1
|
Sherry J, Pawar KI, Dolat L, Smith E, Chang IC, Pha K, Kaake R, Swaney DL, Herrera C, McMahon E, Bastidas RJ, Johnson JR, Valdivia RH, Krogan NJ, Elwell CA, Verba K, Engel JN. The Chlamydia effector Dre1 binds dynactin to reposition host organelles during infection. Cell Rep 2025; 44:115509. [PMID: 40186871 DOI: 10.1016/j.celrep.2025.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis replicates in a specialized membrane-bound compartment where it repositions host organelles during infection to acquire nutrients and evade host surveillance. We describe a bacterial effector, Dre1, that binds specifically to dynactin associated with host microtubule organizing centers without globally impeding dynactin function. Dre1 is required to reposition the centrosome, mitotic spindle, Golgi apparatus, and primary cilia around the inclusion and contributes to pathogen fitness in cell-based and mouse models of infection. We utilized Dre1 to affinity purify the megadalton dynactin protein complex and determined the first cryoelectron microscopy (cryo-EM) structure of human dynactin. Our results suggest that Dre1 binds to the pointed end of dynactin and uncovers the first bacterial effector that modulates dynactin function. Our work highlights how a pathogen employs a single effector to evoke targeted, large-scale changes in host cell organization that facilitate pathogen growth without inhibiting host viability.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Komal Ishwar Pawar
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - I-Chang Chang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Khavong Pha
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robyn Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clara Herrera
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eleanor McMahon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Kliment Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Kloc M, Wosik J. Mechanical Forces, Nucleus, Chromosomes, and Chromatin. Biomolecules 2025; 15:354. [PMID: 40149890 PMCID: PMC11940699 DOI: 10.3390/biom15030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Individual cells and cells within the tissues and organs constantly face mechanical challenges, such as tension, compression, strain, shear stress, and the rigidity of cellular and extracellular surroundings. Besides the external mechanical forces, cells and their components are also subjected to intracellular mechanical forces, such as pulling, pushing, and stretching, created by the sophisticated force-generation machinery of the cytoskeleton and molecular motors. All these mechanical stressors switch on the mechanotransduction pathways, allowing cells and their components to respond and adapt. Mechanical force-induced changes at the cell membrane and cytoskeleton are also transmitted to the nucleus and its nucleoskeleton, affecting nucleocytoplasmic transport, chromatin conformation, transcriptional activity, replication, and genome, which, in turn, orchestrate cellular mechanical behavior. The memory of mechanoresponses is stored as epigenetic and chromatin structure modifications. The mechanical state of the cell in response to the acellular and cellular environment also determines cell identity, fate, and immune response to invading pathogens. Here, we give a short overview of the latest developments in understanding these processes, emphasizing their effects on cell nuclei, chromosomes, and chromatin.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- MD Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA;
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Gawor M, Lehka L, Lambert D, Toseland CP. Actin from within - how nuclear myosins and actin regulate nuclear architecture and mechanics. J Cell Sci 2025; 138:JCS263550. [PMID: 39927755 PMCID: PMC11883275 DOI: 10.1242/jcs.263550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Over the past two decades, significant progress has been made in understanding mechanotransduction to the nucleus. Nevertheless, most research has focused on outside-in signalling orchestrated by external mechanical stimuli. Emerging evidence highlights the importance of intrinsic nuclear mechanisms in the mechanoresponse. The discovery of actin and associated motor proteins, such as myosins, in the nucleus, along with advances in chromatin organisation research, has raised new questions about the contribution of intranuclear architecture and mechanics. Nuclear actin and myosins are present in various compartments of the nucleus, particularly at sites of DNA processing and modification. These proteins can function as hubs and scaffolds, cross-linking distant chromatin regions and thereby impacting local and global nuclear membrane shape. Importantly, nuclear myosins are force-sensitive and nuclear actin cooperates with mechanosensors, suggesting a multi-level contribution to nuclear mechanics. The crosstalk between nuclear myosins and actin has significant implications for cell mechanical plasticity and the prevention of pathological conditions. Here, we review the recent impactful findings that highlight the roles of nuclear actin and myosins in nuclear organisation. Additionally, we discuss potential links between these proteins and emphasize the importance of using new methodologies to unravel nuclear-derived regulatory mechanisms distinct from the cytoskeleton.
Collapse
Affiliation(s)
- Marta Gawor
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Danielle Lambert
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Christopher P. Toseland
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
4
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb PG, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 Stabilizes the Genome via Nuclear and Cell-Cycle Remodeling to Support Ovarian Cancer Cell Survival. CANCER RESEARCH COMMUNICATIONS 2025; 5:39-53. [PMID: 39625235 PMCID: PMC11705808 DOI: 10.1158/2767-9764.crc-24-0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE High-grade serous ovarian carcinoma is marked by chromosomal instability, which can serve to promote disease progression and allow cancer to evade therapeutic insults. The report highlights the role of claudin-4 in regulating genomic instability and proposes a novel therapeutic approach to exploit claudin-4-mediated regulation.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia G. Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
5
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
6
|
Fan L, Tang Y, Liu J, Liu Y, Xu Y, Liu J, Liu H, Pang W, Guo Y, Yao W, Zhang T, Peng Q, Zhou J. Mechanical Activation of cPLA2 Impedes Fatty Acid β-Oxidation in Vein Grafts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411559. [PMID: 39587975 PMCID: PMC11744522 DOI: 10.1002/advs.202411559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Indexed: 11/27/2024]
Abstract
High-magnitude cyclic stretch from arterial blood pressure significantly contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMCs), leading to neointima formation in vein grafts. However, the molecular mechanisms remain unclear. This study highlights the critical role of cytosolic Phospholipase A2 (cPLA2)/ Yin Yang 1 (YY1)/ carnitine palmitoyltransferase 1b (CPT1B) signaling in coordinating VSMC mechanical activation by inhibiting fatty acid β-oxidation. Metabolomic analysis showed that a 15%-1 Hz arterial cyclic stretch, compared to a 5%-1 Hz venous stretch, increased long-chain fatty acids in VSMCs. cPLA2, identified as a mechanoresponsive molecule, produces excessive arachidonic acid (ArAc) under the 15%-1 Hz stretch, inhibiting CPT1B expression, a key enzyme in fatty acid β-oxidation. ArAc promotes transcription factor YY1 degradation, downregulating CPT1B. Inadequate fatty acid oxidation caused by knockdown of CPT1B or YY1, or etomoxir treatment, increased nuclear membrane tension, orchestrating the activation of cPLA2. Overexpressing CPT1B or inhibiting cPLA2 reduced VSMC proliferation and migration in vein grafts, decreasing neointimal hyperplasia. This study uncovers a novel mechanism in lipid metabolic reprogramming in vein grafts, suggesting a new therapeutic target for vein graft hyperplasia.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuanjun Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jian Liu
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Yueqi Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yiwei Xu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jiayu Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Han Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Wei Pang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuxuan Guo
- Institute of Cardiovascular SciencesSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Weijuan Yao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Tao Zhang
- Department of Vascular SurgeryPeking University People's HospitalBeijing100044China
| | - Qin Peng
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Jing Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| |
Collapse
|
7
|
Wang TC, Dollahon CR, Mishra S, Patel H, Abolghasemzade S, Singh I, Thomazy V, Rosen DG, Sandulache VC, Chakraborty S, Lele TP. Extreme wrinkling of the nuclear lamina is a morphological marker of cancer. NPJ Precis Oncol 2024; 8:276. [PMID: 39623008 PMCID: PMC11612457 DOI: 10.1038/s41698-024-00775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/24/2024] [Indexed: 12/06/2024] Open
Abstract
Nuclear atypia is a hallmark of cancer. A recent model posits that excess surface area, visible as folds/wrinkles in the lamina of a rounded nucleus, allows the nucleus to take on diverse shapes with little mechanical resistance. Whether this model is applicable to normal and cancer nuclei in human tissues is unclear. We image nuclear lamins in patient tissues and find: (a) nuclear laminar wrinkles are present in control and cancer tissue but are obscured in hematoxylin and eosin (H&E) images, (b) nuclei rarely have a smooth lamina, and (c) wrinkled nuclei assume diverse shapes. Deep learning reveals the presence of extreme nuclear laminar wrinkling in cancer tissues, which is confirmed by Fourier analysis. These data support a model in which excess surface area in the nuclear lamina enables nuclear shape diversity in vivo. Extreme laminar wrinkling is a marker of cancer, and imaging the lamina may benefit cancer diagnosis.
Collapse
Affiliation(s)
- Ting-Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Christina R Dollahon
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sneha Mishra
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA
| | - Hailee Patel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Daniel G Rosen
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Vlad C Sandulache
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
- ENT Section, Operative CareLine, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | | | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
8
|
del Rosario-Gilabert D, Valenzuela-Miralles A, Esquiva G. Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells. Biophys Rev 2024; 16:783-812. [PMID: 39830129 PMCID: PMC11735818 DOI: 10.1007/s12551-024-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes. These components connect with the cytoskeletal fibre network, enabling the transmission of mechanical stimuli towards the nucleus. The nucleus, in turn, linked to the cytoskeleton via the linkers of the nucleoskeleton and cytoskeleton complex, acts as a mechanosensitive centre, not only responding to changes in cytoskeletal stiffness and nuclear tension but also regulating gene expression through the transcriptional co-activator YAP/TAZ and interactions between chromatin and the nuclear envelope. This intricate chain of mechanisms highlights the potential of sonobiology in various fields, including dentistry, regenerative medicine, tissue engineering and cancer research. However, progress in these fields requires the establishment of standardized measurement methodologies and biocompatible experimental setups to ensure the reproducibility of results.
Collapse
Affiliation(s)
- D. del Rosario-Gilabert
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Spain
- Department of Computer Technology, University of Alicante, San Vicente del Raspeig, Spain
- Institute for Advanced Neuroscience of Barcelona (INAB), Barcelona, Spain
| | - A. Valenzuela-Miralles
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
| | - G. Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
9
|
Wang TC, Abolghasemzade S, McKee BP, Singh I, Pendyala K, Mohajeri M, Patel H, Shaji A, Kersey AL, Harsh K, Kaur S, Dollahon CR, Chukkapalli S, Lele PP, Conway DE, Gaharwar AK, Dickinson RB, Lele TP. Matrix stiffness drives drop like nuclear deformation and lamin A/C tension-dependent YAP nuclear localization. Nat Commun 2024; 15:10151. [PMID: 39578439 PMCID: PMC11584751 DOI: 10.1038/s41467-024-54577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Extracellular matrix (ECM) stiffness influences cancer cell fate by altering gene expression. Previous studies suggest that stiffness-induced nuclear deformation may regulate gene expression through YAP nuclear localization. We investigated the role of the nuclear lamina in this process. We show that the nuclear lamina exhibits mechanical threshold behavior: once unwrinkled, the nuclear lamina is inextensible. A computational model predicts that the unwrinkled lamina is under tension, which is confirmed using a lamin tension sensor. Laminar unwrinkling is caused by nuclear flattening during cell spreading on stiff ECM. Knockdown of lamin A/C eliminates nuclear surface tension and decreases nuclear YAP localization. These findings show that nuclear deformation in cells conforms to the nuclear drop model and reveal a role for lamin A/C tension in controlling YAP localization in cancer cells.
Collapse
Affiliation(s)
- Ting-Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Brendan P McKee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kavya Pendyala
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Hailee Patel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aakansha Shaji
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Anna L Kersey
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kajol Harsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Simran Kaur
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Christina R Dollahon
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sasanka Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
10
|
Zhao JZ, Xia J, Brangwynne CP. Chromatin compaction during confined cell migration induces and reshapes nuclear condensates. Nat Commun 2024; 15:9964. [PMID: 39557835 PMCID: PMC11574006 DOI: 10.1038/s41467-024-54120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Cell migration through small constrictions during cancer metastasis requires significant deformation of the nucleus, with associated mechanical stress on the nuclear lamina and chromatin. However, how mechanical deformation impacts various subnuclear structures, including protein and nucleic acid-rich biomolecular condensates, is largely unknown. Here, we find that cell migration through confined spaces gives rise to mechanical deformations of the chromatin network, which cause embedded nuclear condensates, including nucleoli and nuclear speckles, to deform and coalesce. Chromatin deformations exhibit differential behavior in the advancing vs. trailing region of the nucleus, with the trailing half being more permissive for de novo condensate formation. We show that this results from increased chromatin heterogeneity, which gives rise to a shift in the binodal phase boundary. Taken together, our findings show how chromatin deformation impacts condensate assembly and properties, which can potentially contribute to cellular mechanosensing.
Collapse
Affiliation(s)
- Jessica Z Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Jing Xia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Princeton Materials Institute, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Dickinson RB, Abolghasemzade S, Lele TP. Rethinking nuclear shaping: insights from the nuclear drop model. SOFT MATTER 2024; 20:7558-7565. [PMID: 39105242 PMCID: PMC11446230 DOI: 10.1039/d4sm00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Changes in the nuclear shape caused by cellular shape changes are generally assumed to reflect an elastic deformation from a spherical nuclear shape. Recent evidence, however, suggests that the nuclear lamina, which forms the outer nuclear surface together with the nuclear envelope, possesses more area than that of a sphere of the same volume. This excess area manifests as folds/wrinkles in the nuclear surface in rounded cells and allows facile nuclear flattening during cell spreading without any changes in nuclear volume or surface area. When the lamina becomes smooth and taut, it is inextensible, and supports a surface tension. At this point, it is possible to mathematically calculate the limiting nuclear shape purely based on geometric considerations. In this paper, we provide a commentary on the "nuclear drop model" which seeks to integrate the above features. We outline its testable physical properties and explore its biological implications.
Collapse
Affiliation(s)
- Richard B Dickinson
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL, 32611, USA.
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA
| |
Collapse
|
12
|
Muzzeddu PL, Gambassi A, Sommer JU, Sharma A. Migration and Separation of Polymers in Nonuniform Active Baths. PHYSICAL REVIEW LETTERS 2024; 133:118102. [PMID: 39331988 DOI: 10.1103/physrevlett.133.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/29/2024]
Abstract
Polymerlike structures are ubiquitous in nature and synthetic materials. Their configurational and migration properties are often affected by crowded environments leading to nonthermal fluctuations. Here, we study an ideal Rouse chain in contact with a nonhomogeneous active bath, characterized by the presence of active self-propelled agents which exert time-correlated forces on the chain. By means of a coarse-graining procedure, we derive an effective evolution for the center of mass of the chain and show its tendency to migrate toward and preferentially localize in regions of high and low bath activity depending on the model parameters. In particular, we demonstrate that an active bath with nonuniform activity can be used to separate efficiently polymeric species with different lengths and/or connectivity.
Collapse
|
13
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb P, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 remodeling of nucleus-cell cycle crosstalk maintains ovarian tumor genome stability and drives resistance to genomic instability-inducing agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611120. [PMID: 39282307 PMCID: PMC11398366 DOI: 10.1101/2024.09.04.611120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
During cancer development, the interplay between the nucleus and the cell cycle leads to a state of genomic instability, often accompanied by observable morphological aberrations. These aberrations can be controlled by tumor cells to evade cell death, either by preventing or eliminating genomic instability. In epithelial ovarian cancer (EOC), overexpression of the multifunctional protein claudin-4 is a key contributor to therapy resistance through mechanisms associated with genomic instability. However, the molecular mechanisms underlying claudin-4 overexpression in EOC remain poorly understood. Here, we altered claudin-4 expression and employed a unique claudin-4 targeting peptide (CMP) to manipulate the function of claudin-4. We found that claudin-4 facilitates genome maintenance by linking the nuclear envelope and cytoskeleton dynamics with cell cycle progression. Claudin-4 caused nuclei constriction by excluding lamin B1 and promoting perinuclear F-actin accumulation, associated with remodeling nuclear architecture, thus altering nuclear envelope dynamics. Consequently, cell cycle modifications due to claudin-4 overexpression resulted in fewer cells entering the S-phase and reduced genomic instability. Importantly, disrupting biological interactions of claudin-4 using CMP and forskolin altered oxidative stress cellular response and increased the efficacy of PARP inhibitor treatment. Our data indicate that claudin-4 protects tumor genome integrity by remodeling the crosstalk between the nuclei and the cell cycle, leading to resistance to genomic instability formation and the effects of genomic instability-inducing agents.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
14
|
Kaczmarczyk LS, Babele D, Levi N, Gunasekaran G, Salmon-Divon M, Gerlitz G. Regulation of cholesterol biosynthesis by CTCF and H3K27 methylation is critical for cell migration. Eur J Cell Biol 2024; 103:151454. [PMID: 39232451 DOI: 10.1016/j.ejcb.2024.151454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024] Open
Abstract
CTCF is a key factor in three-dimensional chromatin folding and transcriptional control that was found to affect cancer cell migration by a mechanism that is still poorly understood. To identify this mechanism, we used mouse melanoma cells with a partial loss of function (pLoF) of CTCF. We found that CTCF pLoF inhibits cell migration rate while leading to an increase in the expression of multiple enzymes in the cholesterol biosynthesis pathway along with an elevation in the cellular cholesterol level. In agreement with the cholesterol change we detected altered membrane dynamics in CTCF pLoF cells as measured by reduced formation of migrasomes, extracellular vesicles formed at the rear side of migrating cells. Inhibition of cholesterol synthesis in CTCF pLoF cells restored the cellular migration rate and migrasome formation, suggesting that CTCF supports cell migration by suppressing cholesterol synthesis. Detailed analysis of the promoter of Hmgcs1, an early enzyme in the cholesterol synthesis pathway, revealed that CTCF prevents formation of a loop between that promoter and another promoter 200 kb away. CTCF also supports PRC2 recruitment to the promoter and deposition of H3K27me3. H3K27me3 at the promoter of Hmgcs1 prevents SREBP2 binding and activation of transcription. By this mechanism, CTCF fine-tunes cholesterol levels to support cell migration. Notably, genome wide association studies suggest a link between CTCF and cholesterol-associated diseases, thus CTCF emerges as a new regulator of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Lukasz Stanislaw Kaczmarczyk
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Dagmawit Babele
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Nehora Levi
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Gowthaman Gunasekaran
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; Adelson School of Medicine, Ariel University, Ariel 40700, Israel.
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
15
|
Al-Husinat L, Azzam S, Al Sharie S, Al Sharie AH, Battaglini D, Robba C, Marini JJ, Thornton LT, Cruz FF, Silva PL, Rocco PRM. Effects of mechanical ventilation on the interstitial extracellular matrix in healthy lungs and lungs affected by acute respiratory distress syndrome: a narrative review. Crit Care 2024; 28:165. [PMID: 38750543 PMCID: PMC11094887 DOI: 10.1186/s13054-024-04942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Mechanical ventilation, a lifesaving intervention in critical care, can lead to damage in the extracellular matrix (ECM), triggering inflammation and ventilator-induced lung injury (VILI), particularly in conditions such as acute respiratory distress syndrome (ARDS). This review discusses the detailed structure of the ECM in healthy and ARDS-affected lungs under mechanical ventilation, aiming to bridge the gap between experimental insights and clinical practice by offering a thorough understanding of lung ECM organization and the dynamics of its alteration during mechanical ventilation. MAIN TEXT Focusing on the clinical implications, we explore the potential of precise interventions targeting the ECM and cellular signaling pathways to mitigate lung damage, reduce inflammation, and ultimately improve outcomes for critically ill patients. By analyzing a range of experimental studies and clinical papers, particular attention is paid to the roles of matrix metalloproteinases (MMPs), integrins, and other molecules in ECM damage and VILI. This synthesis not only sheds light on the structural changes induced by mechanical stress but also underscores the importance of cellular responses such as inflammation, fibrosis, and excessive activation of MMPs. CONCLUSIONS This review emphasizes the significance of mechanical cues transduced by integrins and their impact on cellular behavior during ventilation, offering insights into the complex interactions between mechanical ventilation, ECM damage, and cellular signaling. By understanding these mechanisms, healthcare professionals in critical care can anticipate the consequences of mechanical ventilation and use targeted strategies to prevent or minimize ECM damage, ultimately leading to better patient management and outcomes in critical care settings.
Collapse
Affiliation(s)
- Lou'i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Saif Azzam
- Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | | | - Ahmed H Al Sharie
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche, Università Degli Studi di Genova, Genoa, Italy
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA
| | - Lauren T Thornton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Lepesant JA, Roland-Gosselin F, Guillemet C, Bernard F, Guichet A. The Importance of the Position of the Nucleus in Drosophila Oocyte Development. Cells 2024; 13:201. [PMID: 38275826 PMCID: PMC10814754 DOI: 10.3390/cells13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Oogenesis is a developmental process leading to the formation of an oocyte, a haploid gamete, which upon fertilisation and sperm entry allows the male and the female pronuclei to fuse and give rise to a zygote. In addition to forming a haploid gamete, oogenesis builds up a store of proteins, mRNAs, and organelles in the oocyte needed for the development of the future embryo. In several species, such as Drosophila, the polarity axes determinants of the future embryo must be asymmetrically distributed prior to fertilisation. In the Drosophila oocyte, the correct positioning of the nucleus is essential for establishing the dorsoventral polarity axis of the future embryo and allowing the meiotic spindles to be positioned in close vicinity to the unique sperm entry point into the oocyte.
Collapse
Affiliation(s)
| | | | | | | | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; (J.-A.L.); (F.R.-G.); (C.G.); (F.B.)
| |
Collapse
|
17
|
Dickinson RB, Lele TP. A new function for nuclear lamins: providing surface tension to the nuclear drop. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100483. [PMID: 38283102 PMCID: PMC10812902 DOI: 10.1016/j.cobme.2023.100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The nuclear lamina, a conserved structure in metazoans, provides mechanical rigidity to the nuclear envelope. A decrease in lamin levels and/or lamin mutations are associated with a host of human diseases. Despite being only about 15 nm thick, perturbation of components of the nuclear lamina dramatically impacts the deformation response of the entire nucleus through mechanisms that are not well understood. Here we discuss evidence for the recently proposed 'nuclear drop' model that explains the role of A-type lamins in nuclear deformation in migrating cells. In this model, the nuclear lamina acts as an inextensible surface, supporting a surface tension when fully unfolded, that balances nuclear interior pressure. Much like a liquid drop surface where the molecularly thin interface governs surface tension and drop shape under external forces, the thin nuclear lamina imparts a surface tension on the nuclear drop to resist nuclear deformation as well as to establish nuclear shape. We discuss implications of the nuclear drop model for the function of this crucially important eukaryotic organelle.
Collapse
Affiliation(s)
- Richard B. Dickinson
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL, 32611, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA
| |
Collapse
|
18
|
Niu M, Zhu Y, Ding X, Zu Y, Zhao Y, Wang Y. Biomimetic Alveoli System with Vivid Mechanical Response and Cell-Cell Interface. Adv Healthc Mater 2023; 12:e2300850. [PMID: 37288987 DOI: 10.1002/adhm.202300850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/05/2023] [Indexed: 06/09/2023]
Abstract
Alveolar microenvironmental models are important for studying the basic biology of the alveolus, therapeutic trials, and drug testing. However, a few systems can fully reproduce the in vivo alveolar microenvironment including dynamic stretching and the cell-cell interface. Here, a novel biomimetic alveolus-on-a-chip microsystem is presented suitable for visualizing physiological breathing for simulating the 3D architecture and function of human pulmonary alveoli. This biomimetic microsystem contains an inverse opal structured polyurethane membrane that achieves real-time observation of mechanical stretching. In this microsystem, the alveolar-capillary barrier is created by alveolar type 2 (ATII) cells cocultured with vascular endothelial cells (ECs) on this membrane. Based on this microsystem, the phenomena of flattening and the tendency of differentiation in ATII cells are observed. The synergistic effects of mechanical stretching and ECs on the proliferation of ATII cells are also observed during the repair process following lung injury. These features indicate the potential of this novel biomimetic microsystem for exploring the mechanisms of lung diseases, which can provide future guidance concerning drug targets for clinical therapies.
Collapse
Affiliation(s)
- Mengying Niu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yujuan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaoya Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanjin Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yongan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
19
|
Lele TP, Levy DL, Mishra K. Editorial: Nuclear morphology in development and disease. Front Cell Dev Biol 2023; 11:1267645. [PMID: 37614225 PMCID: PMC10443097 DOI: 10.3389/fcell.2023.1267645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Tanmay P. Lele
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, United States
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
20
|
Dickinson RB, Lele TP. Nuclear shapes are geometrically determined by the excess surface area of the nuclear lamina. Front Cell Dev Biol 2023; 11:1058727. [PMID: 37397244 PMCID: PMC10308086 DOI: 10.3389/fcell.2023.1058727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Nuclei have characteristic shapes dependent on cell type, which are critical for proper cell function, and nuclei lose their distinct shapes in multiple diseases including cancer, laminopathies, and progeria. Nuclear shapes result from deformations of the sub-nuclear components-nuclear lamina and chromatin. How these structures respond to cytoskeletal forces to form the nuclear shape remains unresolved. Although the mechanisms regulating nuclear shape in human tissues are not fully understood, it is known that different nuclear shapes arise from cumulative nuclear deformations post-mitosis, ranging from the rounded morphologies that develop immediately after mitosis to the various nuclear shapes that roughly correspond to cell shape (e.g., elongated nuclei in elongated cells, flat nuclei in flat cells). Methods: We formulated a mathematical model to predict nuclear shapes of cells in various contexts under the geometric constraints of fixed cell volume, nuclear volume and lamina surface area. Nuclear shapes were predicted and compared to experiments for cells in various geometries, including isolated on a flat surface, on patterned rectangles and lines, within a monolayer, isolated in a well, or when the nucleus is impinging against a slender obstacle. Results and Discussion: The close agreement between predicted and experimental shapes demonstrates a simple geometric principle of nuclear shaping: the excess surface area of the nuclear lamina (relative to that of a sphere of the same volume) permits a wide range of highly deformed nuclear shapes under the constraints of constant surface area and constant volume. When the lamina is smooth (tensed), the nuclear shape can be predicted entirely from these geometric constraints alone for a given cell shape. This principle explains why flattened nuclear shapes in fully spread cells are insensitive to the magnitude of the cytoskeletal forces. Also, the surface tension in the nuclear lamina and nuclear pressure can be estimated from the predicted cell and nuclear shapes when the cell cortical tension is known, and the predictions are consistent with measured forces. These results show that excess surface area of the nuclear lamina is the key determinant of nuclear shapes. When the lamina is smooth (tensed), the nuclear shape can be determined purely by the geometric constraints of constant (but excess) nuclear surface area, nuclear volume, and cell volume, for a given cell adhesion footprint, independent of the magnitude of the cytoskeletal forces involved.
Collapse
Affiliation(s)
- Richard B. Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL, United States
| | - Tanmay P. Lele
- Department of Biomedical Engineering, College of Engineering, Texas A&M University College Station, College Station, TX, United States
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Department of Translational Medical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
21
|
Duan M, Xia S, Liu Y, Pu X, Chen Y, Zhou Y, Huang M, Pi C, Zhang D, Xie J. Stiffened fibre-like microenvironment based on patterned equidistant micropillars directs chondrocyte hypertrophy. Mater Today Bio 2023; 20:100682. [PMID: 37304578 PMCID: PMC10251154 DOI: 10.1016/j.mtbio.2023.100682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Articular cartilage, composed of collagen type II as a major extracellular matrix and chondrocyte as a unique cell type, is a specialized connective tissue without blood vessels, lymphatic vessels and nerves. This distinctive characteristic of articular cartilage determines its very limited ability to repair when damaged. It is well known that physical microenvironmental signals regulate many cell behaviors such as cell morphology, adhesion, proliferation and cell communication even determine chondrocyte fate. Interestingly, with increasing age or progression of joint diseases such as osteoarthritis (OA), the major collagen fibrils in the extracellular matrix of articular cartilage become larger in diameter, leading to stiffening of articular tissue and reducing its resistance to external tension, which in turn aggravates joint damage or progression of joint diseases. Therefore, designing a physical microenvironment closer to the real tissue and thus obtaining data closer to the real cellular behaviour, and then revealing the biological mechanisms of chondrocytes in pathological states is of crucial importance for the treatment of OA disease. Here we fabricated micropillar substrates with the same topology but different stiffnesses to mimic the matrix stiffening that occurs in the transition from normal to diseased cartilage. It was first found that chondrocytes responded to stiffened micropillar substrates by showing a larger cell spreading area, a stronger enhancement of cytoskeleton rearrangement and more stability of focal adhesion plaques. The activation of Erk/MAPK signalling in chondrocytes was detected in response to the stiffened micropillar substrate. Interestingly, a larger nuclear spreading area of chondrocytes at the interface layer between the cells and top surfaces of micropillars was observed in response to the stiffened micropillar substrate. Finally, it was found that the stiffened micropillar substrate promoted chondrocyte hypertrophy. Taken together, these results revealed the cell responses of chondrocytes in terms of cell morphology, cytoskeleton, focal adhesion, nuclei and cell hypertrophy, and may be beneficial for understanding the cellular functional changes affected by the matrix stiffening that occurs during the transition from a normal state to a state of osteoarthritis.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuang Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yukun Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yilin Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
22
|
Najafi J, Dmitrieff S, Minc N. Size- and position-dependent cytoplasm viscoelasticity through hydrodynamic interactions with the cell surface. Proc Natl Acad Sci U S A 2023; 120:e2216839120. [PMID: 36802422 PMCID: PMC9992773 DOI: 10.1073/pnas.2216839120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Many studies of cytoplasm rheology have focused on small components in the submicrometer scale. However, the cytoplasm also baths large organelles like nuclei, microtubule asters, or spindles that often take significant portions of cells and move across the cytoplasm to regulate cell division or polarization. Here, we translated passive components of sizes ranging from few up to ~50 percents of the cell diameter, through the vast cytoplasm of live sea urchin eggs, with calibrated magnetic forces. Creep and relaxation responses indicate that for objects larger than the micron size, the cytoplasm behaves as a Jeffreys material, viscoelastic at short timescales, and fluidizing at longer times. However, as component size approached that of cells, cytoplasm viscoelastic resistance increased in a nonmonotonic manner. Flow analysis and simulations suggest that this size-dependent viscoelasticity emerges from hydrodynamic interactions between the moving object and the static cell surface. This effect also yields to position-dependent viscoelasticity with objects initially closer to the cell surface being harder to displace. These findings suggest that the cytoplasm hydrodynamically couples large organelles to the cell surface to restrain their motion, with important implications for cell shape sensing and cellular organization.
Collapse
Affiliation(s)
- Javad Najafi
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| |
Collapse
|
23
|
Yan L, Liao L, Su X. Role of mechano-sensitive non-coding RNAs in bone remodeling of orthodontic tooth movement: recent advances. Prog Orthod 2022; 23:55. [PMID: 36581789 PMCID: PMC9800683 DOI: 10.1186/s40510-022-00450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/31/2022] Open
Abstract
Orthodontic tooth movement relies on bone remodeling and periodontal tissue regeneration in response to the complicated mechanical cues on the compressive and tensive side. In general, mechanical stimulus regulates the expression of mechano-sensitive coding and non-coding genes, which in turn affects how cells are involved in bone remodeling. Growing numbers of non-coding RNAs, particularly mechano-sensitive non-coding RNA, have been verified to be essential for the regulation of osteogenesis and osteoclastogenesis and have revealed how they interact with signaling molecules to do so. This review summarizes recent findings of non-coding RNAs, including microRNAs and long non-coding RNAs, as crucial regulators of gene expression responding to mechanical stimulation, and outlines their roles in bone deposition and resorption. We focused on multiple mechano-sensitive miRNAs such as miR-21, - 29, -34, -103, -494-3p, -1246, -138-5p, -503-5p, and -3198 that play a critical role in osteogenesis function and bone resorption. The emerging roles of force-dependent regulation of lncRNAs in bone remodeling are also discussed extensively. We summarized mechano-sensitive lncRNA XIST, H19, and MALAT1 along with other lncRNAs involved in osteogenesis and osteoclastogenesis. Ultimately, we look forward to the prospects of the novel application of non-coding RNAs as potential therapeutics for tooth movement and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lichao Yan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Palma K, Signore IA, Meynard MM, Ibarra J, Armijo-Weingart L, Cayuleo M, Härtel S, Concha ML. Ontogenesis of the asymmetric parapineal organ in the zebrafish epithalamus. Front Cell Dev Biol 2022; 10:999265. [PMID: 36568973 PMCID: PMC9780773 DOI: 10.3389/fcell.2022.999265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
The parapineal organ is a midline-derived epithalamic structure that in zebrafish adopts a left-sided position at embryonic stages to promote the development of left-right asymmetries in the habenular nuclei. Despite extensive knowledge about its embryonic and larval development, it is still unknown whether the parapineal organ and its profuse larval connectivity with the left habenula are present in the adult brain or whether, as assumed from historical conceptions, this organ degenerates during ontogeny. This paper addresses this question by performing an ontogenetic analysis using an integrative morphological, ultrastructural and neurochemical approach. We find that the parapineal organ is lost as a morphological entity during ontogeny, while parapineal cells are incorporated into the posterior wall of the adult left dorsal habenular nucleus as small clusters or as single cells. Despite this integration, parapineal cells retain their structural, neurochemical and connective features, establishing a reciprocal synaptic connection with the more dorsal habenular neuropil. Furthermore, we describe the ultrastructure of parapineal cells using transmission electron microscopy and report immunoreactivity in parapineal cells with antibodies against substance P, tachykinin, serotonin and the photoreceptor markers arrestin3a and rod opsin. Our findings suggest that parapineal cells form an integral part of a neural circuit associated with the left habenula, possibly acting as local modulators of the circuit. We argue that the incorporation of parapineal cells into the habenula may be part of an evolutionarily relevant developmental mechanism underlying the presence/absence of the parapineal organ in teleosts, and perhaps in a broader sense in vertebrates.
Collapse
Affiliation(s)
- Karina Palma
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile
| | - Iskra A. Signore
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile
| | - Margarita M. Meynard
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Jazmin Ibarra
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile
| | | | - Marcos Cayuleo
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile
| | - Steffen Härtel
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile,National Center for Health Information Systems (CENS), Santiago, Chile
| | - Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile,*Correspondence: Miguel L. Concha,
| |
Collapse
|
25
|
Peña B, Gao S, Borin D, Del Favero G, Abdel-Hafiz M, Farahzad N, Lorenzon P, Sinagra G, Taylor MRG, Mestroni L, Sbaizero O. Cellular Biomechanic Impairment in Cardiomyocytes Carrying the Progeria Mutation: An Atomic Force Microscopy Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14928-14940. [PMID: 36420863 PMCID: PMC9730902 DOI: 10.1021/acs.langmuir.2c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Given the clinical effect of progeria syndrome, understanding the cell mechanical behavior of this pathology could benefit the patient's treatment. Progeria patients show a point mutation in the lamin A/C gene (LMNA), which could change the cell's biomechanical properties. This paper reports a mechano-dynamic analysis of a progeria mutation (c.1824 C > T, p.Gly608Gly) in neonatal rat ventricular myocytes (NRVMs) using cell indentation by atomic force microscopy to measure alterations in beating force, frequency, and contractile amplitude of selected cells within cell clusters. Furthermore, we examined the beating rate variability using a time-domain method that produces a Poincaré plot because beat-to-beat changes can shed light on the causes of arrhythmias. Our data have been further related to our cell phenotype findings, using immunofluorescence and calcium transient analysis, showing that mutant NRVMs display changes in both beating force and frequency. These changes were associated with a decreased gap junction localization (Connexin 43) in the mutant NRVMs even in the presence of a stable cytoskeletal structure (microtubules and actin filaments) when compared with controls (wild type and non-treated cells). These data emphasize the kindred between nucleoskeleton (LMNA), cytoskeleton, and the sarcolemmal structures in NRVM with the progeria Gly608Gly mutation, prompting future mechanistic and therapeutic investigations.
Collapse
Affiliation(s)
- Brisa Peña
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Shanshan Gao
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Daniele Borin
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| | - Giorgia Del Favero
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-42, 1090Vienna, Austria
- Core
Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Wien, Währinger Straße 38-42, 1090Vienna, Austria
| | - Mostafa Abdel-Hafiz
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Nasim Farahzad
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Paola Lorenzon
- Department
F of Life Sciences, University of Trieste, Trieste34127, Italy
| | - Gianfranco Sinagra
- Polo
Cardiologico, Azienda Sanitaria Universitaria
Integrata di Trieste, Strada di Fiume 447, Trieste34127, Italy
| | - Matthew R. G. Taylor
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Luisa Mestroni
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Orfeo Sbaizero
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| |
Collapse
|
26
|
Zhu Z, Li W, Gong M, Wang L, Yue Y, Qian W, Zhou C, Duan W, Han L, Li L, Wu Z, Ma Q, Lin M, Wang S, Wang Z. Piezo1 act as a potential oncogene in pancreatic cancer progression. Life Sci 2022; 310:121035. [DOI: 10.1016/j.lfs.2022.121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
27
|
Joshi R, Han SB, Cho WK, Kim DH. The role of cellular traction forces in deciphering nuclear mechanics. Biomater Res 2022; 26:43. [PMID: 36076274 PMCID: PMC9461125 DOI: 10.1186/s40824-022-00289-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cellular forces exerted on the extracellular matrix (ECM) during adhesion and migration under physiological and pathological conditions regulate not only the overall cell morphology but also nuclear deformation. Nuclear deformation can alter gene expression, integrity of the nuclear envelope, nucleus-cytoskeletal connection, chromatin architecture, and, in some cases, DNA damage responses. Although nuclear deformation is caused by the transfer of forces from the ECM to the nucleus, the role of intracellular organelles in force transfer remains unclear and a challenging area of study. To elucidate nuclear mechanics, various factors such as appropriate biomaterial properties, processing route, cellular force measurement technique, and micromanipulation of nuclear forces must be understood. In the initial phase of this review, we focused on various engineered biomaterials (natural and synthetic extracellular matrices) and their manufacturing routes along with the properties required to mimic the tumor microenvironment. Furthermore, we discussed the principle of tools used to measure the cellular traction force generated during cell adhesion and migration, followed by recently developed techniques to gauge nuclear mechanics. In the last phase of this review, we outlined the principle of traction force microscopy (TFM), challenges in the remodeling of traction forces, microbead displacement tracking algorithm, data transformation from bead movement, and extension of 2-dimensional TFM to multiscale TFM.
Collapse
Affiliation(s)
- Rakesh Joshi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
28
|
Jana A, Tran A, Gill A, Kiepas A, Kapania RK, Konstantopoulos K, Nain AS. Sculpting Rupture-Free Nuclear Shapes in Fibrous Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203011. [PMID: 35863910 PMCID: PMC9443471 DOI: 10.1002/advs.202203011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 05/07/2023]
Abstract
Cytoskeleton-mediated force transmission regulates nucleus morphology. How nuclei shaping occurs in fibrous in vivo environments remains poorly understood. Here suspended nanofiber networks of precisely tunable (nm-µm) diameters are used to quantify nucleus plasticity in fibrous environments mimicking the natural extracellular matrix. Contrary to the apical cap over the nucleus in cells on 2-dimensional surfaces, the cytoskeleton of cells on fibers displays a uniform actin network caging the nucleus. The role of contractility-driven caging in sculpting nuclear shapes is investigated as cells spread on aligned single fibers, doublets, and multiple fibers of varying diameters. Cell contractility increases with fiber diameter due to increased focal adhesion clustering and density of actin stress fibers, which correlates with increased mechanosensitive transcription factor Yes-associated protein (YAP) translocation to the nucleus. Unexpectedly, large- and small-diameter fiber combinations lead to teardrop-shaped nuclei due to stress fiber anisotropy across the cell. As cells spread on fibers, diameter-dependent nuclear envelope invaginations that run the nucleus's length are formed at fiber contact sites. The sharpest invaginations enriched with heterochromatin clustering and sites of DNA repair are insufficient to trigger nucleus rupture. Overall, the authors quantitate the previously unknown sculpting and adaptability of nuclei to fibrous environments with pathophysiological implications.
Collapse
Affiliation(s)
- Aniket Jana
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Avery Tran
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Amritpal Gill
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Rakesh K. Kapania
- Kevin T. Crofton Department of Aerospace EngineeringVirginia TechBlacksburgVA24061USA
| | | | - Amrinder S. Nain
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| |
Collapse
|
29
|
Leong EL, Khaing NT, Cadot B, Hong WL, Kozlov S, Werner H, Wong ESM, Stewart CL, Burke B, Lee YL. Nesprin-1 LINC complexes recruit microtubule cytoskeleton proteins and drive pathology in Lmna-mutant striated muscle. Hum Mol Genet 2022; 32:177-191. [PMID: 35925868 PMCID: PMC9840208 DOI: 10.1093/hmg/ddac179] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023] Open
Abstract
Mutations in LMNA, the gene encoding A-type lamins, cause laminopathies-diseases of striated muscle and other tissues. The aetiology of laminopathies has been attributed to perturbation of chromatin organization or structural weakening of the nuclear envelope (NE) such that the nucleus becomes more prone to mechanical damage. The latter model requires a conduit for force transmission to the nucleus. NE-associated Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes are one such pathway. Using clustered regularly interspaced short palindromic repeats to disrupt the Nesprin-1 KASH (Klarsicht, ANC-1, Syne Homology) domain, we identified this LINC complex protein as the predominant NE anchor for microtubule cytoskeleton components, including nucleation activities and motor complexes, in mouse cardiomyocytes. Loss of Nesprin-1 LINC complexes resulted in loss of microtubule cytoskeleton proteins at the nucleus and changes in nuclear morphology and positioning in striated muscle cells, but with no overt physiological defects. Disrupting the KASH domain of Nesprin-1 suppresses Lmna-linked cardiac pathology, likely by reducing microtubule cytoskeleton activities at the nucleus. Nesprin-1 LINC complexes thus represent a potential therapeutic target for striated muscle laminopathies.
Collapse
Affiliation(s)
| | | | - Bruno Cadot
- Sorbonne Université, INSERM U974, Institut de Myologie, GH Pitié Salpêtrière, 47 Boulevard de l’Hôpital, Paris 75013, France
| | - Wei Liang Hong
- Institute of Medical Biology, Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore,ASTAR Skin Research Labs (ASRL), Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hendrikje Werner
- Institute of Medical Biology, Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore,ASTAR Skin Research Labs (ASRL), Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore
| | - Esther Sook Miin Wong
- Institute of Medical Biology, Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Level 5 Immunos, Singapore 138648, Singapore
| | - Colin L Stewart
- To whom correspondence should be addressed. Colin L. Stewart, ; Brian Burke, ; Yin Loon Lee,
| | - Brian Burke
- To whom correspondence should be addressed. Colin L. Stewart, ; Brian Burke, ; Yin Loon Lee,
| | - Yin Loon Lee
- To whom correspondence should be addressed. Colin L. Stewart, ; Brian Burke, ; Yin Loon Lee,
| |
Collapse
|
30
|
Jones ML, Dahl KN, Lele TP, Conway DE, Shenoy V, Ghosh S, Szczesny SE. The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. J Biomech Eng 2022; 144:080802. [PMID: 35147160 PMCID: PMC8990742 DOI: 10.1115/1.4053797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Indexed: 11/08/2022]
Abstract
The 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) featured a workshop titled "The Elephant in the Room: Nuclear Mechanics and Mechanobiology." The goal of this workshop was to provide a perspective from experts in the field on the current understanding of nuclear mechanics and its role in mechanobiology. This paper reviews the major themes and questions discussed during the workshop, including historical context on the initial methods of measuring the mechanical properties of the nucleus and classifying the primary structures dictating nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the cytoplasm and driving the behavior of individual cells and multicellular assemblies, and the computational models currently in use to investigate the mechanisms of gene expression and cell signaling. Ongoing questions and controversies, along with promising future directions, are also discussed.
Collapse
Affiliation(s)
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Doherty Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213; Forensics Department, Thornton Tomasetti, 120 Broadway 15th Floor, New York City, NY 10271
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Chemical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Translational Medical Sciences, Texas A&M University, 101 Bizzell Street, College Station, TX 77840
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, P.O. Box 843068, Richmond, VA 23284
| | - Vivek Shenoy
- Materials Science and Engineering Bioengineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Center for Engineering Mechanobiology, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104
| | - Soham Ghosh
- Department of Mechanical Engineering, School of Biomedical Engineering, Translational Medicine Institute, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521
| | - Spencer E. Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802; Department of Orthopaedics and Rehabilitation, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
31
|
Katiyar A, Zhang J, Antani JD, Yu Y, Scott KL, Lele PP, Reinhart‐King CA, Sniadecki NJ, Roux KJ, Dickinson RB, Lele TP. The Nucleus Bypasses Obstacles by Deforming Like a Drop with Surface Tension Mediated by Lamin A/C. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201248. [PMID: 35712768 PMCID: PMC9376816 DOI: 10.1002/advs.202201248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Migrating cells must deform their stiff cell nucleus to move through pores and fibers in tissue. Lamin A/C is known to hinder cell migration by limiting nuclear deformation and passage through confining channels, but its role in nuclear deformation and passage through fibrous environments is less clear. Cell and nuclear migration through discrete, closely spaced, slender obstacles which mimic the mechanical properties of collagen fibers are studied. Nuclei bypass slender obstacles while preserving their overall morphology by deforming around them with deep local invaginations of little resisting force. The obstacles do not impede the nuclear trajectory and do not cause rupture of the nuclear envelope. Nuclei likewise deform around single collagen fibers in cells migrating in 3D collagen gels. In contrast to its limiting role in nuclear passage through confining channels, lamin A/C facilitates nuclear deformation and passage through fibrous environments; nuclei in lamin-null (Lmna-/- ) cells lose their overall morphology and become entangled on the obstacles. Analogous to surface tension-mediated deformation of a liquid drop, lamin A/C imparts a surface tension on the nucleus that allows nuclear invaginations with little mechanical resistance, preventing nuclear entanglement and allowing nuclear passage through fibrous environments.
Collapse
Affiliation(s)
- Aditya Katiyar
- Department of Biomedical EngineeringTexas A&M University101 Bizzell St.College StationTX77843USA
| | - Jian Zhang
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Jyot D. Antani
- Artie McFerrin Department of Chemical EngineeringTexas A&M University3122 TAMUCollege StationTX77843USA
| | - Yifan Yu
- Department of Chemical EngineeringUniversity of Florida1030 Center DriveGainesvilleFL32611USA
| | - Kelsey L. Scott
- Enabling Technologies GroupSanford Research2301 East 60th St NSioux FallsSD57104USA
| | - Pushkar P. Lele
- Artie McFerrin Department of Chemical EngineeringTexas A&M University3122 TAMUCollege StationTX77843USA
| | - Cynthia A. Reinhart‐King
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Nathan J. Sniadecki
- Department of Mechanical EngineeringDepartment of Lab Medicine and PathologyInstitute for Stem Cell and Regenerative MedicineCenter for Cardiac BiologyUniversity of WashingtonStevens Way, Box 352600SeattleWA98195USA
| | - Kyle J. Roux
- Enabling Technologies GroupSanford Research2301 East 60th St NSioux FallsSD57104USA
- Department of PediatricsSanford School of MedicineUniversity of South Dakota414 E Clark StVermillionSD57069USA
| | - Richard B. Dickinson
- Department of Chemical EngineeringUniversity of Florida1030 Center DriveGainesvilleFL32611USA
| | - Tanmay P. Lele
- Department of Biomedical EngineeringTexas A&M University101 Bizzell St.College StationTX77843USA
- Artie McFerrin Department of Chemical EngineeringTexas A&M University3122 TAMUCollege StationTX77843USA
- Department of Translational Medical SciencesTexas A&M University2121 W Holcombe St.HoustonTX77030USA
| |
Collapse
|
32
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
33
|
Ulloa R, Corrales O, Cabrera-Reyes F, Jara-Wilde J, Saez JJ, Rivas C, Lagos J, Härtel S, Quiroga C, Yuseff MI, Diaz-Muñoz J. B Cells Adapt Their Nuclear Morphology to Organize the Immune Synapse and Facilitate Antigen Extraction. Front Immunol 2022; 12:801164. [PMID: 35222354 PMCID: PMC8863768 DOI: 10.3389/fimmu.2021.801164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
Upon interaction with immobilized antigens, B cells form an immune synapse where actin remodeling and re-positioning of the microtubule-organizing center (MTOC) together with lysosomes can facilitate antigen extraction. B cells have restricted cytoplasmic space, mainly occupied by a large nucleus, yet the role of nuclear morphology in the formation of the immune synapse has not been addressed. Here we show that upon activation, B cells re-orientate and adapt the size of their nuclear groove facing the immune synapse, where the MTOC sits, and lysosomes accumulate. Silencing the nuclear envelope proteins Nesprin-1 and Sun-1 impairs nuclear reorientation towards the synapse and leads to defects in actin organization. Consequently, B cells are unable to internalize the BCR after antigen activation. Nesprin-1 and Sun-1-silenced B cells also fail to accumulate the tethering factor Exo70 at the center of the synaptic membrane and display defective lysosome positioning, impairing efficient antigen extraction at the immune synapse. Thus, changes in nuclear morphology and positioning emerge as critical regulatory steps to coordinate B cell activation.
Collapse
Affiliation(s)
- Romina Ulloa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oreste Corrales
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Cabrera-Reyes
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- Laboratory for Scientific Image Analysis SCIAN-Lab, Programa de Biología Integrativa, Instituto de Ciencias Biomédicas ICBM, Facultad de Medicina, Universidad de Chile and Biomedical Neuroscience Institute BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan José Saez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christopher Rivas
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jonathan Lagos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Steffen Härtel
- Laboratory for Scientific Image Analysis SCIAN-Lab, Programa de Biología Integrativa, Instituto de Ciencias Biomédicas ICBM, Facultad de Medicina, Universidad de Chile and Biomedical Neuroscience Institute BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro de Informática Médica y Telemedicina CIMT, Facultad de Medicina, Universidad de Chile and Centro Nacional en Sistemas de Información en Salud CENS, Santiago, Chile
| | - Clara Quiroga
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Isabel Yuseff
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jheimmy Diaz-Muñoz
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Atanasova KR, Chakraborty S, Ratnayake R, Khare KD, Luesch H, Lele TP. An epigenetic small molecule screen to target abnormal nuclear morphology in human cells. Mol Biol Cell 2022; 33:ar45. [PMID: 35323046 PMCID: PMC9265153 DOI: 10.1091/mbc.e21-10-0528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Irregular nuclear shapes are a hallmark of human cancers. Recent studies suggest that alterations to chromatin regulators may cause irregular nuclear morphologies. Here we screened an epigenetic small molecule library consisting of 145 compounds against chromatin regulators, for their ability to revert abnormal nuclear shapes that were induced by gene knockdown in non-cancerous MCF10A human mammary breast epithelial cells. We leveraged a previously validated quantitative Fourier approach to quantify the elliptical Fourier coefficient (EFC ratio) as a measure of nuclear irregularities, which allowed us to perform rigorous statistical analyses of screening data. Top hit compounds fell into three major mode of action categories, targeting three separate epigenetic modulation routes: 1) Histone deacetylase (HDAC) inhibitors; 2) Bromodomain and extra-terminal domain (BET) protein inhibitors; and 3) Methyl-transferase inhibitors. Some of the top hit compounds were also efficacious in reverting nuclear irregularities in MDA-MB-231 triple negative breast cancer cells and in PANC-1 pancreatic cancer cells in a cell type dependent manner. Regularization of nuclear shapes was compound-specific, cell-type specific, and dependent on the specific molecular perturbation that induced nuclear irregularities. Our approach of targeting nuclear abnormalities may be potentially useful in screening new types of cancer therapies targeted toward chromatin structure.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville FL 32610, USA
| | - Saptarshi Chakraborty
- Department of Biostatistics, State University of New York at Buffalo, Buffalo NY 14214, USA
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville FL 32610, USA
| | - Kshitij D Khare
- Department of Statistics, University of Florida, Gainesville FL 32611, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville FL 32610, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Department of Chemical Engineering, and Department of Translational Medical Sciences, Texas A&M University, College Station TX 77843, USA
| |
Collapse
|
35
|
Tang Y, Zhu L, Cho JS, Li XY, Weiss SJ. Matrix remodeling controls a nuclear lamin A/C-emerin network that directs Wnt-regulated stem cell fate. Dev Cell 2022; 57:480-495.e6. [PMID: 35150612 PMCID: PMC8891068 DOI: 10.1016/j.devcel.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Skeletal stem cells (SSCs) reside within a three-dimensional extracellular matrix (ECM) compartment and differentiate into multiple cell lineages, thereby controlling tissue maintenance and regeneration. Within this environment, SSCs can proteolytically remodel the surrounding ECM in response to growth factors that direct lineage commitment via undefined mechanisms. Here, we report that Mmp14-dependent ECM remodeling coordinates canonical Wnt signaling and guides stem cell fate by triggering an integrin-activated reorganization of the SCC cytoskeleton that controls nuclear lamin A/C levels via the linker of nucleoskeleton and cytoskeleton (LINC) complexes. In turn, SSC lamin A/C levels dictate the localization of emerin, an inner nuclear membrane protein whose ability to regulate β-catenin activity modulates Wnt signaling while directing lineage commitment in vitro and in vivo. These findings define a previously undescribed axis wherein SSCs use Mmp14-dependent ECM remodeling to control cytoskeletal and nucleoskeletal organization, thereby governing Wnt-dependent stem cell fate decisions.
Collapse
Affiliation(s)
- Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lingxin Zhu
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Corresponding Authors: Stephen J. Weiss, MD, , Life Sciences Institute, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw, Ann Arbor, MI 48109-2216, Yi Tang, PhD, , Life Sciences Institute, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw, Ann Arbor, MI 48109-2216
| |
Collapse
|
36
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
37
|
Wang L, Paudyal SC, Kang Y, Owa M, Liang FX, Spektor A, Knaut H, Sánchez I, Dynlacht BD. Regulators of tubulin polyglutamylation control nuclear shape and cilium disassembly by balancing microtubule and actin assembly. Cell Res 2022; 32:190-209. [PMID: 34782749 PMCID: PMC8807603 DOI: 10.1038/s41422-021-00584-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
Cytoskeletal networks play an important role in regulating nuclear morphology and ciliogenesis. However, the role of microtubule (MT) post-translational modifications in nuclear shape regulation and cilium disassembly has not been explored. Here we identified a novel regulator of the tubulin polyglutamylase complex (TPGC), C11ORF49/CSTPP1, that regulates cytoskeletal organization, nuclear shape, and cilium disassembly. Mechanistically, loss of C11ORF49/CSTPP1 impacts the assembly and stability of the TPGC, which modulates long-chain polyglutamylation levels on microtubules (MTs) and thereby balances the binding of MT-associated proteins and actin nucleators. As a result, loss of TPGC leads to aberrant, enhanced assembly of MTs that penetrate the nucleus, which in turn leads to defects in nuclear shape, and disorganization of cytoplasmic actin that disrupts the YAP/TAZ pathway and cilium disassembly. Further, we showed that C11ORF49/CSTPP1-TPGC plays mechanistically distinct roles in the regulation of nuclear shape and cilium disassembly. Remarkably, disruption of C11ORF49/CSTPP1-TPGC also leads to developmental defects in vivo. Our findings point to an unanticipated nexus that links tubulin polyglutamylation with nuclear shape and ciliogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| | - Sharad C Paudyal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuchen Kang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, New York, NY, USA
| | - Alexander Spektor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Irma Sánchez
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Ghosh S, Scott AK, Seelbinder B, Barthold JE, Martin BMS, Kaonis S, Schneider SE, Henderson JT, Neu CP. Dedifferentiation alters chondrocyte nuclear mechanics during in vitro culture and expansion. Biophys J 2022; 121:131-141. [PMID: 34800469 PMCID: PMC8758405 DOI: 10.1016/j.bpj.2021.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
The biophysical features of a cell can provide global insights into diverse molecular changes, especially in processes like the dedifferentiation of chondrocytes. Key biophysical markers of chondrocyte dedifferentiation include flattened cellular morphology and increased stress-fiber formation. During cartilage regeneration procedures, dedifferentiation of chondrocytes during in vitro expansion presents a critical limitation to the successful repair of cartilage tissue. Our study investigates how biophysical changes of chondrocytes during dedifferentiation influence the nuclear mechanics and gene expression of structural proteins located at the nuclear envelope. Through an experimental model of cell stretching and a detailed spatial intranuclear strain quantification, we identified that strain is amplified and the distribution of strain within the chromatin is altered under tensile loading in the dedifferentiated state. Further, using a confocal microscopy image-based finite element model and simulation of cell stretching, we found that the cell shape is the primary determinant of the strain amplification inside the chondrocyte nucleus in the dedifferentiated state. Additionally, we found that nuclear envelope proteins have lower gene expression in the dedifferentiated state. This study highlights the role of cell shape in nuclear mechanics and lays the groundwork to design biophysical strategies for the maintenance and enhancement of the chondrocyte phenotype during cell expansion with a goal of successful cartilage tissue engineering.
Collapse
Affiliation(s)
- Soham Ghosh
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO; School of Biomedical Engineering, Colorado State University, Fort Collins, CO; Translational Medicine Institute, Colorado State University, Fort Collins, CO.
| | - Adrienne K Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Benjamin Seelbinder
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Jeanne E Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Brittany M St Martin
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Samantha Kaonis
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO; Translational Medicine Institute, Colorado State University, Fort Collins, CO
| | - Stephanie E Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | | | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO; Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
39
|
Deshpande O, de-Carvalho J, Vieira DV, Telley IA. Astral microtubule cross-linking safeguards uniform nuclear distribution in the Drosophila syncytium. J Cell Biol 2022; 221:212810. [PMID: 34766978 PMCID: PMC8594625 DOI: 10.1083/jcb.202007209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The early insect embryo develops as a multinucleated cell distributing the genome uniformly to the cell cortex. Mechanistic insight for nuclear positioning beyond cytoskeletal requirements is missing. Contemporary hypotheses propose actomyosin-driven cytoplasmic movement transporting nuclei or repulsion of neighbor nuclei driven by microtubule motors. Here, we show that microtubule cross-linking by Feo and Klp3A is essential for nuclear distribution and internuclear distance maintenance in Drosophila. Germline knockdown causes irregular, less-dense nuclear delivery to the cell cortex and smaller distribution in ex vivo embryo explants. A minimal internuclear distance is maintained in explants from control embryos but not from Feo-inhibited embryos, following micromanipulation-assisted repositioning. A dimerization-deficient Feo abolishes nuclear separation in embryo explants, while the full-length protein rescues the genetic knockdown. We conclude that Feo and Klp3A cross-linking of antiparallel microtubule overlap generates a length-regulated mechanical link between neighboring microtubule asters. Enabled by a novel experimental approach, our study illuminates an essential process of embryonic multicellularity.
Collapse
Affiliation(s)
- Ojas Deshpande
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Diana V Vieira
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| |
Collapse
|
40
|
Singh I, Lele TP. Nuclear Morphological Abnormalities in Cancer: A Search for Unifying Mechanisms. Results Probl Cell Differ 2022; 70:443-467. [PMID: 36348118 PMCID: PMC9722227 DOI: 10.1007/978-3-031-06573-6_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
41
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
42
|
Wang J, Rattner A, Nathans J. A transcriptome atlas of the mouse iris at single-cell resolution defines cell types and the genomic response to pupil dilation. eLife 2021; 10:e73477. [PMID: 34783308 PMCID: PMC8594943 DOI: 10.7554/elife.73477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The iris controls the level of retinal illumination by controlling pupil diameter. It is a site of diverse ophthalmologic diseases and it is a potential source of cells for ocular auto-transplantation. The present study provides foundational data on the mouse iris based on single nucleus RNA sequencing. More specifically, this work has (1) defined all of the major cell types in the mouse iris and ciliary body, (2) led to the discovery of two types of iris stromal cells and two types of iris sphincter cells, (3) revealed the differences in cell type-specific transcriptomes in the resting vs. dilated states, and (4) identified and validated antibody and in situ hybridization probes that can be used to visualize the major iris cell types. By immunostaining for specific iris cell types, we have observed and quantified distortions in nuclear morphology associated with iris dilation and clarified the neural crest contribution to the iris by showing that Wnt1-Cre-expressing progenitors contribute to nearly all iris cell types, whereas Sox10-Cre-expressing progenitors contribute only to stromal cells. This work should be useful as a point of reference for investigations of iris development, disease, and pharmacology, for the isolation and propagation of defined iris cell types, and for iris cell engineering and transplantation.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
43
|
Gupta S, Patteson AE, Schwarz JM. The role of vimentin-nuclear interactions in persistent cell motility through confined spaces. NEW JOURNAL OF PHYSICS 2021; 23:093042. [PMID: 35530563 PMCID: PMC9075336 DOI: 10.1088/1367-2630/ac2550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ability of cells to move through small spaces depends on the mechanical properties of the cellular cytoskeleton and on nuclear deformability. In mammalian cells, the cytoskeleton is composed of three interacting, semi-flexible polymer networks: actin, microtubules, and intermediate filaments (IF). Recent experiments of mouse embryonic fibroblasts with and without vimentin have shown that the IF vimentin plays a role in confined cell motility. Here, we develop a minimal model of a cell moving through a microchannel that incorporates explicit effects of actin and vimentin and implicit effects of microtubules. Specifically, the model consists of a cell with an actomyosin cortex and a deformable cell nucleus and mechanical linkages between the two. By decreasing the amount of vimentin, we find that the cell speed increases for vimentin-null cells compared to cells with vimentin. The loss of vimentin increases nuclear deformation and alters nuclear positioning in the cell. Assuming nuclear positioning is a read-out for cell polarity, we propose a new polarity mechanism which couples cell directional motion with cytoskeletal strength and nuclear positioning and captures the abnormally persistent motion of vimentin-null cells, as observed in experiments. The enhanced persistence indicates that the vimentin-null cells are more controlled by the confinement and so less autonomous, relying more heavily on external cues than their wild-type counterparts. Our modeling results present a quantitative interpretation for recent experiments and have implications for understanding the role of vimentin in the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
- Indian Creek Farm, Ithaca, NY USA
| |
Collapse
|
44
|
Purkayastha P, Jaiswal MK, Lele TP. Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure. Cytoskeleton (Hoboken) 2021; 78:312-322. [PMID: 34291887 DOI: 10.1002/cm.21680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023]
Abstract
Alterations to the mechanical properties of the microenvironment are a hallmark of cancer. Elevated mechanical stresses exist in many solid tumors and elicit responses from cancer cells. Uncontrolled growth in confined environments gives rise to elevated solid compressive stress on cancer cells. Recruitment of leaky blood vessels and an absence of functioning lymphatic vessels causes a rise in the interstitial fluid pressure. Here we review the role of the cancer cell cytoskeleton and the nucleus in mediating both the initial and adaptive cancer cell response to these two types of mechanical stresses. We review how these mechanical stresses alter cancer cell functions such as proliferation, apoptosis, and migration.
Collapse
Affiliation(s)
- Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
45
|
Modelling Nuclear Morphology and Shape Transformation: A Review. MEMBRANES 2021; 11:membranes11070540. [PMID: 34357190 PMCID: PMC8304582 DOI: 10.3390/membranes11070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
As one of the most important cellular compartments, the nucleus contains genetic materials and separates them from the cytoplasm with the nuclear envelope (NE), a thin membrane that is susceptible to deformations caused by intracellular forces. Interestingly, accumulating evidence has also indicated that the morphology change of NE is tightly related to nuclear mechanotransduction and the pathogenesis of diseases such as cancer and Hutchinson–Gilford Progeria Syndrome. Theoretically, with the help of well-designed experiments, significant progress has been made in understanding the physical mechanisms behind nuclear shape transformation in different cellular processes as well as its biological implications. Here, we review different continuum-level (i.e., energy minimization, boundary integral and finite element-based) approaches that have been developed to predict the morphology and shape change of the cell nucleus. Essential gradients, relative advantages and limitations of each model will be discussed in detail, with the hope of sparking a greater research interest in this important topic in the future.
Collapse
|
46
|
Rakshit T, Melters DP, Dimitriadis EK, Dalal Y. Mechanical properties of nucleoprotein complexes determined by nanoindentation spectroscopy. Nucleus 2021; 11:264-282. [PMID: 32954931 PMCID: PMC7529419 DOI: 10.1080/19491034.2020.1816053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The interplay between transcription factors, chromatin remodelers, 3-D organization, and mechanical properties of the chromatin fiber controls genome function in eukaryotes. Besides the canonical histones which fold the bulk of the chromatin into nucleosomes, histone variants create distinctive chromatin domains that are thought to regulate transcription, replication, DNA damage repair, and faithful chromosome segregation. Whether histone variants translate distinctive biochemical or biophysical properties to their associated chromatin structures, and whether these properties impact chromatin dynamics as the genome undergoes a multitude of transactions, is an important question in biology. Here, we describe single-molecule nanoindentation tools that we developed specifically to determine the mechanical properties of histone variant nucleosomes and their complexes. These methods join an array of cutting-edge new methods that further our quantitative understanding of the response of chromatin to intrinsic and extrinsic forces which act upon it during biological transactions in the nucleus.
Collapse
Affiliation(s)
- Tatini Rakshit
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA.,Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Salt Lake, India
| | - Daniël P Melters
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA
| | - Emilios K Dimitriadis
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Cancer Institute, NIH , Bethesda, MD, USA
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA
| |
Collapse
|
47
|
Multinucleation associated DNA damage blocks proliferation in p53-compromised cells. Commun Biol 2021; 4:451. [PMID: 33837239 PMCID: PMC8035210 DOI: 10.1038/s42003-021-01979-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear atypia is one of the hallmarks of cancers. Here, we perform single-cell tracking studies to determine the immediate and long-term impact of nuclear atypia. Tracking the fate of newborn cells exhibiting nuclear atypia shows that multinucleation, unlike other forms of nuclear atypia, blocks proliferation in p53-compromised cells. Because ~50% of cancers display compromised p53, we explored how multinucleation blocks proliferation. Multinucleation increases 53BP1-decorated nuclear bodies (DNA damage repair platforms), along with a heterogeneous reduction in transcription and protein accumulation across the multi-nucleated compartments. Multinucleation Associated DNA Damage associated with 53BP1-bodies remains unresolved for days, despite an intact NHEJ machinery that repairs laser-induced DNA damage within minutes. Persistent DNA damage, a DNA replication block, and reduced phospho-Rb, reveal a novel replication stress independent cell cycle arrest caused by mitotic lesions. These findings call for segregating protective and prohibitive nuclear atypia to inform therapeutic approaches aimed at limiting tumour heterogeneity. Hart et al. track newborn single cells by live microscopy after inducing a variety of nuclear atypia by CENP-E inhibitor treatment. They find that that multinucleation, unlike other forms of nuclear atypia, blocks proliferation independently of p53 and is associated with persistent 53BP1 DNA damage foci, thus providing insights into the consequences of multinucleation, often observed in disease states.
Collapse
|
48
|
Parreira MT, Lavrenyuk K, Sanches JM, Dahl KN. A single stiffened nucleus alters cell dynamics and coherence in a monolayer. Cytoskeleton (Hoboken) 2021; 78:277-283. [PMID: 33837677 DOI: 10.1002/cm.21660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/18/2023]
Abstract
Force transmission throughout a monolayer is the result of complex interactions between cells. Monolayer adaptation to force imbalances such as singular stiffened cells provides insight into the initiation of disease and fibrosis. Here, NRK-52E cells transfected with ∆50LA, which significantly stiffens the nucleus. These stiffened cells were sparsely placed in a monolayer of normal NRK-52E cells. Through morphometric analysis and temporal tracking, the impact of the singular stiffened cells shows a pivotal role in mechanoresponse of the monolayer. A method for a detailed analysis of the spatial aspect and temporal progression of the nuclear boundary was developed and used to achieve a full description of the phenotype and dynamics of the monolayers under study. Our findings reveal that cells are highly sensitive to the presence of mechanically impaired neighbors, leading to generalized loss of coordination in collective cell migration, but without seemingly affecting the potential for nuclear lamina fluctuations of neighboring cells. Reduced translocation in neighboring cells appears to be compensated by an increase in nuclear rotation and dynamic variation of shape, suggesting a "frustration" of cells and maintenance of motor activity. Interestingly, some characteristics of the behavior of these cells appear to be dependent on the distance to a ∆50LA cell, pointing to compensatory behavior in response to force transmission imbalances in a monolayer. These insights may suggest the long-range impacts of single cell defects related to tissue dysfunction.
Collapse
Affiliation(s)
- Maria Teresa Parreira
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Kirill Lavrenyuk
- Molecular Biophysics and Structural Biology, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - João M Sanches
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Kris Noel Dahl
- Molecular Biophysics and Structural Biology, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Ashraf S, Tay YD, Kelly DA, Sawin KE. Microtubule-independent movement of the fission yeast nucleus. J Cell Sci 2021; 134:jcs.253021. [PMID: 33602740 PMCID: PMC8015250 DOI: 10.1242/jcs.253021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Movement of the cell nucleus typically involves the cytoskeleton and either polymerization-based pushing forces or motor-based pulling forces. In the fission yeast Schizosaccharomyces pombe, nuclear movement and positioning are thought to depend on microtubule polymerization-based pushing forces. Here, we describe a novel, microtubule-independent, form of nuclear movement in fission yeast. Microtubule-independent nuclear movement is directed towards growing cell tips, and it is strongest when the nucleus is close to a growing cell tip, and weakest when the nucleus is far from that tip. Microtubule-independent nuclear movement requires actin cables but does not depend on actin polymerization-based pushing or myosin V-based pulling forces. The vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) Scs2 and Scs22, which are critical for endoplasmic reticulum-plasma membrane contact sites in fission yeast, are also required for microtubule-independent nuclear movement. We also find that in cells in which microtubule-based pushing forces are present, disruption of actin cables leads to increased fluctuations in interphase nuclear positioning and subsequent altered septation. Our results suggest two non-exclusive mechanisms for microtubule-independent nuclear movement, which may help illuminate aspects of nuclear positioning in other cells.
Collapse
|
50
|
Cosgrove BD, Loebel C, Driscoll TP, Tsinman TK, Dai EN, Heo SJ, Dyment NA, Burdick JA, Mauck RL. Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials 2021; 270:120662. [PMID: 33540172 PMCID: PMC7936657 DOI: 10.1016/j.biomaterials.2021.120662] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/24/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022]
Abstract
Exogenous mechanical cues are transmitted from the extracellular matrix to the nuclear envelope (NE), where mechanical stress on the NE mediates shuttling of transcription factors and other signaling cascades that dictate downstream cellular behavior and fate decisions. To systematically study how nuclear morphology can change across various physiologic microenvironmental contexts, we cultured mesenchymal progenitor cells (MSCs) in engineered 2D and 3D hyaluronic acid hydrogel systems. Across multiple contexts we observed highly 'wrinkled' nuclear envelopes, and subsequently developed a quantitative single-cell imaging metric to better evaluate how wrinkles in the nuclear envelope relate to progenitor cell mechanotransduction. We determined that in soft 2D environments the NE is predominately wrinkled, and that increases in cellular mechanosensing (indicated by cellular spreading, adhesion complex growth, and nuclear localization of YAP/TAZ) occurred only in absence of nuclear envelope wrinkling. Conversely, in 3D hydrogel and tissue contexts, we found NE wrinkling occurred along with increased YAP/TAZ nuclear localization. We further determined that these NE wrinkles in 3D were largely generated by actin impingement, and compared to other nuclear morphometrics, the degree of nuclear wrinkling showed the greatest correlation with nuclear YAP/TAZ localization. These findings suggest that the degree of nuclear envelope wrinkling can predict mechanotransduction state in mesenchymal progenitor cells and highlights the differential mechanisms of NE stress generation operative in 2D and 3D microenvironmental contexts.
Collapse
Affiliation(s)
- Brian D Cosgrove
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Claudia Loebel
- Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Tristan P Driscoll
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Tonia K Tsinman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Eric N Dai
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA.
| |
Collapse
|