1
|
Fiedler AF, Leben R, Stürmer H, Günther R, Matthys R, Nützi R, Hauser AE, Niesner RA. FLIMB: fluorescence lifetime microendoscopy for metabolic and functional imaging of femoral marrow at subcellular resolution. BIOMEDICAL OPTICS EXPRESS 2025; 16:1711-1731. [PMID: 40321997 PMCID: PMC12047734 DOI: 10.1364/boe.549311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 05/08/2025]
Abstract
Intravital imaging of bone marrow provides a unique opportunity to study cellular dynamics and their interaction with the tissue microenvironment, which governs cell functions and metabolic profiles. To optically access the deep marrow of long bones, we previously developed a microendoscopy system for longitudinal two-photon fluorescence imaging of the murine femur. However, this does not provide information on cell functions or metabolism, for which quantification fluorescence lifetime imaging (FLIM) has proven to be a versatile tool. We present and characterize FLIMB, an adapted GRIN-based microendoscopic system capable of performing reliable, co-registered TCSPC-based two-photon excited FLIM and fluorescence imaging in the femur of fluorescent reporter mice, at sub-cellular resolution. Using FLIMB, we demonstrate metabolic imaging via NAD(P)H-FLIM and intracellular Ca2+ signaling via FRET-FLIM in immune cell subsets, in the femoral marrow. This method retains the power to study molecular mechanisms underlying various cell functions in tissue context thus providing new insights into bone biology.
Collapse
Affiliation(s)
- Alexander F. Fiedler
- Biophysical Analytics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Freie Universität Berlin, Berlin, Germany
| | - Ruth Leben
- Biophysical Analytics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Freie Universität Berlin, Berlin, Germany
| | | | - Robert Günther
- Biophysical Analytics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Immune Dynamics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
| | | | | | - Anja E. Hauser
- Immune Dynamics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Raluca A. Niesner
- Biophysical Analytics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Chourasia S, Petucci C, Shoffler C, Abbasian D, Wang H, Han X, Sivan E, Brandis A, Mehlman T, Malitsky S, Itkin M, Sharp A, Rotkopf R, Dassa B, Regev L, Zaltsman Y, Gross A. MTCH2 controls energy demand and expenditure to fuel anabolism during adipogenesis. EMBO J 2025; 44:1007-1038. [PMID: 39753955 PMCID: PMC11832942 DOI: 10.1038/s44318-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/19/2025] Open
Abstract
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites. Lipidomics analysis revealed a strategic adaptive reduction in membrane lipids and an increase in storage lipids in MTCH2 knockout cells. Importantly, MTCH2 knockout cells showed an increase in mitochondrial oxidative function, which may explain the higher energy demand. Interestingly, this imbalance in energy metabolism and reductive potential triggered by MTCH2-deletion prevents NIH3T3L1 preadipocytes from differentiating into mature adipocytes, an energy consuming reductive biosynthetic process. In summary, the loss of MTCH2 leads to increased mitochondrial oxidative activity and energy demand, creating a catabolic and oxidative environment that fails to fuel the anabolic processes required for lipid accumulation and adipocyte differentiation.
Collapse
Affiliation(s)
- Sabita Chourasia
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clarissa Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dina Abbasian
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ayala Sharp
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Limor Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yehudit Zaltsman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Atan Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
3
|
Galigniana NM, Abdelhalim M, Collas P, Sæther T. Transcriptional and Metabolic Changes Following Repeated Fasting and Refeeding of Adipose Stem Cells Highlight Adipose Tissue Resilience. Nutrients 2024; 16:4310. [PMID: 39770930 PMCID: PMC11676188 DOI: 10.3390/nu16244310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Obesity and related metabolic disorders have reached epidemic levels, calling for diverse therapeutic strategies. Altering nutrient intake, timing and quantity by intermittent fasting seems to elicit beneficial health effects by modulating endocrine and cell signaling networks. This study explores the impact of cyclic nutrient availability in the form of every-other-day fasting (EODF) on human adipose stem cells (ASCs). METHODS We subjected ASCs to repeated fasting/refeeding (F/R) cycles, mimicking low glucose/high fatty acid (LGHF) conditions, and assessed phenotypic and transcriptomic changes, lipid storage capacity, insulin sensitivity, and differentiation potential. RESULTS Four consecutive F/R cycles induced significant changes in adipogenic gene expression, with upregulation of FABP4 and PLIN1 during fasting, and increased lipid storage in the ASCs. Upon differentiation, ASCs exposed to LGHF conditions retained a transient increase in lipid droplet size and altered fatty acid metabolism gene expression until day 9. However, these changes dissipated by day 15 of differentiation, suggesting a limited duration of fasting-induced transcriptional and adipogenic memory. Despite initial effects, ASCs showed resilience, returning to a physiological trajectory during differentiation, with respect to gene expression and lipid metabolism. CONCLUSIONS These findings suggest that the long-term effects of EODF on the ASC niche may be transient, emphasizing the ability of the adipose tissue to adapt and restore homeostasis.
Collapse
Affiliation(s)
- Natalia M. Galigniana
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (N.M.G.); (M.A.); (P.C.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (N.M.G.); (M.A.); (P.C.)
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (N.M.G.); (M.A.); (P.C.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (N.M.G.); (M.A.); (P.C.)
| |
Collapse
|
4
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Pacheco-Bernal I, Becerril-Pérez F, Bustamante-Zepeda M, González-Suárez M, Olmedo-Suárez MA, Hernández-Barrientos LR, Alarcón-Del-Carmen A, Escalante-Covarrubias Q, Mendoza-Viveros L, Hernández-Lemus E, León-Del-Río A, de la Rosa-Velázquez IA, Orozco-Solis R, Aguilar-Arnal L. Transitions in chromatin conformation shaped by fatty acids and the circadian clock underlie hepatic transcriptional reorganization in obese mice. Cell Mol Life Sci 2024; 81:309. [PMID: 39060446 PMCID: PMC11335233 DOI: 10.1007/s00018-024-05364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPβ, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel A Olmedo-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Ricardo Hernández-Barrientos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Alarcón-Del-Carmen
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
- Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Enrique Hernández-Lemus
- Department of Computational Genomics, Centro de Ciencias de La Complejidad (C3), Instituto Nacional de Medicina Genómica (INMEGEN), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfonso León-Del-Río
- Departamento de Medicina Genómica y Toxicología Ambiental, Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Inti A de la Rosa-Velázquez
- Genomics Laboratory, Red de Apoyo a la Investigación-CIC, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
- Next Generation Sequencing Core Facility, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr 1, 85754, Neuherberg, Germany
| | - Ricardo Orozco-Solis
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Pérez B, Torre-Villalvazo I, Wilson-Verdugo M, Lau-Corona D, Muciño-Olmos E, Coutiño-Hernández D, Noriega-López L, Resendis-Antonio O, Valdés VJ, Torres N, Tovar AR. Epigenetic reprogramming of H3K4me3 in adipose-derived stem cells by HFS diet consumption leads to a disturbed transcriptomic profile in adipocytes. Am J Physiol Endocrinol Metab 2024; 327:E13-E26. [PMID: 38717362 DOI: 10.1152/ajpendo.00093.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024]
Abstract
Adipose tissue metabolism is actively involved in the regulation of energy balance. Adipose-derived stem cells (ASCs) play a critical role in maintaining adipose tissue function through their differentiation into mature adipocytes (Ad). This study aimed to investigate the impact of an obesogenic environment on the epigenetic landscape of ASCs and its impact on adipocyte differentiation and its metabolic consequences. Our results showed that ASCs from rats on a high-fat sucrose (HFS) diet displayed reduced adipogenic capacity, increased fat accumulation, and formed larger adipocytes than the control (C) group. Mitochondrial analysis revealed heightened activity in undifferentiated ASC-HFS but decreased respiratory and glycolytic capacity in mature adipocytes. The HFS diet significantly altered the H3K4me3 profile in ASCs on genes related to adipogenesis, mitochondrial function, inflammation, and immunomodulation. After differentiation, adipocytes retained H3K4me3 alterations, confirming the upregulation of genes associated with inflammatory and immunomodulatory pathways. RNA-seq confirmed the upregulation of genes associated with inflammatory and immunomodulatory pathways in adipocytes. Overall, the HFS diet induced significant epigenetic and transcriptomic changes in ASCs, impairing differentiation and causing dysfunctional adipocyte formation.NEW & NOTEWORTHY Obesity is associated with the development of chronic diseases like metabolic syndrome and type 2 diabetes, and adipose tissue plays a crucial role. In a rat model, our study reveals how an obesogenic environment primes adipocyte precursor cells, leading to epigenetic changes that affect inflammation, adipogenesis, and mitochondrial activity after differentiation. We highlight the importance of histone modifications, especially the trimethylation of histone H3 to lysine 4 (H3K4me3), showing its influence on adipocyte expression profiles.
Collapse
Affiliation(s)
- Berenice Pérez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Martí Wilson-Verdugo
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dana Lau-Corona
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Erick Muciño-Olmos
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Biología de Sistemas, Coordinación de la Investigación Científica - Red de Apoyo a la Investigación - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México & Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Diana Coutiño-Hernández
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lilia Noriega-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Laboratorio de Biología de Sistemas, Coordinación de la Investigación Científica - Red de Apoyo a la Investigación - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México & Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Víctor Julián Valdés
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
7
|
Chinnapaka S, Malekzadeh H, Tirmizi Z, Ejaz A. Caloric restriction mitigates age-associated senescence characteristics in subcutaneous adipose tissue-derived stem cells. Aging (Albany NY) 2024; 16:7535-7552. [PMID: 38728252 PMCID: PMC11131987 DOI: 10.18632/aging.205812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 05/12/2024]
Abstract
Adipose tissue regulates metabolic balance, but aging disrupts it, shifting fat from insulin-sensitive subcutaneous to insulin-resistant visceral depots, impacting overall metabolic health. Adipose-derived stem cells (ASCs) are crucial for tissue regeneration, but aging diminishes their stemness and regeneration potential. Our findings reveal that aging is associated with a decrease in subcutaneous adipose tissue mass and an increase in the visceral fat depots mass. Aging is associated with increase in adipose tissue fibrosis but no significant change in adipocyte size was observed with age. Long term caloric restriction failed to prevent fibrotic changes but resulted in significant decrease in adipocytes size. Aged subcutaneous ASCs displayed an increased production of ROS. Using mitochondrial membrane activity as an indicator of stem cell quiescence and senescence, we observed a significant decrease in quiescence ASCs with age exclusively in subcutaneous adipose depot. In addition, aged subcutaneous adipose tissue accumulated more senescent ASCs having defective autophagy activity. However, long-term caloric restriction leads to a reduction in mitochondrial activity in ASCs. Furthermore, caloric restriction prevents the accumulation of senescent cells and helps retain autophagy activity in aging ASCs. These results suggest that caloric restriction and caloric restriction mimetics hold promise as a potential strategy to rejuvenate the stemness of aged ASCs. Further investigations, including in vivo evaluations using controlled interventions in animals and human studies, will be necessary to validate these findings and establish the clinical potential of this well-established approach for enhancing the stemness of aged stem cells.
Collapse
Affiliation(s)
- Somaiah Chinnapaka
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hamid Malekzadeh
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zayaan Tirmizi
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Luu P, Fraser SE, Schneider F. More than double the fun with two-photon excitation microscopy. Commun Biol 2024; 7:364. [PMID: 38531976 PMCID: PMC10966063 DOI: 10.1038/s42003-024-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Falk Schneider
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
9
|
Gottlieb D, Asadipour B, Kostina P, Ung TPL, Stringari C. FLUTE: A Python GUI for interactive phasor analysis of FLIM data. BIOLOGICAL IMAGING 2023; 3:e21. [PMID: 38487690 PMCID: PMC10936343 DOI: 10.1017/s2633903x23000211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/16/2023] [Accepted: 10/25/2023] [Indexed: 03/17/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique used to probe the local environment of fluorophores. The fit-free phasor approach to FLIM data is increasingly being used due to its ease of interpretation. To date, no open-source graphical user interface (GUI) for phasor analysis of FLIM data is available in Python, thus limiting the widespread use of phasor analysis in biomedical research. Here, we present Fluorescence Lifetime Ultimate Explorer (FLUTE), a Python GUI that is designed to fill this gap. FLUTE simplifies and automates many aspects of the analysis of FLIM data acquired in the time domain, such as calibrating the FLIM data, performing interactive exploration of the phasor plot, displaying phasor plots and FLIM images with different lifetime contrasts simultaneously, and calculating the distance from known molecular species. After applying desired filters and thresholds, the final edited datasets can be exported for further user-specific analysis. FLUTE has been tested using several FLIM datasets including autofluorescence of zebrafish embryos and in vitro cells. In summary, our user-friendly GUI extends the advantages of phasor plotting by making the data visualization and analysis easy and interactive, allows for analysis of large FLIM datasets, and accelerates FLIM analysis for non-specialized labs.
Collapse
Affiliation(s)
- Dale Gottlieb
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Bahar Asadipour
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Polina Kostina
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
10
|
Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. Adv Nutr 2023; 14:1416-1435. [PMID: 37619764 PMCID: PMC10721522 DOI: 10.1016/j.advnut.2023.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The importance of nicotinamide adenine dinucleotide (NAD+) in human physiology is well recognized. As the NAD+ concentration in human skin, blood, liver, muscle, and brain are thought to decrease with age, finding ways to increase NAD+ status could possibly influence the aging process and associated metabolic sequelae. Nicotinamide mononucleotide (NMN) is a precursor for NAD+ biosynthesis, and in vitro/in vivo studies have demonstrated that NMN supplementation increases NAD+ concentration and could mitigate aging-related disorders such as oxidative stress, DNA damage, neurodegeneration, and inflammatory responses. The promotion of NMN as an antiaging health supplement has gained popularity due to such findings; however, since most studies evaluating the effects of NMN have been conducted in cell or animal models, a concern remains regarding the safety and physiological effects of NMN supplementation in the human population. Nonetheless, a dozen human clinical trials with NMN supplementation are currently underway. This review summarizes the current progress of these trials and NMN/NAD+ biology to clarify the potential effects of NMN supplementation and to shed light on future study directions.
Collapse
Affiliation(s)
- Qin Song
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xiaofeng Zhou
- Department of Radiotherapy, The 2(nd) Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Xu
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Sishi Liu
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xinqiang Zhu
- Core Facility, The 4(th) Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| | - Jun Yang
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Barroso M, Monaghan MG, Niesner R, Dmitriev RI. Probing organoid metabolism using fluorescence lifetime imaging microscopy (FLIM): The next frontier of drug discovery and disease understanding. Adv Drug Deliv Rev 2023; 201:115081. [PMID: 37647987 PMCID: PMC10543546 DOI: 10.1016/j.addr.2023.115081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Organoid models have been used to address important questions in developmental and cancer biology, tissue repair, advanced modelling of disease and therapies, among other bioengineering applications. Such 3D microenvironmental models can investigate the regulation of cell metabolism, and provide key insights into the mechanisms at the basis of cell growth, differentiation, communication, interactions with the environment and cell death. Their accessibility and complexity, based on 3D spatial and temporal heterogeneity, make organoids suitable for the application of novel, dynamic imaging microscopy methods, such as fluorescence lifetime imaging microscopy (FLIM) and related decay time-assessing readouts. Several biomarkers and assays have been proposed to study cell metabolism by FLIM in various organoid models. Herein, we present an expert-opinion discussion on the principles of FLIM and PLIM, instrumentation and data collection and analysis protocols, and general and emerging biosensor-based approaches, to highlight the pioneering work being performed in this field.
Collapse
Affiliation(s)
- Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 02, Ireland
| | - Raluca Niesner
- Dynamic and Functional In Vivo Imaging, Freie Universität Berlin and Biophysical Analytics, German Rheumatism Research Center, Berlin, Germany
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Yamaguchi S, Kojima D, Iqbal T, Kosugi S, Franczyk MP, Qi N, Sasaki Y, Yaku K, Kaneko K, Kinouchi K, Itoh H, Hayashi K, Nakagawa T, Yoshino J. Adipocyte NMNAT1 expression is essential for nuclear NAD + biosynthesis but dispensable for regulating thermogenesis and whole-body energy metabolism. Biochem Biophys Res Commun 2023; 674:162-169. [PMID: 37421924 DOI: 10.1016/j.bbrc.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) functions as an essential cofactor regulating a variety of biological processes. The purpose of the present study was to determine the role of nuclear NAD+ biosynthesis, mediated by nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), in thermogenesis and whole-body energy metabolism. We first evaluated the relationship between NMNAT1 expression and thermogenic activity in brown adipose tissue (BAT), a key organ for non-shivering thermogenesis. We found that reduced BAT NMNAT1expression was associated with inactivation of thermogenic gene program induced by obesity and thermoneutrality. Next, we generated and characterized adiponectin-Cre-driven adipocyte-specific Nmnat1 knockout (ANMT1KO) mice. Loss of NMNAT1 markedly reduced nuclear NAD+ concentration by approximately 70% in BAT. Nonetheless, adipocyte-specific Nmnat1 deletion had no impact on thermogenic (rectal temperature, BAT temperature and whole-body oxygen consumption) responses to β-adrenergic ligand norepinephrine administration and acute cold exposure, adrenergic-mediated lipolytic activity, and metabolic responses to obesogenic high-fat diet feeding. In addition, loss of NMNAT1 did not affect nuclear lysine acetylation or thermogenic gene program in BAT. These results demonstrate that adipocyte NMNAT1 expression is required for maintaining nuclear NAD+ concentration, but not for regulating BAT thermogenesis or whole-body energy homeostasis.
Collapse
Affiliation(s)
- Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daiki Kojima
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Toyama, 930-0194, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Michael P Franczyk
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Toyama, 930-0194, Japan
| | - Kenji Kaneko
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenichiro Kinouchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Toyama, 930-0194, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Chinnapaka S, Malekzadeh H, Tirmizi Z, Arellano JA, Ejaz A. Nicotinamide Riboside Improves Stemness of Human Adipose-Derived Stem Cells and Inhibits Terminal Adipocyte Differentiation. Pharmaceuticals (Basel) 2023; 16:1134. [PMID: 37631051 PMCID: PMC10458272 DOI: 10.3390/ph16081134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Adipose tissue plays a crucial role in maintaining metabolic homeostasis by serving as a storage site for excess fat and protecting other organs from the detrimental effects of lipotoxicity. However, the aging process is accompanied by a redistribution of fat, characterized by a decrease in insulin-sensitive subcutaneous adipose depot and an increase in insulin-resistant visceral adipose depot. This age-related alteration in adipose tissue distribution has implications for metabolic health. Adipose-derived stem cells (ASCs) play a vital role in the regeneration of adipose tissue. However, aging negatively impacts the stemness and regenerative potential of ASCs. The accumulation of oxidative stress and mitochondrial dysfunction-associated cellular damage contributes to the decline in stemness observed in aged ASCs. Nicotinamide adenine dinucleotide (NAD+) is a crucial metabolite that is involved in maintaining cellular homeostasis and stemness. The dysregulation of NAD+ levels with age has been associated with metabolic disorders and the loss of stemness. In this study, we aimed to investigate the effects of nicotinamide riboside (NR), a precursor of NAD+, on the stemness of human ASCs in cell culture. Our findings reveal that adipogenesis is accompanied by an increase in mitochondrial activity and the production of reactive oxygen species (ROS). However, treatment with NR leads to a reduction in mitochondrial activity and ROS production in ASCs. Furthermore, NR administration improves the stemness-related genes expression in ASCs and mitigates their propensity for adipocyte differentiation. These results suggest that NR treatment holds promise as a potential strategy to rejuvenate the stemness of aged ASCs. Further investigations, including in vivo evaluations using animal models and human studies, will be necessary to validate these findings and establish the clinical potential of this well-established drug for enhancing the stemness of aged stem cells.
Collapse
Affiliation(s)
| | | | | | | | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
Abstract
The circadian clock plays an essential role in coordinating feeding and metabolic rhythms with the light/dark cycle. Disruption of clocks is associated with increased adiposity and metabolic disorders, whereas aligning feeding time with cell-autonomous rhythms in metabolism improves health. Here, we provide a comprehensive overview of recent literature in adipose tissue biology as well as our understanding of molecular mechanisms underlying the circadian regulation of transcription, metabolism, and inflammation in adipose tissue. We highlight recent efforts to uncover the mechanistic links between clocks and adipocyte metabolism, as well as its application to dietary and behavioral interventions to improve health and mitigate obesity.
Collapse
Affiliation(s)
- Chelsea Hepler
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
15
|
Kong Y, Ao J, Chen Q, Su W, Zhao Y, Fei Y, Ma J, Ji M, Mi L. Evaluating Differentiation Status of Mesenchymal Stem Cells by Label-Free Microscopy System and Machine Learning. Cells 2023; 12:1524. [PMID: 37296645 PMCID: PMC10252613 DOI: 10.3390/cells12111524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in tissue engineering, as their differentiation status directly affects the quality of the final cultured tissue, which is critical to the success of transplantation therapy. Furthermore, the precise control of MSC differentiation is essential for stem cell therapy in clinical settings, as low-purity stem cells can lead to tumorigenic problems. Therefore, to address the heterogeneity of MSCs during their differentiation into adipogenic or osteogenic lineages, numerous label-free microscopic images were acquired using fluorescence lifetime imaging microscopy (FLIM) and stimulated Raman scattering (SRS), and an automated evaluation model for the differentiation status of MSCs was built based on the K-means machine learning algorithm. The model is capable of highly sensitive analysis of individual cell differentiation status, so it has great potential for stem cell differentiation research.
Collapse
Affiliation(s)
- Yawei Kong
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Jianpeng Ao
- Department of Physics, Fudan University, Shanghai 200433, China;
| | - Qiushu Chen
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Wenhua Su
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Yinping Zhao
- Human Phenome Institute, Fudan University, Shanghai 200433, China;
| | - Yiyan Fei
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Jiong Ma
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- Department of Physics, Fudan University, Shanghai 200433, China;
| | - Lan Mi
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Escalante-Covarrubias Q, Mendoza-Viveros L, González-Suárez M, Sitten-Olea R, Velázquez-Villegas LA, Becerril-Pérez F, Pacheco-Bernal I, Carreño-Vázquez E, Mass-Sánchez P, Bustamante-Zepeda M, Orozco-Solís R, Aguilar-Arnal L. Time-of-day defines NAD + efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice. Nat Commun 2023; 14:1685. [PMID: 36973248 PMCID: PMC10043291 DOI: 10.1038/s41467-023-37286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD+. Increasing NAD+ is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD+ fluctuations remains unknown. Here, we demonstrate that time-of-day determines the efficacy of NAD+ treatment for diet-induced metabolic disease in mice. Increasing NAD+ prior to the active phase in obese male mice ameliorated metabolic markers including body weight, glucose and insulin tolerance, hepatic inflammation and nutrient sensing pathways. However, raising NAD+ immediately before the rest phase selectively compromised these responses. Remarkably, timed NAD+ adjusted circadian oscillations of the liver clock until completely inverting its oscillatory phase when increased just before the rest period, resulting in misaligned molecular and behavioral rhythms in male and female mice. Our findings unveil the time-of-day dependence of NAD+-based therapies and support a chronobiology-based approach.
Collapse
Affiliation(s)
- Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Román Sitten-Olea
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Erick Carreño-Vázquez
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Paola Mass-Sánchez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ricardo Orozco-Solís
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados, 14330, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
17
|
A Wrong Fate Decision in Adipose Stem Cells upon Obesity. Cells 2023; 12:cells12040662. [PMID: 36831329 PMCID: PMC9954614 DOI: 10.3390/cells12040662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Progress has been made in identifying stem cell aging as a pathological manifestation of a variety of diseases, including obesity. Adipose stem cells (ASCs) play a core role in adipocyte turnover, which maintains tissue homeostasis. Given aberrant lineage determination as a feature of stem cell aging, failure in adipogenesis is a culprit of adipose hypertrophy, resulting in adiposopathy and related complications. In this review, we elucidate how ASC fails in entering adipogenic lineage, with a specific focus on extracellular signaling pathways, epigenetic drift, metabolic reprogramming, and mechanical stretch. Nonetheless, such detrimental alternations can be reversed by guiding ASCs towards adipogenesis. Considering the pathological role of ASC aging in obesity, targeting adipogenesis as an anti-obesity treatment will be a key area of future research, and a strategy to rejuvenate tissue stem cell will be capable of alleviating metabolic syndrome.
Collapse
|
18
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
19
|
Eckel-Mahan K. Temporal and spatial metabolite dynamics impart control in adipogenesis. J Cell Biol 2022; 221:e202210021. [PMID: 36409212 PMCID: PMC9682416 DOI: 10.1083/jcb.202210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The process of adipogenesis is critical for forming new, healthy adipocytes that are capable of storing lipids. In this issue, Sánchez-Ramírez and Ung et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202111137) reveal a novel role for the metabolite nicotinamide adenine dinucleotide in controlling differentiation of mesenchymal stromal cells into adipocytes.
Collapse
Affiliation(s)
- Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|