1
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia identifies the structure and function of ciliopathy protein complexes. Dev Cell 2025; 60:965-978.e3. [PMID: 39674175 PMCID: PMC11945580 DOI: 10.1016/j.devcel.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/04/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain a myriad of different proteins that assemble into an array of distinct machines, and understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry in Tetrahymena thermophila. From over 19,000 cross-links, we identified over 4,700 unique amino acid interactions among over 1,100 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the intraflagellar transport system, axonemal dynein arms, radial spokes, the 96-nm ruler, and microtubule inner proteins. Guided by this dataset, we used vertebrate multiciliated cells to reveal functional interactions among several poorly defined human ciliopathy proteins. This dataset provides a resource for studying the biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Schrad JR, Fu G, Hable WE, Tayar AM, Oliveira K, Nicastro D. Cryo-electron tomography of eel sperm flagella reveals a molecular "minimum system" for motile cilia. Mol Biol Cell 2025; 36:ar15. [PMID: 39661459 PMCID: PMC11809310 DOI: 10.1091/mbc.e24-08-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cilia and flagella play a crucial role in the development and function of eukaryotes. The activity of thousands of dyneins is precisely regulated to generate flagellar motility. The complex proteome (600+ proteins) and architecture of the structural core of flagella, the axoneme, have made it challenging to dissect the functions of the different complexes, like the regulatory machinery. Previous reports suggested that the flagellum of American eel sperm lacks many of the canonical axonemal complexes yet is still motile. Here, we use cryo-electron tomography for molecular characterization of this proposed "minimal" motile flagellum. We observed different diameters for the eel sperm flagellum: narrow at the base and wider toward the flagellar tip. Subtomogram averaging revealed the three-dimensional (3D) structure of the eel sperm flagellum. As expected, major complexes were missing, for example, outer dynein arms, radial spokes, and the central pair complex, but we found molecular remnants of most complexes. We also identified bend direction-specific patterns in the inter-DMT distance in actively beating eel sperm flagella and we propose a model for the regulation of dynein activity during their motility. Together, our results shed light on the structure and function of the eel sperm flagellum and provide insight into the minimum requirements for ciliary beating.
Collapse
Affiliation(s)
- Jason R. Schrad
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX 75235
| | - Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX 75235
- Biochemistry and Molecular Biotechnology Department, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Whitney E. Hable
- Department of Biology, University of Massachusetts Dartmouth, MA 02747
| | - Alexandra M. Tayar
- Department of Physics, University of California, Santa Barbara, CA 93106
| | - Kenneth Oliveira
- Department of Biology, University of Massachusetts Dartmouth, MA 02747
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX 75235
| |
Collapse
|
3
|
Penny GM, Dutcher SK. Gene dosage of independent dynein arm motor preassembly factors influences cilia assembly in Chlamydomonas reinhardtii. PLoS Genet 2024; 20:e1011038. [PMID: 38498551 PMCID: PMC11020789 DOI: 10.1371/journal.pgen.1011038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/16/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Motile cilia assembly utilizes over 800 structural and cytoplasmic proteins. Variants in approximately 58 genes cause primary ciliary dyskinesia (PCD) in humans, including the dynein arm (pre)assembly factor (DNAAF) gene DNAAF4. In humans, outer dynein arms (ODAs) and inner dynein arms (IDAs) fail to assemble motile cilia when DNAAF4 function is disrupted. In Chlamydomonas reinhardtii, a ciliated unicellular alga, the DNAAF4 ortholog is called PF23. The pf23-1 mutant assembles short cilia and lacks IDAs, but partially retains ODAs. The cilia of a new null allele (pf23-4) completely lack ODAs and IDAs and are even shorter than cilia from pf23-1. In addition, PF23 plays a role in the cytoplasmic modification of IC138, a protein of the two-headed IDA (I1/f). As most PCD variants in humans are recessive, we sought to test if heterozygosity at two genes affects ciliary function using a second-site non-complementation (SSNC) screening approach. We asked if phenotypes were observed in diploids with pairwise heterozygous combinations of 21 well-characterized ciliary mutant Chlamydomonas strains. Vegetative cultures of single and double heterozygous diploid cells did not show SSNC for motility phenotypes. When protein synthesis is inhibited, wild-type Chlamydomonas cells utilize the pool of cytoplasmic proteins to assemble half-length cilia. In this sensitized assay, 8 double heterozygous diploids with pf23 and other DNAAF mutations show SSNC; they assemble shorter cilia than wild-type. In contrast, double heterozygosity of the other 203 strains showed no effect on ciliary assembly. Immunoblots of diploids heterozygous for pf23 and wdr92 or oda8 show that PF23 is reduced by half in these strains, and that PF23 dosage affects phenotype severity. Reductions in PF23 and another DNAAF in diploids affect the ability to assemble ODAs and IDAs and impedes ciliary assembly. Thus, dosage of multiple DNAAFs is an important factor in cilia assembly and regeneration.
Collapse
Affiliation(s)
- Gervette M. Penny
- Department of Genetics, Washington University in Saint Louis, Saint Louis,Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University in Saint Louis, Saint Louis,Missouri, United States of America
| |
Collapse
|
4
|
Legal T, Parra M, Tong M, Black CS, Joachimiak E, Valente-Paterno M, Lechtreck K, Gaertig J, Bui KH. CEP104/FAP256 and associated cap complex maintain stability of the ciliary tip. J Cell Biol 2023; 222:e202301129. [PMID: 37756660 PMCID: PMC10522465 DOI: 10.1083/jcb.202301129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium. Here, we used cryo-electron tomography and subtomogram averaging to obtain the structure of the ciliary tip of the ciliate Tetrahymena thermophila. We show that the microtubules at the tip are highly crosslinked with each other and stabilized by luminal proteins, plugs, and cap proteins at the plus ends. In the tip region, the central pair lacks typical projections and twists significantly. By analyzing cells lacking a ciliary tip-enriched protein CEP104/FAP256 by cryo-electron tomography and proteomics, we discovered candidates for the central pair cap complex and explained the potential functions of CEP104/FAP256. These data provide new insights into the function of the ciliary tip and the mechanisms of ciliary assembly and length regulation.
Collapse
Affiliation(s)
- Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Mireya Parra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Maxwell Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Corbin S. Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| |
Collapse
|
5
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548259. [PMID: 37781579 PMCID: PMC10541116 DOI: 10.1101/2023.07.09.548259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L. McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences McGill University, Québec, Canada
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
6
|
Legal T, Tong M, Black C, Valente Paterno M, Gaertig J, Bui KH. Molecular architecture of the ciliary tip revealed by cryo-electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522627. [PMID: 36711791 PMCID: PMC9881849 DOI: 10.1101/2023.01.03.522627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium. Here, we used cryo-electron tomography and subtomogram averaging to obtain the structure of the ciliary tip of the ciliate Tetrahymena thermophila. We show the microtubules in the tip are highly cross-linked with each other and stabilised by luminal proteins, plugs and cap proteins at the plus ends. In the tip region, the central pair lacks the typical projections and twists significantly. By analysing cells lacking a ciliary tip-enriched protein CEP104/FAP256 by cryo-electron tomography and proteomics, we discovered candidates for the central pair cap complex and explain potential functions of CEP104/FAP256. These data provide new insights into the function of the ciliary tip and inform about the mechanisms of ciliary assembly and length regulation.
Collapse
Affiliation(s)
- T Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - M Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - C Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - M Valente Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - J Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, United States of America
| | - K H Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| |
Collapse
|
7
|
Pinskey JM, Lagisetty A, Gui L, Phan N, Reetz E, Tavakoli A, Fu G, Nicastro D. Three-dimensional flagella structures from animals' closest unicellular relatives, the Choanoflagellates. eLife 2022; 11:e78133. [PMID: 36384644 PMCID: PMC9671500 DOI: 10.7554/elife.78133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
In most eukaryotic organisms, cilia and flagella perform a variety of life-sustaining roles related to environmental sensing and motility. Cryo-electron microscopy has provided considerable insight into the morphology and function of flagellar structures, but studies have been limited to less than a dozen of the millions of known eukaryotic species. Ultrastructural information is particularly lacking for unicellular organisms in the Opisthokonta clade, leaving a sizeable gap in our understanding of flagella evolution between unicellular species and multicellular metazoans (animals). Choanoflagellates are important aquatic heterotrophs, uniquely positioned within the opisthokonts as the metazoans' closest living unicellular relatives. We performed cryo-focused ion beam milling and cryo-electron tomography on flagella from the choanoflagellate species Salpingoeca rosetta. We show that the axonemal dyneins, radial spokes, and central pair complex in S. rosetta more closely resemble metazoan structures than those of unicellular organisms from other suprakingdoms. In addition, we describe unique features of S. rosetta flagella, including microtubule holes, microtubule inner proteins, and the flagellar vane: a fine, net-like extension that has been notoriously difficult to visualize using other methods. Furthermore, we report barb-like structures of unknown function on the extracellular surface of the flagellar membrane. Together, our findings provide new insights into choanoflagellate biology and flagella evolution between unicellular and multicellular opisthokonts.
Collapse
Affiliation(s)
- Justine M Pinskey
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Adhya Lagisetty
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Long Gui
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nhan Phan
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Evan Reetz
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Amirrasoul Tavakoli
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
8
|
Zehr EA, Roll-Mecak A. A look under the hood of the machine that makes cilia beat. Nat Struct Mol Biol 2022; 29:416-418. [PMID: 35578025 DOI: 10.1038/s41594-022-00778-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA. .,Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
9
|
Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nat Struct Mol Biol 2022; 29:483-492. [PMID: 35578023 PMCID: PMC9930914 DOI: 10.1038/s41594-022-00770-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Collapse
|
10
|
Han L, Rao Q, Yang R, Wang Y, Chai P, Xiong Y, Zhang K. Cryo-EM structure of an active central apparatus. Nat Struct Mol Biol 2022; 29:472-482. [PMID: 35578022 PMCID: PMC9113940 DOI: 10.1038/s41594-022-00769-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022]
Abstract
Accurately regulated ciliary beating in time and space is critical for diverse cellular activities, which impact the survival and development of nearly all eukaryotic species. An essential beating regulator is the conserved central apparatus (CA) of motile cilia, composed of a pair of microtubules (C1 and C2) associated with hundreds of protein subunits per repeating unit. It is largely unclear how the CA plays its regulatory roles in ciliary motility. Here, we present high-resolution structures of Chlamydomonas reinhardtii CA by cryo-electron microscopy (cryo-EM) and its dynamic conformational behavior at multiple scales. The structures show how functionally related projection proteins of CA are clustered onto a spring-shaped scaffold of armadillo-repeat proteins, facilitated by elongated rachis-like proteins. The two halves of the CA are brought together by elastic chain-like bridge proteins to achieve coordinated activities. We captured an array of kinesin-like protein (KLP1) in two different stepping states, which are actively correlated with beating wave propagation of cilia. These findings establish a structural framework for understanding the role of the CA in cilia.
Collapse
Affiliation(s)
- Long Han
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qinhui Rao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Renbin Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Yue Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Weiner E, Pinskey JM, Nicastro D, Otegui MS. Electron microscopy for imaging organelles in plants and algae. PLANT PHYSIOLOGY 2022; 188:713-725. [PMID: 35235662 PMCID: PMC8825266 DOI: 10.1093/plphys/kiab449] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 05/31/2023]
Abstract
Recent developments in both instrumentation and image analysis algorithms have allowed three-dimensional electron microscopy (3D-EM) to increase automated image collections through large tissue volumes using serial block-face scanning EM (SEM) and to achieve near-atomic resolution of macromolecular complexes using cryo-electron tomography (cryo-ET) and sub-tomogram averaging. In this review, we discuss applications of cryo-ET to cell biology research on plant and algal systems and the special opportunities they offer for understanding the organization of eukaryotic organelles with unprecedently resolution. However, one of the most challenging aspects for cryo-ET is sample preparation, especially for multicellular organisms. We also discuss correlative light and electron microscopy (CLEM) approaches that have been developed for ET at both room and cryogenic temperatures.
Collapse
Affiliation(s)
- Ethan Weiner
- Department of Botany, University of Wisconsin, Madison 53706, Wisconsin
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison 53706, Wisconsin
| | - Justine M Pinskey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75390, Texas
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75390, Texas
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison 53706, Wisconsin
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison 53706, Wisconsin
| |
Collapse
|
12
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
13
|
Yogo K. Molecular basis of the morphogenesis of sperm head and tail in mice. Reprod Med Biol 2022; 21:e12466. [PMID: 35619659 PMCID: PMC9126569 DOI: 10.1002/rmb2.12466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background The spermatozoon has a complex molecular apparatus necessary for fertilization in its head and flagellum. Recently, numerous genes that are needed to construct the molecular apparatus of spermatozoa have been identified through the analysis of genetically modified mice. Methods Based on the literature information, the molecular basis of the morphogenesis of sperm heads and flagella in mice was summarized. Main findings (Results) The molecular mechanisms of vesicular trafficking and intraflagellar transport in acrosome and flagellum formation were listed. With the development of cryo‐electron tomography and mass spectrometry techniques, the details of the axonemal structure are becoming clearer. The fine structure and the proteins needed to form the central apparatus, outer and inner dynein arms, nexin‐dynein regulatory complex, and radial spokes were described. The important components of the formation of the mitochondrial sheath, fibrous sheath, outer dense fiber, and the annulus were also described. The similarities and differences between sperm flagella and Chlamydomonas flagella/somatic cell cilia were also discussed. Conclusion The molecular mechanism of formation of the sperm head and flagellum has been clarified using the mouse as a model. These studies will help to better understand the diversity of sperm morphology and the causes of male infertility.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Department of Applied Life Sciences Faculty of Agriculture Shizuoka University Shizuoka Japan
| |
Collapse
|
14
|
Cai K, Zhao Y, Zhao L, Phan N, Hou Y, Cheng X, Witman GB, Nicastro D. Structural organization of the C1b projection within the ciliary central apparatus. J Cell Sci 2021; 134:272503. [PMID: 34651179 DOI: 10.1242/jcs.254227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Motile cilia have a '9+2' structure containing nine doublet microtubules and a central apparatus (CA) composed of two singlet microtubules with associated projections. The CA plays crucial roles in regulating ciliary motility. Defects in CA assembly or function usually result in motility-impaired or paralyzed cilia, which in humans causes disease. Despite their importance, the protein composition and functions of most CA projections remain largely unknown. Here, we combined genetic, proteomic and cryo-electron tomographic approaches to compare the CA of wild-type Chlamydomonas reinhardtii with those of three CA mutants. Our results show that two proteins, FAP42 and FAP246, are localized to the L-shaped C1b projection of the CA, where they interact with the candidate CA protein FAP413. FAP42 is a large protein that forms the peripheral 'beam' of the C1b projection, and the FAP246-FAP413 subcomplex serves as the 'bracket' between the beam (FAP42) and the C1b 'pillar' that attaches the projection to the C1 microtubule. The FAP246-FAP413-FAP42 complex is essential for stable assembly of the C1b, C1f and C2b projections, and loss of these proteins leads to ciliary motility defects.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Yanhe Zhao
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xi Cheng
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| |
Collapse
|
15
|
Hou Y, Zhao L, Kubo T, Cheng X, McNeill N, Oda T, Witman GB. Chlamydomonas FAP70 is a component of the previously uncharacterized ciliary central apparatus projection C2a. J Cell Sci 2021; 134:jcs258540. [PMID: 33988244 PMCID: PMC8272932 DOI: 10.1242/jcs.258540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cilia are essential organelles required for cell signaling and motility. Nearly all motile cilia have a '9+2' axoneme composed of nine outer doublet microtubules plus two central microtubules; the central microtubules together with their projections are termed the central apparatus (CA). In Chlamydomonas reinhardtii, a model organism for studying cilia, 30 proteins are known CA components, and ∼36 more are predicted to be CA proteins. Among the candidate CA proteins is the highly conserved FAP70 (CFAP70 in humans), which also has been reported to be associated with the doublet microtubules. Here, we determined by super-resolution structured illumination microscopy that FAP70 is located exclusively in the CA, and show by cryo-electron microscopy that its N-terminus is located at the base of the C2a projection of the CA. We also found that fap70-1 mutant axonemes lack most of the C2a projection. Mass spectrometry revealed that fap70-1 axonemes lack not only FAP70 but two other conserved candidate CA proteins, FAP65 (CFAP65 in humans) and FAP147 (MYCBPAP in humans). Finally, FAP65 and FAP147 co-immunoprecipitated with HA-tagged FAP70. Taken together, these data identify FAP70, FAP65 and FAP147 as the first defining components of the C2a projection.
Collapse
Affiliation(s)
- Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Xi Cheng
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Nathan McNeill
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
16
|
Composition and function of the C1b/C1f region in the ciliary central apparatus. Sci Rep 2021; 11:11760. [PMID: 34083607 PMCID: PMC8175508 DOI: 10.1038/s41598-021-90996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
Motile cilia are ultrastructurally complex cell organelles with the ability to actively move. The highly conserved central apparatus of motile 9 × 2 + 2 cilia is composed of two microtubules and several large microtubule-bound projections, including the C1b/C1f supercomplex. The composition and function of C1b/C1f subunits has only recently started to emerge. We show that in the model ciliate Tetrahymena thermophila, C1b/C1f contains several evolutionarily conserved proteins: Spef2A, Cfap69, Cfap246/LRGUK, Adgb/androglobin, and a ciliate-specific protein Tt170/TTHERM_00205170. Deletion of genes encoding either Spef2A or Cfap69 led to a loss of the entire C1b projection and resulted in an abnormal vortex motion of cilia. Loss of either Cfap246 or Adgb caused only minor alterations in ciliary motility. Comparative analyses of wild-type and C1b-deficient mutant ciliomes revealed that the levels of subunits forming the adjacent C2b projection but not C1d projection are greatly reduced, indicating that C1b stabilizes C2b. Moreover, the levels of several IFT and BBS proteins, HSP70, and enzymes that catalyze the final steps of the glycolytic pathway: enolase ENO1 and pyruvate kinase PYK1, are also reduced in the C1b-less mutants.
Collapse
|
17
|
Leung MR, Roelofs MC, Ravi RT, Maitan P, Henning H, Zhang M, Bromfield EG, Howes SC, Gadella BM, Bloomfield‐Gadêlha H, Zeev‐Ben‐Mordehai T. The multi-scale architecture of mammalian sperm flagella and implications for ciliary motility. EMBO J 2021; 40:e107410. [PMID: 33694216 PMCID: PMC8013824 DOI: 10.15252/embj.2020107410] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo-focused ion beam milling-enabled cryo-electron tomography to image sperm flagella from three mammalian species. We resolve in-cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament-bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament-bracing structures reinforcing microtubules at the nano-scale to accessory structures that impose micron-scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
- The Division of Structural BiologyWellcome Centre for Human GeneticsThe University of OxfordOxfordUK
| | - Marc C Roelofs
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Ravi Teja Ravi
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Paula Maitan
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Veterinary DepartmentUniversidade Federal de ViçosaViçosaBrazil
| | - Heiko Henning
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Min Zhang
- Department of Farm & Animal Health and Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Elizabeth G Bromfield
- Department of Farm & Animal Health and Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Priority Research Centre for Reproductive ScienceFaculty of ScienceThe University of NewcastleCallaghanNSWAustralia
| | - Stuart C Howes
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Bart M Gadella
- Department of Farm & Animal Health and Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | - Tzviya Zeev‐Ben‐Mordehai
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
- The Division of Structural BiologyWellcome Centre for Human GeneticsThe University of OxfordOxfordUK
| |
Collapse
|
18
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
19
|
Dlec1 is required for spermatogenesis and male fertility in mice. Sci Rep 2020; 10:18883. [PMID: 33144677 PMCID: PMC7642295 DOI: 10.1038/s41598-020-75957-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Deleted in lung and esophageal cancer 1 (DLEC1) is a tumour suppressor gene that is downregulated in various cancers in humans; however, the physiological and molecular functions of DLEC1 are still unclear. This study investigated the critical role of Dlec1 in spermatogenesis and male fertility in mice. Dlec1 was significantly expressed in testes, with dominant expression in germ cells. We disrupted Dlec1 in mice and analysed its function in spermatogenesis and male fertility. Dlec1 deletion caused male infertility due to impaired spermatogenesis. Spermatogenesis progressed normally to step 8 spermatids in Dlec1−/− mice, but in elongating spermatids, we observed head deformation, a shortened tail, and abnormal manchette organization. These phenotypes were similar to those of various intraflagellar transport (IFT)-associated gene-deficient sperm. In addition, DLEC1 interacted with tailless complex polypeptide 1 ring complex (TRiC) and Bardet–Biedl Syndrome (BBS) protein complex subunits, as well as α- and β-tubulin. DLEC1 expression also enhanced primary cilia formation and cilia length in A549 lung adenocarcinoma cells. These findings suggest that DLEC1 is a possible regulator of IFT and plays an essential role in sperm head and tail formation in mice.
Collapse
|
20
|
Abdelhamed Z, Lukacs M, Cindric S, Ali S, Omran H, Stottmann RW. A novel hypomorphic allele of Spag17 causes primary ciliary dyskinesia phenotypes in mice. Dis Model Mech 2020; 13:dmm045344. [PMID: 32988999 PMCID: PMC7648611 DOI: 10.1242/dmm.045344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a human condition of dysfunctional motile cilia characterized by recurrent lung infection, infertility, organ laterality defects and partially penetrant hydrocephalus. We recovered a mouse mutant from a forward genetic screen that developed many of the hallmark phenotypes of PCD. Whole-exome sequencing identified this primary ciliary dyskinesia only (Pcdo) allele to be a nonsense mutation (c.5236A>T) in the Spag17 coding sequence creating a premature stop codon (K1746*). The Pcdo variant abolished several isoforms of SPAG17 in the Pcdo mutant testis but not in the brain. Our data indicate differential requirements for SPAG17 in different types of motile cilia. SPAG17 is essential for proper development of the sperm flagellum and is required for either development or stability of the C1 microtubule structure within the central pair apparatus of the respiratory motile cilia, but not the brain ependymal cilia. We identified changes in ependymal ciliary beating frequency, but these did not appear to alter lateral ventricle cerebrospinal fluid flow. Aqueductal stenosis resulted in significantly slower and abnormally directed cerebrospinal fluid flow, and we suggest that this is the root cause of the hydrocephalus. The Spag17Pcdo homozygous mutant mice are generally viable to adulthood but have a significantly shortened lifespan, with chronic morbidity. Our data indicate that the c.5236A>T Pcdo variant is a hypomorphic allele of Spag17 that causes phenotypes related to motile, but not primary, cilia. Spag17Pcdo is a useful new model for elucidating the molecular mechanisms underlying central pair PCD pathogenesis in the mouse.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zakia Abdelhamed
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Anatomy and Embryology, Faculty of Medicine (Girl's Section), Al-Azhar University, Cairo 11651, Egypt
| | - Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sandra Cindric
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Saima Ali
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
21
|
Dai D, Ichikawa M, Peri K, Rebinsky R, Huy Bui K. Identification and mapping of central pair proteins by proteomic analysis. Biophys Physicobiol 2020; 17:71-85. [PMID: 33178545 PMCID: PMC7596323 DOI: 10.2142/biophysico.bsj-2019048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Cilia or flagella of eukaryotes are small micro-hair like structures that are indispensable to single-cell motility and play an important role in mammalian biological processes. Cilia or flagella are composed of nine doublet microtubules surrounding a pair of singlet microtubules called the central pair (CP). Together, this arrangement forms a canonical and highly conserved 9+2 axonemal structure. The CP, which is a unique structure exclusive to motile cilia, is a pair of structurally dimorphic singlet microtubules decorated with numerous associated proteins. Mutations of CP-associated proteins cause several different physical symptoms termed as ciliopathies. Thus, it is crucial to understand the architecture of the CP. However, the protein composition of the CP was poorly understood. This was because the traditional method of identification of CP proteins was mostly limited by available Chlamydomonas mutants of CP proteins. Recently, more CP protein candidates were presented based on mass spectrometry results, but most of these proteins were not validated. In this study, we re-evaluated the CP proteins by conducting a similar comprehensive CP proteome analysis comparing the mass spectrometry results of the axoneme sample prepared from Chlamydomonas strains with and without CP complex. We identified a similar set of CP protein candidates and additional new 11 CP protein candidates. Furthermore, by using Chlamydomonas strains lacking specific CP sub-structures, we present a more complete model of localization for these CP proteins. This work has established a new foundation for understanding the function of the CP complex in future studies.
Collapse
Affiliation(s)
- Daniel Dai
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Muneyoshi Ichikawa
- Department of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Katya Peri
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Reid Rebinsky
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|
22
|
Picariello T, Hou Y, Kubo T, McNeill NA, Yanagisawa HA, Oda T, Witman GB. TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in Chlamydomonas reinhardtii. PLoS One 2020; 15:e0232594. [PMID: 32401787 PMCID: PMC7219734 DOI: 10.1371/journal.pone.0232594] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/18/2020] [Indexed: 01/16/2023] Open
Abstract
Generation and subsequent analysis of mutants is critical to understanding the functions of genes and proteins. Here we describe TIM, an efficient, cost-effective, CRISPR-based targeted insertional mutagenesis method for the model organism Chlamydomonas reinhardtii. TIM utilizes delivery into the cell of a Cas9-guide RNA (gRNA) ribonucleoprotein (RNP) together with exogenous double-stranded (donor) DNA. The donor DNA contains gene-specific homology arms and an integral antibiotic-resistance gene that inserts at the double-stranded break generated by Cas9. After optimizing multiple parameters of this method, we were able to generate mutants for six out of six different genes in two different cell-walled strains with mutation efficiencies ranging from 40% to 95%. Furthermore, these high efficiencies allowed simultaneous targeting of two separate genes in a single experiment. TIM is flexible with regard to many parameters and can be carried out using either electroporation or the glass-bead method for delivery of the RNP and donor DNA. TIM achieves a far higher mutation rate than any previously reported for CRISPR-based methods in C. reinhardtii and promises to be effective for many, if not all, non-essential nuclear genes.
Collapse
Affiliation(s)
- Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tomohiro Kubo
- Department of Anatomy and Structural Biology, Interdisciplinary Graduate School, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Nathan A. McNeill
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Interdisciplinary Graduate School, University of Yamanashi, Chuo, Yamanashi, Japan
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
23
|
Trötschel C, Hamzeh H, Alvarez L, Pascal R, Lavryk F, Bönigk W, Körschen HG, Müller A, Poetsch A, Rennhack A, Gui L, Nicastro D, Strünker T, Seifert R, Kaupp UB. Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO J 2020; 39:e102723. [PMID: 31880004 PMCID: PMC7024835 DOI: 10.15252/embj.2019102723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.
Collapse
Affiliation(s)
- Christian Trötschel
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - Luis Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - René Pascal
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Fedir Lavryk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Heinz G Körschen
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Astrid Müller
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Ansgar Poetsch
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
- Present address:
Center for Marine and Molecular BiotechnologyQNLMQindaoChina
- Present address:
College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Andreas Rennhack
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Long Gui
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Daniela Nicastro
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Timo Strünker
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Center of Reproductive Medicine and AndrologyUniversity Hospital MünsterMünsterGermany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Life& Medical Sciences Institute (LIMES)University of BonnBonnGermany
| |
Collapse
|
24
|
Zhao L, Hou Y, McNeill NA, Witman GB. The unity and diversity of the ciliary central apparatus. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190164. [PMID: 31884923 PMCID: PMC7017334 DOI: 10.1098/rstb.2019.0164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/27/2022] Open
Abstract
Nearly all motile cilia and flagella (terms here used interchangeably) have a '9+2' axoneme containing nine outer doublet microtubules and two central microtubules. The central pair of microtubules plus associated projections, termed the central apparatus (CA), is involved in the control of flagellar motility and is essential for the normal movement of '9+2' cilia. Research using the green alga Chlamydomonas reinhardtii, an important model system for studying cilia, has provided most of our knowledge of the protein composition of the CA, and recent work using this organism has expanded the number of known and candidate CA proteins nearly threefold. Here we take advantage of this enhanced proteome to examine the genomes of a wide range of eukaryotic organisms, representing all of the major phylogenetic groups, to identify predicted orthologues of the C. reinhardtii CA proteins and explore how widely the proteins are conserved and whether there are patterns to this conservation. We also discuss in detail two contrasting groups of CA proteins-the ASH-domain proteins, which are broadly conserved, and the PAS proteins, which are restricted primarily to the volvocalean algae. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | | | | | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|