1
|
Forte G, Boteva L, Gilbert N, Cook PR, Marenduzzo D. Bridging-mediated compaction of mitotic chromosomes. Nucleus 2025; 16:2497765. [PMID: 40340634 PMCID: PMC12068332 DOI: 10.1080/19491034.2025.2497765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 05/10/2025] Open
Abstract
Within living cells, chromosome shapes undergo a striking morphological transition, from loose and uncondensed fibers during interphase to compacted and cylindrical structures during mitosis. ATP driven loop extrusion performed by a specialized protein complex, condensin, has recently emerged as a key driver of this transition. However, while this mechanism can successfully recapitulate the compaction of chromatids during the early stages of mitosis, it cannot capture structures observed after prophase. Here we hypothesize that a condensin bridging activity plays an additional important role, and review evidence - obtained largely through molecular dynamics simulations - that, in combination with loop extrusion, it can generate compact metaphase cylinders. Additionally, the resulting model qualitatively explains the unusual elastic properties of mitotic chromosomes observed in micromanipulation experiments and provides insights into the role of condensins in the formation of abnormal chromosome structures associated with common fragile sites.
Collapse
Affiliation(s)
- Giada Forte
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Lora Boteva
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Uhlmann F. A unified model for cohesin function in sisterchromatid cohesion and chromatin loop formation. Mol Cell 2025; 85:1058-1071. [PMID: 40118039 DOI: 10.1016/j.molcel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
The ring-shaped cohesin complex topologically entraps two DNAs to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape by forming DNA loops, which it is thought to achieve using an in vitro-observed loop extrusion mechanism. However, recent studies revealed that loop-extrusion-deficient cohesin retains its ability to form chromatin loops, suggesting a divergence of in vitro and in vivo loop formation. Instead of loop extrusion, we examine whether cohesin forms chromatin loops by a mechanism akin to sister chromatid cohesion establishment: sequential topological capture of two DNAs. We explore similarities and differences between the "loop capture" and the "loop extrusion" model, how they compare at explaining experimental observations, and how future approaches can delineate their possible respective contributions. We extend our DNA-DNA capture model for cohesin function to related structural maintenance of chromosomes (SMC) family members, condensin, the Smc5-Smc6 complex, and bacterial SMC complexes.
Collapse
Affiliation(s)
- Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
3
|
Hirano T, Kinoshita K. SMC-mediated chromosome organization: Does loop extrusion explain it all? Curr Opin Cell Biol 2025; 92:102447. [PMID: 39603149 DOI: 10.1016/j.ceb.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In recent years, loop extrusion has attracted much attention as a general mechanism of chromosome organization mediated by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin. Despite accumulating evidence in support of this mechanism, it is not fully established whether or how loop extrusion operates under physiological conditions, or whether any alternative or additional SMC-mediated mechanisms operate in the cell. In this review, we summarize non-loop extrusion mechanisms proposed in the literature and clarify unresolved issues to further enrich our understanding of how SMC protein complexes work.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kazuhisa Kinoshita
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Rutkauskas M, Kim E. In vitro dynamics of DNA loop extrusion by structural maintenance of chromosomes complexes. Curr Opin Genet Dev 2025; 90:102284. [PMID: 39591812 DOI: 10.1016/j.gde.2024.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Genomic DNA inside the cell's nucleus is highly organized and tightly controlled by the structural maintenance of chromosomes (SMC) protein complexes. These complexes fold genomes by creating and processively enlarging loops, a process called loop extrusion. After more than a decade of accumulating indirect evidence, recent in vitro single-molecule studies confirmed loop extrusion as an evolutionarily conserved function among eukaryotic and prokaryotic SMCs. These studies further provided important insights into mechanisms and regulations of these universal molecular machines, which will be discussed in this minireview.
Collapse
Affiliation(s)
- Marius Rutkauskas
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Eugene Kim
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Jeppsson K. Structural Maintenance of Chromosomes Complexes. Methods Mol Biol 2025; 2856:11-22. [PMID: 39283444 DOI: 10.1007/978-1-0716-4136-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The Structural Maintenance of Chromosomes (SMC) protein complexes are DNA-binding molecular machines required to shape chromosomes into functional units and to safeguard the genome through cell division. These ring-shaped multi-subunit protein complexes, which are present in all kingdoms of life, achieve this by organizing chromosomes in three-dimensional space. Mechanistically, the SMC complexes hydrolyze ATP to either stably entrap DNA molecules within their lumen, or rapidly reel DNA into large loops, which allow them to link two stretches of DNA in cis or trans. In this chapter, the canonical structure of the SMC complexes is first introduced, followed by a description of the composition and general functions of the main types of eukaryotic and prokaryotic SMC complexes. Thereafter, the current model for how SMC complexes perform in vitro DNA loop extrusion is presented. Lastly, chromosome loop formation by SMC complexes is introduced, and how the DNA loop extrusion mechanism contributes to chromosome looping by SMC complexes in cells is discussed.
Collapse
Affiliation(s)
- Kristian Jeppsson
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden.
| |
Collapse
|
6
|
Zimyanin V, Magaj M, Manzi NI, Yu CH, Gibney T, Chen YZ, Basaran M, Horton X, Siller K, Pani A, Needleman D, Dickinson DJ, Redemann S. Chromokinesin Klp-19 regulates microtubule overlap and dynamics during anaphase in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564275. [PMID: 37961478 PMCID: PMC10634869 DOI: 10.1101/2023.10.26.564275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Recent studies have highlighted the significance of the spindle midzone, the region between the segregating chromosomes, in ensuring proper chromosome segregation. By combining 3D electron tomography, cutting-edge light microscopy and a novel single cell in vitro essay allowing single molecule tracking, we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans by the chromokinesin KLP-19, and its relevance for proper spindle function. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and KLP-19 in C. elegans, the homologs of PRC1 and KIF4a, suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length and thus microtubule-based interactions in the spindle midzone, which affects spindle dynamics and force transmission. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.
Collapse
Affiliation(s)
- Vitaly Zimyanin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Magdalena Magaj
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Theresa Gibney
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Yu-Zen Chen
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mustafa Basaran
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xavier Horton
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Karsten Siller
- IT-Research Computing, University of Virginia, Charlottesville, VA, USA
| | - Ariel Pani
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Daniel Needleman
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Daniel J Dickinson
- Department of Molecular Bioscience, University of Texas at Austin, TX, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
7
|
Rhind N. In through the out door: A loop-binding-first model for topological cohesin loading. Bioessays 2024; 46:e2400120. [PMID: 39159466 PMCID: PMC11427176 DOI: 10.1002/bies.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Cohesin is a ring-shaped complex that is loaded on DNA in two different conformations. In one conformation, it forms loops to organize the interphase genome; in the other, it topologically encircles sibling chromosomes to facilitate homologous recombination and to establish the cohesion that is required for orderly segregation during mitosis. How, and even if, these two loading conformation are related is unclear. Here, I propose that loop binding is a required first step for topological binding. This loop-binding-first model integrates the known information about the two loading mechanisms, explains genetic requirements for the two and explains how topological loading evolved from loop binding.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Montes ID, Amirthagunanathan S, Joshi AS, Raman M. The p97-UBXD8 complex maintains peroxisome abundance by suppressing pexophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614749. [PMID: 39386596 PMCID: PMC11463529 DOI: 10.1101/2024.09.24.614749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Peroxisomes are vital organelles involved in key metabolic functions in eukaryotic cells. Their significance is highlighted by peroxisome biogenesis disorders; severe childhood diseases marked by disrupted lipid metabolism. One mechanism regulating peroxisome abundance is through selective ubiquitylation of peroxisomal membrane proteins that triggers peroxisome degradation via selective autophagy (pexophagy). However, the mechanisms regulating pexophagy remain poorly understood in mammalian cells. Here we show that the evolutionarily conserved AAA-ATPase p97 and its membrane embedded adaptor UBXD8 are essential for maintaining peroxisome abundance. From quantitative proteomic studies we reveal that loss of UBXD8 affects many peroxisomal proteins. We find depletion of UBXD8 results in a loss of peroxisomes in a manner that is independent of the known role of UBXD8 in ER associated degradation (ERAD). Loss of UBXD8 or inhibition of p97 increases peroxisomal turnover through autophagy and can be rescued by depleting key autophagy proteins or overexpressing the deubiquitylating enzyme USP30. Furthermore, we find increased ubiquitylation of the peroxisomal membrane protein PMP70 in cells lacking UBXD8 or p97. Collectively, our findings identify a new role for the p97-UBXD8 complex in regulating peroxisome abundance by suppressing pexophagy.
Collapse
Affiliation(s)
- Iris D. Montes
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston MA
| | | | - Amit S. Joshi
- Department of Biochemistry & Cell and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston MA
| |
Collapse
|
9
|
Liu C, Han X, Zhang S, Huang M, Guo B, Zhao Z, Yang S, Jin J, Pu W, Yu H. The role of NCAPH in cancer treatment. Cell Signal 2024; 121:111262. [PMID: 38901722 DOI: 10.1016/j.cellsig.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Many solid tumors frequently overexpress Non-SMC Condensin I Complex Subunit H (NCAPH), and new studies suggest that NCAPH may be a target gene for clinical cancer therapy. Numerous investigations have shown that a variety of transcription factors, including as MYBL2, FOXP3, GATA3, and OTC1, can stimulate the transcription of NCAPH. Additionally, NCAPH stimulates many oncogenic signaling pathways, such as β-Catenin/PD-L1, PI3K/AKT/SGK3, MEK/ERK, AURKB/AKT/mTOR, PI3K/PDK1/AKT, and Chk1/Chk2. Tumor immune microenvironment modification and tumor growth, apoptosis, metastasis, stemness, and treatment resistance all depend on these signals. NCAPH has the ability to form complexes with other proteins that are involved in glycolysis, DNA damage repair, and chromatin remodeling. This review indicates that NCAPH expression in most malignant tumors is associated with poor prognosis and low recurrence-free survival.
Collapse
Affiliation(s)
- Caiyan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siqi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zixuan Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shenshen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Jin
- International Education College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Weiling Pu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Gurung P, McGee JP, Dvorin JD. PfCAP-H is essential for assembly of condensin I complex and karyokinesis during asexual proliferation of Plasmodium falciparum. mBio 2024; 15:e0285023. [PMID: 38564676 PMCID: PMC11078010 DOI: 10.1128/mbio.02850-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.
Collapse
Affiliation(s)
- Pratima Gurung
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - James P. McGee
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Lebreton J, Colin L, Chatre E, Bernard P. RNAP II antagonizes mitotic chromatin folding and chromosome segregation by condensin. Cell Rep 2024; 43:113901. [PMID: 38446663 DOI: 10.1016/j.celrep.2024.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Condensin shapes mitotic chromosomes by folding chromatin into loops, but whether it does so by DNA-loop extrusion remains speculative. Although loop-extruding cohesin is stalled by transcription, the impact of transcription on condensin, which is enriched at highly expressed genes in many species, remains unclear. Using degrons of Rpb1 or the torpedo nuclease Dhp1XRN2 to either deplete or displace RNAPII on chromatin in fission yeast metaphase cells, we show that RNAPII does not load condensin on DNA. Instead, RNAPII retains condensin in cis and hinders its ability to fold mitotic chromatin and to support chromosome segregation, consistent with the stalling of a loop extruder. Transcription termination by Dhp1 limits such a hindrance. Our results shed light on the integrated functioning of condensin, and we argue that a tight control of transcription underlies mitotic chromosome assembly by loop-extruding condensin.
Collapse
Affiliation(s)
- Jérémy Lebreton
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Léonard Colin
- CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Elodie Chatre
- Lymic-Platim, University Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Pascal Bernard
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France; CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
12
|
Gurung P, McGee JP, Dvorin JD. PfCAP-H is essential for assembly of condensin I complex and karyokinesis during asexual proliferation of Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582160. [PMID: 38464281 PMCID: PMC10925219 DOI: 10.1101/2024.02.26.582160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites is yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites.
Collapse
Affiliation(s)
- Pratima Gurung
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, M.A
- Department of Pediatrics, Harvard Medical School, Boston, M.A
| | - James P. McGee
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, M.A
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, M.A
- Department of Pediatrics, Harvard Medical School, Boston, M.A
| |
Collapse
|
13
|
Yoshida MM, Kinoshita K, Shintomi K, Aizawa Y, Hirano T. Regulation of condensin II by self-suppression and release mechanisms. Mol Biol Cell 2024; 35:ar21. [PMID: 38088875 PMCID: PMC10881152 DOI: 10.1091/mbc.e23-10-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024] Open
Abstract
In vertebrates, two distinct condensin complexes, condensin I and condensin II, cooperate to drive mitotic chromosome assembly. It remains largely unknown how the two complexes differentially contribute to this process at a mechanistic level. We have previously dissected the role of individual subunits of condensin II by introducing recombinant complexes into Xenopus egg extracts. Here we extend these efforts by introducing a modified functional assay using extracts depleted of topoisomerase IIα (topo IIα), which allows us to further elucidate the functional similarities and differences between condensin I and condensin II. The intrinsically disordered C-terminal region of the CAP-D3 subunit (the D3 C-tail) is a major target of Cdk1 phosphorylation, and phosphorylation-deficient mutations in this region impair condensin II functions. We also identify a unique helical structure in CAP-D3 (the D3 HEAT docker) that is predicted to directly interact with CAP-G2. Deletion of the D3 HEAT docker, along with the D3 C-tail, enhances the ability of condensin II to assemble mitotic chromosomes. Taken together, we propose a self-suppression mechanism unique to condensin II that is released by mitotic phosphorylation. Evolutionary implications of our findings are also discussed.
Collapse
Affiliation(s)
- Makoto M. Yoshida
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yuuki Aizawa
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Forte G, Boteva L, Conforto F, Gilbert N, Cook PR, Marenduzzo D. Bridging condensins mediate compaction of mitotic chromosomes. J Cell Biol 2024; 223:e202209113. [PMID: 37976091 PMCID: PMC10655892 DOI: 10.1083/jcb.202209113] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Eukaryotic chromosomes compact during mitosis into elongated cylinders-and not the spherical globules expected of self-attracting long flexible polymers. This process is mainly driven by condensin-like proteins. Here, we present Brownian-dynamic simulations involving two types of such proteins with different activities. One, which we refer to as looping condensins, anchors long-lived chromatin loops to create bottlebrush structures. The second, referred to as bridging condensins, forms multivalent bridges between distant parts of these loops. We show that binding of bridging condensins leads to the formation of shorter and stiffer mitotic-like cylinders without requiring any additional energy input. These cylinders have several features matching experimental observations. For instance, the axial condensin backbone breaks up into clusters as found by microscopy, and cylinder elasticity qualitatively matches that seen in chromosome pulling experiments. Additionally, simulating global condensin depletion or local faulty condensin loading gives phenotypes seen experimentally and points to a mechanistic basis for the structure of common fragile sites in mitotic chromosomes.
Collapse
Affiliation(s)
- Giada Forte
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Lora Boteva
- MRC Human Genetics Unit, Western General Hospital, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Filippo Conforto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Western General Hospital, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Kolbin D, Walker BL, Hult C, Stanton JD, Adalsteinsson D, Forest MG, Bloom K. Polymer Modeling Reveals Interplay between Physical Properties of Chromosomal DNA and the Size and Distribution of Condensin-Based Chromatin Loops. Genes (Basel) 2023; 14:2193. [PMID: 38137015 PMCID: PMC10742461 DOI: 10.3390/genes14122193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Transient DNA loops occur throughout the genome due to thermal fluctuations of DNA and the function of SMC complex proteins such as condensin and cohesin. Transient crosslinking within and between chromosomes and loop extrusion by SMCs have profound effects on high-order chromatin organization and exhibit specificity in cell type, cell cycle stage, and cellular environment. SMC complexes anchor one end to DNA with the other extending some distance and retracting to form a loop. How cells regulate loop sizes and how loops distribute along chromatin are emerging questions. To understand loop size regulation, we employed bead-spring polymer chain models of chromatin and the activity of an SMC complex on chromatin. Our study shows that (1) the stiffness of the chromatin polymer chain, (2) the tensile stiffness of chromatin crosslinking complexes such as condensin, and (3) the strength of the internal or external tethering of chromatin chains cooperatively dictate the loop size distribution and compaction volume of induced chromatin domains. When strong DNA tethers are invoked, loop size distributions are tuned by condensin stiffness. When DNA tethers are released, loop size distributions are tuned by chromatin stiffness. In this three-way interaction, the presence and strength of tethering unexpectedly dictates chromatin conformation within a topological domain.
Collapse
Affiliation(s)
- Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.K.); (J.D.S.)
| | - Benjamin L. Walker
- Department of Mathematics, University of California-Irvine, Irvine, CA 92697, USA;
| | - Caitlin Hult
- Department of Mathematics, Gettysburg College, Gettysburg, PA 17325, USA
| | - John Donoghue Stanton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.K.); (J.D.S.)
| | - David Adalsteinsson
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.); (M.G.F.)
| | - M. Gregory Forest
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.); (M.G.F.)
- Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.K.); (J.D.S.)
| |
Collapse
|
16
|
Tang M, Pobegalov G, Tanizawa H, Chen ZA, Rappsilber J, Molodtsov M, Noma KI, Uhlmann F. Establishment of dsDNA-dsDNA interactions by the condensin complex. Mol Cell 2023; 83:3787-3800.e9. [PMID: 37820734 PMCID: PMC10842940 DOI: 10.1016/j.molcel.2023.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Condensin is a structural maintenance of chromosomes (SMC) complex family member thought to build mitotic chromosomes by DNA loop extrusion. However, condensin variants unable to extrude loops, yet proficient in chromosome formation, were recently described. Here, we explore how condensin might alternatively build chromosomes. Using bulk biochemical and single-molecule experiments with purified fission yeast condensin, we observe that individual condensins sequentially and topologically entrap two double-stranded DNAs (dsDNAs). Condensin loading transitions through a state requiring DNA bending, as proposed for the related cohesin complex. While cohesin then favors the capture of a second single-stranded DNA (ssDNA), second dsDNA capture emerges as a defining feature of condensin. We provide complementary in vivo evidence for DNA-DNA capture in the form of condensin-dependent chromatin contacts within, as well as between, chromosomes. Our results support a "diffusion capture" model in which condensin acts in mitotic chromosome formation by sequential dsDNA-dsDNA capture.
Collapse
Affiliation(s)
- Minzhe Tang
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Hideki Tanizawa
- Division of Genome Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Zhuo A Chen
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Maxim Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Ken-Ichi Noma
- Division of Genome Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Cell Biology Centre, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-0026, Japan.
| |
Collapse
|
17
|
Yamamoto T, Kinoshita K, Hirano T. Elasticity control of entangled chromosomes: Crosstalk between condensin complexes and nucleosomes. Biophys J 2023; 122:3869-3881. [PMID: 37571823 PMCID: PMC10560673 DOI: 10.1016/j.bpj.2023.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Condensin-mediated loop extrusion is now considered as the main driving force of mitotic chromosome assembly. Recent experiments have shown, however, that a class of mutant condensin complexes deficient in loop extrusion can assemble chromosome-like structures in Xenopus egg extracts, although these structures are somewhat different from those assembled by wild-type condensin complexes. In the absence of topoisomerase II (topo II), the mutant condensin complexes produce an unusual round-shaped structure termed a bean, which consists of a DNA-dense central core surrounded by a DNA-sparse halo. The mutant condensin complexes accumulate in the core, whereas histones are more concentrated in the halo than in the core. We consider that this peculiar structure serves as a model system to study how DNA entanglements, nucleosomes, and condensin functionally crosstalk with each other. To gain insight into how the bean structure is formed, here we construct a theoretical model. Our theory predicts that the core is formed by attractive interactions between mutant condensin complexes, whereas the halo is stabilized by the energy reduction through the selective accumulation of nucleosomes. The formation of the halo increases the elastic free energy due to the DNA entanglement in the core, but the latter free energy is compensated by condensin complexes that suppress the assembly of nucleosomes.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan.
| | | | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
18
|
Kim J, Jimenez DS, Ragipani B, Zhang B, Street LA, Kramer M, Albritton SE, Winterkorn LH, Morao AK, Ercan S. Condensin DC loads and spreads from recruitment sites to create loop-anchored TADs in C. elegans. eLife 2022; 11:e68745. [PMID: 36331876 PMCID: PMC9635877 DOI: 10.7554/elife.68745] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - David S Jimenez
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Bhavana Ragipani
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Bo Zhang
- UCSF HSWSan FranciscoUnited States
| | - Lena A Street
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Maxwell Kramer
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Sarah E Albritton
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Lara H Winterkorn
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Ana K Morao
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Sevinc Ercan
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
19
|
Yoshida MM, Kinoshita K, Aizawa Y, Tane S, Yamashita D, Shintomi K, Hirano T. Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays. eLife 2022; 11:78984. [PMID: 35983835 PMCID: PMC9433093 DOI: 10.7554/elife.78984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, condensin I and condensin II cooperate to assemble rod-shaped chromosomes during mitosis. Although the mechanism of action and regulation of condensin I have been studied extensively, our corresponding knowledge of condensin II remains very limited. By introducing recombinant condensin II complexes into Xenopus egg extracts, we dissect the roles of its individual subunits in chromosome assembly. We find that one of two HEAT subunits, CAP-D3, plays a crucial role in condensin II-mediated assembly of chromosome axes, whereas the other HEAT subunit, CAP-G2, has a very strong negative impact on this process. The structural maintenance of chromosomes ATPase and the basic amino acid clusters of the kleisin subunit CAP-H2 are essential for this process. Deletion of the C-terminal tail of CAP-D3 increases the ability of condensin II to assemble chromosomes and further exposes a hidden function of CAP-G2 in the lateral compaction of chromosomes. Taken together, our results uncover a multilayered regulatory mechanism unique to condensin II, and provide profound implications for the evolution of condensin II.
Collapse
Affiliation(s)
| | | | - Yuuki Aizawa
- Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
| | - Shoji Tane
- Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
| | | | | | | |
Collapse
|
20
|
A phase transition for chromosome transmission when cells divide. Nature 2022; 609:35-36. [PMID: 35922488 DOI: 10.1038/d41586-022-01925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Shintomi K. Making Mitotic Chromosomes in a Test Tube. EPIGENOMES 2022; 6:20. [PMID: 35893016 PMCID: PMC9326633 DOI: 10.3390/epigenomes6030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin I complex central for the chromosome assembly process was first identified, and its functions have been intensively studied. A list of chromosome-associated proteins has been almost completed, and it is now possible to reconstitute structures resembling mitotic chromosomes with a limited number of purified factors. In this review, I introduce how far we have come in understanding the mechanism of chromosome assembly using cell-free assays and reconstitution assays, and I discuss their potential applications to solve open questions.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| |
Collapse
|
22
|
Tane S, Shintomi K, Kinoshita K, Tsubota Y, Yoshida MM, Nishiyama T, Hirano T. Cell cycle-specific loading of condensin I is regulated by the N-terminal tail of its kleisin subunit. eLife 2022; 11:84694. [PMID: 36511239 PMCID: PMC9797191 DOI: 10.7554/elife.84694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Condensin I is a pentameric protein complex that plays an essential role in mitotic chromosome assembly in eukaryotic cells. Although it has been shown that condensin I loading is mitosis specific, it remains poorly understood how the robust cell cycle regulation of condensin I is achieved. Here, we set up a panel of in vitro assays to demonstrate that cell cycle-specific loading of condensin I is regulated by the N-terminal tail (N-tail) of its kleisin subunit CAP-H. Deletion of the N-tail accelerates condensin I loading and chromosome assembly in Xenopus egg mitotic extracts. Phosphorylation-deficient and phosphorylation-mimetic mutations in the CAP-H N-tail decelerate and accelerate condensin I loading, respectively. Remarkably, deletion of the N-tail enables condensin I to assemble mitotic chromosome-like structures even in interphase extracts. Together with other extract-free functional assays in vitro, our results uncover one of the multilayered mechanisms that ensure cell cycle-specific loading of condensin I onto chromosomes.
Collapse
Affiliation(s)
- Shoji Tane
- Chromosome Dynamics Laboratory, RIKENWakoJapan
| | | | | | - Yuko Tsubota
- Division of Biological Sciences, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | | | - Tomoko Nishiyama
- Division of Biological Sciences, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | | |
Collapse
|