1
|
Zhong YT, Huang LL, Li K, Yang B, Ye X, Zhong HR, Yu B, Ma M, Yuan Y, Meng Y, Pan R, Zhang H, Shi L, Wang Y, Tian R, Gao S, Bian X. Structural and functional characterization of the brain-specific dynamin superfamily member RNF112. Proc Natl Acad Sci U S A 2025; 122:e2419449122. [PMID: 40198702 PMCID: PMC12012479 DOI: 10.1073/pnas.2419449122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Most members of the dynamin superfamily of large guanosine triphophatases (GTPases) have an ability to remodel membranes in response to guanosine triphosphate (GTP) hydrolysis. Ring Finger Protein 112 (RNF112) (ZNF179/neurolastin) is a recently identified brain-specific dynamin-like protein possessing a really interesting new gene (RING) finger domain. Despite its essential role as an E3 ligase in neuron development, the architecture of RNF112 and the exact role of its GTPase activity remain unknown. Here, we determined the crystal structure of truncated RNF112 (RNF112T) containing a GTPase domain (GD) and three-helical middle domain (MD) at different nucleotide-loading states. In the nucleotide-free (apo) state, the monomeric RNF112T remained in a unique self-restraint conformation characterized by docking of the proximal end of the MD to a groove in the GD. At the transition state of GTP hydrolysis, the MD was released from the GD and stretched aside to form an intertwined RNF112T homodimer. Engineered RNF112 equipped with the C-terminal elements of ATL1 or the two transmembrane domains of yeast Sac1p relocated to the endoplasmic reticulum and was capable of mediating membrane remodeling. Taken together, our results offer necessary understandings of RNF112 as a dynamin-like large GTPase in its cellular function and provide insights into the functional mechanisms of dynamin superfamily proteins.
Collapse
Affiliation(s)
- Ya-Ting Zhong
- Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong510060, China
| | - Li-Li Huang
- Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong510060, China
| | - Kangning Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin300071, China
| | - Bingke Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin300071, China
| | - Xueting Ye
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen518055, China
| | - Hao-Ran Zhong
- Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong510060, China
| | - Bing Yu
- Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong510060, China
| | - Menghan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin300071, China
| | - Yuerong Yuan
- College of Life Sciences, Nankai University, Tianjin300071, China
| | - Yang Meng
- College of Life Sciences, Nankai University, Tianjin300071, China
| | - Runfeng Pan
- College of Life Sciences, Nankai University, Tianjin300071, China
| | - Haiqing Zhang
- College of Life Sciences, Nankai University, Tianjin300071, China
| | - Lijun Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin300071, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin300071, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen518055, China
| | - Song Gao
- Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong510060, China
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangzhou, Guangdong510060, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin300071, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
2
|
Zanfardino P, Amati A, Perrone M, Petruzzella V. The Balance of MFN2 and OPA1 in Mitochondrial Dynamics, Cellular Homeostasis, and Disease. Biomolecules 2025; 15:433. [PMID: 40149969 PMCID: PMC11940761 DOI: 10.3390/biom15030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondrial dynamics, governed by fusion and fission, are crucial for maintaining cellular homeostasis, energy production, and stress adaptation. MFN2 and OPA1, key regulators of mitochondrial fusion, play essential roles beyond their structural functions, influencing bioenergetics, intracellular signaling, and quality control mechanisms such as mitophagy. Disruptions in these processes, often caused by MFN2 or OPA1 mutations, are linked to neurodegenerative diseases like Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy (ADOA). This review explores the molecular mechanisms underlying mitochondrial fusion, the impact of MFN2 and OPA1 dysfunction on oxidative phosphorylation and autophagy, and their role in disease progression. Additionally, we discuss the divergent cellular responses to MFN2 and OPA1 mutations, particularly in terms of proliferation, senescence, and metabolic signaling. Finally, we highlight emerging therapeutic strategies to restore mitochondrial integrity, including mTOR modulation and autophagy-targeted approaches, with potential implications for neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Piazza Giulio Cesare, 70124 Bari, Italy; (P.Z.); (A.A.); (M.P.)
| |
Collapse
|
3
|
Jin M, Liu Z, Shi R, Deng Y, Lin J, Zhang Y, Lin L, Wang Y, Shi Y, Li C, Liu Z. Disrupted Mitochondrial Dynamics Impair Corneal Epithelial Healing in Neurotrophic Keratopathy. Int J Mol Sci 2025; 26:1290. [PMID: 39941058 PMCID: PMC11818347 DOI: 10.3390/ijms26031290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Neurotrophic keratopathy (NK) is a degenerative corneal disease characterized by impaired corneal sensitivity and epithelial repair that is often linked to sensory nerve dysfunction. To establish a clinically relevant model and explore the mechanisms underlying NK pathogenesis, we developed a novel mouse model through partial transection of the ciliary nerve. This approach mimics the progressive nature of NK, reproducing key clinical features such as corneal epithelial defects, reduced sensitivity, diminished tear secretion, and delayed wound healing. Using this model, we investigated how disruptions in mitochondrial dynamics contribute to corneal epithelial dysfunction and impaired repair in NK. Our findings revealed substantial disruptions in mitochondrial dynamics, including reduced expression of fusion proteins (OPA1), downregulation of fission regulators (FIS1 and MFF), and impaired mitochondrial transport, as evidenced by decreased expression of Rhot1 and Kif5b. Additionally, the downregulation of mitophagy-related genes (Pink1 and Prkn) contributed to the accumulation of dysfunctional mitochondria, leading to DNA damage and impaired corneal epithelial repair. These mitochondrial abnormalities were accompanied by increased γH2AX staining, indicative of DNA double-strand breaks and cellular stress. This study highlights the pivotal role of mitochondrial dynamics in corneal epithelial health and repair, suggesting that therapeutic strategies aimed at restoring mitochondrial function, enhancing mitophagy, and mitigating oxidative stress may offer promising avenues for treating NK.
Collapse
Affiliation(s)
- Mengyi Jin
- Hengyang Medical School, University of South China, Hengyang 421001, China; (M.J.); (R.S.); (Y.D.); (Y.S.)
| | - Zeyu Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen 361102, China; (Z.L.); (J.L.); (Y.Z.); (Y.W.)
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen 361102, China
- Eye Institute & Xiamen Eye Center of Xiamen University, Xiamen 361102, China
- School of Medicine, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361102, China
| | - Ruize Shi
- Hengyang Medical School, University of South China, Hengyang 421001, China; (M.J.); (R.S.); (Y.D.); (Y.S.)
| | - Ya Deng
- Hengyang Medical School, University of South China, Hengyang 421001, China; (M.J.); (R.S.); (Y.D.); (Y.S.)
| | - Jingwei Lin
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen 361102, China; (Z.L.); (J.L.); (Y.Z.); (Y.W.)
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen 361102, China
- Eye Institute & Xiamen Eye Center of Xiamen University, Xiamen 361102, China
- School of Medicine, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361102, China
| | - Yuting Zhang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen 361102, China; (Z.L.); (J.L.); (Y.Z.); (Y.W.)
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen 361102, China
- Eye Institute & Xiamen Eye Center of Xiamen University, Xiamen 361102, China
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lexin Lin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
| | - Yanzi Wang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen 361102, China; (Z.L.); (J.L.); (Y.Z.); (Y.W.)
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen 361102, China
- Eye Institute & Xiamen Eye Center of Xiamen University, Xiamen 361102, China
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yunyi Shi
- Hengyang Medical School, University of South China, Hengyang 421001, China; (M.J.); (R.S.); (Y.D.); (Y.S.)
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen 361102, China; (Z.L.); (J.L.); (Y.Z.); (Y.W.)
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen 361102, China
- Eye Institute & Xiamen Eye Center of Xiamen University, Xiamen 361102, China
- School of Medicine, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361102, China
| | - Zuguo Liu
- Hengyang Medical School, University of South China, Hengyang 421001, China; (M.J.); (R.S.); (Y.D.); (Y.S.)
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen 361102, China; (Z.L.); (J.L.); (Y.Z.); (Y.W.)
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen 361102, China
- Eye Institute & Xiamen Eye Center of Xiamen University, Xiamen 361102, China
- School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2025; 26:123-146. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Wang XL, He JH, Xie P, Wu Y, Dong LY, An W. Augmenter of Liver Regeneration Crotonylation Assists in Mitochondria-ER Contact to Alleviate Hepatic Steatosis. Cell Mol Gastroenterol Hepatol 2024; 19:101436. [PMID: 39647663 PMCID: PMC11786861 DOI: 10.1016/j.jcmgh.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND & AIMS Crotonylation (Kcr), a newly identified post-translation modification (PTM), has been confirmed to be involved in diverse biological processes and human diseases as well. Metabolic dysfunction-associated steatotic liver disease (MASLD) poses a serious threat to people's health. Augmenter of liver regeneration (ALR) is an important liver regulatory protein, and the insufficiency of ALR expression is reported to accelerate liver steatosis progression to liver fibrosis or even hepatic carcinoma (HCC). However, the connection between dysregulated ALR crotonylation and MASLD pathogenesis remains largely unknown. METHODS Steatotic liver samples from human and Western diet (WD)-fed mice were employed for detecting Kcr levels. Mitochondrial function and mitochondria-ER interaction (MAM) relevant to ALR-Kcr modification was evaluated for hepatocyte lipid metabolism both in in vivo and in vitro experiments. RESULTS Global protein crotonylation (Kcr) as well as ALR-Kcr was significantly decreased in liver samples of patients with MASLD and WD mice. Histone deacetylase1/2 (HDAC1/2) and lysine acetyltransferase 8 (KAT8) were identified responsible for regulation of ALR-Kcr, which takes place at lysine 78 (K78). The decrease of ALR crotonylation might be related to the imbalance between HDAC1/2 and KAT8 expression, inhibited its interaction with MFN2, expanding MAM distance and impairing mitochondrial lipid metabolism, and consequently deteriorating hepatic steatosis. CONCLUSIONS The insufficient ALR crotonylation might be a crucial mechanism contributing to the pathogenesis of MASLD. Keeping ALR crotonylation level would be beneficial for the prevention and treatment of MASLD.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Hao He
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Ping Xie
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Yuan Wu
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Ling-Yue Dong
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Wei An
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Khatun J, Gelles JD, Chipuk JE. Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell 2024; 59:2549-2565. [PMID: 39378840 PMCID: PMC11469553 DOI: 10.1016/j.devcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die. In this review, we will focus on apoptosis and ferroptosis, two distinct forms of RCD that utilize divergent signaling to kill a targeted cell. We will highlight how proteins and processes involved in mitochondrial dynamics maintain biochemically diverse subcellular compartments to support apoptosis and ferroptosis machinery, as well as unite disparate RCD pathways through dual control of organelle biochemistry and the decision to die.
Collapse
Affiliation(s)
- Jesminara Khatun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
7
|
Ren J, Xiang B, Xueling L, Han X, Yang Z, Zhang M, Zhang Y. Molecular mechanisms of mitochondrial homeostasis regulation in neurons and possible therapeutic approaches for Alzheimer's disease. Heliyon 2024; 10:e36470. [PMID: 39281517 PMCID: PMC11401100 DOI: 10.1016/j.heliyon.2024.e36470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disease with memory loss and cognitive decline, which affects a large proportion of the aging population. Regrettably, there are no drug to reverse or cure AD and drug development for the primary theory of amyloid beta deposition has mostly failed. Therefore, there is an urgent need to investigate novel strategies for preventing AD. Recent studies demonstrate that imbalance of mitochondrial homeostasis is a driver in Aβ accumulation, which can lead to the occurrence and deterioration of cognitive impairment in AD patients. This suggests that regulating neuronal mitochondrial homeostasis may be a new strategy for AD. We summarize the importance of mitochondrial homeostasis in AD neuron and its regulatory mechanisms in this review. In addition, we summarize the results of studies indicating mitochondrial dysfunction in AD subjects, including impaired mitochondrial energy production, oxidative stress, imbalance of mitochondrial protein homeostasis, imbalance of fusion and fission, imbalance of neuronal mitochondrial biogenesis and autophagy, and altered mitochondrial motility, in hope of providing possible therapeutic approaches for AD.
Collapse
Affiliation(s)
- Jiale Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Xueling
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Han
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mixia Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Peñalva DA, Monnappa AK, Natale P, López-Montero I. Mfn2-dependent fusion pathway of PE-enriched micron-sized vesicles. Proc Natl Acad Sci U S A 2024; 121:e2313609121. [PMID: 39012824 PMCID: PMC11287154 DOI: 10.1073/pnas.2313609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Mitofusins (Mfn1 and Mfn2) are the mitochondrial outer-membrane fusion proteins in mammals and belong to the dynamin superfamily of multidomain GTPases. Recent structural studies of truncated variants lacking alpha helical transmembrane domains suggested that Mfns dimerize to promote the approximation and the fusion of the mitochondrial outer membranes upon the hydrolysis of guanine 5'-triphosphate disodium salt (GTP). However, next to the presence of GTP, the fusion activity seems to require multiple regulatory factors that control the dynamics and kinetics of mitochondrial fusion through the formation of Mfn1-Mfn2 heterodimers. Here, we purified and reconstituted the full-length murine Mfn2 protein into giant unilamellar vesicles (GUVs) with different lipid compositions. The incubation with GTP resulted in the fusion of Mfn2-GUVs. High-speed video-microscopy showed that the Mfn2-dependent membrane fusion pathway progressed through a zipper mechanism where the formation and growth of an adhesion patch eventually led to the formation of a membrane opening at the rim of the septum. The presence of physiological concentration (up to 30 mol%) of dioleoyl-phosphatidylethanolamine (DOPE) was shown to be a requisite to observe GTP-induced Mfn2-dependent fusion. Our observations show that Mfn2 alone can promote the fusion of micron-sized DOPE-enriched vesicles without the requirement of regulatory cofactors, such as membrane curvature, or the assistance of other proteins.
Collapse
Affiliation(s)
- Daniel A. Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
| | - Ajay K. Monnappa
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
| | - Paolo Natale
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| |
Collapse
|
9
|
Yildirim RM, Seli E. The role of mitochondrial dynamics in oocyte and early embryo development. Semin Cell Dev Biol 2024; 159-160:52-61. [PMID: 38330625 DOI: 10.1016/j.semcdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria's well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Ding S, Li G, Fu T, Zhang T, Lu X, Li N, Geng Q. Ceramides and mitochondrial homeostasis. Cell Signal 2024; 117:111099. [PMID: 38360249 DOI: 10.1016/j.cellsig.2024.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Lipotoxicity arises from the accumulation of lipid intermediates in non-adipose tissue, precipitating cellular dysfunction and death. Ceramide, a toxic byproduct of excessive free fatty acids, has been widely recognized as a primary contributor to lipotoxicity, mediating various cellular processes such as apoptosis, differentiation, senescence, migration, and adhesion. As the hub of lipid metabolism, the excessive accumulation of ceramides inevitably imposes stress on the mitochondria, leading to the disruption of mitochondrial homeostasis, which is typified by adequate ATP production, regulated oxidative stress, an optimal quantity of mitochondria, and controlled mitochondrial quality. Consequently, this review aims to collate current knowledge and facts regarding the involvement of ceramides in mitochondrial energy metabolism and quality control, thereby providing insights for future research.
Collapse
Affiliation(s)
- Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
11
|
Maruyama T, Hama Y, Noda NN. Mechanisms of mitochondrial reorganization. J Biochem 2024; 175:167-178. [PMID: 38016932 DOI: 10.1093/jb/mvad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The cytoplasm of eukaryotes is dynamically zoned by membrane-bound and membraneless organelles. Cytoplasmic zoning allows various biochemical reactions to take place at the right time and place. Mitochondrion is a membrane-bound organelle that provides a zone for intracellular energy production and metabolism of lipids and iron. A key feature of mitochondria is their high dynamics: mitochondria constantly undergo fusion and fission, and excess or damaged mitochondria are selectively eliminated by mitophagy. Therefore, mitochondria are appropriate model systems to understand dynamic cytoplasmic zoning by membrane organelles. In this review, we summarize the molecular mechanisms of mitochondrial fusion and fission as well as mitophagy unveiled through studies using yeast and mammalian models.
Collapse
Affiliation(s)
- Tatsuro Maruyama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yutaro Hama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
12
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
13
|
Gatti P, Mukherjee P, Talukdar PD, Freppel W, Kanou J, Chatel-chaix L, Chatterji U, Germain M. Extracellular matrix signals promotes actin-dependent mitochondrial elongation and activity.. [DOI: 10.1101/2024.01.22.576703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
AbstractMitochondria are crucial metabolic organelles that are regulated by both intracellular and extracellular cues. The extracellular matrix (ECM) is a key component of the cellular environment that controls cellular behavior and metabolic activity. Here, we determined how ECM signalling regulates mitochondrial structure and activity. To distinguish mitochondrial regulation from the general survival cues generated by the ECM, we used breast cancer-derived spheres (mammospheres) because of their ability to grow in suspension culture in the absence of ECM. Using this system, we demonstrate that the association of mammospheres with the ECM results in dramatic mitochondrial elongation, along with enhanced mitochondrial respiration and ATP production. This remodeling occurs independently of DRP1 activity, but relies on integrin signaling and actin polymerization. Therefore, our findings demonstrate that ECM-driven actin polymerization plays a crucial role in remodeling mitochondrial networks to promote OXPHOS, which represents a vital step for migrating cells to enhance cellular adhesion and facilitate cell growth.
Collapse
|
14
|
Vlieghe A, Niort K, Fumat H, Guigner JM, Cohen MM, Tareste D. Role of Lipids and Divalent Cations in Membrane Fusion Mediated by the Heptad Repeat Domain 1 of Mitofusin. Biomolecules 2023; 13:1341. [PMID: 37759741 PMCID: PMC10527301 DOI: 10.3390/biom13091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fusion and fission events to maintain their shape, distribution and cellular function. Mitofusin 1 and 2 proteins are two dynamin-like GTPases involved in the fusion of outer mitochondrial membranes (OMM). Mitofusins are anchored to the OMM through their transmembrane domain and possess two heptad repeat domains (HR1 and HR2) in addition to their N-terminal GTPase domain. The HR1 domain was found to induce fusion via its amphipathic helix, which interacts with the lipid bilayer structure. The lipid composition of mitochondrial membranes can also impact fusion. However, the precise mode of action of lipids in mitochondrial fusion is not fully understood. In this study, we examined the role of the mitochondrial lipids phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidic acid (PA) in membrane fusion induced by the HR1 domain, both in the presence and absence of divalent cations (Ca2+ or Mg2+). Our results showed that PE, as well as PA in the presence of Ca2+, effectively stimulated HR1-mediated fusion, while CL had a slight inhibitory effect. By considering the biophysical properties of these lipids in the absence or presence of divalent cations, we inferred that the interplay between divalent cations and specific cone-shaped lipids creates regions with packing defects in the membrane, which provides a favorable environment for the amphipathic helix of HR1 to bind to the membrane and initiate fusion.
Collapse
Affiliation(s)
- Anaïs Vlieghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Kristina Niort
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Hugo Fumat
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Jean-Michel Guigner
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), CNRS UMR 7590, MNHN, IRD UR 206, 75005 Paris, France
| | - Mickaël M. Cohen
- Sorbonne Université, Institut de Biologie Physico-Chimique (IBPC), CNRS UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - David Tareste
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| |
Collapse
|
15
|
Anton V, Buntenbroich I, Simões T, Joaquim M, Müller L, Buettner R, Odenthal M, Hoppe T, Escobar-Henriques M. E4 ubiquitin ligase promotes mitofusin turnover and mitochondrial stress response. Mol Cell 2023; 83:2976-2990.e9. [PMID: 37595558 PMCID: PMC10434984 DOI: 10.1016/j.molcel.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Ubiquitin-dependent control of mitochondrial dynamics is important for protein quality and neuronal integrity. Mitofusins, mitochondrial fusion factors, can integrate cellular stress through their ubiquitylation, which is carried out by multiple E3 enzymes in response to many different stimuli. However, the molecular mechanisms that enable coordinated responses are largely unknown. Here we show that yeast Ufd2, a conserved ubiquitin chain-elongating E4 enzyme, is required for mitochondrial shape adjustments. Under various stresses, Ufd2 translocates to mitochondria and triggers mitofusin ubiquitylation. This elongates ubiquitin chains on mitofusin and promotes its proteasomal degradation, leading to mitochondrial fragmentation. Ufd2 and its human homologue UBE4B also target mitofusin mutants associated with Charcot-Marie-Tooth disease, a hereditary sensory and motor neuropathy characterized by progressive loss of the peripheral nerves. This underscores the pathophysiological importance of E4-mediated ubiquitylation in neurodegeneration. In summary, we identify E4-dependent mitochondrial stress adaptation by linking various metabolic processes to mitochondrial fusion and fission dynamics.
Collapse
Affiliation(s)
- Vincent Anton
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Ira Buntenbroich
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Tânia Simões
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mariana Joaquim
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Leonie Müller
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Reinhard Buettner
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
| |
Collapse
|
16
|
Hao Y, Zhao L, Zhao JY, Han X, Zhou X. Unveiling the potential of mitochondrial dynamics as a therapeutic strategy for acute kidney injury. Front Cell Dev Biol 2023; 11:1244313. [PMID: 37635869 PMCID: PMC10456901 DOI: 10.3389/fcell.2023.1244313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Acute Kidney Injury (AKI), a critical clinical syndrome, has been strongly linked to mitochondrial malfunction. Mitochondria, vital cellular organelles, play a key role in regulating cellular energy metabolism and ensuring cell survival. Impaired mitochondrial function in AKI leads to decreased energy generation, elevated oxidative stress, and the initiation of inflammatory cascades, resulting in renal tissue damage and functional impairment. Therefore, mitochondria have gained significant research attention as a potential therapeutic target for AKI. Mitochondrial dynamics, which encompass the adaptive shifts of mitochondria within cellular environments, exert significant influence on mitochondrial function. Modulating these dynamics, such as promoting mitochondrial fusion and inhibiting mitochondrial division, offers opportunities to mitigate renal injury in AKI. Consequently, elucidating the mechanisms underlying mitochondrial dynamics has gained considerable importance, providing valuable insights into mitochondrial regulation and facilitating the development of innovative therapeutic approaches for AKI. This comprehensive review aims to highlight the latest advancements in mitochondrial dynamics research, provide an exhaustive analysis of existing studies investigating the relationship between mitochondrial dynamics and acute injury, and shed light on their implications for AKI. The ultimate goal is to advance the development of more effective therapeutic interventions for managing AKI.
Collapse
Affiliation(s)
- Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Yu Zhao
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, China
| |
Collapse
|
17
|
Muñoz JP, Basei FL, Rojas ML, Galvis D, Zorzano A. Mechanisms of Modulation of Mitochondrial Architecture. Biomolecules 2023; 13:1225. [PMID: 37627290 PMCID: PMC10452872 DOI: 10.3390/biom13081225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial network architecture plays a critical role in cellular physiology. Indeed, alterations in the shape of mitochondria upon exposure to cellular stress can cause the dysfunction of these organelles. In this scenario, mitochondrial dynamics proteins and the phospholipid composition of the mitochondrial membrane are key for fine-tuning the modulation of mitochondrial architecture. In addition, several factors including post-translational modifications such as the phosphorylation, acetylation, SUMOylation, and o-GlcNAcylation of mitochondrial dynamics proteins contribute to shaping the plasticity of this architecture. In this regard, several studies have evidenced that, upon metabolic stress, mitochondrial dynamics proteins are post-translationally modified, leading to the alteration of mitochondrial architecture. Interestingly, several proteins that sustain the mitochondrial lipid composition also modulate mitochondrial morphology and organelle communication. In this context, pharmacological studies have revealed that the modulation of mitochondrial shape and function emerges as a potential therapeutic strategy for metabolic diseases. Here, we review the factors that modulate mitochondrial architecture.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Fernanda Luisa Basei
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083-871 Campinas, SP, Brazil
| | - María Laura Rojas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - David Galvis
- Programa de Química Farmacéutica, Universidad CES, Medellín 050031, Colombia
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Buntenbroich I, Anton V, Perez-Hernandez D, Simões T, Gaedke F, Schauss A, Dittmar G, Riemer J, Escobar-Henriques M. Docking and stability defects in mitofusin highlight the proteasome as a potential therapeutic target. iScience 2023; 26:107014. [PMID: 37416455 PMCID: PMC10320088 DOI: 10.1016/j.isci.2023.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 04/23/2023] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Defects in mitochondrial fusion are at the base of many diseases. Mitofusins power membrane-remodeling events via self-interaction and GTP hydrolysis. However, how exactly mitofusins mediate fusion of the outer membrane is still unclear. Structural studies enable tailored design of mitofusin variants, providing valuable tools to dissect this stepwise process. Here, we found that the two cysteines conserved between yeast and mammals are required for mitochondrial fusion, revealing two novel steps of the fusion cycle. C381 is dominantly required for the formation of the trans-tethering complex, before GTP hydrolysis. C805 allows stabilizing the Fzo1 protein and the trans-tethering complex, just prior to membrane fusion. Moreover, proteasomal inhibition rescued Fzo1 C805S levels and membrane fusion, suggesting a possible application for clinically approved drugs. Together, our study provides insights into how assembly or stability defects in mitofusins might cause mitofusin-associated diseases and uncovers potential therapeutic intervention by proteasomal inhibition.
Collapse
Affiliation(s)
- Ira Buntenbroich
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Vincent Anton
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Daniel Perez-Hernandez
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Tânia Simões
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Jan Riemer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Institute for Biochemistry, University of Cologne, Cologne 50931, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
19
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH, Wu X. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev 2023; 87:101920. [PMID: 37004843 DOI: 10.1016/j.arr.2023.101920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Haibin Zhu
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
20
|
Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics. Mol Cell 2023; 83:857-876. [PMID: 36889315 DOI: 10.1016/j.molcel.2023.02.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Mitochondria are not only central organelles in metabolism and energy conversion but are also platforms for cellular signaling cascades. Classically, the shape and ultrastructure of mitochondria were depicted as static. The discovery of morphological transitions during cell death and of conserved genes controlling mitochondrial fusion and fission contributed to establishing the concept that mitochondrial morphology and ultrastructure are dynamically regulated by mitochondria-shaping proteins. These finely tuned, dynamic changes in mitochondrial shape can in turn control mitochondrial function, and their alterations in human diseases suggest that this space can be explored for drug discovery. Here, we review the basic tenets and molecular mechanisms of mitochondrial morphology and ultrastructure, describing how they can coordinately define mitochondrial function.
Collapse
Affiliation(s)
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy.
| |
Collapse
|
21
|
Rosencrans WM, Chan DC. Fusion activators enhance mitochondrial function. MITOCHONDRIAL COMMUNICATIONS 2023; 1:33-34. [PMID: 38515999 PMCID: PMC10956541 DOI: 10.1016/j.mitoco.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Affiliation(s)
- William M. Rosencrans
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David C. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
Kulkarni PG, Mohire VM, Bhaisa PK, Joshi MM, Puranik CM, Waghmare PP, Banerjee T. Mitofusin-2: Functional switch between mitochondrial function and neurodegeneration. Mitochondrion 2023; 69:116-129. [PMID: 36764501 DOI: 10.1016/j.mito.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/07/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Mitochondria are highly dynamic organelles known to play role in the regulation of several cellular biological processes. However, their dynamics such as number, shape, and biological functions are regulated by mitochondrial fusion and fission process. The balance between the fusion and fission process is most important for the maintenance of mitochondrial structure as well as cellular functions. The alterations within mitochondrial dynamic processes were found to be associated with the progression of neurodegenerative diseases. In recent years, mitofusin-2 (Mfn2), a GTPase has emerged as a multifunctional protein which not only is found to regulate the mitochondrial fusion-fission process but also known to regulate several cellular functions such as mitochondrial metabolism, cellular biogenesis, signalling, and apoptosis via maintaining the ER-mitochondria contact sites. In this review, we summarize the current knowledge of the structural and functional properties of the Mfn2, its transcriptional regulation and their roles in several cellular functions with a focus on current advances in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pooja K Bhaisa
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Mrudula M Joshi
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Chitranshi M Puranik
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
23
|
Baek ML, Lee J, Pendleton KE, Berner MJ, Goff EB, Tan L, Martinez SA, Mahmud I, Wang T, Meyer MD, Lim B, Barrish JP, Porter W, Lorenzi PL, Echeverria GV. Mitochondrial structure and function adaptation in residual triple negative breast cancer cells surviving chemotherapy treatment. Oncogene 2023; 42:1117-1131. [PMID: 36813854 PMCID: PMC10069007 DOI: 10.1038/s41388-023-02596-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/24/2023]
Abstract
Neoadjuvant chemotherapy (NACT) used for triple negative breast cancer (TNBC) eradicates tumors in ~45% of patients. Unfortunately, TNBC patients with substantial residual cancer burden have poor metastasis free and overall survival rates. We previously demonstrated mitochondrial oxidative phosphorylation (OXPHOS) was elevated and was a unique therapeutic dependency of residual TNBC cells surviving NACT. We sought to investigate the mechanism underlying this enhanced reliance on mitochondrial metabolism. Mitochondria are morphologically plastic organelles that cycle between fission and fusion to maintain mitochondrial integrity and metabolic homeostasis. The functional impact of mitochondrial structure on metabolic output is highly context dependent. Several chemotherapy agents are conventionally used for neoadjuvant treatment of TNBC patients. Upon comparing mitochondrial effects of conventional chemotherapies, we found that DNA-damaging agents increased mitochondrial elongation, mitochondrial content, flux of glucose through the TCA cycle, and OXPHOS, whereas taxanes instead decreased mitochondrial elongation and OXPHOS. The mitochondrial effects of DNA-damaging chemotherapies were dependent on the mitochondrial inner membrane fusion protein optic atrophy 1 (OPA1). Further, we observed heightened OXPHOS, OPA1 protein levels, and mitochondrial elongation in an orthotopic patient-derived xenograft (PDX) model of residual TNBC. Pharmacologic or genetic disruption of mitochondrial fusion and fission resulted in decreased or increased OXPHOS, respectively, revealing longer mitochondria favor oxphos in TNBC cells. Using TNBC cell lines and an in vivo PDX model of residual TNBC, we found that sequential treatment with DNA-damaging chemotherapy, thus inducing mitochondrial fusion and OXPHOS, followed by MYLS22, a specific inhibitor of OPA1, was able to suppress mitochondrial fusion and OXPHOS and significantly inhibit regrowth of residual tumor cells. Our data suggest that TNBC mitochondria can optimize OXPHOS through OPA1-mediated mitochondrial fusion. These findings may provide an opportunity to overcome mitochondrial adaptations of chemoresistant TNBC.
Collapse
Affiliation(s)
- Mokryun L Baek
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Junegoo Lee
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Katherine E Pendleton
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mariah J Berner
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Emily B Goff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lin Tan
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara A Martinez
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iqbal Mahmud
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tao Wang
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Bora Lim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - James P Barrish
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Weston Porter
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gloria V Echeverria
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Zhu T, Hu Q, Yuan Y, Yao H, Zhang J, Qi J. Mitochondrial dynamics in vascular remodeling and target-organ damage. Front Cardiovasc Med 2023; 10:1067732. [PMID: 36860274 PMCID: PMC9970102 DOI: 10.3389/fcvm.2023.1067732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Vascular remodeling is the pathological basis for the development of many cardiovascular diseases. The mechanisms underlying endothelial cell dysfunction, smooth muscle cell phenotypic switching, fibroblast activation, and inflammatory macrophage differentiation during vascular remodeling remain elusive. Mitochondria are highly dynamic organelles. Recent studies showed that mitochondrial fusion and fission play crucial roles in vascular remodeling and that the delicate balance of fusion-fission may be more important than individual processes. In addition, vascular remodeling may also lead to target-organ damage by interfering with the blood supply to major body organs such as the heart, brain, and kidney. The protective effect of mitochondrial dynamics modulators on target-organs has been demonstrated in numerous studies, but whether they can be used for the treatment of related cardiovascular diseases needs to be verified in future clinical studies. Herein, we summarize recent advances regarding mitochondrial dynamics in multiple cells involved in vascular remodeling and associated target-organ damage.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxun Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai, China,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Yanggang Yuan
- Department of Nephrology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huijuan Yao
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Jian Zhang,
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jia Qi,
| |
Collapse
|
25
|
Morciano G, Boncompagni C, Ramaccini D, Pedriali G, Bouhamida E, Tremoli E, Giorgi C, Pinton P. Comprehensive Analysis of Mitochondrial Dynamics Alterations in Heart Diseases. Int J Mol Sci 2023; 24:ijms24043414. [PMID: 36834825 PMCID: PMC9961104 DOI: 10.3390/ijms24043414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The most common alterations affecting mitochondria, and associated with cardiac pathological conditions, implicate a long list of defects. They include impairments of the mitochondrial electron transport chain activity, which is a crucial element for energy formation, and that determines the depletion of ATP generation and supply to metabolic switches, enhanced ROS generation, inflammation, as well as the dysregulation of the intracellular calcium homeostasis. All these signatures significantly concur in the impairment of cardiac electrical characteristics, loss of myocyte contractility and cardiomyocyte damage found in cardiac diseases. Mitochondrial dynamics, one of the quality control mechanisms at the basis of mitochondrial fitness, also result in being dysregulated, but the use of this knowledge for translational and therapeutic purposes is still in its infancy. In this review we tried to understand why this is, by summarizing methods, current opinions and molecular details underlying mitochondrial dynamics in cardiac diseases.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
- Correspondence: (G.M.); (P.P.); Tel.: +05-32-455-802 (G.M. & P.P.)
| | | | | | - Gaia Pedriali
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Esmaa Bouhamida
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Elena Tremoli
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
- Correspondence: (G.M.); (P.P.); Tel.: +05-32-455-802 (G.M. & P.P.)
| |
Collapse
|
26
|
Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction. Nat Chem Biol 2023; 19:468-477. [PMID: 36635564 DOI: 10.1038/s41589-022-01224-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/14/2022] [Indexed: 01/13/2023]
Abstract
Membrane dynamics are important to the integrity and function of mitochondria. Defective mitochondrial fusion underlies the pathogenesis of multiple diseases. The ability to target fusion highlights the potential to fight life-threatening conditions. Here we report a small molecule agonist, S89, that specifically promotes mitochondrial fusion by targeting endogenous MFN1. S89 interacts directly with a loop region in the helix bundle 2 domain of MFN1 to stimulate GTP hydrolysis and vesicle fusion. GTP loading or competition by S89 dislodges the loop from the GTPase domain and unlocks the molecule. S89 restores mitochondrial and cellular defects caused by mitochondrial DNA mutations, oxidative stress inducer paraquat, ferroptosis inducer RSL3 or CMT2A-causing mutations by boosting endogenous MFN1. Strikingly, S89 effectively eliminates ischemia/reperfusion (I/R)-induced mitochondrial damage and protects mouse heart from I/R injury. These results reveal the priming mechanism for MFNs and provide a therapeutic strategy for mitochondrial diseases when additional mitochondrial fusion is beneficial.
Collapse
|
27
|
Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites 2023; 13:metabo13010086. [PMID: 36677011 PMCID: PMC9865135 DOI: 10.3390/metabo13010086] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is defined as abnormal and excessive fat accumulation, and it is a risk factor for developing metabolic and neurodegenerative diseases and cognitive deficits. Obesity is caused by an imbalance in energy homeostasis resulting from increased caloric intake associated with a sedentary lifestyle. However, the entire physiopathology linking obesity with neurodegeneration and cognitive decline has not yet been elucidated. During the progression of obesity, adipose tissue undergoes immune, metabolic, and functional changes that induce chronic low-grade inflammation. It has been proposed that inflammatory processes may participate in both the peripheral disorders and brain disorders associated with obesity, including the development of cognitive deficits. In addition, mitochondrial dysfunction is related to inflammation and oxidative stress, causing cellular oxidative damage. Preclinical and clinical studies of obesity and metabolic disorders have demonstrated mitochondrial brain dysfunction. Since neuronal cells have a high energy demand and mitochondria play an important role in maintaining a constant energy supply, impairments in mitochondrial activity lead to neuronal damage and dysfunction and, consequently, to neurotoxicity. In this review, we highlight the effect of obesity and high-fat diet consumption on brain neuroinflammation and mitochondrial changes as a link between metabolic dysfunction and cognitive decline.
Collapse
|
28
|
Shen X, Sun P, Zhang H, Yang H. Mitochondrial quality control in the brain: The physiological and pathological roles. Front Neurosci 2022; 16:1075141. [PMID: 36578825 PMCID: PMC9791200 DOI: 10.3389/fnins.2022.1075141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The human brain has high energetic expenses and consumes over 20% of total oxygen metabolism. Abnormal brain energy homeostasis leads to various brain diseases. Among multiple factors that contribute to these diseases, mitochondrial dysfunction is one of the most common causes. Maintenance of mitochondrial integrity and functionality is of pivotal importance to brain energy generation. Mitochondrial quality control (MQC), employing the coordination of multiple mechanisms, is evolved to overcome many mitochondrial defects. Thus, not surprisingly, aberrant mitochondrial quality control results in a wide range of brain disorders. Targeting MQC to preserve and restore mitochondrial function has emerged as a promising therapeutic strategy for the prevention and treatment of brain diseases. Here, we set out to summarize the current understanding of mitochondrial quality control in brain homeostasis. We also evaluate potential pharmaceutically and clinically relevant targets in MQC-associated brain disorders.
Collapse
|
29
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
30
|
Abstract
Atlastin (ATL) GTPases undergo trans dimerization and a power strokelike crossover conformational rearrangement to drive endoplasmic reticulum membrane fusion. Fusion depends on GTP, but the role of nucleotide hydrolysis has remained controversial. For instance, nonhydrolyzable GTP analogs block fusion altogether, suggesting a requirement for GTP hydrolysis in ATL dimerization and crossover, but this leaves unanswered the question of how the ATL dimer is disassembled after fusion. We recently used the truncated cytoplasmic domain of wild-type Drosophila ATL (DATL) and a novel hydrolysis-deficient D127N variant in single turnover assays to reveal that dimerization and crossover consistently precede GTP hydrolysis, with hydrolysis coinciding more closely with dimer disassembly. Moreover, while nonhydrolyzable analogs can bind the DATL G domain, they fail to fully recapitulate the GTP-bound state. This predicted that nucleotide hydrolysis would be dispensable for fusion. Here we report that the D127N variant of full-length DATL drives both outer and inner leaflet membrane fusion with little to no detectable hydrolysis of GTP. However, the trans dimer fails to disassemble and subsequent rounds of fusion fail to occur. Our findings confirm that ATL mediated fusion is driven in the GTP-bound state, with nucleotide hydrolysis serving to reset the fusion machinery for recycling.
Collapse
Affiliation(s)
- Daniel Crosby
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tina H. Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213,*Address correspondence to: Tina H. Lee ()
| |
Collapse
|
31
|
Ozeir M, Cohen MM. From dynamin related proteins structures and oligomers to membrane fusion mediated by mitofusins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148913. [PMID: 36057374 DOI: 10.1016/j.bbabio.2022.148913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria assemble in a highly dynamic network where interconnected tubules evolve in length and size through regulated cycles of fission and fusion of mitochondrial membranes thereby adapting to cellular needs. Mitochondrial fusion and fission processes are mediated by specific sets of mechano-chemical large GTPases that belong to the Dynamin-Related Proteins (DRPs) super family. DRPs bind to cognate membranes and auto-oligomerize to drive lipid bilayers remodeling in a nucleotide dependent manner. Although structural characterization and mechanisms of DRPs that mediate membrane fission are well established, the capacity of DRPs to mediate membrane fusion is only emerging. In this review, we discuss the distinct structures and mechanisms of DRPs that trigger the anchoring and fusion of biological membranes with a specific focus on mitofusins that are dedicated to the fusion of mitochondrial outer membranes. In particular, we will highlight oligomeric assemblies of distinct DRPs and confront their mode of action against existing models of mitofusins assemblies with emphasis on recent biochemical, structural and computational reports. As we will see, the literature brings valuable insights into the presumed macro-assemblies mitofusins may form during anchoring and fusion of mitochondrial outer membranes.
Collapse
Affiliation(s)
- Mohammad Ozeir
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Mickael M Cohen
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France.
| |
Collapse
|
32
|
Mahmud SA, Qureshi MA, Pellegrino MW. On the offense and defense: mitochondrial recovery programs amidst targeted pathogenic assault. FEBS J 2022; 289:7014-7037. [PMID: 34270874 PMCID: PMC9192128 DOI: 10.1111/febs.16126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Bacterial pathogens employ a variety of tactics to persist in their host and promote infection. Pathogens often target host organelles in order to benefit their survival, either through manipulation or subversion of their function. Mitochondria are regularly targeted by bacterial pathogens owing to their diverse cellular roles, including energy production and regulation of programmed cell death. However, disruption of normal mitochondrial function during infection can be detrimental to cell viability because of their essential nature. In response, cells use multiple quality control programs to mitigate mitochondrial dysfunction and promote recovery. In this review, we will provide an overview of mitochondrial recovery programs including mitochondrial dynamics, the mitochondrial unfolded protein response (UPRmt ), and mitophagy. We will then discuss the various approaches used by bacterial pathogens to target mitochondria, which result in mitochondrial dysfunction. Lastly, we will discuss how cells leverage mitochondrial recovery programs beyond their role in organelle repair, to promote host defense against pathogen infection.
Collapse
Affiliation(s)
- Siraje A Mahmud
- Department of Biology, University of Texas Arlington, TX, USA
| | | | | |
Collapse
|
33
|
Sloat SR, Hoppins S. A dominant negative mitofusin causes mitochondrial perinuclear clusters because of aberrant tethering. Life Sci Alliance 2022; 6:6/1/e202101305. [PMID: 36229071 PMCID: PMC9568670 DOI: 10.26508/lsa.202101305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
In vertebrates, mitochondrial outer membrane fusion is mediated by two mitofusin paralogs, Mfn1 and Mfn2, conserved dynamin superfamily proteins. Here, we characterize a variant of mitofusin reported in patients with CMT2A where a serine is replaced with a proline (Mfn2-S350P and the equivalent in Mfn1, S329P). This serine is in a hinge domain (Hinge 2) that connects the globular GTPase domain to the adjacent extended helical bundle. We find that expression of this variant results in prolific and stable mitochondrial tethering that also blocks mitochondrial fusion by endogenous wild-type mitofusin. The formation of mitochondrial perinuclear clusters by this CMT2A variant requires normal GTPase domain function and formation of a mitofusin complex across two membranes. We propose that conformational dynamics mediated by Hinge 2 and regulated by GTP hydrolysis are disrupted by the substitution of proline at S329/S350 and this prevents progression from tethering to membrane fusion. Thus, our data are consistent with a model for mitofusin-mediated membrane fusion where Hinge 2 supports a power stroke to progress from the tethering complex to membrane fusion.
Collapse
|
34
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Sharma G, Zaman M, Sabouny R, Joel M, Martens K, Martino D, de Koning AJ, Pfeffer G, Shutt TE. Characterization of a novel variant in the HR1 domain of MFN2 in a patient with ataxia, optic atrophy and sensorineural hearing loss. F1000Res 2022; 10:606. [PMID: 38274408 PMCID: PMC10808857 DOI: 10.12688/f1000research.53230.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/27/2024] Open
Abstract
Background: Pathogenic variants in MFN2 cause Charcot-Marie-Tooth disease (CMT) type 2A (CMT2A) and are the leading cause of the axonal subtypes of CMT. CMT2A is characterized by predominantly distal motor weakness and muscle atrophy, with highly variable severity and onset age. Notably, some MFN2 variants can also lead to other phenotypes such as optic atrophy, hearing loss and lipodystrophy. Despite the clear link between MFN2 and CMT2A, our mechanistic understanding of how dysfunction of the MFN2 protein causes human disease pathologies remains incomplete. This lack of understanding is due in part to the multiple cellular roles of MFN2. Though initially characterized for its role in mediating mitochondrial fusion, MFN2 also plays important roles in mediating interactions between mitochondria and other organelles, such as the endoplasmic reticulum and lipid droplets. Additionally, MFN2 is also important for mitochondrial transport, mitochondrial autophagy, and has even been implicated in lipid transfer. Though over 100 pathogenic MFN2 variants have been described to date, only a few have been characterized functionally, and even then, often only for one or two functions. Method: Several MFN2-mediated functions were characterized in fibroblast cells from a patient presenting with cerebellar ataxia, deafness, blindness, and diffuse cerebral and cerebellar atrophy, who harbours a novel homozygous MFN2 variant, D414V, which is found in a region of the HR1 domain of MFN2 where few pathogenic variants occur. Results: We found evidence for impairment of several MFN2-mediated functions. Consistent with reduced mitochondrial fusion, patient fibroblasts exhibited more fragmented mitochondrial networks and had reduced mtDNA copy number. Additionally, patient fibroblasts had reduced oxygen consumption, fewer mitochondrial-ER contacts, and altered lipid droplets that displayed an unusual perinuclear distribution. Conclusion: Overall, this work characterizes D414V as a novel variant in MFN2 and expands the phenotypic presentation of MFN2 variants to include cerebellar ataxia.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Mashiat Zaman
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Rasha Sabouny
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Matthew Joel
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Hotchkiss Brain Institute, Alberta Child Health Research Institute, Calgary, Alberta, T2N 4N1, Canada
| | - Kristina Martens
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Hotchkiss Brain Institute, Alberta Child Health Research Institute, Calgary, Alberta, T2N 4N1, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - A.P. Jason de Koning
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Hotchkiss Brain Institute, Alberta Child Health Research Institute, Calgary, Alberta, T2N 4N1, Canada
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
36
|
Resveratrol Reestablishes Mitochondrial Quality Control in Myocardial Ischemia/Reperfusion Injury through Sirt1/Sirt3-Mfn2-Parkin-PGC-1α Pathway. Molecules 2022; 27:molecules27175545. [PMID: 36080311 PMCID: PMC9457908 DOI: 10.3390/molecules27175545] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023] Open
Abstract
Resveratrol is a natural polyphenol found in various plants. It has been widely studied on cardiovascular disorders. It is known that resveratrol can activate Sirtuin proteins and participate in cellular energy metabolism through a Sirtuin-dependent pathway. Here, we hypothesized that resveratrol may protect against myocardial ischemia/reperfusion injury (MIRI) through the target of Sirt1/Sirt3 on mitochondrial dynamics, cardiac autophagy, bioenergetics and oxidative damage in hypoxia/reoxygenation (H/R)-induced neonatal rat cardiomyocytes. We observed that resveratrol could activate the Sirt1/Sirt3-FoxO pathway on myocardial mitochondria in H/R cardiomyocytes. Subsequently, we found that resveratrol repaired the fission–fusion balance, autophagic flux and mitochondrial biosynthesis compared by H/R group. These changes were followed by increased functional mitochondrial number, mitochondrial bioenergetics and a better mitochondrial antioxidant enzyme system. Meanwhile, these effects were antagonized by co-treatment with Selisistat (Ex527), a Sirtuin inhibitor. Together, our findings uncover the potential contribution of resveratrol in reestablishing a mitochondrial quality control network with Parkin, Mfn2 and PGC-1α as the key nodes.
Collapse
|
37
|
Mitochondrial hyperfusion via metabolic sensing of regulatory amino acids. Cell Rep 2022; 40:111198. [PMID: 35977476 DOI: 10.1016/j.celrep.2022.111198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/06/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
The relationship between nutrient starvation and mitochondrial dynamics is poorly understood. We find that cells facing amino acid starvation display clear mitochondrial fusion as a means to evade mitophagy. Surprisingly, further supplementation of glutamine (Q), leucine (L), and arginine (R) did not reverse, but produced stronger mitochondrial hyperfusion. Interestingly, the hyperfusion response to Q + L + R was dependent upon mitochondrial fusion proteins Mfn1 and Opa1 but was independent of MTORC1. Metabolite profiling indicates that Q + L + R addback replenishes amino acid and nucleotide pools. Inhibition of fumarate hydratase, glutaminolysis, or inosine monophosphate dehydrogenase all block Q + L + R-dependent mitochondrial hyperfusion, which suggests critical roles for the tricarboxylic acid (TCA) cycle and purine biosynthesis in this response. Metabolic tracer analyses further support the idea that supplemented Q promotes purine biosynthesis by serving as a donor of amine groups. We thus describe a metabolic mechanism for direct sensing of cellular amino acids to control mitochondrial fusion and cell fate.
Collapse
|
38
|
Zacharioudakis E, Agianian B, Kumar Mv V, Biris N, Garner TP, Rabinovich-Nikitin I, Ouchida AT, Margulets V, Nordstrøm LU, Riley JS, Dolgalev I, Chen Y, Wittig AJH, Pekson R, Mathew C, Wei P, Tsirigos A, Tait SWG, Kirshenbaum LA, Kitsis RN, Gavathiotis E. Modulating mitofusins to control mitochondrial function and signaling. Nat Commun 2022; 13:3775. [PMID: 35798717 PMCID: PMC9262907 DOI: 10.1038/s41467-022-31324-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.
Collapse
Affiliation(s)
- Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bogos Agianian
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vasantha Kumar Mv
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos Biris
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas P Garner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Amanda T Ouchida
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Victoria Margulets
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | | | - Joel S Riley
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Igor Dolgalev
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Yun Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andre J H Wittig
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryan Pekson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chris Mathew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter Wei
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
39
|
Wang DK, Zheng HL, Zhou WS, Duan ZW, Jiang SD, Li B, Zheng XF, Jiang LS. Mitochondrial Dysfunction in Oxidative Stress-Mediated Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1569-1582. [PMID: 35673928 PMCID: PMC9363752 DOI: 10.1111/os.13302] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the most common contributor to low back pain (LBP). Recent studies have found that oxidative stress and reactive oxygen species (ROS) play an important role in IVDD. As a by‐product of aerobic respiration, ROS is mainly produced in the mitochondria by the electron transport chain and other mitochondrial located proteins. With the excessive accumulation of ROS, mitochondria are also the primary target of ROS attack in disc cells. A disrupted balance between intracellular ROS production and antioxidant capacity will lead to oxidative stress, which is the key contributor to cell apoptosis, cell senescence, excessive autophagy, and mitochondrial dysfunction. As the pivotal ingredient of oxidative stress, mitochondrial dysfunction manifests as imbalanced mitochondrial dynamics and dysregulated mitophagy. Mitochondria can alter their own dynamics through the process of fusion and fission, so that disabled mitochondria can be separated from the mitochondrial pool. Moreover, mitophagy participates by clearing these dysfunctional mitochondria. Abnormality in any of these processes either increases the production or decreases the clearance of ROS, leading to a vicious cycle that results in the death of intervertebral disc cells in large quantities, combined with degradation of the extracellular matrix and overproduction of matrix metalloproteinase. In this review, we explain the changes in mitochondrial morphology and function during oxidative stress‐mediated IVDD and highlight the important role of mitochondria in this process. Eventually, we summarize the IVDD therapeutic strategies targeting mitochondrial dysfunction based on current understanding of the role of oxidative stress in IVDD.
Collapse
Affiliation(s)
- Dian-Kai Wang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huo-Liang Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Sheng Zhou
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Wei Duan
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dan Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Role of Mitochondrial Dynamics in Cocaine's Neurotoxicity. Int J Mol Sci 2022; 23:ijms23105418. [PMID: 35628228 PMCID: PMC9145816 DOI: 10.3390/ijms23105418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
The dynamic balance of mitochondrial fission and fusion maintains mitochondrial homeostasis and optimal function. It is indispensable for cells such as neurons, which rely on the finely tuned mitochondria to carry out their normal physiological activities. The potent psychostimulant cocaine impairs mitochondria as one way it exerts its neurotoxicity, wherein the disturbances in mitochondrial dynamics have been suggested to play an essential role. In this review, we summarize the neurotoxicity of cocaine and the role of mitochondrial dynamics in cellular physiology. Subsequently, we introduce current findings that link disturbed neuronal mitochondrial dynamics with cocaine exposure. Finally, the possible role and potential therapeutic value of mitochondrial dynamics in cocaine neurotoxicity are discussed.
Collapse
|
41
|
Benarroch E. What Is the Role of Mitochondrial Fission in Neurologic Disease? Neurology 2022; 98:662-668. [PMID: 35437267 DOI: 10.1212/wnl.0000000000200233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
|
42
|
Yang Y, Lei W, Zhao L, Wen Y, Li Z. Insights Into Mitochondrial Dynamics in Chlamydial Infection. Front Cell Infect Microbiol 2022; 12:835181. [PMID: 35321312 PMCID: PMC8936178 DOI: 10.3389/fcimb.2022.835181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are intracellular organelles that are instrumental in the creation of energy, metabolism, apoptosis, and intrinsic immunity. Mitochondria exhibit an extraordinarily high degree of flexibility, and are constantly undergoing dynamic fusion and fission changes. Chlamydia is an intracellular bacterium that causes serious health problems in both humans and animals. Due to a deficiency of multiple metabolic enzymes, these pathogenic bacteria are highly dependent on their eukaryotic host cells, resulting in a close link between Chlamydia infection and host cell mitochondria. Indeed, Chlamydia increase mitochondrial fusion by inhibiting the activation of dynein-related protein 1 (DRP1), which can regulate host cell metabolism for extra energy. Additionally, Chlamydia can inhibit mitochondrial fission by blocking DRP1 oligomerization, preventing host cell apoptosis. These mechanisms are critical for maintaining a favorable environment for reproduction and growth of Chlamydia. This review discusses the molecular mechanisms of mitochondrial fusion and fission, as well as the mechanisms by which Chlamydia infection alters the mitochondrial dynamics and the prospects of limiting chlamydial development by altering mitochondrial dynamics.
Collapse
|
43
|
Zhang T, Li J, Zhao G. Quality Control Mechanisms of Mitochondria: Another Important Target for Treatment of Peripheral Neuropathy. DNA Cell Biol 2021; 40:1513-1527. [PMID: 34851723 DOI: 10.1089/dna.2021.0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria provide energy for various cellular activities and are involved in the regulating of several physiological and pathological processes. Mitochondria constitute a dynamic network regulated by numerous quality control mechanisms; for example, division is necessary for mitochondria to develop, and fusion dilutes toxins produced by the mitochondria. Mitophagy removes damaged mitochondria. The etiologies of peripheral neuropathy include congenital and acquired diseases, and the pathogenesis varies; however, oxidative stress caused by mitochondrial damage is the accepted pathogenesis of peripheral neuropathy. Regulation and control of mitochondrial quality might point the way toward potential treatments for peripheral neuropathy. This article will review mitochondrial quality control mechanisms, their involvement in peripheral nerve diseases, and their potential therapeutic role.
Collapse
Affiliation(s)
- Te Zhang
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Jiannan Li
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Guoqing Zhao
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
44
|
Mitochondrial Quality Control in the Maintenance of Cardiovascular Homeostasis: The Roles and Interregulation of UPS, Mitochondrial Dynamics and Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3960773. [PMID: 34804365 PMCID: PMC8601824 DOI: 10.1155/2021/3960773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 10/24/2021] [Indexed: 12/20/2022]
Abstract
Maintenance of normal function of mitochondria is vital to the fate and health of cardiomyocytes. Mitochondrial quality control (MQC) mechanisms are essential in governing mitochondrial integrity and function. The ubiquitin-proteasome system (UPS), mitochondrial dynamics, and mitophagy are three major components of MQC. With the progress of research, our understanding of MQC mechanisms continues to deepen. Gradually, we realize that the three MQC mechanisms are not independent of each other. To the contrary, there are crosstalk among the mechanisms, which can make them interact with each other and cooperate well, forming a triangle interplay. Briefly, the UPS system can regulate the level of mitochondrial dynamic proteins and mitophagy receptors. In the process of Parkin-dependent mitophagy, the UPS is also widely activated, performing critical roles. Mitochondrial dynamics have a profound influence on mitophagy. In this review, we provide new processes of the three major MQC mechanisms in the background of cardiomyocytes and delve into the relationship between them.
Collapse
|
45
|
A novel insertion mutation in atlastin 1 is associated with spastic quadriplegia, increased membrane tethering, and aberrant conformational switching. J Biol Chem 2021; 298:101438. [PMID: 34808209 PMCID: PMC8688574 DOI: 10.1016/j.jbc.2021.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) comprises a heterogeneous group of neuropathies affecting upper motor neurons and causing progressive gait disorder. Mutations in the gene SPG3A/atlastin-1 (ATL1), encoding a dynamin superfamily member, which utilizes the energy from GTP hydrolysis for membrane tethering and fusion to promote the formation of a highly branched, smooth endoplasmic reticulum (ER), account for approximately 10% of all HSP cases. The continued discovery and characterization of novel disease mutations are crucial for our understanding of HSP pathogenesis and potential treatments. Here, we report a novel disease-causing, in-frame insertion in the ATL1 gene, leading to inclusion of an additional asparagine residue at position 417 (N417ins). This mutation correlates with complex, early-onset spastic quadriplegia affecting all four extremities, generalized dystonia, and a thinning of the corpus callosum. We show using limited proteolysis and FRET-based studies that this novel insertion affects a region in the protein central to intramolecular interactions and GTPase-driven conformational change, and that this insertion mutation is associated with an aberrant prehydrolysis state. While GTPase activity remains unaffected by the insertion, membrane tethering is increased, indicative of a gain-of-function disease mechanism uncommon for ATL1-associated pathologies. In conclusion, our results identify a novel insertion mutation with altered membrane tethering activity that is associated with spastic quadriplegia, potentially uncovering a broad spectrum of molecular mechanisms that may affect neuronal function.
Collapse
|
46
|
Araya LE, Soni IV, Hardy JA, Julien O. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling. ACS Chem Biol 2021; 16:2280-2296. [PMID: 34553588 DOI: 10.1021/acschembio.1c00456] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Caspases are a family of enzymes that regulate biological processes such as inflammation and programmed cell death, through proteolysis. For example, in the intrinsic pathway of apoptosis, cell death signaling involves cytochrome c release from the mitochondria, which leads to the activation of caspase-9 and eventually the executioners caspase-3 and -7. One key step in our understanding of these proteases is to identify their respective protein substrates. Although hundreds of substrates have been linked to caspase-3, only a small handful of substrates have been reported for caspase-9. Employing deep profiling by subtiligase N-terminomics, we present here an unbiased analysis of caspase-3 and caspase-9 substrates in native cell lysates. We identified 906 putative protein substrates associated with caspase-3 and 124 protein substrates for caspase-9. This is the most comprehensive list of caspase substrates reported for each of these proteases, revealing a pool of new substrates that could not have been discovered using other approaches. Over half of the caspase-9 substrates were also cleaved by caspase-3, but often at unique sites, suggesting an evolved functional redundancy for these two proteases. Correspondingly, nearly half of the caspase-9 cleavage sites were not recognized by caspase-3. Our results suggest that in addition to its important role in activating the executioners, the role of caspase-9 is likely broader and more complex than previously appreciated, which includes proteolysis of key apoptotic substrates other than just caspase-3 and -7 and involvement in non-apoptotic pathways. Our results are well poised to aid the discovery of new biological functions for these two caspases.
Collapse
Affiliation(s)
- Luam E. Araya
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Ishankumar V. Soni
- Department of Chemistry, University of Massachusetts, Amherst 01003, Massachusetts, United States
| | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts, Amherst 01003, Massachusetts, United States
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| |
Collapse
|
47
|
Zou W, Ji D, Zhang Z, Yang L, Cao Y. Players in Mitochondrial Dynamics and Female Reproduction. Front Mol Biosci 2021; 8:717328. [PMID: 34708072 PMCID: PMC8542886 DOI: 10.3389/fmolb.2021.717328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial dynamics (fission and fusion) are essential physiological processes for mitochondrial metabolic function, mitochondrial redistribution, and mitochondrial quality control. Various proteins are involved in regulating mitochondrial dynamics. Aberrant expression of these proteins interferes with mitochondrial dynamics and induces a range of diseases. Multiple therapeutic approaches have been developed to treat the related diseases in recent years, but their curative effects are limited. Meanwhile, the role of mitochondrial dynamics in female reproductive function has attracted progressively more attention, including oocyte development and maturation, fertilization, and embryonic development. Here, we reviewed the significance of mitochondrial dynamics, proteins involved in mitochondrial dynamics, and disorders resulting from primary mitochondrial dynamic dysfunction. We summarized the latest therapeutic approaches of hereditary mitochondrial fusion-fission abnormalities and reviewed the recent advances in female reproductive mitochondrial dynamics.
Collapse
Affiliation(s)
- Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
48
|
Yu R, Liu T, Jin SB, Ankarcrona M, Lendahl U, Nistér M, Zhao J. MIEF1/2 orchestrate mitochondrial dynamics through direct engagement with both the fission and fusion machineries. BMC Biol 2021; 19:229. [PMID: 34674699 PMCID: PMC8532385 DOI: 10.1186/s12915-021-01161-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mitochondrial dynamics is the result of a dynamic balance between fusion and fission events, which are driven via a set of mitochondria-shaping proteins. These proteins are generally considered to be binary components of either the fission or fusion machinery, but potential crosstalk between the fission and fusion machineries remains less explored. In the present work, we analyzed the roles of mitochondrial elongation factors 1 and 2 (MIEF1/2), core components of the fission machinery in mammals. Results We show that MIEFs (MIEF1/2), besides their action in the fission machinery, regulate mitochondrial fusion through direct interaction with the fusion proteins Mfn1 and Mfn2, suggesting that MIEFs participate in not only fission but also fusion. Elevated levels of MIEFs enhance mitochondrial fusion in an Mfn1/2- and OPA1-dependent but Drp1-independent manner. Moreover, mitochondrial localization and self-association of MIEFs are crucial for their fusion-promoting ability. In addition, we show that MIEF1/2 can competitively decrease the interaction of hFis1 with Mfn1 and Mfn2, alleviating hFis1-induced mitochondrial fragmentation and contributing to mitochondrial fusion. Conclusions Our study suggests that MIEFs serve as a central hub that interacts with and regulates both the fission and fusion machineries, which uncovers a novel mechanism for balancing these opposing forces of mitochondrial dynamics in mammals. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01161-7.
Collapse
Affiliation(s)
- Rong Yu
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Visionsgatan 4, Karolinska University Hospital Solna, SE-171 64, Solna, Sweden
| | - Tong Liu
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Visionsgatan 4, Karolinska University Hospital Solna, SE-171 64, Solna, Sweden
| | - Shao-Bo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 77, Stockholm, Sweden
| | - Maria Ankarcrona
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, SE-171 64, Solna, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 77, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, SE-171 64, Solna, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Visionsgatan 4, Karolinska University Hospital Solna, SE-171 64, Solna, Sweden.
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Visionsgatan 4, Karolinska University Hospital Solna, SE-171 64, Solna, Sweden.
| |
Collapse
|
49
|
Sharma G, Sabouny R, Joel M, Martens K, Martino D, de Koning AJ, Pfeffer G, Shutt TE. Characterization of a novel variant in the HR1 domain of MFN2 in a patient with ataxia, optic atrophy and sensorineural hearing loss. F1000Res 2021. [DOI: 10.12688/f1000research.53230.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background: Pathogenic variants in MFN2 cause Charcot-Marie-Tooth disease (CMT) type 2A (CMT2A) and are the leading cause of the axonal subtypes of CMT. CMT2A is characterized by predominantly distal motor weakness and muscle atrophy, with highly variable severity and onset age. Notably, some MFN2 variants can also lead to other phenotypes such as optic atrophy, hearing loss and lipodystrophy. Despite the clear link between MFN2 and CMT2A, our mechanistic understanding of how dysfunction of the MFN2 protein causes human disease pathologies remains incomplete. This lack of understanding is due in part to the multiple cellular roles of MFN2. Though initially characterized for its role in mediating mitochondrial fusion, MFN2 also plays important roles in mediating interactions between mitochondria and other organelles, such as the endoplasmic reticulum and lipid droplets. Additionally, MFN2 is also important for mitochondrial transport, mitochondrial autophagy, and has even been implicated in lipid transfer. Though over 100 pathogenic MFN2 variants have been described to date, only a few have been characterized functionally, and even then, often only for one or two functions. Method: Several MFN2-mediated functions were characterized in fibroblast cells from a patient presenting with cerebellar ataxia, deafness, blindness, and diffuse cerebral and cerebellar atrophy, who harbours a novel homozygous MFN2 variant, D414V, which is found in a region of the HR1 domain of MFN2 where few pathogenic variants occur. Results: We found evidence for impairment of several MFN2-mediated functions. Consistent with reduced mitochondrial fusion, patient fibroblasts exhibited more fragmented mitochondrial networks and had reduced mtDNA copy number. Additionally, patient fibroblasts had reduced oxygen consumption, fewer mitochondrial-ER contacts, and altered lipid droplets that displayed an unusual perinuclear distribution. Conclusion: Overall, this work characterizes D414V as a novel variant in MFN2 and expands the phenotypic presentation of MFN2 variants to include cerebellar ataxia.
Collapse
|
50
|
Chen K, Guo L, Wu C. How signaling pathways link extracellular mechano-environment to proline biosynthesis: A hypothesis: PINCH-1 and kindlin-2 sense mechanical signals from extracellular matrix and link them to proline biosynthesis. Bioessays 2021; 43:e2100116. [PMID: 34218442 DOI: 10.1002/bies.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
We propose a signaling pathway in which cell-extracellular matrix (ECM) adhesion components PINCH-1 and kindlin-2 sense mechanical signals from ECM and link them to proline biosynthesis, a vital metabolic pathway for macromolecule synthesis, redox balance, and ECM remodeling. ECM stiffening promotes PINCH-1 expression via integrin signaling, which suppresses dynamin-related protein 1 (DRP1) expression and mitochondrial fission, resulting in increased kindlin-2 translocation into mitochondria and interaction with Δ1 -pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1). Kindlin-2 interaction with PYCR1 protects the latter from proteolytic degradation, leading to elevated PYCR1 level. Additionally, PINCH-1 promotes P5C synthase (P5CS) expression and P5C synthesis, which, together with increased PYCR1 level, support augmented proline biosynthesis. This signaling pathway is frequently activated in fibrosis and cancer, resulting in increased proline biosynthesis and excessive collagen matrix production, which in turn further promotes ECM stiffening. Targeting this signaling pathway, therefore, may provide an effective strategy for alleviating fibrosis and cancer progression.
Collapse
Affiliation(s)
- Keng Chen
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ling Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|