1
|
Abstract
Staphylococcus aureus (S. aureus) is a Gram positive bacterium that is carried by about one third of the general population and is responsible for common and serious diseases. These diseases include food poisoning and toxic shock syndrome, which are caused by exotoxins produced by S. aureus. Of the more than 20 Staphylococcal enterotoxins, SEA and SEB are the best characterized and are also regarded as superantigens because of their ability to bind to class II MHC molecules on antigen presenting cells and stimulate large populations of T cells that share variable regions on the β chain of the T cell receptor. The result of this massive T cell activation is a cytokine bolus leading to an acute toxic shock. These proteins are highly resistant to denaturation, which allows them to remain intact in contaminated food and trigger disease outbreaks. A recognized problem is the emergence of multi-drug resistant strains of S. aureus and these are a concern in the clinical setting as they are a common cause of antibiotic-associated diarrhea in hospitalized patients. In this review, we provide an overview of the current understanding of these proteins.
Collapse
|
2
|
Lavoie PM, Thibodeau J, Erard F, Sékaly RP. Understanding the mechanism of action of bacterial superantigens from a decade of research. Immunol Rev 1999; 168:257-69. [PMID: 10399079 DOI: 10.1111/j.1600-065x.1999.tb01297.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the face of the unique diversity and plasticity of the immune system pathogenic organisms have developed multiple mechanisms in adaptation to their hosts, including the expression of a particular class of molecules called superantigens. Bacterial superantigens are the most potent stimulators of T cells. The functional consequences of the expression of superantigens by bacteria can be extended not only to T lymphocytes, but also to B lymphocytes and to cells of the myeloid compartment, including antigen-presenting cells and phagocytes. The biological effects of bacterial superantigens as well as their molecular aspects have now been studied for a decade. Although there is still a long way to go to clearly understand the role these molecules play in the establishment of disease, recently acquired knowledge of their biochemistry now offers unique experimental opportunities in defining the molecular rules of T-cell activation. Here, we present some of the most recent functional and molecular aspects of the interaction of bacterial superantigens with MHC class II molecules and the T-cell receptor.
Collapse
Affiliation(s)
- P M Lavoie
- Department of Experimental Medicine, McGill School of Medicine, Montréal, Canada
| | | | | | | |
Collapse
|
3
|
Murthy VL, Stern LJ. The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding. Structure 1997; 5:1385-96. [PMID: 9351812 DOI: 10.1016/s0969-2126(97)00288-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Class II major histocompatibility complex (MHC) proteins are cell surface glycoproteins that bind peptides and present them to T cells as part of the mechanism for detecting and responding to foreign material in the body. The peptide-binding activity exhibits allele-specific preferences for particular sidechains at some positions, although the structural basis of these preferences is not understood in detail. We have determined the 2.45 A crystal structure of the human class II MHC protein HLA-DR1 in complex with the tight binding endogenous peptide A2 (103-117) in order to discover peptide-MHC interactions that are important in determining the binding motif and to investigate conformational constraints on the bound peptide. RESULTS The bound peptide adopts a polyproline II-like conformation and places several sidechains within pockets in the binding site. Bound water molecules mediate MHC-peptide contacts at several sites. A tryptophan residue from the beta 2 'lower' domain of HLA-DR1 was found to project into a pocket underneath the peptide-binding domain and may be important in modulating interdomain interactions in MHC proteins. CONCLUSIONS The peptide-binding motif of HLA-DR1 includes an aromatic residue at position +1, an arginine residue at position +2, and a small residue at position +6 (where the numbering refers to the normal MHC class II convention); these preferences can be understood in light of interactions observed in the peptide-MHC complex. Comparison of the structure with that of another MHC-peptide complex shows that completely different peptide sequences bind in essentially the same conformation and are accommodated with only minimal rearrangement of HLA-DR1 residues. Small conformational differences that are observed appear to be important in interactions with other proteins.
Collapse
Affiliation(s)
- V L Murthy
- Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | | |
Collapse
|
4
|
Activation of Human T Cells by Major Histocompatability Complex Class II Expressing Neutrophils: Proliferation in the Presence of Superantigen, But Not Tetanus Toxoid. Blood 1997. [DOI: 10.1182/blood.v89.11.4128] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The primary function of polymorphonuclear neutrophils (PMN) in the immune response appears to be acute phagocytic clearance of foreign pathogens and release of inflammatory mediators. Consistent with their assumed lack of major histocompatibility complex (MHC) class II expression, PMN have not been considered to play a role in antigen presentation and T-cell activation. However, recent reports have shown that human PMN can express MHC class II molecules both in vitro and in vivo after stimulation with either granulocyte-macrophage colony-stimulating factor (GM-CSF ) or interferon-γ (IFN-γ). Thus, under appropriate conditions, PMN could play a significant role in immune regulation, including T-cell activation. In this report, we demonstrate that human class II–expressing PMN can serve as accessory cells in superantigen (SAg)-mediated T-cell activation. This accessory activity for SAg presentation was present only after induction of MHC class II expression, and was especially pronounced following culture of PMN with GM-CSF plus IFN-γ, which acted synergistically to induce MHC class II molecules on PMN. Moreover, the level of MHC class II expression and the magnitude of SAg-induced T-cell responses were found to be highly correlated and distinctly donor dependent, with PMN from some donors repeatedly showing fivefold higher responses than PMN from other donors. On the other hand, culture of PMN with GM-CSF plus IFN-γ under conditions that resulted in optimal MHC class II expression did not enable them to function as antigen-presenting cells for either intact tetanus toxoid (TT) or for a TT peptide. These results delineate a new pathway for T-cell activation by SAg that may play an important role in the severity of SAg-induced inflammatory responses. They also identify a donor-specific polymorphism for induction of PMN MHC class II expression which may be of significance for therapies involving GM-CSF and IFN-γ.
Collapse
|
5
|
Wen R, Broussard DR, Surman S, Hogg TL, Blackman MA, Woodland DL. Carboxy-terminal residues of major histocompatibility complex class II-associated peptides control the presentation of the bacterial superantigen toxic shock syndrome toxin-1 to T cells. Eur J Immunol 1997; 27:772-81. [PMID: 9079821 DOI: 10.1002/eji.1830270328] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that the presentation of some bacterial superantigens by major histocompatibility complex (MHC) class II molecules is strongly influenced by class II-associated peptides. For example, presentation of the toxic shock syndrome toxin-1 (TSST-1) superantigen by antigen-processing-defective T2-I-Ab cells (which expresses I-Ab that is either empty or associated with invariant chain-derived peptides) can be strongly enhanced by some, but not other, I-Ab-binding peptides. Here we investigate the contribution of I-Ab-associated peptides in the presentation of TSST-1 to T cells. The data show that overlapping peptides expressing the same core I-Ab-restricted epitope, but with various N and C termini, can differ profoundly in their ability to promote TSST-1 presentation to T cells. Analysis of altered and truncated peptides indicates that residues at the C-terminal end of the peptide have a dramatic effect on TSST-1 presentation. This effect does not involve a cognate interaction between the peptide and the TSST-1 molecule, but appears to depend on the length of the C-terminal region. These data are consistent with crystallographic studies suggesting that TSST-1 may interact with the C-terminal residues of MHC class II-associated peptides. We also examined the capacity of naturally processed peptides to promote TSST-1 binding using a superantigen blocking assay. The data demonstrated that a naturally processed epitope is dominated by peptides that do not promote strong TSST-1 binding to I-Ab. Taken together, these data suggest that TSST-1 binding to MHC class II molecules is controlled by the C-terminal residues of the associated peptide, and that many naturally processed peptide/class II complexes do not present TSST-1 to T cells. Thus, the peptide dependence of TSST-1 binding to class II molecules may significantly reduce the capacity of TSST-1 to stimulate T cells.
Collapse
Affiliation(s)
- R Wen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
6
|
Ohmen JD, Modlin RL. Evidence for a superantigen in the pathogenesis of tuberculosis. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1996; 17:375-84. [PMID: 8966662 DOI: 10.1007/bf01795135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J D Ohmen
- Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | |
Collapse
|
7
|
Sato A, Ida N, Fukuyama M, Miwa K, Kazami J, Nakamura H. Identification from a phage display library of peptides that bind to toxic shock syndrome toxin-1 and that inhibit its binding to major histocompatibility complex (MHC) class II molecules. Biochemistry 1996; 35:10441-7. [PMID: 8756700 DOI: 10.1021/bi960132y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phage display technique is a powerful tool with which to identify novel binding sequences for antibody and receptor targets. Few studies, however, have used this technology to select affinity peptides for ligand molecules. Here, we screened a peptide phage library for binding to toxic shock syndrome toxin 1 (TSST-1) to examine whether peptide ligands for TSST-1 which mimic the structure of major histocompatibility complex (MHC) class II receptors could be identified. After three cycles of biopanning, four potent sequences reactive with TSST-1 were isolated (designated phages 2, 3, 8, and 11). Selected phage were found to react specifically with TSST-1 but not with other staphylococcal exotoxins. A synthetic peptide (pep3) corresponding to the most frequently identified sequence (phage3) was shown to inhibit binding of all four isolated phage to TSST-1, suggesting that they bind to a common site on TSST-1. Furthermore, pep3 was shown to compete with MHC class II molecules for binding to TSST-1 in a concentration-dependent manner. Comparison of their sequences with MHC class II molecules revealed that phage8 shared sequence homology with two regions of the beta chain of MHC class II molecules: amino acids 57-62, containing a residue (Tyr-60) involved in TSST-1 binding as suggested by X-ray crystallographic data of TSST-1-MHC class II complex; and amino acids 188-193, a region not previously known as a contact domain. These results suggest that the selected sequences recognized the MHC class II binding site on TSST-1. Thus, affinity selection for peptides binding to ligand molecules (e.g., TSST-1) rather than their cognate receptors (e.g., MHC class II) from a random phage display library represents a useful approach to understanding receptor-ligand interactions.
Collapse
Affiliation(s)
- A Sato
- Medical Devices and Diagnostic Research Laboratories, Toray Industries Inc, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Hargreaves RE, Brehm RD, Tranter H, Warrens AN, Lombardi G, Lechler RI. Definition of sites on HLA-DR1 involved in the T cell response to staphylococcal enterotoxins E and C2. Eur J Immunol 1995; 25:3437-44. [PMID: 8566035 DOI: 10.1002/eji.1830251235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have exploited the relative inefficiency of interaction between staphylococcal enterotoxins, SEE or SEC2, and H-2Ek compared to HLA-DR1 molecules to deduce which regions of the major histocompatibility complex (MHC) class II molecule are involved in the T cell response to these superantigens. Transfectants expressing hybrid DR/H-2E MHC class II molecules were used to present SEE to the T cell receptor V beta 8.1-expressing Jurkat cell line, and SEC2 to human peripheral blood T cells. For SEE, the critical region of the class II molecule for T cell reactivity and for binding was the beta 1 domain alpha-helix. The functional data were corroborated by measurements of direct binding. Sequence comparison between DR and H-2E raised the possibility that the glutamic acid at position 84 in the beta chain of H-2Ek, in place of glycine was responsible for the observed functional effects. This suggestion was supported by the finding that DQw2 (glutamine at 84) transfectants supported the SEE response much more efficiently than DQw6 that has glutamic acid at this position. In addition, amino acid substitutions at either position 36 or 39 in the DR alpha 1 domain abolished T cell reactivity without any obvious alteration in binding. For SEC2, use of transfectants expressing exon-shuffled alpha and beta chain genes showed that replacement of the alpha 1, alpha 2 and beta 1 domains with H-2E sequence inhibited the presentation of SEC2. Similarly, the substitutions at positions 36 and 39 in the alpha 1 domain abolished the T cell response to SEC2. Taken together, these data may be best explained by a model in which these two toxins have primary binding sites on the beta 1 domain (SEE) and the alpha 1 and alpha 2 domains (SEC2), but by virtue of a secondary binding site on the opposite surface of the class II molecule, cross-link two adjacent DR molecules. Such cross-linking may be important in the induction of T cell reactivity.
Collapse
Affiliation(s)
- R E Hargreaves
- Department of Immunology, Royal Postgraduate Medical School, Hammersmith Hospital, London, GB
| | | | | | | | | | | |
Collapse
|
9
|
Wakita H, Tokura Y, Furukawa F, Takigawa M. Staphylococcal enterotoxin B upregulates expression of ICAM-1 molecules on IFN-gamma-treated keratinocytes and keratinocyte cell lines. J Invest Dermatol 1995; 105:536-42. [PMID: 7561155 DOI: 10.1111/1523-1747.ep12323426] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of staphylococcal enterotoxin B (SEB), a Staphylococcus aureus-derived bacterial superantigen, on expression of intercellular adhesion molecule-1 (ICAM-1) were examined in cultured normal and transformed (DJM-1 cells) human keratinocytes by flow cytometry, confocal microscopy, digital image processing, and reverse transcriptase-polymerase chain reaction. SEB significantly upregulated ICAM-1 expression in the interferon-gamma (IFN-gamma)-pretreated, HLA-DR-positive normal keratinocytes and DJM-1 cells in a dose-dependent manner, but not in the untreated, HLA-DR-negative cells. Other toxins such as diphtheria and pertussis toxins did not have the effect. The distribution of SEB and HLA-DR molecules was identical on the IFN-gamma-treated, HLA-DR-positive DJM-1 cells by confocal microscopy. Digital image processing analysis demonstrated that SEB induced a transient increase of intracellular calcium concentration only in the IFN-gamma-treated DJM-1 cells. Pretreatment of the IFN-gamma-treated DJM-1 cells with anti-major histocompatibility complex class II monoclonal antibody completely blocked the effect of SEB. Furthermore, ICAM-1 mRNA was detected in the IFN-gamma-pretreated, SEB-exposed normal keratinocytes by reverse transcriptase-polymerase chain reaction. Our results demonstrate that SEB binds to keratinocytes, presumably via major histocompatibility complex class II molecules such as HLA-DR, triggers calcium mobilization, and induces the synthesis of ICAM-1 molecules. We speculate that, in various cutaneous disorders, SEB penetrates the epidermis and interacts with HLA-DR-positive keratinocytes to upregulate ICAM-1 expression, thus modulating the course of the inflammatory process.
Collapse
Affiliation(s)
- H Wakita
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | | | | | | |
Collapse
|
10
|
Abstract
The recent discovery of the mode of interaction between a group of microbial proteins known as superantigens and the immune system has opened a wide area of investigation into the possible role of these molecules in human diseases. Superantigens produced by certain viruses and bacteria, including Mycoplasma species, are either secreted or membrane-bound proteins. A unique feature of these proteins is that they can interact simultaneously with distinct receptors on different types of cells, resulting in enhanced cell-cell interaction and triggering a series of biochemical reactions that can lead to excessive cell proliferation and the release of inflammatory cytokines. However, although superantigens share many features, they can have very different biological effects that are potentiated by host genetic and environmental factors. This review focuses on a group of secreted pyrogenic toxins that belong to the superantigen family and highlights some of their structural-functional features and their roles in diseases such as toxic shock and autoimmunity. Deciphering the biological activities of the various superantigens and understanding their role in the pathogenesis of microbial infections and their sequelae will enable us to devise means by which we can intervene with their activity and/or manipulate them to our advantage.
Collapse
Affiliation(s)
- M Kotb
- Department of Surgery, University of Tennessee, Memphis, USA
| |
Collapse
|
11
|
|
12
|
Thibodeau J, Cloutier I, Lavoie PM, Labrecque N, Mourad W, Jardetzky T, Sékaly RP. Subsets of HLA-DR1 molecules defined by SEB and TSST-1 binding. Science 1994; 266:1874-8. [PMID: 7997881 DOI: 10.1126/science.7997881] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Superantigens bind to major histocompatibility complex class II molecules on antigen-presenting cells and stimulate T cells. Staphylococcus aureus enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1) bind to the same region of human lymphocyte antigen (HLA)-DR1 but do not compete with each other, which indicates that they bind to different subsets of DR1 molecules. Here, a mutation in the peptide-binding groove disrupted the SEB and TSST-1 binding sites, which suggests that peptides can influence the interaction with bacterial toxins. In support of this, the expression of the DR1 molecule in various cell types differentially affected the binding of these toxins.
Collapse
Affiliation(s)
- J Thibodeau
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim J, Urban RG, Strominger JL, Wiley DC. Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1. Science 1994; 266:1870-4. [PMID: 7997880 DOI: 10.1126/science.7997880] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The three-dimensional structure of a Staphylococcus aureus superantigen, toxic shock syndrome toxin-1 (TSST-1), complexed with a human class II major histocompatibility molecule (DR1), was determined by x-ray crystallography. The TSST-1 binding site on DR1 overlaps that of the superantigen S. aureus enterotoxin B (SEB), but the two binding modes differ. Whereas SEB binds primarily off one edge of the peptide binding site of DR1, TSST-1 extends over almost one-half of the binding site and contacts both the flanking alpha helices of the histocompatibility antigen and the bound peptide. This difference suggests that the T cell receptor (TCR) would bind to TSST-1:DR1 very differently than to DR1:peptide or SEB:DR1. It also suggests that TSST-1 binding may be dependent on the peptide, though less so than TCR binding, providing a possible explanation for the inability of TSST-1 to competitively block SEB binding to all DR1 molecules on cells (even though the binding sites of TSST-1 and SEB on DR1 overlap almost completely) and suggesting the possibility that T cell activation by superantigen could be directed by peptide antigen.
Collapse
Affiliation(s)
- J Kim
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115
| | | | | | | |
Collapse
|
14
|
Mooney NA, Ju L, Brick-Ghannam C, Charron DJ. Bacterial superantigen signaling via HLA class II on human B lymphocytes. Mol Immunol 1994; 31:675-81. [PMID: 8028602 DOI: 10.1016/0161-5890(94)90177-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Staphylococcus enterotoxins and toxic shock syndrome toxin-1 (TSST-1) are members of the family of staphylococcal exoproteins (SE) which binds specifically to HLA class II molecules and certain V beta T cell receptor phenotypes. These bacterial products have been termed "superantigens" due to their capacity to stimulate a greater proportion of T lymphocytes than peptide antigens without a requirement for antigen processing. The SE stimulate monocytes to secrete IL-1 and TNF-alpha and affect B lymphocyte proliferation in response to anti-human IgM and Ig production by PBMC. The current study concerns the transmission of signals in human B lymphocytes following fixation of TSST-1. Activation of both PLC and PKC are observed while intracellular calcium levels remain unchanged. Levels of HLA class II mRNA were increased suggesting that a pathway leading to activation was triggered. This study therefore identifies some of the second messengers involved after SE fixation on HLA class II molecules and suggests that the signals transmitted via class II antigens as well as those via the TCR may have a role in the physiological responses to bacterial superantigens.
Collapse
Affiliation(s)
- N A Mooney
- Institut Biomédical des Cordeliers, Paris, France
| | | | | | | |
Collapse
|
15
|
Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Chi YI, Stauffacher C, Strominger JL, Wiley DC. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 1994; 368:711-8. [PMID: 8152483 DOI: 10.1038/368711a0] [Citation(s) in RCA: 440] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure of a bacterial superantigen, Staphylococcus aureus enterotoxin B, bound to a human class II histocompatibility complex molecule (HLA-DR1) has been determined by X-ray crystallography. The superantigen binds as an intact protein outside the conventional peptide antigen-binding site of the class II major histocompatibility complex (MHC) molecule. No large conformational changes occur upon complex formation in either the DR1 or the enterotoxin B molecules. The structure of the complex helps explain how different class II molecules and superantigens associate and suggests a model for ternary complex formation with the T-cell antigen receptor (TCR), in which unconventional TCR-MHC contacts are possible.
Collapse
Affiliation(s)
- T S Jardetzky
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
T cells are not only required for resistance to tuberculosis, but they likely contribute to the tissue damage characteristic of the disease. To define better the T cell populations that contribute to the immunopathogenesis of human tuberculosis, we investigated the T cell receptor (TCR) beta chain repertoire expressed in patients with tuberculous pleuritis. Analysis by polymerase chain reaction and flow cytometry indicated an expansion of V beta 8+ T cells at the site of disease in some donors, suggesting the possibility that Mycobacterium tuberculosis contains a superantigen. M. tuberculosis induced strong T cell proliferative responses in tuberculin-negative healthy donors in vitro, with preferential expansion of V beta 8+ T cells, independent of the CDR3 region. T cell stimulation was MHC class II-dependent and did not require antigen processing by the antigen-presenting cells. These findings are consistent with the presence of a superantigen in M. tuberculosis, aspects of which may contribute to the immunopathology of tuberculosis and to the adjuvant properties of M. tuberculosis.
Collapse
Affiliation(s)
- J D Ohmen
- Division of Dermatology, University of California, Los Angeles, School of Medicine 90024
| | | | | | | | | |
Collapse
|
17
|
Acharya KR, Passalacqua EF, Jones EY, Harlos K, Stuart DI, Brehm RD, Tranter HS. Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature 1994; 367:94-7. [PMID: 8107781 DOI: 10.1038/367094a0] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Superantigens stimulate T cells bearing particular T-cell receptor V beta sequences, so they are extremely potent polyclonal T-cell mitogens. T-cell activation is preceded by binding of superantigens to class II major histocompatibility complex (MHC) molecules. To further the structural characterization of these interactions, the crystal structure of a toxin associated with toxic-shock syndrome, TSST-1, which is a microbial superantigen, has been determined at 2.5 A resolution. The N- and C-terminal domains of the structure both contain regions involved in MHC class II association; the C-terminal domain is also implicated in binding the T-cell receptor. Despite low sequence conservation, the TSST-1 topology is similar to the structure reported for the superantigen staphylococcal enterotoxin B4. But TSST-1 lacks several of the structural features highlighted as central to superantigen activity in the staphylococcal enterotoxin B and we therefore reappraise the structural basis of superantigen action.
Collapse
Affiliation(s)
- K R Acharya
- School of Biology and Biochemistry, University of Bath, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Fraser JD, Hudson KR. Superantigens--remnants of a past process? RESEARCH IN IMMUNOLOGY 1993; 144:188-93; discussion 214-22. [PMID: 7694344 DOI: 10.1016/0923-2494(93)80116-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J D Fraser
- Dept. of Molecular Medicine, School of Medicine, University of Auckland, New Zealand
| | | |
Collapse
|
19
|
Karp DR. Analyses of the staphylococcal toxin binding sites on MHC class II molecules. RESEARCH IN IMMUNOLOGY 1993; 144:181-4; discussion 214-22. [PMID: 8235040 DOI: 10.1016/0923-2494(93)80114-e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D R Karp
- Simmons Arthritis Research Center, University of Texas Southwestern Medical Center, Dallas 75235-8884
| |
Collapse
|
20
|
Affiliation(s)
- T Chatila
- Division of Immunology, Children's Hospital, Boston, MA
| | | |
Collapse
|
21
|
Abstract
In the past few years, there has been a virtual explosion of information on the viral and bacterial molecules now known as superantigens. Some structures have been defined and the mechanism by which they interact with MHC class II and the V beta region of the T cell receptor is being clarified. Data are accumulating regarding the importance of virally encoded superantigens in infectivity, viral replication, and the life cycle of the virus. In the case of MMTV, evidence also suggests that superantigens encoded by a provirus may be maintained by the host to protect against future exogenous MMTV infection. Experiments in animals have also begun to elucidate the dramatic and variable effects of superantigens on responding T cells and other immune processes. Finally, the role of superantigens in certain human diseases such as toxic shock syndrome, some autoimmune diseases like Kawasaki syndrome, and perhaps some immunodeficiency disease such as that secondary to HIV infection is being addressed and mechanisms are being defined. Still, numerous important questions remain. For example, it is not clear how superantigens with such different structures, for example, SEB, TSST-1, and MMTV vSAG, can interact with MHC and a similar region of the TCR in such basically similar ways. It remains to be determined whether there are human equivalents of the endogenous murine MMTV superantigens. The functional role of bacterial superantigens also remains to be explained. Serious infection and serious consequences from toxin-producing bacteria are relatively rare events, and it is questionable whether such events are involved in the selection pressure to maintain production of a functional superantigen. Hypotheses to explain these molecules, which can differ greatly in structure, include T cell stimulation-mediated suppression of host responses or enhancement of environments for bacterial growth and replication, but substantiating data for these ideas are mostly absent. It also seems likely that only the tip of the iceberg has been uncovered in terms of the role of superantigens in human disease. Unlike toxic shock syndrome, other associations, especially with viral superantigens, may be quite subtle and defined only after considerable effort. The definition of these molecules and mechanisms of disease may result in new therapeutic strategies. Finally, it is apparent that superantigens have dramatic effects on the immune system. One wonders whether these molecules or modifications of them can be used as specific modulators of the immune system to treat disease.
Collapse
Affiliation(s)
- B L Kotzin
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206
| | | | | | | |
Collapse
|
22
|
Panina-Bordignon P, Fu XT, Lanzavecchia A, Karr RW. Identification of HLA-DR alpha chain residues critical for binding of the toxic shock syndrome toxin superantigen. J Exp Med 1992; 176:1779-84. [PMID: 1460432 PMCID: PMC2119443 DOI: 10.1084/jem.176.6.1779] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Staphylococcal toxic shock syndrome toxin 1 (TSST-1) binds to major histocompatibility complex class II molecules, and the toxin-class II complexes induce proliferation of T cells expressing V beta 2 sequences. To define the residues involved in TSST-1 binding, a set of transfectants expressing 21 HLA-DR alpha chain mutants were analyzed for their abilities to bind and present TSST-1 and to present an antigenic peptide. Mutations at DR alpha positions 36 and 39 markedly decreased the ability of the DR7 molecule to bind and present TSST-1 but did not affect the ability to present an antigenic peptide. These data indicate that DR alpha residues 36 and 39, predicted to be located on an outer loop, are important in the formation of the TSST-1 binding site on DR molecules.
Collapse
|
23
|
Karp DR, Jenkins RN, Long EO. Distinct binding sites on HLA-DR for invariant chain and staphylococcal enterotoxins. Proc Natl Acad Sci U S A 1992; 89:9657-61. [PMID: 1409679 PMCID: PMC50191 DOI: 10.1073/pnas.89.20.9657] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During biosynthesis, class II molecules of the major histocompatibility complex exist as complexes of the polymorphic alpha and beta chains in association with trimers of the invariant chain (Ii). The nonpolymorphic Ii contains sequences necessary for proper targeting of class II to endosomal compartments, where Ii is degraded. Ii also prevents the premature association of antigenic peptides with class II molecules. It is not known whether the effect of Ii on peptide binding extends to other ligands of class II, specifically exogenous superantigens. Cells expressing a mutant Ii molecule stably associated with HLA-DR at the cell surface were tested for their ability to interact with staphylococcal toxins. Most toxins (staphylococcal enterotoxins A-E and exfoliative toxin) were found to bind to cells expressing this alpha beta Ii complex with levels comparable to cells expressing only alpha beta chains at the cell surface. Cells expressing surface alpha beta Ii complexes stimulated polyclonal populations of peripheral blood T cells in association with these toxins. Binding of toxic shock syndrome toxin (TSST) and subsequent stimulation of T cells were reduced by the presence of the Ii. This reduction was not due to an alteration in the repertoire of T cells responding to TSST in the presence of Ii. Data from experiments with a T-cell clone suggest that interactions between class II molecules and T-cell antigen receptors occur during staphylococcal enterotoxin-mediated stimulation and that surface Ii does not interfere with such interactions.
Collapse
Affiliation(s)
- D R Karp
- Simmons Arthritis Research Center, University of Texas Southwestern Medical Center, Dallas 75235-8884
| | | | | |
Collapse
|