1
|
Li A, Zhang J, Ma C, Qi L, Hu Q, Li Q, Fang Y, Song J, Liu Y, Zhang Y. Endosomal protein DENND10 promotes developmental competence of neurite extension. iScience 2025; 28:112385. [PMID: 40330880 PMCID: PMC12051703 DOI: 10.1016/j.isci.2025.112385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/24/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
A distinguishing feature of neurons is the presence of long neurites that enable far-reaching communication. Establishing this complex morphology requires precise regulation of intracellular transport and signaling. Our study identifies DENND10, an ancient endosomal protein, as a crucial factor in shaping neuron morphology. DENND10 is a potential regulator of Rab GTPase signaling and interacts with the CCC/Retriever endosomal complex. Loss of DENND10 in a neuronal cell culture model resulted in shortened neurites. Quantitative proteomics revealed two distinct processes of neurite outgrowth: differentiation-induced biochemical changes and a pre-existing vesicular transport system modulated by DENND10. Mechanistically, both Rab27 and CCC complex subunit CCDC22 act downstream of DENND10 to support neurite extension. In primary cortical neurons, loss of DENND10 or CCDC22 led to shortened dendrites and impaired axon development. These findings provide a conceptual framework for neuronal morphogenesis during differentiation and highlight the critical role of DENND10/CCC in neurite extension.
Collapse
Affiliation(s)
- Aiqing Li
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Jie Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Chao Ma
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Lijuan Qi
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Qiuming Hu
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Qian Li
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Yufei Fang
- Wisdom Lake Academy of Pharmacy, Jiangsu Provincial Higher Education Key
Laboratory of Cell Therapy Nanoformulation (Construction), Suzhou Municipal Key
Lab of Metabolic Syndrome and Drug Research, School of Science, Xi’an
Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jianrui Song
- Wisdom Lake Academy of Pharmacy, Jiangsu Provincial Higher Education Key
Laboratory of Cell Therapy Nanoformulation (Construction), Suzhou Municipal Key
Lab of Metabolic Syndrome and Drug Research, School of Science, Xi’an
Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of
Neuroscience, Clinical Research Center of Neurological Disease, The Second
Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu
215123, China
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of
Soochow University, Suzhou 215123, China
| | - Yanling Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical
College of Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Loughnan R, Ahern J, Boyle M, Jernigan TL, Hagler DJ, Iversen JR, Frei O, Smith DM, Andreassen O, Zaitlen N, Sugrue L, Thompson WK, Dale A, Schork AJ, Fan CC. Hemochromatosis neural archetype reveals iron disruption in motor circuits. SCIENCE ADVANCES 2024; 10:eadp4431. [PMID: 39576859 PMCID: PMC11584016 DOI: 10.1126/sciadv.adp4431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Our understanding of brain iron regulation and its disruption in disease is limited. Excess iron affects motor circuitry, contributing to Parkinson's disease (PD) risk. The molecular mechanisms regulating central iron levels, beyond a few well-known genes controlling peripheral iron, remain unclear. We generated scores based on the archetypal brain iron accumulation observed in magnetic resonance imaging scans of individuals with excessive dietary iron absorption and hemochromatosis risk. Genome-wide analysis revealed that this score is highly heritable, identifying loci associated with iron homeostasis, and driven by peripheral iron levels. Our score predicted gait abnormalities and showed a U-shaped relationship with PD risk, identifying individuals with threefold increased risk. These results establish a hormetic relationship between brain iron and PD risk, where central iron levels are strongly determined by genetics via peripheral iron. This framework combining forward and reverse genetics is a powerful study design to understand genomic drivers underlying high dimensional phenotypes.
Collapse
Affiliation(s)
- Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
| | - Jonathan Ahern
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Mary Boyle
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Terry L. Jernigan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Donald J. Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - John R. Iversen
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Swartz Center for Computational Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Diana M. Smith
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Medical Scientist Training Program, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ole Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Noah Zaitlen
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leo Sugrue
- Department of Radiology and Biomedical Imaging and Department of Psychiatry, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Wesley K. Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
| | - Anders Dale
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Department of Neuroscience, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Andrew J. Schork
- Institute of Biological Psychiatry, Mental Health Center–Sct Hans, Copenhagen University Hospital, Copenhagen, Denmark
- Section for Geogenetics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
| |
Collapse
|
3
|
Martínez-Valencia D, Bañuelos C, García-Rivera G, Talamás-Lara D, Orozco E. The Entamoeba histolytica Vps26 (EhVps26) retromeric protein is involved in phagocytosis: Bioinformatic and experimental approaches. PLoS One 2024; 19:e0304842. [PMID: 39116045 PMCID: PMC11309391 DOI: 10.1371/journal.pone.0304842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 08/10/2024] Open
Abstract
The retromer is a cellular structure that recruits and recycles proteins inside the cell. In mammalian and yeast, the retromer components have been widely studied, but very little in parasites. In yeast, it is formed by a SNX-BAR membrane remodeling heterodimer and the cargo selecting complex (CSC), composed by three proteins. One of them, the Vps26 protein, possesses a flexible and intrinsically disordered region (IDR), that facilitates interactions with other proteins and contributes to the retromer binding to the endosomal membrane. In Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, the retromer actively participates during the high mobility and phagocytosis of trophozoites, but the molecular details in these events, are almost unknown. Here, we studied the EhVps26 role in phagocytosis. Bioinformatic analyses of EhVps26 revealed a typical arrestin folding structure of the protein, and a long and charged IDR, as described in other systems. EhVps26 molecular dynamics simulations (MDS) allowed us to predict binding pockets for EhVps35, EhSNX3, and a PX domain-containing protein; these pockets were disorganized in a EhVps26 truncated version lacking the IDR. The AlphaFold2 software predicted the interaction of EhVps26 with EhVps35, EhVps29 and EhSNX3, in a model similar to the reported mammalian crystals. By confocal and transmission electron microscopy, EhVps26 was found in the trophozoites plasma membrane, cytosol, endosomes, and Golgi-like apparatus. During phagocytosis, it followed the erythrocytes pathway, probably participating in cargoes selection and recycling. Ehvps26 gene knocking down evidenced that the EhVps26 protein is necessary for efficient phagocytosis.
Collapse
Affiliation(s)
- Diana Martínez-Valencia
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Ciudad de México, México
| | - Cecilia Bañuelos
- Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Cinvestav, Ciudad de México, México
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Ciudad de México, México
| | - Daniel Talamás-Lara
- Laboratorios Nacionales de Servicios Experimentales (LaNSE), Cinvestav, Unidad de Microscopía Electrónica, Ciudad de México, México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Ciudad de México, México
| |
Collapse
|
4
|
Solinger JA, Spang A. Sorting of cargo in the tubular endosomal network. Bioessays 2022; 44:e2200158. [DOI: 10.1002/bies.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | - Anne Spang
- Biozentrum University of Basel Basel Switzerland
| |
Collapse
|
5
|
FERARI and cargo adaptors coordinate cargo flow through sorting endosomes. Nat Commun 2022; 13:4620. [PMID: 35941155 PMCID: PMC9359993 DOI: 10.1038/s41467-022-32377-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022] Open
Abstract
Cellular organization, compartmentalization and cell-to-cell communication are crucially dependent on endosomal pathways. Sorting endosomes provide a transit point for various trafficking pathways and decide the fate of proteins: recycling, secretion or degradation. FERARI (Factors for Endosome Recycling and Rab Interactions) play a key role in shaping these compartments and coordinate Rab GTPase function with membrane fusion and fission of vesicles through a kiss-and-run mechanism. Here, we show that FERARI also mediate kiss-and-run of Rab5-positive vesicles with sorting endosomes. During these encounters, cargo flows from Rab5-positive vesicles into sorting endosomes and from there in Rab11-positive vesicles. Cargo flow from sorting endosomes into Rab11 structures relies on the cargo adaptor SNX6, while cargo retention in the Rab11 compartment is dependent on AP1. The available cargo amount appears to regulate the duration of kisses. We propose that FERARI, together with cargo adaptors, coordinate the vectorial flow of cargo through sorting endosomes.
Collapse
|
6
|
Chen KE, Guo Q, Hill TA, Cui Y, Kendall AK, Yang Z, Hall RJ, Healy MD, Sacharz J, Norwood SJ, Fonseka S, Xie B, Reid RC, Leneva N, Parton RG, Ghai R, Stroud DA, Fairlie DP, Suga H, Jackson LP, Teasdale RD, Passioura T, Collins BM. De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. SCIENCE ADVANCES 2021; 7:eabg4007. [PMID: 34851660 PMCID: PMC8635440 DOI: 10.1126/sciadv.abg4007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/14/2021] [Indexed: 05/27/2023]
Abstract
The retromer complex (Vps35-Vps26-Vps29) is essential for endosomal membrane trafficking and signaling. Mutation of the retromer subunit Vps35 causes late-onset Parkinson’s disease, while viral and bacterial pathogens can hijack the complex during cellular infection. To modulate and probe its function, we have created a novel series of macrocyclic peptides that bind retromer with high affinity and specificity. Crystal structures show that most of the cyclic peptides bind to Vps29 via a Pro-Leu–containing sequence, structurally mimicking known interactors such as TBC1D5 and blocking their interaction with retromer in vitro and in cells. By contrast, macrocyclic peptide RT-L4 binds retromer at the Vps35-Vps26 interface and is a more effective molecular chaperone than reported small molecules, suggesting a new therapeutic avenue for targeting retromer. Last, tagged peptides can be used to probe the cellular localization of retromer and its functional interactions in cells, providing novel tools for studying retromer function.
Collapse
Affiliation(s)
- Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Timothy A. Hill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yi Cui
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhe Yang
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ryan J. Hall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joanna Sacharz
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Suzanne J. Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sachini Fonseka
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert C. Reid
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Queensland, Australia
| | - Rajesh Ghai
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David A. Stroud
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rohan D. Teasdale
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Sydney Analytical, School of Life and Environmental Sciences and School of Chemistry, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
7
|
Habernig L, Broeskamp F, Aufschnaiter A, Diessl J, Peselj C, Urbauer E, Eisenberg T, de Ory A, Büttner S. Ca2+ administration prevents α-synuclein proteotoxicity by stimulating calcineurin-dependent lysosomal proteolysis. PLoS Genet 2021; 17:e1009911. [PMID: 34780474 PMCID: PMC8629384 DOI: 10.1371/journal.pgen.1009911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/29/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson's disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boosts lysosomal proteolysis. Heterologous expression of human α-synuclein (αSyn), a protein critically linked to Parkinson's disease, selectively increases total cellular Ca2+ content, while the levels of manganese and iron remain unchanged. Disrupted Ca2+ homeostasis results in inhibition of the lysosomal protease cathepsin D and triggers premature cellular and organismal death. External administration of Ca2+ reduces αSyn oligomerization, stimulates cathepsin D activity and in consequence restores survival, which critically depends on the Ca2+/calmodulin-dependent phosphatase calcineurin. In flies, increasing the availability of Ca2+ discloses a neuroprotective role of αSyn upon manganese overload. In sum, we establish a molecular interplay between cathepsin D and calcineurin that can be activated by Ca2+ administration to counteract αSyn proteotoxicity.
Collapse
Affiliation(s)
- Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elisabeth Urbauer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Ana de Ory
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
8
|
Wang H, Qi W, Zou C, Xie Z, Zhang M, Naito MG, Mifflin L, Liu Z, Najafov A, Pan H, Shan B, Li Y, Zhu ZJ, Yuan J. NEK1-mediated retromer trafficking promotes blood-brain barrier integrity by regulating glucose metabolism and RIPK1 activation. Nat Commun 2021; 12:4826. [PMID: 34376696 PMCID: PMC8355301 DOI: 10.1038/s41467-021-25157-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
Loss-of-function mutations in NEK1 gene, which encodes a serine/threonine kinase, are involved in human developmental disorders and ALS. Here we show that NEK1 regulates retromer-mediated endosomal trafficking by phosphorylating VPS26B. NEK1 deficiency disrupts endosomal trafficking of plasma membrane proteins and cerebral proteome homeostasis to promote mitochondrial and lysosomal dysfunction and aggregation of α-synuclein. The metabolic and proteomic defects of NEK1 deficiency disrupts the integrity of blood-brain barrier (BBB) by promoting lysosomal degradation of A20, a key modulator of RIPK1, thus sensitizing cerebrovascular endothelial cells to RIPK1-dependent apoptosis and necroptosis. Genetic inactivation of RIPK1 or metabolic rescue with ketogenic diet can prevent postnatal lethality and BBB damage in NEK1 deficient mice. Inhibition of RIPK1 reduces neuroinflammation and aggregation of α-synuclein in the brains of NEK1 deficient mice. Our study identifies a molecular mechanism by which retromer trafficking and metabolism regulates cerebrovascular integrity, cerebral proteome homeostasis and RIPK1-mediated neuroinflammation.
Collapse
Affiliation(s)
- Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Weiwei Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu Zou
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Zhangdan Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | | | - Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Zhen Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Heling Pan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Unveiling the cryo-EM structure of retromer. Biochem Soc Trans 2021; 48:2261-2272. [PMID: 33125482 DOI: 10.1042/bst20200552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Retromer (VPS26/VPS35/VPS29) is a highly conserved eukaryotic protein complex that localizes to endosomes to sort transmembrane protein cargoes into vesicles and elongated tubules. Retromer mediates retrieval pathways from endosomes to the trans-Golgi network in all eukaryotes and further facilitates recycling pathways to the plasma membrane in metazoans. In cells, retromer engages multiple partners to orchestrate the formation of tubulovesicular structures, including sorting nexin (SNX) proteins, cargo adaptors, GTPases, regulators, and actin remodeling proteins. Retromer-mediated pathways are especially important for sorting cargoes required for neuronal maintenance, which links retromer loss or mutations to multiple human brain diseases and disorders. Structural and biochemical studies have long contributed to the understanding of retromer biology, but recent advances in cryo-electron microscopy and cryo-electron tomography have further uncovered exciting new snapshots of reconstituted retromer structures. These new structures reveal retromer assembles into an arch-shaped scaffold and suggest the scaffold may be flexible and adaptable in cells. Interactions with cargo adaptors, particularly SNXs, likely orient the scaffold with respect to phosphatidylinositol-3-phosphate (PtdIns3P)-enriched membranes. Pharmacological small molecule chaperones have further been shown to stabilize retromer in cultured cell and mouse models, but mechanisms by which these molecules bind remain unknown. This review will emphasize recent structural and biophysical advances in understanding retromer structure as the field moves towards a molecular view of retromer assembly and regulation on membranes.
Collapse
|
10
|
Shi R, Shi X, Qin D, Tang S, Vermeulen M, Zhang X. SNX27-driven membrane localisation of OTULIN antagonises linear ubiquitination and NF-κB signalling activation. Cell Biosci 2021; 11:146. [PMID: 34315543 PMCID: PMC8314547 DOI: 10.1186/s13578-021-00659-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linear ubiquitination is a novel type of ubiquitination that plays important physiological roles in signalling pathways such as tumour necrosis factor (TNF) signalling. However, little is known about the regulatory mechanisms of linear ubiquitination, except the well-described enzymatic regulators E3 ligase linear ubiquitin chain assembly complex (LUBAC) and deubiquitinase OTULIN. RESULTS Previously, we identified SNX27, a member of the sorting nexin family protein, as a selective linear ubiquitin chain interactor in mass spectrometry-based ubiquitin interaction screening. Here, we demonstrated that the interaction between the linear ubiquitin chain and SNX27 is mediated by the OTULIN. Furthermore, we found that SNX27 inhibits LUBAC-mediated linear ubiquitin chain formation and TNFα-induced signalling activation. Mechanistic studies showed that, upon TNFα stimulation, OTULIN-SNX27 is localised to membrane-associated TNF receptor complex, where OTULIN deubiquitinates the linear polyubiquitin chain that formed by the LUBAC complex. Significantly, chemical inhibition of SNX27-retromer translocation by cholera toxin inhibits OTULIN membrane localization. CONCLUSIONS In conclusion, our study demonstrated that SNX27 inhibits TNFα induced NF-κB signalling activation via facilitating OTULIN to localize to TNF receptor complex.
Collapse
Affiliation(s)
- Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Hefei Institute of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Hefei Institute of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dajiang Qin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Hefei Institute of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shibing Tang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Hefei Institute of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| |
Collapse
|
11
|
Chandra M, Kendall AK, Jackson LP. Toward Understanding the Molecular Role of SNX27/Retromer in Human Health and Disease. Front Cell Dev Biol 2021; 9:642378. [PMID: 33937239 PMCID: PMC8083963 DOI: 10.3389/fcell.2021.642378] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Aberrations in membrane trafficking pathways have profound effects in cellular dynamics of cellular sorting processes and can drive severe physiological outcomes. Sorting nexin 27 (SNX27) is a metazoan-specific sorting nexin protein from the PX-FERM domain family and is required for endosomal recycling of many important transmembrane receptors. Multiple studies have shown SNX27-mediated recycling requires association with retromer, one of the best-known regulators of endosomal trafficking. SNX27/retromer downregulation is strongly linked to Down's Syndrome (DS) via glutamate receptor dysfunction and to Alzheimer's Disease (AD) through increased intracellular production of amyloid peptides from amyloid precursor protein (APP) breakdown. SNX27 is further linked to addiction via its role in potassium channel trafficking, and its over-expression is linked to tumorigenesis, cancer progression, and metastasis. Thus, the correct sorting of multiple receptors by SNX27/retromer is vital for normal cellular function to prevent human diseases. The role of SNX27 in regulating cargo recycling from endosomes to the cell surface is firmly established, but how SNX27 assembles with retromer to generate tubulovesicular carriers remains elusive. Whether SNX27/retromer may be a putative therapeutic target to prevent neurodegenerative disease is now an emerging area of study. This review will provide an update on our molecular understanding of endosomal trafficking events mediated by the SNX27/retromer complex on endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
12
|
Seaman MNJ. The Retromer Complex: From Genesis to Revelations. Trends Biochem Sci 2021; 46:608-620. [PMID: 33526371 DOI: 10.1016/j.tibs.2020.12.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The retromer complex has a well-established role in endosomal protein sorting, being necessary for maintaining the dynamic localisation of hundreds of membrane proteins that traverse the endocytic system. Retromer function and dysfunction is linked with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, and many pathogens, both viral and bacterial, exploit or interfere in retromer function for their own ends. In this review, the history of retromer is distilled into a concentrated form that spans the identification of retromer to recent discoveries that have shed new light on how retromer functions in endosomal protein sorting and why retromer is increasingly being viewed as a potential therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew N J Seaman
- University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
13
|
McMillan KJ, Banks PJ, Hellel FLN, Carmichael RE, Clairfeuille T, Evans AJ, Heesom KJ, Lewis P, Collins BM, Bashir ZI, Henley JM, Wilkinson KA, Cullen PJ. Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2. eLife 2021; 10:59432. [PMID: 34251337 PMCID: PMC8296521 DOI: 10.7554/elife.59432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies, we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities, and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.
Collapse
Affiliation(s)
| | - Paul J Banks
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristolUnited Kingdom
| | | | | | - Thomas Clairfeuille
- Institute for Molecular Bioscience, The University of QueenslandQueenslandAustralia
| | - Ashley J Evans
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Kate J Heesom
- Proteomics facility, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Philip Lewis
- Proteomics facility, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of QueenslandQueenslandAustralia
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristolUnited Kingdom
| | - Jeremy M Henley
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | | | - Peter J Cullen
- School of Biochemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|
14
|
Abstract
For decades, recycling of membrane proteins has been represented in figures by arrows between the "endosome" and the plasma membrane, but recently there has been an explosion in the understanding of the mechanisms and protein complexes required to facilitate protein recycling. Here, some key discoveries will be introduced, including assigning function to a number of recently recognized protein complexes and linking their function to protein recycling. Furthermore, the importance of lipid interactions and links to diseases and epithelial polarity will be summarized.
Collapse
Affiliation(s)
- Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Evans AJ, Daly JL, Anuar ANK, Simonetti B, Cullen PJ. Acute inactivation of retromer and ESCPE-1 leads to time-resolved defects in endosomal cargo sorting. J Cell Sci 2020; 133:133/15/jcs246033. [PMID: 32747499 PMCID: PMC7420817 DOI: 10.1242/jcs.246033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/05/2020] [Indexed: 01/16/2023] Open
Abstract
Human retromer, a heterotrimer of VPS26 (VPS26A or VPS26B), VPS35 and VPS29, orchestrates the endosomal retrieval of internalised cargo and promotes their cell surface recycling, a prototypical cargo being the glucose transporter GLUT1 (also known as SLC2A1). The role of retromer in the retrograde sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR, also known as IGF2R) from endosomes back to the trans-Golgi network remains controversial. Here, by applying knocksideways technology, we develop a method for acute retromer inactivation. While retromer knocksideways in HeLa and H4 human neuroglioma cells resulted in time-resolved defects in cell surface sorting of GLUT1, we failed to observe a quantifiable defect in CI-MPR sorting. In contrast, knocksideways of the ESCPE-1 complex – a key regulator of retrograde CI-MPR sorting – revealed time-resolved defects in CI-MPR sorting. Together, these data are consistent with a comparatively limited role for retromer in ESCPE-1-mediated CI-MPR retrograde sorting, and establish a methodology for acute retromer and ESCPE-1 inactivation that will aid the time-resolved dissection of their functional roles in endosomal cargo sorting. Summary: Retromer, a master controller of endosomal cargo sorting, is deregulated in neurodegenerative disease. Here, we develop and apply a retromer knocksideways methodology to quantify endosomal cargo sorting upon acute perturbation.
Collapse
Affiliation(s)
- Ashley J Evans
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - James L Daly
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Anis N K Anuar
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Boris Simonetti
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
16
|
Abstract
Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
17
|
Endocytic iron trafficking and mitochondria in Parkinson’s disease. Int J Biochem Cell Biol 2019; 110:70-74. [DOI: 10.1016/j.biocel.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022]
|
18
|
Sorting nexin 27 rescues neuroligin 2 from lysosomal degradation to control inhibitory synapse number. Biochem J 2019; 476:293-306. [PMID: 30602588 DOI: 10.1042/bcj20180504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/14/2023]
Abstract
Retromer is an evolutionarily conserved endosomal trafficking complex that mediates the retrieval of cargo proteins from a degradative pathway for sorting back to the cell surface. To promote cargo recycling, the core retromer trimer of VPS (vacuolar protein sorting)26, VPS29 and VPS35 recognises cargo either directly, or through an adaptor protein, the most well characterised of which is the PDZ [postsynaptic density 95 (PSD95), disk large, zona occludens] domain-containing sorting nexin SNX27. Neuroligins (NLGs) are postsynaptic trans-synaptic scaffold proteins that function in the clustering of postsynaptic proteins to maintain synaptic stability. Here, we show that each of the NLGs (NLG1-3) bind to SNX27 in a direct PDZ ligand-dependent manner. Depletion of SNX27 from neurons leads to a decrease in levels of each NLG protein and, for NLG2, this occurs as a result of enhanced lysosomal degradation. Notably, while depletion of the core retromer component VPS35 leads to a decrease in NLG1 and NLG3 levels, NLG2 is unaffected, suggesting that, for this cargo, SNX27 acts independently of retromer. Consistent with loss of SNX27 leading to enhanced lysosomal degradation of NLG2, knockdown of SNX27 results in fewer NLG2 clusters in cultured neurons, and loss of SNX27 or VPS35 reduces the size and number of gephyrin clusters. Together, these data indicate that NLGs are SNX27-retromer cargoes and suggest that SNX27-retromer controls inhibitory synapse number, at least in part through trafficking of NLG2.
Collapse
|
19
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
20
|
McGough IJ, de Groot REA, Jellett AP, Betist MC, Varandas KC, Danson CM, Heesom KJ, Korswagen HC, Cullen PJ. SNX3-retromer requires an evolutionary conserved MON2:DOPEY2:ATP9A complex to mediate Wntless sorting and Wnt secretion. Nat Commun 2018; 9:3737. [PMID: 30213940 PMCID: PMC6137200 DOI: 10.1038/s41467-018-06114-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
Wntless transports Wnt morphogens to the cell surface and is required for Wnt secretion and morphogenic gradients formation. Recycling of endocytosed Wntless requires the sorting nexin-3 (SNX3)-retromer-dependent endosome-to-Golgi transport pathway. Here we demonstrate the essential role of SNX3-retromer assembly for Wntless transport and report that SNX3 associates with an evolutionary conserved endosome-associated membrane re-modelling complex composed of MON2, DOPEY2 and the putative aminophospholipid translocase, ATP9A. In vivo suppression of Ce-mon-2, Ce-pad-1 or Ce-tat-5 (respective MON2, DOPEY2 and ATP9A orthologues) phenocopy a loss of SNX3-retromer function, leading to enhanced lysosomal degradation of Wntless and a Wnt phenotype. Perturbed Wnt signalling is also observed upon overexpression of an ATPase-inhibited TAT-5(E246Q) mutant, suggesting a role for phospholipid flippase activity during SNX3-retromer-mediated Wntless sorting. Together, these findings provide in vitro and in vivo mechanistic details to describe SNX3-retromer-mediated transport during Wnt secretion and the formation of Wnt-morphogenic gradients.
Collapse
Affiliation(s)
- Ian J McGough
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Reinoud E A de Groot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Adam P Jellett
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Marco C Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Katherine C Varandas
- Program in Cell Biology, University of California, San Francisco, 16th Street, San Francisco, CA, 94158, USA
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Chris M Danson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
21
|
Danson CM, Pearson N, Heesom KJ, Cullen PJ. Sorting nexin-21 is a scaffold for the endosomal recruitment of huntingtin. J Cell Sci 2018; 131:jcs.211672. [PMID: 30072438 PMCID: PMC6140323 DOI: 10.1242/jcs.211672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
The endo-lysosomal network serves an essential role in determining the fate of endocytosed transmembrane proteins and their associated proteins and lipids. Sorting nexins (SNXs) play a central role in the functional organisation of this network. Comprising over 30 proteins in humans, SNXs are classified into sub-groups based on the presence of additional functional domains. Sorting nexin-20 (SNX20) and sorting nexin-21 (SNX21) comprise the SNX-PXB proteins. The presence of a predicted protein-protein interaction domain, termed the PX-associated B (PXB) domain, has led to the proposal that they function as endosome-associated scaffolds. Here, we used unbiased quantitative proteomics to define the SNX21 interactome. We reveal that the N-terminal extension of SNX21 interacts with huntingtin (Htt) whereas the PXB domain appears to associate with septins, a family of cytoskeletal- and membrane-associated proteins. In establishing that these interactions are sufficient for SNX21 to recruit Htt and septins on to an endosomal population, we reveal a scaffolding function for this sorting nexin. Our work paves the way for a more-detailed mechanistic analysis of the role(s) of the SNX-PXB proteins in endosomal biology. Summary: A potential scaffolding function for SNX21 paves the way for a more-detailed mechanistic analysis of the role(s) of this protein in endosomal biology.
Collapse
Affiliation(s)
- Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Neil Pearson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
22
|
Ware AW, Cheung TT, Rasulov S, Burstein E, McDonald FJ. Epithelial Na + Channel: Reciprocal Control by COMMD10 and Nedd4-2. Front Physiol 2018; 9:793. [PMID: 29997525 PMCID: PMC6028986 DOI: 10.3389/fphys.2018.00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022] Open
Abstract
Optimal function of the epithelial sodium channel (ENaC) in the distal nephron is key to the kidney’s long-term control of salt homeostasis and blood pressure. Multiple pathways alter ENaC cell surface populations, including correct processing and trafficking in the secretory pathway to the cell surface, and retrieval from the cell surface through ubiquitination by the ubiquitin ligase Nedd4-2, clathrin-mediated endocytosis, and sorting in the endosomal system. Members of the Copper Metabolism Murr1 Domain containing (COMMD) family of 10 proteins are known to interact with ENaC. COMMD1, 3 and 9 have been shown to down-regulate ENaC, most likely through Nedd4-2, however, the other COMMD family members remain uncharacterized. To investigate the effects of the COMMD10 protein on ENaC trafficking and function, the interaction of ENaC and COMMD10 was confirmed. Stable COMMD10 knockdown in Fischer rat thyroid epithelia decreased ENaC current and this decreased current was associated with increased Nedd4-2 protein, a known negative regulator of ENaC. However, inhibition of Nedd4-2’s ubiquitination of ENaC was only able to partially rescue the observed reduction in current. Stable COMMD10 knockdown results in defects both in endocytosis and recycling of transferrin suggesting COMMD10 likely interacts with multiple pathways to regulate ENaC and therefore could be involved in the long-term control of blood pressure.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Tilley FC, Gallon M, Luo C, Danson CM, Zhou J, Cullen PJ. Retromer associates with the cytoplasmic amino-terminus of polycystin-2. J Cell Sci 2018; 131:jcs.211342. [PMID: 29724910 DOI: 10.1242/jcs.211342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic human disease, with around 12.5 million people affected worldwide. ADPKD results from mutations in either PKD1 or PKD2, which encode the atypical G-protein coupled receptor polycystin-1 (PC1) and the transient receptor potential channel polycystin-2 (PC2), respectively. Although altered intracellular trafficking of PC1 and PC2 is an underlying feature of ADPKD, the mechanisms which govern vesicular transport of the polycystins through the biosynthetic and endosomal membrane networks remain to be fully elucidated. Here, we describe an interaction between PC2 and retromer, a master controller for the sorting of integral membrane proteins through the endo-lysosomal network. We show that association of PC2 with retromer occurs via a region in the PC2 cytoplasmic amino-terminal domain, independently of the retromer-binding Wiskott-Aldrich syndrome and scar homologue (WASH) complex. Based on observations that retromer preferentially interacts with a trafficking population of PC2, and that ciliary levels of PC1 are reduced upon mutation of key residues required for retromer association in PC2, our data are consistent with the identification of PC2 as a retromer cargo protein.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Frances C Tilley
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Matthew Gallon
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chong Luo
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
24
|
Andrlová H, Mastroianni J, Madl J, Kern JS, Melchinger W, Dierbach H, Wernet F, Follo M, Technau-Hafsi K, Has C, Rao Mittapalli V, Idzko M, Herr R, Brummer T, Ungefroren H, Busch H, Boerries M, Narr A, Ihorst G, Vennin C, Schmitt-Graeff A, Minguet S, Timpson P, Duyster J, Meiss F, Römer W, Zeiser R. Biglycan expression in the melanoma microenvironment promotes invasiveness via increased tissue stiffness inducing integrin-β1 expression. Oncotarget 2018; 8:42901-42916. [PMID: 28476030 PMCID: PMC5522114 DOI: 10.18632/oncotarget.17160] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/14/2017] [Indexed: 02/04/2023] Open
Abstract
Novel targeted and immunotherapeutic approaches have revolutionized the treatment of metastatic melanoma. A better understanding of the melanoma-microenvironment, in particular the interaction of cells with extracellular matrix molecules, may help to further improve these new therapeutic strategies.We observed that the extracellular matrix molecule biglycan (Bgn) was expressed in certain human melanoma cells and primary fibroblasts when evaluated by microarray-based gene expression analysis. Bgn expression in the melanoma tissues correlated with low overall-survival and low progression-free-survival in patients. To understand the functional role of Bgn we used gene-targeted mice lacking functional Bgn. Here we observed that melanoma growth, metastasis-formation and tumor-related death were reduced in Bgn-/- mice compared to Bgn+/+ mice. In vitro invasion of melanoma cells into organotypic-matrices derived from Bgn-/- fibroblasts was reduced compared to melanoma invasion into Bgn-proficient matrices. Tissue stiffness as determined by atomic-force-microscopy was reduced in Bgn-/- matrices. Isolation of melanoma cells and fibroblasts from the stiffer Bgn+/+ matrices revealed an increase in integrin-β1 expression compared to the Bgn-/- fibroblast matrices. Overexpression of integrin-β1 in B16-melanoma cells abolished the survival benefit seen in Bgn-/- mice. Consistent with the studies performed in mice, the abundance of Bgn-expression in human melanoma samples positively correlated with the expression of integrin-β1, which is in agreement with results from the organotypic invasion-assay and the in vivo mouse studies.This study describes a novel role for Bgn-related tissue stiffness in the melanoma-microenvironment via regulation of integrin-β1 expression by melanoma cells in both mice and humans.
Collapse
Affiliation(s)
- Hana Andrlová
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Justin Mastroianni
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, Albert Ludwigs University, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Johannes S Kern
- Department of Dermatology and Venereology, University Medical Center, Freiburg, Germany
| | - Wolfgang Melchinger
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Heide Dierbach
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Florian Wernet
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Marie Follo
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Kristin Technau-Hafsi
- Department of Dermatology and Venereology, University Medical Center, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology and Venereology, University Medical Center, Freiburg, Germany
| | | | - Marco Idzko
- Department of Pneumology, University Medical Center, Freiburg, Germany
| | - Ricarda Herr
- Institut für Molekulare Medizin und Zellforschung, University Medical Center, Freiburg, Germany
| | - Tilman Brummer
- Institut für Molekulare Medizin und Zellforschung, University Medical Center, Freiburg, Germany
| | | | - Hauke Busch
- First Department of Medicine, University of Lübeck, Lübeck, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Institut für Molekulare Medizin und Zellforschung, University Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Narr
- Department of Immunology, BIOSS Center for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, University Medical Center, Freiburg, Germany
| | - Claire Vennin
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
| | - Annette Schmitt-Graeff
- Department of Pathology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Susana Minguet
- Department of Immunology, BIOSS Center for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
| | - Justus Duyster
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, University Medical Center, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert Ludwigs University, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, University Medical Center, Faculty of Medicine, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Abstract
Recently, a new form of autosomal recessive early-onset parkinsonism (PARK20), due to mutations in the gene encoding the phosphoinositide phosphatase, Synaptojanin 1 (Synj1), has been reported. Several genes responsible for hereditary forms of Parkinson’s disease are implicated in distinct steps of the endolysosomal pathway. However, the nature and the degree of endocytic membrane trafficking impairment in early-onset parkinsonism remains elusive. Here, we show that depletion of Synj1 causes drastic alterations of early endosomes, which become enlarged and more numerous, while it does not affect the morphology of late endosomes both in non-neuronal and neuronal cells. Moreover, Synj1 loss impairs the recycling of transferrin, while it does not alter the trafficking of the epidermal growth factor receptor. The ectopic expression of Synj1 restores the functions of early endosomes, and rescues these trafficking defects in depleted cells. Importantly, the same alterations of early endosomal compartments and trafficking defects occur in fibroblasts of PARK20 patients. Our data indicate that Synj1 plays a crucial role in regulating the homeostasis and functions of early endosomal compartments in different cell types, and highlight defective cellular pathways in PARK20. In addition, they strengthen the link between endosomal trafficking and Parkinson’s disease.
Collapse
|
26
|
Abstract
The small GTPase Rab7 is the main regulator of membrane trafficking at late endosomes. This small GTPase regulates endosome-to-trans Golgi Network trafficking of sorting receptors, membrane fusion of late endosomes to lysosomes, and autophagosomes to lysosomes during autophagy. Rab7, like all Rab GTPases, binds downstream effectors coordinating several divergent pathways. How cells regulate these interactions and downstream functions is not well understood. Recent evidence suggests that Rab7 function can be modulated by the combination of several post-translational modifications that facilitate interactions with one effector while preventing binding to another one. In this review, we discuss recent data on how phosphorylation, palmitoylation and ubiquitination modulate the ability of this small GTPase to orchestrate membrane trafficking at the late endosomes.
Collapse
Affiliation(s)
- Graziana Modica
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada H7V 1B7
| | - Stephane Lefrancois
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada H7V 1B7.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| |
Collapse
|
27
|
Simonetti B, Danson CM, Heesom KJ, Cullen PJ. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J Cell Biol 2017; 216:3695-3712. [PMID: 28935633 PMCID: PMC5674890 DOI: 10.1083/jcb.201703015] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/19/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Endosomal recycling of transmembrane proteins requires sequence-dependent recognition of motifs present within their intracellular cytosolic domains. In this study, we have reexamined the role of retromer in the sequence-dependent endosome-to-trans-Golgi network (TGN) transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Although the knockdown or knockout of retromer does not perturb CI-MPR transport, the targeting of the retromer-linked sorting nexin (SNX)-Bin, Amphiphysin, and Rvs (BAR) proteins leads to a pronounced defect in CI-MPR endosome-to-TGN transport. The retromer-linked SNX-BAR proteins comprise heterodimeric combinations of SNX1 or SNX2 with SNX5 or SNX6 and serve to regulate the biogenesis of tubular endosomal sorting profiles. We establish that SNX5 and SNX6 associate with the CI-MPR through recognition of a specific WLM endosome-to-TGN sorting motif. From validating the CI-MPR dependency of SNX1/2-SNX5/6 tubular profile formation, we provide a mechanism for coupling sequence-dependent cargo recognition with the biogenesis of tubular profiles required for endosome-to-TGN transport. Therefore, the data presented in this study reappraise retromer's role in CI-MPR transport.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Chris M Danson
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol, England, UK
| |
Collapse
|
28
|
McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N, Danson CM, Nägele H, Morris LL, Singla A, Overlee BL, Heesom KJ, Sessions R, Banks L, Collins BM, Berger I, Billadeau DD, Burstein E, Cullen PJ. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 2017; 19:1214-1225. [PMID: 28892079 PMCID: PMC5790113 DOI: 10.1038/ncb3610] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major endosomal retrieval and recycling pathway.
Collapse
Affiliation(s)
- Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rebecca Faulkner
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Matthew Gallon
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rajesh Ghai
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Pim
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Paul Langton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Neil Pearson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Heike Nägele
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Lindsey L Morris
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amika Singla
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brittany L Overlee
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Richard Sessions
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Brett M Collins
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
29
|
The Dopamine Transporter Recycles via a Retromer-Dependent Postendocytic Mechanism: Tracking Studies Using a Novel Fluorophore-Coupling Approach. J Neurosci 2017; 37:9438-9452. [PMID: 28847807 DOI: 10.1523/jneurosci.3885-16.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/17/2017] [Accepted: 08/19/2017] [Indexed: 01/28/2023] Open
Abstract
Presynaptic reuptake, mediated by the dopamine (DA) transporter (DAT), terminates DAergic neurotransmission and constrains extracellular DA levels. Addictive and therapeutic psychostimulants inhibit DA reuptake and multiple DAT coding variants have been reported in patients with neuropsychiatric disorders. These findings underscore that DAT is critical for DA neurotransmission and homeostasis. DAT surface availability is regulated acutely by endocytic trafficking, and considerable effort has been directed toward understanding mechanisms that govern DAT's plasma membrane expression and postendocytic fate. Multiple studies have demonstrated DAT endocytic recycling and enhanced surface delivery in response to various stimuli. Paradoxically, imaging studies have not detected DAT targeting to classic recycling endosomes, suggesting that internalized DAT targets to either degradation or an undefined recycling compartment. Here, we leveraged PRIME (PRobe Incorporation Mediated by Enzyme) labeling to couple surface DAT directly to fluorophore, and tracked DAT's postendocytic itinerary in immortalized mesencephalic cells. Following internalization, DAT robustly targeted to retromer-positive endosomes, and DAT/retromer colocalization was observed in male mouse dopaminergic somatodendritic and terminal regions. Short hairpin RNA-mediated Vps35 knockdown revealed that DAT endocytic recycling requires intact retromer. DAT also targeted rab7-positive endosomes with slow, linear kinetics that were unaffected by either accelerating DAT internalization or binding a high-affinity cocaine analog. However, cocaine increased DAT exit from retromer-positive endosomes significantly. Finally, we found that the DAT carboxy-terminal PDZ-binding motif was required for DAT recycling and exit from retromer. These results define the DAT recycling mechanism and provide a unifying explanation for previous, seemingly disparate, DAT endocytic trafficking findings.SIGNIFICANCE STATEMENT The neuronal dopamine (DA) transporter (DAT) recaptures released DA and modulates DAergic neurotransmission, and a number of DAT coding variants have been reported in several DA-related disorders, including infantile parkinsonism, attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is also competitively inhibited by psychostimulants with high abuse potential. Therefore, mechanisms that acutely affect DAT availability will likely exert significant impact on both normal and pathological DAergic homeostasis. Here, we explore the cellular mechanisms that acutely control DAT surface expression. Our results reveal the intracellular mechanisms that mediate DAT endocytic recycling following constitutive and regulated internalization. In addition to shedding light on this critical process, these findings resolve conflict among multiple, seemingly disparate, previous reports on DAT's postendocytic fate.
Collapse
|
30
|
McMillan KJ, Korswagen HC, Cullen PJ. The emerging role of retromer in neuroprotection. Curr Opin Cell Biol 2017; 47:72-82. [PMID: 28399507 PMCID: PMC5677836 DOI: 10.1016/j.ceb.2017.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/26/2022]
Abstract
Efficient sorting and transportation of integral membrane proteins, such as ion channels, nutrient transporters, signalling receptors, cell-cell and cell-matrix adhesion molecules is essential for the function of cellular organelles and hence organism development and physiology. Retromer is a master controller of integral membrane protein sorting and transport through one of the major sorting station within eukaryotic cells, the endosomal network. Subtle de-regulation of retromer is an emerging theme in the pathoetiology of Parkinson's disease. Here we summarise recent advances in defining the neuroprotective role of retromer and how its de-regulation may contribute to Parkinson's disease by interfering with: lysosomal health and protein degradation, association with accessory proteins including the WASH complex and mitochondrial health.
Collapse
Affiliation(s)
- Kirsty J McMillan
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - Hendrick C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
31
|
Abubakar YS, Zheng W, Olsson S, Zhou J. Updated Insight into the Physiological and Pathological Roles of the Retromer Complex. Int J Mol Sci 2017; 18:ijms18081601. [PMID: 28757549 PMCID: PMC5577995 DOI: 10.3390/ijms18081601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Retromer complexes mediate protein trafficking from the endosomes to the trans-Golgi network (TGN) or through direct recycling to the plasma membrane. In yeast, they consist of a conserved trimer of the cargo selective complex (CSC), Vps26-Vps35-Vps29 and a dimer of sorting nexins (SNXs), Vps5-Vps17. In mammals, the CSC interacts with different kinds of SNX proteins in addition to the mammalian homologues of Vps5 and Vps17, which further diversifies retromer functions. The retromer complex plays important roles in many cellular processes including restriction of invading pathogens. In this review, we summarize some recent developments in our understanding of the physiological and pathological functions of the retromer complex.
Collapse
Affiliation(s)
- Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
32
|
Rocca DL, Wilkinson KA, Henley JM. SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep 2017; 7:877. [PMID: 28408745 PMCID: PMC5429823 DOI: 10.1038/s41598-017-00707-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Forkhead Box P (FOXP) transcriptional repressors play a major role in brain development and their dysfunction leads to human cognitive disorders. However, little is known about how the activity of these proteins is regulated. Here, we show that FOXP1 SUMOylation at lysine 670 is required for recruiting the co-repressor CtBP1 and transcriptional repression. FOXP1 SUMOylation is tightly controlled by neuronal activity, in which synapse to nucleus signalling, mediated via NMDAR and L-type calcium channels, results in rapid FOXP1 deSUMOylation. Knockdown of FOXP1 in cultured cortical neurons stunts dendritic outgrowth and this phenotype cannot be rescued by replacement with a non-SUMOylatable FOXP1-K670R mutant, indicating that SUMOylation of FOXP1 is essential for regulation of proper neuronal morphogenesis. These results suggest that activity-dependent SUMOylation of FOXP1 may be an important mediator of early cortical development and neuronal network formation in the brain.
Collapse
Affiliation(s)
- Daniel L Rocca
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
33
|
Pavlos NJ, Friedman PA. GPCR Signaling and Trafficking: The Long and Short of It. Trends Endocrinol Metab 2017; 28:213-226. [PMID: 27889227 PMCID: PMC5326587 DOI: 10.1016/j.tem.2016.10.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/17/2016] [Accepted: 10/26/2016] [Indexed: 01/24/2023]
Abstract
Emerging findings disclose unexpected components of G protein-coupled receptor (GPCR) signaling and cell biology. Select GPCRs exhibit classical signaling, that is restricted to cell membranes, as well as newly described persistent signaling that depends on internalization of the GPCR bound to β-arrestins. Termination of non-canonical endosomal signaling requires intraluminal acidification and sophisticated protein trafficking machineries. Recent studies reveal the structural determinants of the trafficking chaperones. This review summarizes advances in GPCR signaling and trafficking with a focus on the parathyroid hormone receptor (PTHR) as a prototype, and on the actin-sorting nexin 27 (SNX27)-retromer tubule (ASRT) complex, an endosomal sorting hub responsible for recycling and preservation of cell surface receptors. The findings are integrated into a model of PTHR trafficking with implications for signal transduction, bone growth, and mineral ion metabolism.
Collapse
Affiliation(s)
- Nathan J Pavlos
- Cellular Orthopaedic Laboratory, School of Surgery, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, Department of Structural Biology University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
34
|
Schopf K, Huber A. Membrane protein trafficking in Drosophila photoreceptor cells. Eur J Cell Biol 2016; 96:391-401. [PMID: 27964885 DOI: 10.1016/j.ejcb.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022] Open
Abstract
Membrane protein trafficking occurs throughout the lifetime of neurons and includes the initial protein synthesis and anterograde transport to the plasma membrane as well as internalization, degradation, and recycling of plasma membrane proteins. Defects in protein trafficking can result in neuronal degeneration and underlie blinding diseases such as retinitis pigmentosa as well as other neuronal disorders. Drosophila photoreceptor cells have emerged as a model system for identifying the components and mechanisms involved in membrane protein trafficking in neurons. Here we summarize the current knowledge about trafficking of three Drosophila phototransduction proteins, the visual pigment rhodopsin and the two light-activated ion channels TRP (transient receptor potential) and TRPL (TRP-like). Despite some common requirements shared by rhodopsin and TRP, details in the trafficking of these proteins differ considerably, suggesting the existence of several trafficking pathways for these photoreceptor proteins.
Collapse
Affiliation(s)
- Krystina Schopf
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany
| | - Armin Huber
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany.
| |
Collapse
|