been reported to play an important role in mitochondria so the presence of a putative TAG lipase-Tgl2, in yeast mitochondria is surprising. Moreover, TGL2 and MCP2, a high-copy suppressor for ER mitochondria encounter structure deficient cells, display genetic interactions suggesting a potential link of both proteins to lipid metabolism. In this study, we characterize in detail Tgl2. We show that Tgl2 forms dimers through intermolecular disulfide bridges and a cysteine-dependent high molecular weight complex. Furthermore, we could identify the lipase motif and catalytic triad of Tgl2 through in silico comparison with other lipases. Mutating each of the three catalytically active residues resulted in variants that failed to rescue the growth phenotype of mcp2Δ tgl2Δ double deletion strain supporting the assumption that these residues are indeed essential for the protein's function. Additionally, we discovered that the catalytically active aspartate residue (D259) is important for protein stability. Steady state level analyses with unstable variants of Tgl2 led to the identification of Yme1 as the protease responsible for its quality control. Finally, we provide evidence that the overall increase in TAGs in cells lacking Mcp2 and Tgl2 originates from the mitochondria. Collectively, our study provides new insights into a key player in mitochondrial lipid homeostasis.
Collapse
Affiliation(s)
- Vitasta Tiku
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Zacharias Fakih
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
3
|
Bykov YS, Schuldiner M. Analysis of mitochondrial biogenesis and protein localization by genetic screens and automated imaging. Methods Enzymol 2024; 706:97-123. [PMID: 39455236 DOI: 10.1016/bs.mie.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Budding yeast is a laboratory model of a simple eukaryotic cell. Its compact genome is very easy to edit. This allowed to create systematic collections (libraries) of yeast strains where every gene is either perturbed or tagged. Here we review how such collections were used to study mitochondrial biology by doing genetic screens. First, we introduce the principles of yeast genome editing and the basics of its life cycle that are useful for genetic experiments. Then we overview what yeast strain collections were created over the past years. We also describe the creation and the usage of the new generation of SWAP-Tag (SWAT) collections that allow to create custom libraries. We outline the principles of changing the genetic background of whole collections in parallel, and the basics of synthetic genetic array (SGA) approach. Then we review the discoveries that were made using different types of genetic screens focusing on general mitochondrial functions, proteome, and protein targeting pathways. The development of new collections and screening techniques will continue to bring valuable insight into the function of mitochondria and other organelles.
Collapse
Affiliation(s)
- Yury S Bykov
- Quantitative Cell Biology, Rhineland-Palatinate Technical University, Kaiserslautern, Germany.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Hanada K. Metabolic channeling of lipids via the contact zones between different organelles. Bioessays 2024; 46:e2400045. [PMID: 38932642 DOI: 10.1002/bies.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Various lipid transfer proteins (LTPs) mediate the inter-organelle transport of lipids. By working at membrane contact zones between donor and acceptor organelles, LTPs achieve rapid and accurate inter-organelle transfer of lipids. This article will describe the emerging paradigm that the action of LTPs at organelle contact zones generates metabolic channeling events in lipid metabolism, mainly referring to how ceramide synthesized in the endoplasmic reticulum is preferentially metabolized to sphingomyelin in the distal Golgi region, how cholesterol and phospholipids receive specific metabolic reactions in mitochondria, and how the hijacking of host LTPs by intracellular pathogens may generate new channeling-like events. In addition, the article will discuss how the function of LTPs is regulated, exemplified by a few representative LTP systems, and will briefly touch on experiments that will be necessary to establish the paradigm that LTP-mediated inter-organelle transport of lipids is one of the mechanisms of compartmentalization-based metabolic channeling events.
Collapse
Affiliation(s)
- Kentaro Hanada
- Center for Quality Management Systems, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Xiao T, English AM, Wilson ZN, Maschek J, Cox JE, Hughes AL. The phospholipids cardiolipin and phosphatidylethanolamine differentially regulate MDC biogenesis. J Cell Biol 2024; 223:e202302069. [PMID: 38497895 PMCID: PMC10949074 DOI: 10.1083/jcb.202302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Cells utilize multiple mechanisms to maintain mitochondrial homeostasis. We recently characterized a pathway that remodels mitochondria in response to metabolic alterations and protein overload stress. This remodeling occurs via the formation of large membranous structures from the mitochondrial outer membrane called mitochondrial-derived compartments (MDCs), which are eventually released from mitochondria and degraded. Here, we conducted a microscopy-based screen in budding yeast to identify factors that regulate MDC formation. We found that two phospholipids, cardiolipin (CL) and phosphatidylethanolamine (PE), differentially regulate MDC biogenesis. CL depletion impairs MDC biogenesis, whereas blocking mitochondrial PE production leads to constitutive MDC formation. Additionally, in response to metabolic MDC activators, cellular and mitochondrial PE declines, and overexpressing mitochondrial PE synthesis enzymes suppress MDC biogenesis. Altogether, our data indicate a requirement for CL in MDC biogenesis and suggest that PE depletion may stimulate MDC formation downstream of MDC-inducing metabolic stress.
Collapse
Affiliation(s)
- Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alyssa M. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zachary N. Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - J.Alan. Maschek
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integration. Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - James E. Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Siripoksup P, Cao G, Cluntun AA, Maschek JA, Pearce Q, Brothwell MJ, Jeong MY, Eshima H, Ferrara PJ, Opurum PC, Mahmassani ZS, Peterlin AD, Watanabe S, Walsh MA, Taylor EB, Cox JE, Drummond MJ, Rutter J, Funai K. Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism. J Clin Invest 2024; 134:e167371. [PMID: 38652544 PMCID: PMC11142742 DOI: 10.1172/jci167371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.
Collapse
Affiliation(s)
- Piyarat Siripoksup
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
| | - Guoshen Cao
- Diabetes & Metabolism Research Center
- Department of Biochemistry
| | | | - J. Alan Maschek
- Metabolomics Core Research Facility
- Department of Nutrition & Integrative Physiology, and
| | | | - Marisa J. Brothwell
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Mi-Young Jeong
- Diabetes & Metabolism Research Center
- Department of Biochemistry
| | - Hiroaki Eshima
- Diabetes & Metabolism Research Center
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Patrick J. Ferrara
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Precious C. Opurum
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Ziad S. Mahmassani
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Alek D. Peterlin
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Shinya Watanabe
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Maureen A. Walsh
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - James E. Cox
- Diabetes & Metabolism Research Center
- Department of Biochemistry
- Metabolomics Core Research Facility
| | - Micah J. Drummond
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Jared Rutter
- Diabetes & Metabolism Research Center
- Department of Biochemistry
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Department of Biochemistry
- Department of Nutrition & Integrative Physiology, and
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Jahn H, Bartoš L, Dearden GI, Dittman JS, Holthuis JCM, Vácha R, Menon AK. Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase. Nat Commun 2023; 14:8115. [PMID: 38065946 PMCID: PMC10709637 DOI: 10.1038/s41467-023-43570-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondria are double-membrane-bounded organelles that depend critically on phospholipids supplied by the endoplasmic reticulum. These lipids must cross the outer membrane to support mitochondrial function, but how they do this is unclear. We identify the Voltage Dependent Anion Channel (VDAC), an abundant outer membrane protein, as a scramblase-type lipid transporter that catalyzes lipid entry. On reconstitution into membrane vesicles, dimers of human VDAC1 and VDAC2 catalyze rapid transbilayer translocation of phospholipids by a mechanism that is unrelated to their channel activity. Coarse-grained molecular dynamics simulations of VDAC1 reveal that lipid scrambling occurs at a specific dimer interface where polar residues induce large water defects and bilayer thinning. The rate of phospholipid import into yeast mitochondria is an order of magnitude lower in the absence of VDAC homologs, indicating that VDACs provide the main pathway for lipid entry. Thus, VDAC isoforms, members of a superfamily of beta barrel proteins, moonlight as a class of phospholipid scramblases - distinct from alpha-helical scramblase proteins - that act to import lipids into mitochondria.
Collapse
Affiliation(s)
- Helene Jahn
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Grace I Dearden
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Joost C M Holthuis
- Department of Molecular Cell Biology, University of Osnabrück, Osnabrück, 49076, Germany
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Abstract
Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Travis H. Richard
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Kowaleski SJ, Hurmis CS, Coleman CN, Philips KD, Najor NA. SHE9 deletion mutants display fitness defects during diauxic shift in Saccharomyces cerevisiae . MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000899. [PMID: 37577108 PMCID: PMC10422129 DOI: 10.17912/micropub.biology.000899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023]
Abstract
Saccharomyces cerevisiae protein She9 is localized to the inner mitochondrial membrane and is required for normal mitochondrial morphology. While deletion mutants of SHE9 ( she9Δ ) are viable and display large ring-like mitochondrial structures, the molecular function of SHE9 is still unknown. We report a decreased growth of she9Δ cells during a diauxic shift, where mitochondria are primarily employing oxidative phosphorylation to generate ATP versus the alternative mechanism of glycolysis in high glucose conditions. Further bioinformatics analysis reveal putative functional protein associations, and proposes a model to aid in the understanding of the molecular function of She9.
Collapse
|
10
|
Liu Z, Basso P, Hossain S, Liston SD, Robbins N, Whitesell L, Noble SM, Cowen LE. Multifactor transcriptional control of alternative oxidase induction integrates diverse environmental inputs to enable fungal virulence. Nat Commun 2023; 14:4528. [PMID: 37500616 PMCID: PMC10374912 DOI: 10.1038/s41467-023-40209-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Metabolic flexibility enables fungi to invade challenging host environments. In Candida albicans, a common cause of life-threatening infections in humans, an important contributor to flexibility is alternative oxidase (Aox) activity. Dramatic induction of this activity occurs under respiratory-stress conditions, which impair the classical electron transport chain (ETC). Here, we show that deletion of the inducible AOX2 gene cripples C. albicans virulence in mice by increasing immune recognition. To investigate further, we examined transcriptional regulation of AOX2 in molecular detail under host-relevant, ETC-inhibitory conditions. We found that multiple transcription factors, including Rtg1/Rtg3, Cwt1/Zcf11, and Zcf2, bind and regulate the AOX2 promoter, conferring thousand-fold levels of inducibility to AOX2 in response to distinct environmental stressors. Further dissection of this complex promoter revealed how integration of stimuli ranging from reactive species of oxygen, nitrogen, and sulfur to reduced copper availability is achieved at the transcriptional level to regulate AOX2 induction and enable pathogenesis.
Collapse
Affiliation(s)
- Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Pauline Basso
- UCSF Department of Microbiology & Immunology, San Francisco, CA, USA
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Suzanne M Noble
- UCSF Department of Microbiology & Immunology, San Francisco, CA, USA.
- UCSF Department of Medicine, Division of Infectious Diseases, San Francisco, CA, USA.
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Nguyen A, Lugarini F, David C, Hosnani P, Alagöz Ç, Friedrich A, Schlütermann D, Knotkova B, Patel A, Parfentev I, Urlaub H, Meinecke M, Stork B, Faesen AC. Metamorphic proteins at the basis of human autophagy initiation and lipid transfer. Mol Cell 2023:S1097-2765(23)00321-0. [PMID: 37209685 DOI: 10.1016/j.molcel.2023.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Autophagy is a conserved intracellular degradation pathway that generates de novo double-membrane autophagosomes to target a wide range of material for lysosomal degradation. In multicellular organisms, autophagy initiation requires the timely assembly of a contact site between the ER and the nascent autophagosome. Here, we report the in vitro reconstitution of a full-length seven-subunit human autophagy initiation supercomplex built on a core complex of ATG13-101 and ATG9. Assembly of this core complex requires the rare ability of ATG13 and ATG101 to switch between distinct folds. The slow spontaneous metamorphic conversion is rate limiting for the self-assembly of the supercomplex. The interaction of the core complex with ATG2-WIPI4 enhances tethering of membrane vesicles and accelerates lipid transfer of ATG2 by both ATG9 and ATG13-101. Our work uncovers the molecular basis of the contact site and its assembly mechanisms imposed by the metamorphosis of ATG13-101 to regulate autophagosome biogenesis in space and time.
Collapse
Affiliation(s)
- Anh Nguyen
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Francesca Lugarini
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Pouya Hosnani
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Çağla Alagöz
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Barbora Knotkova
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Anoshi Patel
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Iwan Parfentev
- Max-Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany
| | - Henning Urlaub
- Max-Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany; University Medical Centre Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
| | - Michael Meinecke
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alex C Faesen
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany.
| |
Collapse
|
12
|
Kwiatek JM, Gutierrez B, Izgu EC, Han GS, Carman GM. Phosphatidic Acid Mediates the Nem1-Spo7/Pah1 Phosphatase Cascade in Yeast Lipid Synthesis. J Lipid Res 2022; 63:100282. [PMID: 36314526 PMCID: PMC9587005 DOI: 10.1016/j.jlr.2022.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the PAH1-encoded Mg2+-dependent phosphatidate (PA) phosphatase Pah1 regulates the bifurcation of PA to diacylglycerol (DAG) for triacylglycerol (TAG) synthesis and to CDP-DAG for phospholipid synthesis. Pah1 function is mainly regulated via control of its cellular location by phosphorylation and dephosphorylation. Pah1 phosphorylated by multiple protein kinases is sequestered in the cytosol apart from its substrate PA in the membrane. The phosphorylated Pah1 is then recruited and dephosphorylated by the protein phosphatase complex Nem1 (catalytic subunit)-Spo7 (regulatory subunit) in the endoplasmic reticulum. The dephosphorylated Pah1 hops onto and scoots along the membrane to recognize PA for its dephosphorylation to DAG. Here, we developed a proteoliposome model system that mimics the Nem1-Spo7/Pah1 phosphatase cascade to provide a tool for studying Pah1 regulation. Purified Nem1-Spo7 was reconstituted into phospholipid vesicles prepared in accordance with the phospholipid composition of the nuclear/endoplasmic reticulum membrane. The Nem1-Spo7 phosphatase reconstituted in the proteoliposomes, which were measured 60 nm in an average diameter, was catalytically active on Pah1 phosphorylated by Pho85-Pho80, and its active site was located at the external side of the phospholipid bilayer. Moreover, we determined that PA stimulated the Nem1-Spo7 activity, and the regulatory effect was governed by the nature of the phosphate headgroup but not by the fatty acyl moiety of PA. The reconstitution system for the Nem1-Spo7/Pah1 phosphatase cascade, which starts with the phosphorylation of Pah1 by Pho85-Pho80 and ends with the production of DAG, is a significant advance to understand a regulatory cascade in yeast lipid synthesis.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Bryan Gutierrez
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Enver Cagri Izgu
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA; Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
13
|
Nedara K, Reinhardt C, Lebraud E, Arena G, Gracia C, Buard V, Pioche-Durieu C, Castelli F, Colsch B, Bénit P, Rustin P, Albaud B, Gestraud P, Baulande S, Servant N, Deutsch E, Verbavatz JM, Brenner C, Milliat F, Modjtahedi N. Relevance of the TRIAP1/p53 axis in colon cancer cell proliferation and adaptation to glutamine deprivation. Front Oncol 2022; 12:958155. [DOI: 10.3389/fonc.2022.958155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.
Collapse
|
14
|
Banerjee S, Chaturvedi R, Singh A, Kushwaha HR. Putting human Tid-1 in context: an insight into its role in the cell and in different disease states. Cell Commun Signal 2022; 20:109. [PMID: 35854300 PMCID: PMC9297570 DOI: 10.1186/s12964-022-00912-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumorous imaginal disc 1 (hTid-1) or DnaJ homolog subfamily A member 3 (DNAJA3), is a part of the heat shock protein (Hsp) 40 family and is predominantly found to reside in the mitochondria. hTid-1 has two mRNA splicing variants, hTid-1S and hTid-1L of 40 and 43 kDa respectively in the cytosol which are later processed upon import into the mitochondrial matrix. hTid-1 protein is a part of the DnaJ family of proteins which are co-chaperones and specificity factors for DnaK proteins of the Hsp70 family, and bind to Hsp70, thereby activating its ATPase activity. hTid-1 has been found to be critical for a lot of important cellular processes such as proliferation, differentiation, growth, survival, senescence, apoptosis, and movement and plays key roles in the embryo and skeletal muscle development.
Main body hTid-1 participates in several protein–protein interactions in the cell, which mediate different processes such as proteasomal degradation and autophagy of the interacting protein partners. hTid-1 also functions as a co-chaperone and participates in interactions with several different viral oncoproteins. hTid-1 also plays a critical role in different human diseases such as different cancers, cardiomyopathies, and neurodegenerative disorders. Conclusion This review article is the first of its kind presenting consolidated information on the research findings of hTid-1 to date. This review suggests that the current knowledge of the role of hTid-1 in disorders like cancers, cardiomyopathies, and neurodegenerative diseases can be correlated with the findings of its protein–protein interactions that can provide a deep insight into the pathways by which hTid-1 affects disease pathogenesis and it can be stated that hTid-1 may serve as an important therapeutic target for these disorders. Graphical Abstract ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00912-5.
Collapse
Affiliation(s)
- Sagarika Banerjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India. .,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
15
|
Miyata N, Ito T, Nakashima M, Fujii S, Kuge O. Mitochondrial phosphatidylethanolamine synthesis affects mitochondrial energy metabolism and quiescence entry through attenuation of Snf1/AMPK signaling in yeast. FASEB J 2022; 36:e22355. [PMID: 35639425 DOI: 10.1096/fj.202101600rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
The Ups2-Mdm35 complex mediates intramitochondrial phosphatidylserine (PS) transport to facilitate mitochondrial phosphatidylethanolamine (PE) synthesis. In the present study, we found that ups2∆ yeast showed increased mitochondrial ATP production and enhanced quiescence (G0) entry in the post-diauxic shift phase. Transcriptomic and biochemical analyses revealed that the depletion of Ups2 leads to overactivation of the yeast AMPK homolog Snf1. Inactivation of Snf1 by depletion of an Snf1-activating kinase, Sak1 canceled the changes in mitochondrial ATP production and quiescence entry observed in ups2∆ cells. Furthermore, among the factors regulated by Snf1, upregulation of pyruvate carboxylase, Pyc1 and downregulation of acetyl-CoA carboxylase, Acc1, respectively, were sufficient to increase mitochondrial ATP production and quiescence entry. These results suggested that a normal PE synthesis mediated by Ups2-Mdm35 complex attenuates Snf1/AMPK activity, and that Snf1-mediated regulation of carbon metabolisms has great impacts on mitochondrial energy metabolism and quiescence entry. We also found that depletion of Ups2 together with the cell-cycle regulators Whi5 and Whi7, functional orthologs of the Rb1 tumor suppressor, caused a synthetic growth defect in yeast. Similarly, knockdown of PRELID3b, the human homolog of Ups2, decreased the viability of Rb1-deficient breast cancer cells, suggesting that PRELID3b is a potential target for cancer therapy.
Collapse
Affiliation(s)
- Non Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takanori Ito
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Miyu Nakashima
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Satoru Fujii
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Osamu Kuge
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
De Luca V, Leo M, Cretella E, Montanari A, Saliola M, Ciaffi G, Vecchione A, Stoppacciaro A, Filetici P. Role of yUbp8 in Mitochondria and Hypoxia Entangles the Finding of Human Ortholog Usp22 in the Glioblastoma Pseudo-Palisade Microlayer. Cells 2022; 11:cells11101682. [PMID: 35626719 PMCID: PMC9140154 DOI: 10.3390/cells11101682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
KAT Gcn5 and DUB Ubp8 are required for respiration and mitochondria functions in budding yeast, and in this study we show that loss of respiratory activity is acquired over time. Interestingly, we show that absence of Ubp8 allows cells to grow in hypoxic conditions with altered mitophagy. Comparatively, the aggressive glioblastoma (GBM) multiforme tumor shows survival mechanisms able to overcome hypoxia in the brain. Starting from yeast and our findings on the role of Ubp8 in hypoxia, we extended our analysis to the human ortholog and signature cancer gene Usp22 in glioblastoma tumor specimens. Here we demonstrate that Usp22 is localized and overexpressed in the pseudo-palisade tissue around the necrotic area of the tumor. In addition, Usp22 colocalizes with the mitophagy marker Parkin, indicating a link with mitochondria function in GBM. Collectively, this evidence suggests that altered expression of Usp22 might provide a way for tumor cells to survive in hypoxic conditions, allowing the escape of cells from the necrotic area toward vascularized tissues. Collectively, our experimental data suggest a model for a possible mechanism of uncontrolled proliferation and invasion in glioblastoma.
Collapse
Affiliation(s)
- Veronica De Luca
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Manuela Leo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Elisabetta Cretella
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Arianna Montanari
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Michele Saliola
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Gabriele Ciaffi
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
- Correspondence: (A.S.); (P.F.); Tel.: +39-06-3377-6102 (A.S.)
| | - Patrizia Filetici
- Institute of Molecular Biology and Pathology—CNR, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (A.S.); (P.F.); Tel.: +39-06-3377-6102 (A.S.)
| |
Collapse
|
17
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
18
|
Abstract
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
19
|
Egea PF. Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Front Cell Dev Biol 2021; 9:784367. [PMID: 34912813 PMCID: PMC8667587 DOI: 10.3389/fcell.2021.784367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis. One of the now well-acknowledged function of MCSs involves the non-vesicular trafficking of lipids; its characterization answered one long-standing question of eukaryotic cell biology revealing how some organelles receive and distribute their membrane lipids in absence of vesicular trafficking. The endoplasmic reticulum (ER) in synergy with the mitochondria, stands as the nexus for the biosynthesis and distribution of phospholipids (PLs) throughout the cell by contacting nearly all other organelle types. MCSs create and maintain lipid fluxes and gradients essential to the functional asymmetry and polarity of biological membranes throughout the cell. Membrane apposition is mediated by proteinaceous tethers some of which function as lipid transfer proteins (LTPs). We summarize here the current state of mechanistic knowledge of some of the major classes of LTPs and tethers based on the available atomic to near-atomic resolution structures of several "model" MCSs from yeast but also in Metazoans; we describe different models of lipid transfer at MCSs and analyze the determinants of their specificity and directionality. Each of these systems illustrate fundamental principles and mechanisms for the non-vesicular exchange of lipids between eukaryotic membrane-bound organelles essential to a wide range of cellular processes such as at PL biosynthesis and distribution, lipid storage, autophagy and organelle biogenesis.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
20
|
Iovine JC, Claypool SM, Alder NN. Mitochondrial compartmentalization: emerging themes in structure and function. Trends Biochem Sci 2021; 46:902-917. [PMID: 34244035 PMCID: PMC11008732 DOI: 10.1016/j.tibs.2021.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases.
Collapse
Affiliation(s)
- Joseph C Iovine
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
21
|
Mitochondrial Phospholipid Homeostasis Is Regulated by the i-AAA Protease PaIAP and Affects Organismic Aging. Cells 2021; 10:cells10102775. [PMID: 34685755 PMCID: PMC8534651 DOI: 10.3390/cells10102775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Mitochondria are ubiquitous organelles of eukaryotic organisms with a number of essential functions, including synthesis of iron-sulfur clusters, amino acids, lipids, and adenosine triphosphate (ATP). During aging of the fungal aging model Podospora anserina, the inner mitochondrial membrane (IMM) undergoes prominent morphological alterations, ultimately resulting in functional impairments. Since phospholipids (PLs) are key components of biological membranes, maintenance of membrane plasticity and integrity via regulation of PL biosynthesis is indispensable. Here, we report results from a lipidomic analysis of isolated mitochondria from P. anserina that revealed an age-related reorganization of the mitochondrial PL profile and the involvement of the i-AAA protease PaIAP in proteolytic regulation of PL metabolism. The absence of PaIAP enhances biosynthesis of characteristic mitochondrial PLs, leads to significant alterations in the acyl composition of the mitochondrial signature PL cardiolipin (CL), and induces mitophagy. These alterations presumably cause the lifespan increase of the PaIap deletion mutant under standard growth conditions. However, PaIAP is required at elevated temperatures and for degradation of superfluous CL synthase PaCRD1 during glycolytic growth. Overall, our study uncovers a prominent role of PaIAP in the regulation of PL homeostasis in order to adapt membrane plasticity to fluctuating environmental conditions as they occur in nature.
Collapse
|
22
|
Tamura Y, Kawano S, Endo T. Lipid homeostasis in mitochondria. Biol Chem 2021; 401:821-833. [PMID: 32229651 DOI: 10.1515/hsz-2020-0121] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.
Collapse
Affiliation(s)
- Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
23
|
Acoba MG, Senoo N, Claypool SM. Phospholipid ebb and flow makes mitochondria go. J Cell Biol 2021; 219:151918. [PMID: 32614384 PMCID: PMC7401802 DOI: 10.1083/jcb.202003131] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
24
|
Eiyama A, Aaltonen MJ, Nolte H, Tatsuta T, Langer T. Disturbed intramitochondrial phosphatidic acid transport impairs cellular stress signaling. J Biol Chem 2021; 296:100335. [PMID: 33497623 PMCID: PMC7949116 DOI: 10.1016/j.jbc.2021.100335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 01/18/2023] Open
Abstract
Lipid transfer proteins of the Ups1/PRELID1 family facilitate the transport of phospholipids across the intermembrane space of mitochondria in a lipid-specific manner. Heterodimeric complexes of yeast Ups1/Mdm35 or human PRELID1/TRIAP1 shuttle phosphatidic acid (PA) mainly synthesized in the endoplasmic reticulum (ER) to the inner membrane, where it is converted to cardiolipin (CL), the signature phospholipid of mitochondria. Loss of Ups1/PRELID1 proteins impairs the accumulation of CL and broadly affects mitochondrial structure and function. Unexpectedly and unlike yeast cells lacking the CL synthase Crd1, Ups1-deficient yeast cells exhibit glycolytic growth defects, pointing to functions of Ups1-mediated PA transfer beyond CL synthesis. Here, we show that the disturbed intramitochondrial transport of PA in ups1Δ cells leads to altered unfolded protein response (UPR) and mTORC1 signaling, independent of disturbances in CL synthesis. The impaired flux of PA into mitochondria is associated with the increased synthesis of phosphatidylcholine and a reduced phosphatidylethanolamine/phosphatidylcholine ratio in the ER of ups1Δ cells which suppresses the UPR. Moreover, we observed inhibition of target of rapamycin complex 1 (TORC1) signaling in these cells. Activation of either UPR by ER protein stress or of TORC1 signaling by disruption of its negative regulator, the Seh1-associated complex inhibiting TORC1 complex, increased cytosolic protein synthesis, and restored glycolytic growth of ups1Δ cells. These results demonstrate that PA influx into mitochondria is required to preserve ER membrane homeostasis and that its disturbance is associated with impaired glycolytic growth and cellular stress signaling.
Collapse
Affiliation(s)
- Akinori Eiyama
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Mari J Aaltonen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Takashi Tatsuta
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Shiino H, Furuta S, Kojima R, Kimura K, Endo T, Tamura Y. Phosphatidylserine flux into mitochondria unveiled by organelle-targeted Escherichia coli phosphatidylserine synthase PssA. FEBS J 2020; 288:3285-3299. [PMID: 33283454 DOI: 10.1111/febs.15657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phospholipid transport routes into mitochondria, we expressed the Escherichia coli phosphatidylserine (PS) synthase PssA in various membrane compartments with distinct membrane topologies in yeast cells lacking a sole PS synthase (Cho1). Interestingly, PssA could complement loss of Cho1 when targeted to the endoplasmic reticulum (ER), peroxisome, or lipid droplet membranes. Synthesised PS could be converted to phosphatidylethanolamine (PE) by Psd1, the mitochondrial PS decarboxylase, suggesting that phospholipids synthesised in the peroxisomes and low doses (LDs) can efficiently reach mitochondria. Furthermore, we found that PssA which has been integrated into the mitochondrial inner membrane (MIM) from the matrix side could partially complement the loss of Cho1. The PS synthesised in the MIM was also converted to PE, indicating that PS flops across the MIM to become PE. These findings expand our understanding of the intracellular phospholipid transport routes via mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | | |
Collapse
|
26
|
Abstract
Mitochondria contain about 1,000-1,500 proteins that fulfil multiple functions. Mitochondrial proteins originate from two genomes: mitochondrial and nuclear. Hence, proper mitochondrial function requires synchronization of gene expression in the nucleus and in mitochondria and necessitates efficient import of mitochondrial proteins into the organelle from the cytosol. Furthermore, the mitochondrial proteome displays high plasticity to allow the adaptation of mitochondrial function to cellular requirements. Maintenance of this complex and adaptable mitochondrial proteome is challenging, but is of crucial importance to cell function. Defects in mitochondrial proteostasis lead to proteotoxic insults and eventually cell death. Different quality control systems monitor the mitochondrial proteome. The cytosolic ubiquitin-proteasome system controls protein transport across the mitochondrial outer membrane and removes damaged or mislocalized proteins. Concomitantly, a number of mitochondrial chaperones and proteases govern protein folding and degrade damaged proteins inside mitochondria. The quality control factors also regulate processing and turnover of native proteins to control protein import, mitochondrial metabolism, signalling cascades, mitochondrial dynamics and lipid biogenesis, further ensuring proper function of mitochondria. Thus, mitochondrial protein quality control mechanisms are of pivotal importance to integrate mitochondria into the cellular environment.
Collapse
|
27
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Khosravi S, Harner ME. The MICOS complex, a structural element of mitochondria with versatile functions. Biol Chem 2020; 401:765-778. [DOI: 10.1515/hsz-2020-0103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
AbstractMitochondria perform a plethora of functions in various cells of different tissues. Their architecture differs remarkably, for instance in neurons versus steroidogenic cells. Furthermore, aberrant mitochondrial architecture results in mitochondrial dysfunction. This indicates strongly that mitochondrial architecture and function are intimately linked. Therefore, a deep knowledge about the determinants of mitochondrial architecture and their function on a molecular level is of utmost importance. In the past decades, various proteins and protein complexes essential for formation of mitochondrial architecture have been identified. Here we will review the current knowledge of the MICOS complex, one of the major structural elements of mitochondria. MICOS is a multi-subunit complex present in the inner mitochondrial membrane. Multiple interaction partners in the inner and outer mitochondrial membrane point to participation in a multitude of important processes, such as generation of mitochondrial architecture, lipid metabolism, and protein import into mitochondria. Since the MICOS complex is highly conserved in form and function throughout evolution, we will highlight the importance of MICOS for mammals. We will emphasize in particular the current knowledge of the association of MICOS with severe human diseases, including Charcot–Marie–Tooth disease type 2, Alzheimer's disease, Parkinson's disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Siavash Khosravi
- Department of Cell Biology, Biomedical Center, Ludwig-Maximilians University Munich, Großhaderner Str. 9, Planegg/Martinsried, MunichD-82152, Germany
| | - Max E. Harner
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians University Munich, Großhaderner Str. 9, Planegg/Martinsried, MunichD-82152, Germany
| |
Collapse
|
29
|
Multifaceted roles of porin in mitochondrial protein and lipid transport. Biochem Soc Trans 2020; 47:1269-1277. [PMID: 31670371 DOI: 10.1042/bst20190153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022]
Abstract
Mitochondria are essential eukaryotic organelles responsible for primary cellular energy production. Biogenesis, maintenance, and functions of mitochondria require correct assembly of resident proteins and lipids, which require their transport into and within mitochondria. Mitochondrial normal functions also require an exchange of small metabolites between the cytosol and mitochondria, which is primarily mediated by a metabolite channel of the outer membrane (OM) called porin or voltage-dependent anion channel. Here, we describe recently revealed novel roles of porin in the mitochondrial protein and lipid transport. First, porin regulates the formation of the mitochondrial protein import gate in the OM, the translocase of the outer membrane (TOM) complex, and its dynamic exchange between the major form of a trimer and the minor form of a dimer. The TOM complex dimer lacks a core subunit Tom22 and mediates the import of a subset of mitochondrial proteins while the TOM complex trimer facilitates the import of most other mitochondrial proteins. Second, porin interacts with both a translocating inner membrane (IM) protein like a carrier protein accumulated at the small TIM chaperones in the intermembrane space and the TIM22 complex, a downstream translocator in the IM for the carrier protein import. Porin thereby facilitates the efficient transfer of carrier proteins to the IM during their import. Third, porin facilitates the transfer of lipids between the OM and IM and promotes a back-up pathway for the cardiolipin synthesis in mitochondria. Thus, porin has roles more than the metabolite transport in the protein and lipid transport into and within mitochondria, which is likely conserved from yeast to human.
Collapse
|
30
|
Funai K, Summers SA, Rutter J. Reign in the membrane: How common lipids govern mitochondrial function. Curr Opin Cell Biol 2020; 63:162-173. [PMID: 32106003 DOI: 10.1016/j.ceb.2020.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
The lipids that make up biological membranes tend to be the forgotten molecules of cell biology. The paucity of data on these important entities likely reflects the difficulties of studying and understanding their biological roles, rather than revealing a lack of importance. Indeed, the lipid composition of biological membranes has a profound impact on a diverse array of cellular processes. The focus of this review is on the effects of different lipid classes on the function of mitochondria, particularly bioenergetics, in health and disease.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| | - Scott A Summers
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Jared Rutter
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA; Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
31
|
Watanabe Y, Tamura Y, Kakuta C, Watanabe S, Endo T. Structural basis for interorganelle phospholipid transport mediated by VAT-1. J Biol Chem 2020; 295:3257-3268. [PMID: 32005660 DOI: 10.1074/jbc.ra119.011019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/31/2020] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells are compartmentalized to form organelles, whose functions rely on proper phospholipid and protein transport. Here we determined the crystal structure of human VAT-1, a cytosolic soluble protein that was suggested to transfer phosphatidylserine, at 2.2 Å resolution. We found that VAT-1 transferred not only phosphatidylserine but also other acidic phospholipids between membranes in vitro Structure-based mutational analyses showed the presence of a possible lipid-binding cavity at the interface between the two subdomains, and two tyrosine residues in the flexible loops facilitated phospholipid transfer, likely by functioning as a gate to this lipid-binding cavity. We also found that a basic and hydrophobic loop with two tryptophan residues protruded from the molecule and facilitated binding to the acidic-lipid membranes, thereby achieving efficient phospholipid transfer.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Chika Kakuta
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan; Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
32
|
Thomas HE, Zhang Y, Stefely JA, Veiga SR, Thomas G, Kozma SC, Mercer CA. Mitochondrial Complex I Activity Is Required for Maximal Autophagy. Cell Rep 2020; 24:2404-2417.e8. [PMID: 30157433 PMCID: PMC6298213 DOI: 10.1016/j.celrep.2018.07.101] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/17/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
Cells adapt to nutrient and energy deprivation by inducing autophagy, which is regulated by the mammalian target of rapamycin (mTOR) and AMP-activated protein kinases (AMPKs). We found that cell metabolism significantly influences the ability to induce autophagy, with mitochondrial complex I function being an important factor in the initiation, amplitude, and duration of the response. We show that phenformin or genetic defects in complex I suppressed autophagy induced by mTOR inhibitors, whereas autophagy was enhanced by strategies that increased mitochondrial metabolism. We report that mTOR inhibitors significantly increased select phospholipids and mitochondrial-associated membranes (MAMs) in a complex I-dependent manner. We attribute the complex I autophagy defect to the inability to increase MAMs, limiting phosphatidylserine decarboxylase (PISD) activity and mitochondrial phosphatidylethanolamine (mtPE), which support autophagy. Our data reveal the dynamic and metabolic regulation of autophagy.
Collapse
Affiliation(s)
- Hala Elnakat Thomas
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Zhang
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan A Stefely
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA; Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sonia R Veiga
- Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - George Thomas
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA; Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain; Unit de Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge-IDIBELL, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Sara C Kozma
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA; Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - Carol A Mercer
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
33
|
Kwiatek JM, Han GS, Carman GM. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158434. [PMID: 30910690 PMCID: PMC6755077 DOI: 10.1016/j.bbalip.2019.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
In yeast and higher eukaryotes, phospholipids and triacylglycerol are derived from phosphatidate at the nuclear/endoplasmic reticulum membrane. In de novo biosynthetic pathways, phosphatidate is channeled into membrane phospholipids via its conversion to CDP-diacylglycerol. Its dephosphorylation to diacylglycerol is required for the synthesis of triacylglycerol as well as for the synthesis of phosphatidylcholine and phosphatidylethanolamine via the Kennedy pathway. In addition to the role of phosphatidate as a precursor, it is a regulatory molecule in the transcriptional control of phospholipid synthesis genes via the Henry regulatory circuit. Pah1 phosphatidate phosphatase and Dgk1 diacylglycerol kinase are key players that function counteractively in the control of the phosphatidate level at the nuclear/endoplasmic reticulum membrane. Loss of Pah1 phosphatidate phosphatase activity not only affects triacylglycerol synthesis but also disturbs the balance of the phosphatidate level, resulting in the alteration of lipid synthesis and related cellular defects. The pah1Δ phenotypes requiring Dgk1 diacylglycerol kinase exemplify the importance of the phosphatidate level in the misregulation of cellular processes. The catalytic function of Pah1 requires its translocation from the cytoplasm to the nuclear/endoplasmic reticulum membrane, which is regulated through its phosphorylation in the cytoplasm by multiple protein kinases as well as through its dephosphorylation by the membrane-associated Nem1-Spo7 protein phosphatase complex. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
34
|
Yang X, Liang J, Ding L, Li X, Lam SM, Shui G, Ding M, Huang X. Phosphatidylserine synthase regulates cellular homeostasis through distinct metabolic mechanisms. PLoS Genet 2019; 15:e1008548. [PMID: 31869331 PMCID: PMC6946173 DOI: 10.1371/journal.pgen.1008548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/07/2020] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylserine (PS), synthesized in the endoplasmic reticulum (ER) by phosphatidylserine synthase (PSS), is transported to the plasma membrane (PM) and mitochondria through distinct routes. The in vivo functions of PS at different subcellular locations and the coordination between different PS transport routes are not fully understood. Here, we report that Drosophila PSS regulates cell growth, lipid storage and mitochondrial function. In pss RNAi, reduced PS depletes plasma membrane Akt, contributing to cell growth defects; the metabolic shift from phospholipid synthesis to neutral lipid synthesis results in ectopic lipid accumulation; and the reduction of mitochondrial PS impairs mitochondrial protein import and mitochondrial integrity. Importantly, reducing PS transport from the ER to PM by loss of PI4KIIIα partially rescues the mitochondrial defects of pss RNAi. Together, our results uncover a balance between different PS transport routes and reveal that PSS regulates cellular homeostasis through distinct metabolic mechanisms. Phosphatidylserine (PS), a membrane phospholipid synthesized in the endoplasmic reticulum (ER) by the enzyme phosphatidylserine synthase (PSS), is transported to the plasma membrane (PM) and mitochondria through different paths. The cellular functions of PS at different places in the cell and the mechanisms that coordinate the different PS transport paths are not fully understood. Here, we identified that PSS regulates cell growth, lipid storage and mitochondrial function in the fruit fly larval salivary gland. We showed that loss of pss function has three effects: (1) reduced levels of PS lead to reduced levels of plasma membrane Akt, a key component in the insulin pathway, which is important for cell growth; (2) it causes a shift from phospholipid synthesis to neutral lipid synthesis, which results in excess lipid accumulation; and (3) it reduces the level of mitochondrial PS, which impairs mitochondrial protein import and mitochondrial morphology. We also found that reducing the transport of PS from the ER to PM partially rescues the mitochondrial defects caused by loss of pss function. Together, our results reveal that PSS regulates cellular homeostasis through distinct metabolic changes, and uncover a balance between different PS transport pathways.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, TaiAn, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sin-Man Lam
- LipidAll Technologies Co., Ltd. Changzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
35
|
Abstract
Lipids are distributed in a highly heterogeneous fashion in different cellular membranes. Only a minority of lipids achieve their final intracellular distribution through transport by vesicles. Instead, the bulk of lipid traffic is mediated by a large group of lipid transfer proteins (LTPs), which move small numbers of lipids at a time using hydrophobic cavities that stabilize lipid molecules outside membranes. Although the first LTPs were discovered almost 50 years ago, most progress in understanding these proteins has been made in the past few years, leading to considerable temporal and spatial refinement of our understanding of the function of these lipid transporters. The number of known LTPs has increased, with exciting discoveries of their multimeric assembly. Structural studies of LTPs have progressed from static crystal structures to dynamic structural approaches that show how conformational changes contribute to lipid handling at a sub-millisecond timescale. A major development has been the finding that many intracellular LTPs localize to two organelles at the same time, forming a shuttle, bridge or tube that links donor and acceptor compartments. The understanding of how different lipids achieve their final destination at the molecular level allows a better explanation of the range of defects that occur in diseases associated with lipid transport and distribution, opening up the possibility of developing therapies that specifically target lipid transfer.
Collapse
|
36
|
Abstract
Synthesis and regulation of lipid levels and identities is critical for a wide variety of cellular functions, including structural and morphological properties of organelles, energy storage, signaling, and stability and function of membrane proteins. Proteolytic cleavage events regulate and/or influence some of these lipid metabolic processes and as a result help modulate their pleiotropic cellular functions. Proteins involved in lipid regulation are proteolytically cleaved for the purpose of their relocalization, processing, turnover, and quality control, among others. The scope of this review includes proteolytic events governing cellular lipid dynamics. After an initial discussion of the classic example of sterol regulatory element-binding proteins, our focus will shift to the mitochondrion, where a range of proteolytic events are critical for normal mitochondrial phospholipid metabolism and enforcing quality control therein. Recently, mitochondrial phospholipid metabolic pathways have been implicated as important for the proliferative capacity of cancers. Thus, the assorted proteases that regulate, monitor, or influence the activity of proteins that are important for phospholipid metabolism represent attractive targets to be manipulated for research purposes and clinical applications.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Erica Avery
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven M. Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
37
|
Abstract
Mitochondria are metabolic hubs that use multiple proteases to maintain proteostasis and to preserve their overall quality. A decline of mitochondrial proteolysis promotes cellular stress and may contribute to the aging process. Mitochondrial proteases have also emerged as tightly regulated enzymes required to support the remarkable mitochondrial plasticity necessary for metabolic adaptation in a number of physiological scenarios. Indeed, the mutation and dysfunction of several mitochondrial proteases can cause specific human diseases with severe metabolic phenotypes. Here, we present an overview of the proteolytic regulation of key mitochondrial functions such as respiration, lipid biosynthesis, and mitochondrial dynamics, all of which are required for metabolic control. We also pay attention to how mitochondrial proteases are acutely regulated in response to cellular stressors or changes in growth conditions, a greater understanding of which may one day uncover their therapeutic potential.
Collapse
|
38
|
Balla T, Sengupta N, Kim YJ. Lipid synthesis and transport are coupled to regulate membrane lipid dynamics in the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158461. [PMID: 31108203 DOI: 10.1016/j.bbalip.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 11/27/2022]
Abstract
Structural lipids are mostly synthesized in the endoplasmic reticulum (ER), from which they are actively transported to the membranes of other organelles. Lipids can leave the ER through vesicular trafficking or non-vesicular lipid transfer and, curiously, both processes can be regulated either by the transported lipid cargos themselves or by different secondary lipid species. For most structural lipids, transport out of the ER membrane is a key regulatory component controlling their synthesis. Distribution of the lipids between the two leaflets of the ER bilayer or between the ER and other membranes is also critical for maintaining the unique membrane properties of each cellular organelle. How cells integrate these processes within the ER depends on fine spatial segregation of the molecular components and intricate metabolic channeling, both of which we are only beginning to understand. This review will summarize some of these complex processes and attempt to identify the organizing principles that start to emerge. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Mizuike A, Kobayashi S, Rikukawa T, Ohta A, Horiuchi H, Fukuda R. Suppression of respiratory growth defect of mitochondrial phosphatidylserine decarboxylase deficient mutant by overproduction of Sfh1, a Sec14 homolog, in yeast. PLoS One 2019; 14:e0215009. [PMID: 30958856 PMCID: PMC6453485 DOI: 10.1371/journal.pone.0215009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Interorganelle phospholipid transfer is critical for eukaryotic membrane biogenesis. In the yeast Saccharomyces cerevisiae, phosphatidylserine (PS) synthesized by PS synthase, Pss1, in the endoplasmic reticulum (ER) is decarboxylated to phosphatidylethanolamine (PE) by PS decarboxylase, Psd1, in the ER and mitochondria or by Psd2 in the endosome, Golgi, and/or vacuole, but the mechanism of interorganelle PS transport remains to be elucidated. Here we report that Sfh1, a member of Sec14 family proteins of S. cerevisiae, possesses the ability to enhance PE production by Psd2. Overexpression of SFH1 in the strain defective in Psd1 restored its growth on non-fermentable carbon sources and increased the intracellular and mitochondrial PE levels. Sfh1 was found to bind various phospholipids, including PS, in vivo. Bacterially expressed and purified Sfh1 was suggested to have the ability to transport fluorescently labeled PS between liposomes by fluorescence dequenching assay in vitro. Biochemical subcellular fractionation suggested that a fraction of Sfh1 localizes to the endosome, Golgi, and/or vacuole. We propose a model that Sfh1 promotes PE production by Psd2 by transferring phospholipids between the ER and endosome.
Collapse
Affiliation(s)
- Aya Mizuike
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Kobayashi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Rikukawa
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
40
|
Miliara X, Tatsuta T, Berry JL, Rouse SL, Solak K, Chorev DS, Wu D, Robinson CV, Matthews S, Langer T. Structural determinants of lipid specificity within Ups/PRELI lipid transfer proteins. Nat Commun 2019; 10:1130. [PMID: 30850607 PMCID: PMC6408443 DOI: 10.1038/s41467-019-09089-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
Conserved lipid transfer proteins of the Ups/PRELI family regulate lipid accumulation in mitochondria by shuttling phospholipids in a lipid-specific manner across the intermembrane space. Here, we combine structural analysis, unbiased genetic approaches in yeast and molecular dynamics simulations to unravel determinants of lipid specificity within the conserved Ups/PRELI family. We present structures of human PRELID1-TRIAP1 and PRELID3b-TRIAP1 complexes, which exert lipid transfer activity for phosphatidic acid and phosphatidylserine, respectively. Reverse yeast genetic screens identify critical amino acid exchanges that broaden and swap their lipid specificities. We find that amino acids involved in head group recognition and the hydrophobicity of flexible loops regulate lipid entry into the binding cavity. Molecular dynamics simulations reveal different membrane orientations of PRELID1 and PRELID3b during the stepwise release of lipids. Our experiments thus define the structural determinants of lipid specificity and the dynamics of lipid interactions by Ups/PRELI proteins.
Collapse
Affiliation(s)
- Xeni Miliara
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
| | - Takashi Tatsuta
- Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Jamie-Lee Berry
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
| | - Kübra Solak
- Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK.
| | - Thomas Langer
- Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
| |
Collapse
|
41
|
Tamura Y, Kawano S, Endo T. Organelle contact zones as sites for lipid transfer. J Biochem 2019; 165:115-123. [PMID: 30371789 DOI: 10.1093/jb/mvy088] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023] Open
Abstract
Since the 1950s, electron microscopic observations have suggested the existence of special regions where the distinct organelle membranes are closely apposed to each other, yet their molecular basis and functions have not been examined for a long time. Recent studies using yeast as a model organism identified multiple organelle-membrane tethering sites/factors, such as ERMES (ER-mitochondria encounter structure), NVJ (Nuclear-vacuole junction), vCLAMP (Vacuole and mitochondria patch) and MICOS (Mitochondrial contact site). Among them, ERMES is the best-characterized contact-site protein complex, which was found to function as not only an organelle-tethering factor but also a phospholipid transfer protein complex. In this review, we will discuss recent advances in the characterization of ERMES and other organelle contact zones, vCLAMP, NVJ and MICOS in yeast.
Collapse
Affiliation(s)
- Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan.,Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan.,Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| |
Collapse
|
42
|
Kojima R, Kakimoto Y, Furuta S, Itoh K, Sesaki H, Endo T, Tamura Y. Maintenance of Cardiolipin and Crista Structure Requires Cooperative Functions of Mitochondrial Dynamics and Phospholipid Transport. Cell Rep 2019; 26:518-528.e6. [PMID: 30650346 PMCID: PMC7026740 DOI: 10.1016/j.celrep.2018.12.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are dynamic organelles that constantly fuse and divide to maintain their proper morphology, which is essential for their normal functions. Energy production, a central role of mitochondria, demands highly folded structures of the mitochondrial inner membrane (MIM) called cristae and a dimeric phospholipid (PL) cardiolipin (CL). Previous studies identified a number of factors involved in mitochondrial dynamics, crista formation, and CL biosynthesis, yet it is still enigmatic how these events are interconnected and cooperated. Here, we first report that mitochondrial fusion-division dynamics are important to maintain CL abundance. Second, our genetic and biochemical analyses revealed that intra-mitochondrial PL transport plays an important role in crista formation. Finally, we show that simultaneous defects in MIM fusion and intra-mitochondrial PL transport cause a drastic decrease in crista structure, resulting in CL depletion. These results expand our understanding of the integrated functional network among the PL transport, crista formation, and CL biogenesis.
Collapse
Affiliation(s)
- Rieko Kojima
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Yuriko Kakimoto
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Shiina Furuta
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Kie Itoh
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21205, USA
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan.
| |
Collapse
|
43
|
Miyata N, Fujii S, Kuge O. Porin proteins have critical functions in mitochondrial phospholipid metabolism in yeast. J Biol Chem 2018; 293:17593-17605. [PMID: 30237174 DOI: 10.1074/jbc.ra118.005410] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/19/2018] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial synthesis of cardiolipin (CL) and phosphatidylethanolamine requires the transport of their precursors, phosphatidic acid and phosphatidylserine, respectively, to the mitochondrial inner membrane. In yeast, the Ups1-Mdm35 and Ups2-Mdm35 complexes transfer phosphatidic acid and phosphatidylserine, respectively, between the mitochondrial outer and inner membranes. Moreover, a Ups1-independent CL accumulation pathway requires several mitochondrial proteins with unknown functions including Mdm31. Here, we identified a mitochondrial porin, Por1, as a protein that interacts with both Mdm31 and Mdm35 in budding yeast (Saccharomyces cerevisiae). Depletion of the porins Por1 and Por2 destabilized Ups1 and Ups2, decreased CL levels by ∼90%, and caused loss of Ups2-dependent phosphatidylethanolamine synthesis, but did not affect Ups2-independent phosphatidylethanolamine synthesis in mitochondria. Por1 mutations that affected its interactions with Mdm31 and Mdm35, but not respiratory growth, also decreased CL levels. Using HeLa cells, we show that mammalian porins also function in mitochondrial CL metabolism. We conclude that yeast porins have specific and critical functions in mitochondrial phospholipid metabolism and that porin-mediated regulation of CL metabolism appears to be evolutionarily conserved.
Collapse
Affiliation(s)
- Non Miyata
- From the Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Satoru Fujii
- From the Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Osamu Kuge
- From the Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
44
|
Hanada K. Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites. J Lipid Res 2018; 59:1341-1366. [PMID: 29884707 PMCID: PMC6071762 DOI: 10.1194/jlr.r085324] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) is the main center for the synthesis of various lipid types in cells, and newly synthesized lipids are delivered from the ER to other organelles. In the past decade, various lipid transfer proteins (LTPs) have been recognized as mediators of lipid transport from the ER to other organelles; inter-organelle transport occurs at membrane contact sites (MCSs) and in a nonvesicular manner. Although the intermembrane transfer reaction catalyzed by LTPs is an equilibrium reaction, various types of newly synthesized lipids are transported unidirectionally in cells. This review provides a brief history of the inter-organelle trafficking of lipids and summarizes the structural and biochemical characteristics of the ceramide transport protein (CERT) as a typical LTP acting at MCSs. In addition, this review compares several LTP-mediated inter-organelle lipid trafficking systems and proposes that LTPs generate unidirectional fluxes of specific lipids between different organelles by indirect coupling with the metabolic reactions that occur in specific organelles. Moreover, the available data also suggest that the major advantage of LTP-mediated lipid transport at MCSs may be the accuracy of delivery. Finally, how cholesterol is enriched in the plasma membrane is discussed from a thermodynamic perspective.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
45
|
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
46
|
Non-vesicular lipid trafficking at the endoplasmic reticulum–mitochondria interface. Biochem Soc Trans 2018; 46:437-452. [DOI: 10.1042/bst20160185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Mitochondria are highly dynamic organelles involved in various cellular processes such as energy production, regulation of calcium homeostasis, lipid trafficking, and apoptosis. To fulfill all these functions and preserve their morphology and dynamic behavior, mitochondria need to maintain a defined protein and lipid composition in both their membranes. The maintenance of mitochondrial membrane identity requires a selective and regulated transport of specific lipids from/to the endoplasmic reticulum (ER) and across the mitochondria outer and inner membranes. Since they are not integrated in the classical vesicular trafficking routes, mitochondria exchange lipids with the ER at sites of close apposition called membrane contact sites. Deregulation of such transport activities results in several pathologies including cancer and neurodegenerative disorders. However, we are just starting to understand the function of ER–mitochondria contact sites in lipid transport, what are the proteins involved and how they are regulated. In this review, we summarize recent insights into lipid transport pathways at the ER–mitochondria interface and discuss the implication of recently identified lipid transfer proteins in these processes.
Collapse
|
47
|
Leonov A, Arlia-Ciommo A, Bourque SD, Koupaki O, Kyryakov P, Dakik P, McAuley M, Medkour Y, Mohammad K, Di Maulo T, Titorenko VI. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget 2018; 8:30672-30691. [PMID: 28410198 PMCID: PMC5458158 DOI: 10.18632/oncotarget.16766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
We have previously found that exogenously added lithocholic acid delays yeast chronological aging. We demonstrated that lithocholic acid enters the yeast cell, is sorted to mitochondria, resides in both mitochondrial membranes, changes the relative concentrations of different membrane phospholipids, triggers changes in the concentrations of many mitochondrial proteins, and alters some key aspects of mitochondrial functionality. We hypothesized that the lithocholic acid-driven changes in mitochondrial lipidome may have a causal role in the remodeling of mitochondrial proteome, which may in turn alter the functional state of mitochondria to create a mitochondrial pattern that delays yeast chronological aging. Here, we test this hypothesis by investigating how the ups1?, ups2? and psd1? mutations that eliminate enzymes involved in mitochondrial phospholipid metabolism influence the mitochondrial lipidome. We also assessed how these mutations affect the mitochondrial proteome, influence mitochondrial functionality and impinge on the efficiency of aging delay by lithocholic acid. Our findings provide evidence that 1) lithocholic acid initially creates a distinct pro-longevity pattern of mitochondrial lipidome by proportionally decreasing phosphatidylethanolamine and cardiolipin concentrations to maintain equimolar concentrations of these phospholipids, and by increasing phosphatidic acid concentration; 2) this pattern of mitochondrial lipidome allows to establish a specific, aging-delaying pattern of mitochondrial proteome; and 3) this pattern of mitochondrial proteome plays an essential role in creating a distinctive, geroprotective pattern of mitochondrial functionality.
Collapse
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Simon D Bourque
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Olivia Koupaki
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pavlo Kyryakov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Paméla Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Tamara Di Maulo
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
48
|
Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3074769. [PMID: 29636840 PMCID: PMC5831759 DOI: 10.1155/2018/3074769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.
Collapse
|
49
|
Saita S, Tatsuta T, Lampe PA, König T, Ohba Y, Langer T. PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J 2018; 37:embj.201797909. [PMID: 29301859 DOI: 10.15252/embj.201797909] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Intramembrane-cleaving peptidases of the rhomboid family regulate diverse cellular processes that are critical for development and cell survival. The function of the rhomboid protease PARL in the mitochondrial inner membrane has been linked to mitophagy and apoptosis, but other regulatory functions are likely to exist. Here, we identify the START domain-containing protein STARD7 as an intramitochondrial lipid transfer protein for phosphatidylcholine. We demonstrate that PARL-mediated cleavage during mitochondrial import partitions STARD7 to the cytosol and the mitochondrial intermembrane space. Negatively charged amino acids in STARD7 serve as a sorting signal allowing mitochondrial release of mature STARD7 upon cleavage by PARL On the other hand, membrane insertion of STARD7 mediated by the TIM23 complex promotes mitochondrial localization of mature STARD7. Mitochondrial STARD7 is necessary and sufficient for the accumulation of phosphatidylcholine in the inner membrane and for the maintenance of respiration and cristae morphogenesis. Thus, PARL preserves mitochondrial membrane homeostasis via STARD7 processing and is emerging as a critical regulator of protein localization between mitochondria and the cytosol.
Collapse
Affiliation(s)
- Shotaro Saita
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Takashi Tatsuta
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Philipp A Lampe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tim König
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yohsuke Ohba
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thomas Langer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany .,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.,Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|
50
|
Kawano S, Tamura Y, Kojima R, Bala S, Asai E, Michel AH, Kornmann B, Riezman I, Riezman H, Sakae Y, Okamoto Y, Endo T. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. J Cell Biol 2017; 217:959-974. [PMID: 29279306 PMCID: PMC5839780 DOI: 10.1083/jcb.201704119] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/06/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022] Open
Abstract
The ER–mitochondrial encounter structure (ERMES) physically links ER and mitochondrial membranes in yeast, but it is unclear whether ERMES directly facilitates lipid exchange between these organelles. Kawano et al. reveal by reconstitution experiments that a complex of Mmm1–Mdm12, two core subunits of ERMES, functions as a minimal unit for lipid transfer between membranes. The endoplasmic reticulum (ER)–mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12–Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1–Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes.
Collapse
Affiliation(s)
- Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Kyoto Sangyo University, Kyoto, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Nagoya University, Nagoya, Japan
| | - Yasushi Tamura
- Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Nagoya University, Nagoya, Japan.,Research Center for Materials Science, Nagoya University, Nagoya, Japan.,Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, Japan
| | - Rieko Kojima
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, Japan
| | - Siqin Bala
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Eri Asai
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Agnès H Michel
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | - Isabelle Riezman
- Department of Biochemistry, National Centre of Competence in Research Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, National Centre of Competence in Research Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Yoshitake Sakae
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan .,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Nagoya University, Nagoya, Japan
| |
Collapse
|