1
|
Chen L, Banfield DK. Unremodeled GPI-anchored proteins at the plasma membrane trigger aberrant endocytosis. Life Sci Alliance 2025; 8:e202402941. [PMID: 39578075 PMCID: PMC11584325 DOI: 10.26508/lsa.202402941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
The plasma membrane has a complex organization that includes the polarized distribution of membrane proteins and lipids. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are ubiquitously expressed in eukaryotes and represent a functionally diverse, extensively remodeled, ER-derived group of proteins critical for the organization and function of the plasma membrane. Little is known about how the transport of incompletely remodeled GPI-APs to the plasma membrane affects cell function. Here, we investigated how failure to remodel mannose 2 (Man2) of the GPI moiety impacted endocytic activity on the plasma membrane. We find that Man2 unremodeled GPI-APs increased membrane disorder and generated a stress response that triggered abnormal ubiquitin- and clathrin-dependent endocytosis. The resulting stress-induced endocytosis disrupted the trafficking repertoire of a subset of plasma membrane proteins, which were redirected, via the multivesicular body, to numerous small vacuoles for degradation. Our findings highlight the critical importance of GPI-AP Man2 remodeling for maintaining the integrity and homeostasis of the plasma membrane.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, SAR of China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, SAR of China
| |
Collapse
|
2
|
Tang YH, Leng JX, Yang G, Gao XD, Liu YS, Fujita M. Production of CA125 with Tn antigens using a glycosylphosphatidylinositol anchoring system. J Biochem 2024; 176:23-34. [PMID: 38382634 DOI: 10.1093/jb/mvae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Cancer antigen 125 (CA125) is a serum marker associated with ovarian cancer. Despite its widespread use, CA125 levels can also be elevated in benign conditions. Recent reports suggest that detecting serum CA125 that carries the Tn antigen, a truncated O-glycan containing only N-acetylgalactosamine on serine or threonine residues, can improve the specificity of ovarian cancer diagnosis. In this study, we engineered cells to express CA125 with a Tn antigen. To achieve this, we knocked out C1GALT1 and SLC35A1, genes encoding Core1 synthase and a transporter for cytidine-5'-monophospho-sialic acid respectively, in human embryonic kidney 293 (HEK293) cells. In ClGALT1-SLC35A1-knockout (KO) cells, the expression of the Tn antigen showed a significant increase, whereas the expression of the T antigen (galactose-β1,3-N-acetylgalactosamine on serine or threonine residues) was decreased. Due to the inefficient secretion of soluble CA125, we employed a glycosylphosphatidylinositol (GPI) anchoring system. This allowed for the expression of GPI-anchored CA125 on the cell surface of ClGALT1-SLC35A1-KO cells. Cells expressing high levels of GPI-anchored CA125 were then enriched through cell sorting. By knocking out the PGAP2 gene, the GPI-anchored form of CA125 was converted to a secretory form. Through the engineering of O-glycans and the use of a GPI-anchoring system, we successfully produced CA125 with Tn antigen modification.
Collapse
Affiliation(s)
- Yu-He Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Ji-Xiong Leng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
3
|
Wei X, Lu Y, Lin LL, Zhang C, Chen X, Wang S, Wu SA, Li ZJ, Quan Y, Sun S, Qi L. Proteomic screens of SEL1L-HRD1 ER-associated degradation substrates reveal its role in glycosylphosphatidylinositol-anchored protein biogenesis. Nat Commun 2024; 15:659. [PMID: 38253565 PMCID: PMC10803770 DOI: 10.1038/s41467-024-44948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays indispensable roles in many physiological processes; however, the nature of endogenous substrates remains largely elusive. Here we report a proteomics strategy based on the intrinsic property of the SEL1L-HRD1 ERAD complex to identify endogenous ERAD substrates both in vitro and in vivo. Following stringent filtering using a machine learning algorithm, over 100 high-confidence potential substrates are identified in human HEK293T and mouse brown adipose tissue, among which ~88% are cell type-specific. One of the top shared hits is the catalytic subunit of the glycosylphosphatidylinositol (GPI)-transamidase complex, PIGK. Indeed, SEL1L-HRD1 ERAD attenuates the biogenesis of GPI-anchored proteins by specifically targeting PIGK for proteasomal degradation. Lastly, several PIGK disease variants in inherited GPI deficiency disorders are also SEL1L-HRD1 ERAD substrates. This study provides a platform and resources for future effort to identify proteome-wide endogenous substrates in vivo, and implicates SEL1L-HRD1 ERAD in many cellular processes including the biogenesis of GPI-anchored proteins.
Collapse
Affiliation(s)
- Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - You Lu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Xinxin Chen
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Siwen Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Shuangcheng Alivia Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Zexin Jason Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yujun Quan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
4
|
Hong J, Li T, Chao Y, Xu Y, Zhu Z, Zhou Z, Gu W, Qu Q, Li D. Molecular basis of the inositol deacylase PGAP1 involved in quality control of GPI-AP biogenesis. Nat Commun 2024; 15:8. [PMID: 38167496 PMCID: PMC10761859 DOI: 10.1038/s41467-023-44568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The secretion and quality control of glycosylphosphatidylinositol-anchored proteins (GPI-APs) necessitates post-attachment remodeling initiated by the evolutionarily conserved PGAP1, which deacylates the inositol in nascent GPI-APs. Impairment of PGAP1 activity leads to developmental diseases in humans and fatality and infertility in animals. Here, we present three PGAP1 structures (2.66-2.84 Å), revealing its 10-transmembrane architecture and product-enzyme interaction details. PGAP1 holds GPI-AP acyl chains in an optimally organized, guitar-shaped cavity with apparent energetic penalties from hydrophobic-hydrophilic mismatches. However, abundant glycan-mediated interactions in the lumen counterbalance these repulsions, likely conferring substrate fidelity and preventing off-target hydrolysis of bulk membrane lipids. Structural and biochemical analyses uncover a serine hydrolase-type catalysis with atypical features and imply mechanisms for substrate entrance and product release involving a drawing compass movement of GPI-APs. Our findings advance the mechanistic understanding of GPI-AP remodeling.
Collapse
Affiliation(s)
- Jingjing Hong
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Tingting Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yulin Chao
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Yidan Xu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zhini Zhu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Zixuan Zhou
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Weijie Gu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Qianhui Qu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
5
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Cheatham AM, Sharma NR, Satpute-Krishnan P. Competition for calnexin binding regulates secretion and turnover of misfolded GPI-anchored proteins. J Cell Biol 2023; 222:e202108160. [PMID: 37702712 PMCID: PMC10499038 DOI: 10.1083/jcb.202108160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/19/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
In mammalian cells, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are cleared out of the ER to the Golgi via a constitutive and a stress-inducible pathway called RESET. From the Golgi, misfolded GPI-APs transiently access the cell surface prior to rapid internalization for lysosomal degradation. What regulates the release of misfolded GPI-APs for RESET during steady-state conditions and how this release is accelerated during ER stress is unknown. Using mutants of prion protein or CD59 as model misfolded GPI-APs, we demonstrate that inducing calnexin degradation or upregulating calnexin-binding glycoprotein expression triggers the release of misfolded GPI-APs for RESET. Conversely, blocking protein synthesis dramatically inhibits the dissociation of misfolded GPI-APs from calnexin and subsequent turnover. We demonstrate an inverse correlation between newly synthesized calnexin substrates and RESET substrates that coimmunoprecipitate with calnexin. These findings implicate competition by newly synthesized substrates for association with calnexin as a key factor in regulating the release of misfolded GPI-APs from calnexin for turnover via the RESET pathway.
Collapse
Affiliation(s)
- Amber M. Cheatham
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nishi Raj Sharma
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Prasanna Satpute-Krishnan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
7
|
Lemus L, Hegde RS, Goder V. New frontiers in quality control: the case of GPI-anchored proteins. Nat Rev Mol Cell Biol 2023; 24:599-600. [PMID: 37231113 DOI: 10.1038/s41580-023-00616-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Leticia Lemus
- Department of Genetics, University of Seville, Seville, Spain.
| | - Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Veit Goder
- Department of Genetics, University of Seville, Seville, Spain.
| |
Collapse
|
8
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
9
|
Liu YS, Wang Y, Zhou X, Zhang L, Yang G, Gao XD, Murakami Y, Fujita M, Kinoshita T. Accumulated precursors of specific GPI-anchored proteins upregulate GPI biosynthesis with ARV1. J Cell Biol 2023; 222:213904. [PMID: 36828365 PMCID: PMC9997660 DOI: 10.1083/jcb.202208159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
We previously reported that glycosylphosphatidylinositol (GPI) biosynthesis is upregulated when endoplasmic reticulum-associated degradation (ERAD) is defective; however, the underlying mechanistic basis remains unclear. Based on a genome-wide CRISPR-Cas9 screen, we show that a widely expressed GPI-anchored protein CD55 precursor and ER-resident ARV1 are involved in upregulation of GPI biosynthesis under ERAD-deficient conditions. In cells defective in GPI transamidase, GPI-anchored protein precursors fail to obtain GPI, with the remaining uncleaved GPI-attachment signal at the C-termini. We show that ERAD deficiency causes accumulation of the CD55 precursor, which in turn upregulates GPI biosynthesis, where the GPI-attachment signal peptide is the active element. Among the 31 GPI-anchored proteins tested, only the GPI-attachment signal peptides of CD55, CD48, and PLET1 enhance GPI biosynthesis. ARV1 is prerequisite for the GPI upregulation by CD55 precursor. Our data indicate that GPI biosynthesis is balanced to need by ARV1 and precursors of specific GPI-anchored proteins.
Collapse
Affiliation(s)
- Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Yicheng Wang
- Research Institute for Microbial Diseases, Osaka University , Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Linpei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University , Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China.,Institute for Glyco-Core Research, Gifu University , Gifu, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University , Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University , Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University , Suita, Japan
| |
Collapse
|
10
|
Shaw JL, Pablo JL, Greka A. Mechanisms of Protein Trafficking and Quality Control in the Kidney and Beyond. Annu Rev Physiol 2023; 85:407-423. [PMID: 36763970 DOI: 10.1146/annurev-physiol-031522-100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Numerous trafficking and quality control pathways evolved to handle the diversity of proteins made by eukaryotic cells. However, at every step along the biosynthetic pathway, there is the potential for quality control system failure. This review focuses on the mechanisms of disrupted proteostasis. Inspired by diseases caused by misfolded proteins in the kidney (mucin 1 and uromodulin), we outline the general principles of protein biosynthesis, delineate the recognition and degradation pathways targeting misfolded proteins, and discuss the role of cargo receptors in protein trafficking and lipid homeostasis. We also discuss technical approaches including live-cell fluorescent microscopy, chemical screens to elucidate trafficking mechanisms, multiplexed single-cell CRISPR screening platforms to systematically delineate mechanisms of proteostasis, and the advancement of novel tools to degrade secretory and membrane-associated proteins. By focusing on components of trafficking that go awry, we highlight ongoing efforts to understand fundamental mechanisms of disrupted proteostasis and implications for the treatment of human proteinopathies.
Collapse
Affiliation(s)
- Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; .,Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Juan Lorenzo Pablo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; .,Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; .,Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Roberts BS, Satpute-Krishnan P. The many hats of transmembrane emp24 domain protein TMED9 in secretory pathway homeostasis. Front Cell Dev Biol 2023; 10:1096899. [PMID: 36733337 PMCID: PMC9888432 DOI: 10.3389/fcell.2022.1096899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The secretory pathway is an intracellular highway for the vesicular transport of newly synthesized proteins that spans the endoplasmic reticulum (ER), Golgi, lysosomes and the cell surface. A variety of cargo receptors, chaperones, and quality control proteins maintain the smooth flow of cargo along this route. Among these is vesicular transport protein TMED9, which belongs to the p24/transmembrane emp24 domain (TMED) family of proteins, and is expressed across vertebrate species. The TMED family is comprised of structurally-related type I transmembrane proteins with a luminal N-terminal Golgi-dynamics domain, a luminal coiled-coil domain, a transmembrane domain and a short cytosolic C-terminal tail that binds COPI and COPII coat proteins. TMED9, like other members of the TMED family, was first identified as an abundant constituent of the COPI and COPII coated vesicles that mediate traffic between the ER and the Golgi. TMED9 is typically purified in hetero-oligomers together with TMED family members, suggesting that it may function as part of a complex. Recently, TMED family members have been discovered to play various roles in secretory pathway homeostasis including secreted protein processing, quality control and degradation of misfolded proteins, and post-Golgi trafficking. In particular, TMED9 has been implicated in autophagy, lysosomal sorting, viral replication and cancer, which we will discuss in this Mini-Review.
Collapse
|
12
|
Rodriguez-Gallardo S, Sabido-Bozo S, Ikeda A, Araki M, Okazaki K, Nakano M, Aguilera-Romero A, Cortes-Gomez A, Lopez S, Waga M, Nakano A, Kurokawa K, Muñiz M, Funato K. Quality-controlled ceramide-based GPI-anchored protein sorting into selective ER exit sites. Cell Rep 2022; 39:110768. [PMID: 35508142 DOI: 10.1016/j.celrep.2022.110768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) exit the endoplasmic reticulum (ER) through a specialized export pathway in the yeast Saccharomyces cerevisiae. We have recently shown that a very-long acyl chain (C26) ceramide present in the ER membrane drives clustering and sorting of GPI-APs into selective ER exit sites (ERES). Now, we show that this lipid-based ER sorting also involves the C26 ceramide as a lipid moiety of GPI-APs, which is incorporated into the GPI anchor through a lipid-remodeling process after protein attachment in the ER. Moreover, we also show that a GPI-AP with a C26 ceramide moiety is monitored by the GPI-glycan remodelase Ted1, which, in turn, is required for receptor-mediated export of GPI-APs. Therefore, our study reveals a quality-control system that ensures lipid-based sorting of GPI-APs into selective ERESs for differential ER export, highlighting the physiological need for this specific export pathway.
Collapse
Affiliation(s)
- Sofia Rodriguez-Gallardo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Atsuko Ikeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Kouta Okazaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Sergio Lopez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Miho Waga
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan.
| | - Manuel Muñiz
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain.
| | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
13
|
Wang YH, Chiu WY, Chen YT, Cai PJ, Wu YC, Wu JL, Chen BH, Liu YW, Yu CJ, Lee FJS. Golgin Imh1 and GARP complex cooperate to restore the impaired SNARE recycling transport induced by ER stress. Cell Rep 2022; 38:110488. [PMID: 35320730 DOI: 10.1016/j.celrep.2022.110488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/03/2022] Open
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR), which acts through various mechanisms to reduce ER stress. While the UPR has been well studied for its effects on the ER, its impact on the Golgi is less understood. The Golgi complex receives transport vesicles from the endosome through two types of tethering factors: long coiled-coil golgin and the multisubunit Golgi-associated retrograde protein (GARP) complex. Here, we report that ER stress increases the phosphorylation of golgin Imh1 to maintain the GARP-mediated recycling of the SNAREs Snc1 and Tlg1. We also identify a specific function of the Golgi affected by ER stress and elucidate a homeostatic response to restore this function, which involves both an Ire1-dependent and a MAP kinase Slt2/ERK2-dependent mechanism. Furthermore, our findings advance a general understanding of how two different types of tethers act cooperatively to mediate a transport pathway.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Chieh Wu
- Institute of Molecular Medicine, Taipei, Taiwan
| | - Jia-Lu Wu
- Institute of Molecular Medicine, Taipei, Taiwan
| | - Bo-Han Chen
- Institute of Molecular Medicine, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, Taipei, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, Taipei, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Boone M, Ramasamy P, Zuallaert J, Bouwmeester R, Van Moer B, Maddelein D, Turan D, Hulstaert N, Eeckhaut H, Vandermarliere E, Martens L, Degroeve S, De Neve W, Vranken W, Callewaert N. Massively parallel interrogation of protein fragment secretability using SECRiFY reveals features influencing secretory system transit. Nat Commun 2021; 12:6414. [PMID: 34741024 PMCID: PMC8571348 DOI: 10.1038/s41467-021-26720-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
While transcriptome- and proteome-wide technologies to assess processes in protein biogenesis are now widely available, we still lack global approaches to assay post-ribosomal biogenesis events, in particular those occurring in the eukaryotic secretory system. We here develop a method, SECRiFY, to simultaneously assess the secretability of >105 protein fragments by two yeast species, S. cerevisiae and P. pastoris, using custom fragment libraries, surface display and a sequencing-based readout. Screening human proteome fragments with a median size of 50-100 amino acids, we generate datasets that enable datamining into protein features underlying secretability, revealing a striking role for intrinsic disorder and chain flexibility. The SECRiFY methodology generates sufficient amounts of annotated data for advanced machine learning methods to deduce secretability patterns. The finding that secretability is indeed a learnable feature of protein sequences provides a solid base for application-focused studies.
Collapse
Affiliation(s)
- Morgane Boone
- Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium. .,Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium. .,Department of Biochemistry and Biophysics, UCSF, San Francisco, CA, USA.
| | - Pathmanaban Ramasamy
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium ,grid.8767.e0000 0001 2290 8069Structural Biology Brussels, VUB, Brussels, Belgium ,grid.11486.3a0000000104788040Structural Biology Research Center, VIB, Brussels, Belgium ,Interuniversity Institute of Bioinformatics in Brussels (IB)2, ULB-VUB, Brussels, Belgium
| | - Jasper Zuallaert
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium ,grid.510328.dCenter for Biotech Data Science, Ghent University Global Campus, Songdo, Incheon, South Korea ,grid.5342.00000 0001 2069 7798IDLab, ELIS, UGent, Ghent, Belgium
| | - Robbin Bouwmeester
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Berre Van Moer
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Davy Maddelein
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Demet Turan
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Niels Hulstaert
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hannah Eeckhaut
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Elien Vandermarliere
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lennart Martens
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sven Degroeve
- grid.11486.3a0000000104788040Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wesley De Neve
- grid.510328.dCenter for Biotech Data Science, Ghent University Global Campus, Songdo, Incheon, South Korea ,grid.5342.00000 0001 2069 7798IDLab, ELIS, UGent, Ghent, Belgium
| | - Wim Vranken
- grid.8767.e0000 0001 2290 8069Structural Biology Brussels, VUB, Brussels, Belgium ,grid.11486.3a0000000104788040Structural Biology Research Center, VIB, Brussels, Belgium ,Interuniversity Institute of Bioinformatics in Brussels (IB)2, ULB-VUB, Brussels, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium. .,Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Klemm RW. Protein sorting: A new quality control pathway for GPI-anchored proteins. Curr Biol 2021; 31:R1084-R1087. [PMID: 34582816 DOI: 10.1016/j.cub.2021.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins are a class of lipid-anchored membrane proteins found at the surface of all eukaryotic cells. New work provides genome-wide insights into mechanisms that mediate quality control of the folding of this important protein family.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
16
|
Link F, Borges AR, Jones NG, Engstler M. To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:720521. [PMID: 34422837 PMCID: PMC8377397 DOI: 10.3389/fcell.2021.720521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Shin YJ, Vavra U, Strasser R. Proper protein folding in the endoplasmic reticulum is required for attachment of a glycosylphosphatidylinositol anchor in plants. PLANT PHYSIOLOGY 2021; 186:1878-1892. [PMID: 33930152 PMCID: PMC8331152 DOI: 10.1093/plphys/kiab181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/04/2021] [Indexed: 05/31/2023]
Abstract
Endoplasmic reticulum (ER) quality control processes recognize and eliminate misfolded proteins to maintain cellular protein homeostasis and prevent the accumulation of defective proteins in the secretory pathway. Glycosylphosphatidylinositol (GPI)-anchored proteins carry a glycolipid modification, which provides an efficient ER export signal and potentially prevents the entry into ER-associated degradation (ERAD), which is one of the major pathways for clearance of terminally misfolded proteins from the ER. Here, we analyzed the degradation routes of different misfolded glycoproteins carrying a C-terminal GPI-attachment signal peptide in Arabidopsis thaliana. We found that a fusion protein consisting of the misfolded extracellular domain from Arabidopsis STRUBBELIG and the GPI-anchor attachment sequence of COBRA1 was efficiently targeted to hydroxymethylglutaryl reductase degradation protein 1 complex-mediated ERAD without the detectable attachment of a GPI anchor. Non-native variants of the GPI-anchored lipid transfer protein 1 (LTPG1) that lack a severely misfolded domain, on the other hand, are modified with a GPI anchor and targeted to the vacuole for degradation. Impaired processing of the GPI-anchoring signal peptide by mutation of the cleavage site or in a GPI-transamidase-compromised mutant caused ER retention and routed the non-native LTPG1 to ERAD. Collectively, these results indicate that for severely misfolded proteins, ER quality control processes are dominant over ER export. For less severely misfolded proteins, the GPI anchor provides an efficient ER export signal resulting in transport to the vacuole.
Collapse
Affiliation(s)
- Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
18
|
Skelly MJ. Dropping anchor: stringent quality control prevents GPI anchoring of severely misfolded proteins in plants. PLANT PHYSIOLOGY 2021; 186:1757-1759. [PMID: 34618114 PMCID: PMC8331156 DOI: 10.1093/plphys/kiab257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Michael J Skelly
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
19
|
Lemus L, Matić Z, Gal L, Fadel A, Schuldiner M, Goder V. Post-ER degradation of misfolded GPI-anchored proteins is linked with microautophagy. Curr Biol 2021; 31:4025-4037.e5. [PMID: 34314677 DOI: 10.1016/j.cub.2021.06.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are membrane-conjugated cell-surface proteins with diverse structural, developmental, and signaling functions and clinical relevance. Typically, after biosynthesis and attachment to the preassembled GPI anchor, GPI-APs rapidly leave the endoplasmic reticulum (ER) and rely on post-ER quality control. Terminally misfolded GPI-APs end up inside the vacuole/lysosome for degradation, but their trafficking itinerary to this organelle and the processes linked to their uptake by the vacuole/lysosome remain uncharacterized. In a yeast mutant that is lacking Pep4, a key vacuolar protease, several misfolded model GPI-APs accumulated in the vacuolar membrane. In the same mutant, macroautophagy and the multi-vesicular body (MVB) pathway were intact, hinting at a hitherto-unknown trafficking pathway for the degradation of misfolded GPI-APs. To unravel it, we used a genome-wide screen coupled to high-throughput fluorescence microscopy and followed the fate of the misfolded GPI-AP: Gas1∗. We found that components of the early secretory and endocytic pathways are involved in its targeting to the vacuole and that vacuolar transporter chaperones (VTCs), with roles in microautophagy, negatively affect the vacuolar uptake of Gas1∗. In support, we demonstrate that Gas1∗ internalizes from vacuolar membranes into membrane-bound intravacuolar vesicles prior to degradation. Our data link post-ER degradation with microautophagy.
Collapse
Affiliation(s)
- Leticia Lemus
- Department of Genetics, University of Seville, Ave Reina Mercedes, 6, 41012 Seville, Spain.
| | - Zrinka Matić
- Department of Genetics, University of Seville, Ave Reina Mercedes, 6, 41012 Seville, Spain
| | - Lihi Gal
- Department of Molecular Genetics, Meyer Bldg. Room 122, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| | - Amir Fadel
- Department of Molecular Genetics, Meyer Bldg. Room 122, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Meyer Bldg. Room 122, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| | - Veit Goder
- Department of Genetics, University of Seville, Ave Reina Mercedes, 6, 41012 Seville, Spain.
| |
Collapse
|
20
|
Guo XY, Gao XD, Fujita M. Sulfation of a FLAG tag mediated by SLC35B2 and TPST2 affects antibody recognition. PLoS One 2021; 16:e0250805. [PMID: 33951064 PMCID: PMC8099120 DOI: 10.1371/journal.pone.0250805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
A FLAG tag consisting of DYKDDDDK is an epitope tag that is frequently and widely used to detect recombinant proteins of interest. In this study, we performed a CRISPR-based genetic screening to identify factors involved in the detection of a FLAG-tagged misfolded model protein at the cell surface. In the screening, SLC35B2, which encodes 3’-phosphoadenosine-5’-phosphosulfate transporter 1, was identified as the candidate gene. The detection of FLAG-tagged misfolded proteins at the cell surface was significantly increased in SLC35B2-knockout cells. Furthermore, protein tyrosine sulfation mediated by tyrosyl-protein sulfotransferase 2 (TPST2) suppressed FLAG-tagged protein detection. Localization analysis of the FLAG-tagged misfolded proteins confirmed that defects in tyrosine sulfation are only responsible for enhancing anti-FLAG staining on the plasma membrane but not inducing the localization change of misfolded proteins on the plasma membrane. These results suggest that a FLAG tag on the misfolded protein would be sulfated, causing a reduced detection by the M2 anti-FLAG antibody. Attention should be required when quantifying the FLAG-tagged proteins in the secretory pathway.
Collapse
Affiliation(s)
- Xin-Yu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- * E-mail:
| |
Collapse
|
21
|
Mammalian GPI-anchor modifications and the enzymes involved. Biochem Soc Trans 2021; 48:1129-1138. [PMID: 32573677 DOI: 10.1042/bst20191142] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.
Collapse
|
22
|
Potential Physiological Relevance of ERAD to the Biosynthesis of GPI-Anchored Proteins in Yeast. Int J Mol Sci 2021; 22:ijms22031061. [PMID: 33494405 PMCID: PMC7865462 DOI: 10.3390/ijms22031061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Misfolded and/or unassembled secretory and membrane proteins in the endoplasmic reticulum (ER) may be retro-translocated into the cytoplasm, where they undergo ER-associated degradation, or ERAD. The mechanisms by which misfolded proteins are recognized and degraded through this pathway have been studied extensively; however, our understanding of the physiological role of ERAD remains limited. This review describes the biosynthesis and quality control of glycosylphosphatidylinositol (GPI)-anchored proteins and briefly summarizes the relevance of ERAD to these processes. While recent studies suggest that ERAD functions as a fail-safe mechanism for the degradation of misfolded GPI-anchored proteins, several pieces of evidence suggest an intimate interaction between ERAD and the biosynthesis of GPI-anchored proteins.
Collapse
|
23
|
Beihammer G, Maresch D, Altmann F, Strasser R. Glycosylphosphatidylinositol-Anchor Synthesis in Plants: A Glycobiology Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:611188. [PMID: 33312189 PMCID: PMC7704450 DOI: 10.3389/fpls.2020.611188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 05/02/2023]
Abstract
More than 200 diverse secretory proteins from Arabidopsis thaliana carry a glycosylphosphatidylinositol (GPI) lipid anchor covalently attached to their carboxyl-terminus. The GPI-anchor contains a lipid-linked glycan backbone that is preassembled in the endoplasmic reticulum (ER) of plants and subsequently transferred to distinct proteins, which provides them with specific features. The GPI-anchored proteins exit the ER and are transported through the Golgi apparatus to the plasma membrane. In the Golgi, the glycan moiety can be further modified by the specific attachment of sugar residues. While these biosynthetic steps are already quite well understood in mammals and yeast, comparatively little is known in plants. In this perspective, we discuss the current knowledge about the biosynthesis of the GPI-anchor glycan moiety in the light of recent findings for mammalian GPI-anchor glycan modifications.
Collapse
Affiliation(s)
- Gernot Beihammer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
24
|
Garcia EJ, Liao PC, Tan G, Vevea JD, Sing CN, Tsang CA, McCaffery JM, Boldogh IR, Pon LA. Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, Saccharomyces cerevisiae. Autophagy 2020. [PMID: 33021864 DOI: 10.1080/15548627.2020.1826691.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
Our previous studies reveal a mechanism for lipid droplet (LD)-mediated proteostasis in the endoplasmic reticulum (ER) whereby unfolded proteins that accumulate in the ER in response to lipid imbalance-induced ER stress are removed by LDs and degraded by microlipophagy (µLP), autophagosome-independent LD uptake into the vacuole (the yeast lysosome). Here, we show that dithiothreitol- or tunicamycin-induced ER stress also induces µLP and identify an unexpected role for vacuolar membrane dynamics in this process. All stressors studied induce vacuolar fragmentation prior to µLP. Moreover, during µLP, fragmented vacuoles fuse to form cup-shaped structures that encapsulate and ultimately take up LDs. Our studies also indicate that proteins of the endosome sorting complexes required for transport (ESCRT) are upregulated, required for µLP, and recruited to LDs, vacuolar membranes, and sites of vacuolar membrane scission during µLP. We identify possible target proteins for LD-mediated ER proteostasis. Our live-cell imaging studies reveal that one potential target (Nup159) localizes to punctate structures that colocalizes with LDs 1) during movement from ER membranes to the cytosol, 2) during microautophagic uptake into vacuoles, and 3) within the vacuolar lumen. Finally, we find that mutations that inhibit LD biogenesis, homotypic vacuolar membrane fusion or ESCRT function inhibit stress-induced autophagy of Nup159 and other ER proteins. Thus, we have obtained the first direct evidence that LDs and µLP can mediate ER stress-induced ER proteostasis, and identified direct roles for ESCRT and vacuolar membrane fusion in that process.
Collapse
Affiliation(s)
- Enrique J Garcia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Gary Tan
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jason D Vevea
- HHMI and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | - Cierra N Sing
- Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Catherine A Tsang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Garcia EJ, Liao PC, Tan G, Vevea JD, Sing CN, Tsang CA, McCaffery JM, Boldogh IR, Pon LA. Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, Saccharomyces cerevisiae. Autophagy 2020; 17:2363-2383. [PMID: 33021864 PMCID: PMC8496710 DOI: 10.1080/15548627.2020.1826691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our previous studies reveal a mechanism for lipid droplet (LD)-mediated proteostasis in the endoplasmic reticulum (ER) whereby unfolded proteins that accumulate in the ER in response to lipid imbalance-induced ER stress are removed by LDs and degraded by microlipophagy (µLP), autophagosome-independent LD uptake into the vacuole (the yeast lysosome). Here, we show that dithiothreitol- or tunicamycin-induced ER stress also induces µLP and identify an unexpected role for vacuolar membrane dynamics in this process. All stressors studied induce vacuolar fragmentation prior to µLP. Moreover, during µLP, fragmented vacuoles fuse to form cup-shaped structures that encapsulate and ultimately take up LDs. Our studies also indicate that proteins of the endosome sorting complexes required for transport (ESCRT) are upregulated, required for µLP, and recruited to LDs, vacuolar membranes, and sites of vacuolar membrane scission during µLP. We identify possible target proteins for LD-mediated ER proteostasis. Our live-cell imaging studies reveal that one potential target (Nup159) localizes to punctate structures that colocalizes with LDs 1) during movement from ER membranes to the cytosol, 2) during microautophagic uptake into vacuoles, and 3) within the vacuolar lumen. Finally, we find that mutations that inhibit LD biogenesis, homotypic vacuolar membrane fusion or ESCRT function inhibit stress-induced autophagy of Nup159 and other ER proteins. Thus, we have obtained the first direct evidence that LDs and µLP can mediate ER stress-induced ER proteostasis, and identified direct roles for ESCRT and vacuolar membrane fusion in that process.
Collapse
Affiliation(s)
- Enrique J Garcia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Gary Tan
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jason D Vevea
- HHMI and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | - Cierra N Sing
- Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Catherine A Tsang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Guo XY, Liu YS, Gao XD, Kinoshita T, Fujita M. Calnexin mediates the maturation of GPI-anchors through ER retention. J Biol Chem 2020; 295:16393-16410. [PMID: 32967966 DOI: 10.1074/jbc.ra120.015577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/05/2020] [Indexed: 01/05/2023] Open
Abstract
The protein folding and lipid moiety status of glycosylphosphatidylinositol-anchored proteins (GPI-APs) are monitored in the endoplasmic reticulum (ER), with calnexin playing dual roles in the maturation of GPI-APs. In the present study, we investigated the functions of calnexin in the quality control and lipid remodeling of GPI-APs in the ER. By directly binding the N-glycan on proteins, calnexin was observed to efficiently retain GPI-APs in the ER until they were correctly folded. In addition, sufficient ER retention time was crucial for GPI-inositol deacylation, which is mediated by post-GPI attachment protein 1 (PGAP1). Once the calnexin/calreticulin cycle was disrupted, misfolded and inositol-acylated GPI-APs could not be retained in the ER and were exposed on the plasma membrane. In calnexin/calreticulin-deficient cells, endogenous GPI-anchored alkaline phosphatase was expressed on the cell surface, but its activity was significantly decreased. ER stress induced surface expression of misfolded GPI-APs, but proper GPI-inositol deacylation occurred due to the extended time that they were retained in the ER. Our results indicate that calnexin-mediated ER quality control systems for GPI-APs are necessary for both protein folding and GPI-inositol deacylation.
Collapse
Affiliation(s)
- Xin-Yu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
27
|
Lopez S, Perez-Linero AM, Manzano-Lopez J, Sabido-Bozo S, Cortes-Gomez A, Rodriguez-Gallardo S, Aguilera-Romero A, Goder V, Muñiz M. Dual Independent Roles of the p24 Complex in Selectivity of Secretory Cargo Export from the Endoplasmic Reticulum. Cells 2020; 9:cells9051295. [PMID: 32456004 PMCID: PMC7291304 DOI: 10.3390/cells9051295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022] Open
Abstract
The cellular mechanisms that ensure the selectivity and fidelity of secretory cargo protein transport from the endoplasmic reticulum (ER) to the Golgi are still not well understood. The p24 protein complex acts as a specific cargo receptor for GPI-anchored proteins by facilitating their ER exit through a specialized export pathway in yeast. In parallel, the p24 complex can also exit the ER using the general pathway that exports the rest of secretory proteins with their respective cargo receptors. Here, we show biochemically that the p24 complex associates at the ER with other cargo receptors in a COPII-dependent manner, forming high-molecular weight multireceptor complexes. Furthermore, live cell imaging analysis reveals that the p24 complex is required to retain in the ER secretory cargos when their specific receptors are absent. This requirement does not involve neither the unfolded protein response nor the retrograde transport from the Golgi. Our results suggest that, in addition to its role as a cargo receptor in the specialized GPI-anchored protein pathway, the p24 complex also plays an independent role in secretory cargo selectivity during its exit through the general ER export pathway, preventing the non-selective bulk flow of native secretory cargos. This mechanism would ensure receptor-regulated cargo transport, providing an additional layer of regulation of secretory cargo selectivity during ER export.
Collapse
Affiliation(s)
- Sergio Lopez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Ana Maria Perez-Linero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
| | - Javier Manzano-Lopez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Sofia Rodriguez-Gallardo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Veit Goder
- Department of Genetics, University of Seville, 41012 Seville, Spain;
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Correspondence: ; Tel.: +34-954556529
| |
Collapse
|
28
|
Abstract
At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
29
|
Wang Y, Maeda Y, Liu YS, Takada Y, Ninomiya A, Hirata T, Fujita M, Murakami Y, Kinoshita T. Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation. Nat Commun 2020; 11:860. [PMID: 32054864 PMCID: PMC7018848 DOI: 10.1038/s41467-020-14678-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins and glycosphingolipids interact with each other in the mammalian plasma membranes, forming dynamic microdomains. How their interaction starts in the cells has been unclear. Here, based on a genome-wide CRISPR-Cas9 genetic screen for genes required for GPI side-chain modification by galactose in the Golgi apparatus, we report that β1,3-galactosyltransferase 4 (B3GALT4), the previously characterized GM1 ganglioside synthase, additionally functions in transferring galactose to the N-acetylgalactosamine side-chain of GPI. Furthermore, B3GALT4 requires lactosylceramide for the efficient GPI side-chain galactosylation. Thus, our work demonstrates previously unexpected functional relationships between GPI-anchored proteins and glycosphingolipids in the Golgi. Through the same screening, we also show that GPI biosynthesis in the endoplasmic reticulum (ER) is severely suppressed by ER-associated degradation to prevent GPI accumulation when the transfer of synthesized GPI to proteins is defective. Our data demonstrates cross-talks of GPI biosynthesis with glycosphingolipid biosynthesis and the ER quality control system. Glycosylphosphatidylinositol (GPI) anchors are found on many cell surface proteins but their biosynthesis is not fully understood. Here, the authors identify genes involved in GPI galactosylation and reveal functional connections between GPI processing, glycosphingolipid biosynthesis and ER-associated degradation.
Collapse
Affiliation(s)
- Yicheng Wang
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yusuke Maeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yoko Takada
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akinori Ninomiya
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuya Hirata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu-City, Gifu 501-1193, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan. .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
30
|
Endoplasmic Reticulum Export of GPI-Anchored Proteins. Int J Mol Sci 2019; 20:ijms20143506. [PMID: 31319476 PMCID: PMC6678536 DOI: 10.3390/ijms20143506] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Protein export from the endoplasmic reticulum (ER) is an essential process in all eukaryotes driven by the cytosolic coat complex COPII, which forms vesicles at ER exit sites for transport of correctly assembled secretory cargo to the Golgi apparatus. The COPII machinery must adapt to the existing wide variety of different types of cargo proteins and to different cellular needs for cargo secretion. The study of the ER export of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), a special glycolipid-linked class of cell surface proteins, is contributing to address these key issues. Due to their special biophysical properties, GPI-APs use a specialized COPII machinery to be exported from the ER and their processing and maturation has been recently shown to actively regulate COPII function. In this review, we discuss the regulatory mechanisms by which GPI-APs are assembled and selectively exported from the ER.
Collapse
|
31
|
Goder V, Alanis-Dominguez E, Bustamante-Sequeiros M. Lipids and their (un)known effects on ER-associated protein degradation (ERAD). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158488. [PMID: 31233887 DOI: 10.1016/j.bbalip.2019.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/09/2023]
Abstract
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a conserved cellular process that apart from protein quality control and maintenance of ER membrane identity has pivotal functions in regulating the lipid composition of the ER membrane. A general trigger for ERAD activation is the exposure of normally buried protein domains due to protein misfolding, absence of binding partners or conformational changes. Several feedback loops for ER lipid homeostasis exploit the induction of conformational changes in key enzymes of lipid biosynthesis or in ER membrane-embedded transcription factors upon shortage or abundance of specific lipids, leading to enzyme degradation or mobilization of transcription factors. Similarly, an insufficient amount of lipids triggers ERAD of apolipoproteins during lipoprotein formation. Lipids might even have a role in ER protein quality control: when proteins destined for ER export are covalently modified with lipids their ER residence time and their susceptibility to ERAD is reduced. Here we summarize and compare the various interconnections of lipids with ER membrane proteins and ERAD. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Veit Goder
- Department of Genetics, University of Seville, 6, Ave Reina Mercedes, 41012 Seville, Spain.
| | | | | |
Collapse
|
32
|
Zavodszky E, Hegde RS. Misfolded GPI-anchored proteins are escorted through the secretory pathway by ER-derived factors. eLife 2019; 8:46740. [PMID: 31094677 PMCID: PMC6541436 DOI: 10.7554/elife.46740] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
We have used misfolded prion protein (PrP*) as a model to investigate how mammalian cells recognize and degrade misfolded GPI-anchored proteins. While most misfolded membrane proteins are degraded by proteasomes, misfolded GPI-anchored proteins are primarily degraded in lysosomes. Quantitative flow cytometry analysis showed that at least 85% of PrP* molecules transiently access the plasma membrane en route to lysosomes. Unexpectedly, time-resolved quantitative proteomics revealed a remarkably invariant PrP* interactome during its trafficking from the endoplasmic reticulum (ER) to lysosomes. Hence, PrP* arrives at the plasma membrane in complex with ER-derived chaperones and cargo receptors. These interaction partners were critical for rapid endocytosis because a GPI-anchored protein induced to misfold at the cell surface was not recognized effectively for degradation. Thus, resident ER factors have post-ER itineraries that not only shield misfolded GPI-anchored proteins during their trafficking, but also provide a quality control cue at the cell surface for endocytic routing to lysosomes.
Collapse
|
33
|
Sahu PK, Chauhan S, Tomar RS. The Crg1 N-Terminus Is Essential for Methyltransferase Activity and Cantharidin Resistance in Saccharomyces cerevisiae. Biochemistry 2019; 58:1799-1809. [PMID: 30830767 DOI: 10.1021/acs.biochem.8b01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crg1 is an S-adenosylmethionine (SAM)-dependent methyltransferase required for cantharidin resistance in yeast. Crg1 has a well-characterized methyltransferase domain that inactivates cantharidin by methylation. However, the remaining part of the Crg1 protein is yet to be functionally characterized. In this study, we identified an essential role of the N-terminus of Crg1 in methyltransferase activity and cantharidin resistance. Yeast cells lacking 41 residues of the N-terminus of Crg1 ( crg1ΔN) showed hypersensitivity to cantharidin as same as the null mutant, crg1. The mass spectrometry-based biochemical enzyme assay revealed a loss of methyltransferase activity in Crg1ΔN, which justifies the loss of cantharidin resistance, as well. The subcellular distribution of Crg1ΔN-daGFP showed cytoplasmic aggregates, whereas wild-type Crg1-daGFP was distributed normally in the cytoplasm. Interestingly, the Crg1-methyltransferase domain point mutants (D44A, D67A, and E105A/D108A) also showed the same cytoplasmic aggregates as Crg1ΔN-daGFP. In silico prediction of the tertiary structures of these mutants indicated an altered protein conformation. Altogether, these observations suggest that the N-terminal truncation, as well as the point mutations in the methyltransferase domain, alters the native folding of Crg1 methyltransferase, resulting in a loss of enzyme activity. Furthermore, the crg1ΔN mutant showed the same phenotypes as the crg1 null mutant in the presence of cantharidin, i.e., lethal cell growth, PE auxotrophy, temperature sensitivity, endoplasmic reticulum stress, GPI anchor missorting, and cell wall damage. Overall, this study identifies an essential role of the N-terminus of Crg1 in methyltransferase activity and cantharidin resistance.
Collapse
Affiliation(s)
- Pushpendra Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences , Indian Institute of Science Education and Research Bhopal , Bhopal 462066 , Madhya Pradesh , India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences , Indian Institute of Science Education and Research Bhopal , Bhopal 462066 , Madhya Pradesh , India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences , Indian Institute of Science Education and Research Bhopal , Bhopal 462066 , Madhya Pradesh , India
| |
Collapse
|
34
|
Bangs JD. Evolution of Antigenic Variation in African Trypanosomes: Variant Surface Glycoprotein Expression, Structure, and Function. Bioessays 2018; 40:e1800181. [PMID: 30370931 PMCID: PMC6441954 DOI: 10.1002/bies.201800181] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The process of antigenic variation in parasitic African trypanosomes is a remarkable mechanism for outwitting the immune system of the mammalian host, but it requires a delicate balancing act for the monoallelic expression, folding and transport of a single variant surface glycoprotein (VSG). Only one of hundreds of VSG genes is expressed at time, and this from just one of ≈15 dedicated expression sites. By switching expression of VSGs the parasite presents a continuously shifting antigenic facade leading to prolonged chronic infections lasting months to years. The basics of VSG structure and switching have been known for several decades, but recent studies have brought higher resolution to many aspects this process. New VSG structures, in silico modeling of infections, studies of VSG codon usage, and experimental ablation of VSG expression provide insights that inform how this remarkable system may have evolved.
Collapse
Affiliation(s)
- James D. Bangs
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo NY 14203,
| |
Collapse
|
35
|
Sarnataro D. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases. Int J Mol Sci 2018; 19:ijms19103081. [PMID: 30304819 PMCID: PMC6213118 DOI: 10.3390/ijms19103081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. It is believed that misfolded and abnormal β-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer's disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the "prion-like" properties of amyloid-β and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, School of Medicine, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
36
|
Tiengwe C, Koeller CM, Bangs JD. Endoplasmic reticulum-associated degradation and disposal of misfolded GPI-anchored proteins in Trypanosoma brucei. Mol Biol Cell 2018; 29:2397-2409. [PMID: 30091673 PMCID: PMC6233060 DOI: 10.1091/mbc.e18-06-0380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Misfolded secretory proteins are retained by endoplasmic reticulum quality control (ERQC) and degraded in the proteasome by ER-associated degradation (ERAD). However, in yeast and mammals, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins are preferentially degraded in the vacuole/lysosome. We investigate this process in the divergent eukaryotic pathogen Trypanosoma brucei using a misfolded GPI-anchored subunit (HA:E6) of the trypanosome transferrin receptor. HA:E6 is N-glycosylated and GPI-anchored and accumulates in the ER as aggregates. Treatment with MG132, a proteasome inhibitor, generates a smaller protected polypeptide (HA:E6*), consistent with turnover in the proteasome. HA:E6* partitions between membrane and cytosol fractions, and both pools are proteinase K-sensitive, indicating cytosolic disposition of membrane-associated HA:E6*. HA:E6* is de-N-glycosylated and has a full GPI-glycan structure from which dimyristoylglycerol has been removed, indicating that complete GPI removal is not a prerequisite for proteasomal degradation. However, HA:E6* is apparently not ubiquitin-modified. The trypanosome GPI anchor is a forward trafficking signal; thus the dynamic tension between ERQC and ER exit favors degradation by ERAD. These results differ markedly from the standard eukaryotic model systems and may indicate an evolutionary advantage related to pathogenesis.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - Carolina M Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - James D Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
37
|
Shin Y, Vavra U, Veit C, Strasser R. The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:246-259. [PMID: 29396984 PMCID: PMC5900737 DOI: 10.1111/tpj.13851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Many soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post-translational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD1 complex-mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan-dependent degradation by the HRD1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants.
Collapse
Affiliation(s)
- Yun‐Ji Shin
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
38
|
Liu YS, Guo XY, Hirata T, Rong Y, Motooka D, Kitajima T, Murakami Y, Gao XD, Nakamura S, Kinoshita T, Fujita M. N-Glycan-dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing. J Cell Biol 2017; 217:585-599. [PMID: 29255114 PMCID: PMC5800811 DOI: 10.1083/jcb.201706135] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/23/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
N-Glycosylation and GPI anchoring of proteins occur in the endoplasmic reticulum (ER). Liu et al. revealed N-glycans participate in quality control and temporal ER retention of GPI-anchored proteins (GPI-APs), ensuring their correct folding and GPI processing before exiting from the ER. Chronic ER stress induced exposure of unprocessed GPI-APs on the cell surface. Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface.
Collapse
Affiliation(s)
- Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Xin-Yu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Tetsuya Hirata
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yao Rong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshihiko Kitajima
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan .,World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| |
Collapse
|
39
|
Puig B, Altmeppen HC, Glatzel M. Misfolding leads the way to unraveling signaling pathways in the pathophysiology of prion diseases. Prion 2017; 10:434-443. [PMID: 27870599 DOI: 10.1080/19336896.2016.1244593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A misfolded version of the prion protein represents an essential component in the pathophysiology of fatal neurodegenerative prion diseases, which affect humans and animals alike. They may be of sporadic origin, acquired through exogenous introduction of infectious misfolded prion protein, or caused by genetic alterations in the prion protein coding gene. We have recently described a novel pathway linking retention of mutant prion protein in the early secretory pathway to activation p38-MAPK and a neurodegenerative phenotype in transgenic mice. Here we review the consequences that mutations in prion protein have on intracellular transport and stress responses focusing on protein quality control. We also discuss the neurotoxic signaling elicited by the accumulation of mutant prion protein in the endoplasmic reticulum and the Golgi apparatus. Improved knowledge about these processes will help us to better understand complex pathogenesis of prion diseases, a prerequisite for therapeutic strategies.
Collapse
Affiliation(s)
- Berta Puig
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Hermann C Altmeppen
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Markus Glatzel
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
40
|
Xue H, Veit C, Abas L, Tryfona T, Maresch D, Ricardi MM, Estevez JM, Strasser R, Seifert GJ. Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:613-630. [PMID: 28482115 PMCID: PMC5575511 DOI: 10.1111/tpj.13591] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 05/12/2023]
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI-anchored, is highly N-glycosylated and carries two O-glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino-proximal fasciclin 1 domain and was unaffected by removal of the GPI-modification signal, a highly conserved N-glycan or the deletion of predicted O-glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)-exit and plasma membrane localization of FLA4, with N-glycosylation acting at the level of ER-exit and O-glycosylation influencing post-secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy-proximal fasciclin 1 domain and that its amino-proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy-proximal Fas1 domain and its normal cellular trafficking depends on N- and O-glycosylation.
Collapse
Affiliation(s)
- Hui Xue
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Christiane Veit
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Lindy Abas
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Theodora Tryfona
- Department of BiochemistryUniversity of CambridgeCambridgeCB2 1QWUK
| | - Daniel Maresch
- Department of ChemistryUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Martiniano M. Ricardi
- Biología Molecular y Neurociencias–Consejo Nacional de Investigaciones Científicas y Técnicas(IFIByNE‐CONICET)Instituto de FisiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresC1428EGAArgentina
| | - José Manuel Estevez
- Biología Molecular y Neurociencias–Consejo Nacional de Investigaciones Científicas y Técnicas(IFIByNE‐CONICET)Instituto de FisiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresC1428EGAArgentina
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos AiresBuenos Aires CPC1405BWEArgentina
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Georg J. Seifert
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| |
Collapse
|