1
|
Distelhorst CW, Bootman MD. Creating a New Cancer Therapeutic Agent by Targeting the Interaction between Bcl-2 and IP 3 Receptors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035196. [PMID: 31110129 DOI: 10.1101/cshperspect.a035196] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bcl-2 is a member of a family of proteins that regulate cell survival. Expression of Bcl-2 is aberrantly elevated in many types of cancer. Within cells of the immune system, Bcl-2 has a physiological role in regulating immune responses. However, in cancers arising from cells of the immune system Bcl-2 promotes cell survival and proliferation. This review summarizes discoveries over the past 30 years that have elucidated Bcl-2's role in the normal immune system, including its actions in regulating calcium (Ca2+) signals necessary for the immune response, and for Ca2+-mediated apoptosis at the end of an immune response. How Bcl-2 modulates the release of Ca2+ from intracellular stores via inositol 1,4,5-trisphosphate receptors (IP3R) is discussed, and in particular, the role of Bcl-2/IP3R interactions in promoting the survival of cancer cells by preventing Ca2+-mediated cell death. The development and usage of a peptide, referred to as TAT-Pep8, or more recently, BIRD-2, that induces death of cancer cells by inhibiting Bcl-2's control over IP3R-mediated Ca2+ elevation is discussed. Studies aimed at discovering a small molecule that mimics BIRD-2's anticancer mechanism of action are summarized, along with the prospect of such a compound becoming a novel therapeutic option for cancer.
Collapse
Affiliation(s)
- Clark W Distelhorst
- Departments of Medicine and Pharmacology, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
| | - Martin D Bootman
- School of Life, Health, and Chemical Science, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
2
|
Distelhorst CW. Targeting Bcl-2-IP 3 receptor interaction to treat cancer: A novel approach inspired by nearly a century treating cancer with adrenal corticosteroid hormones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1795-1804. [PMID: 30053503 DOI: 10.1016/j.bbamcr.2018.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
Bcl-2 inhibits cell death by at least two different mechanisms. On the one hand, its BH3 domain binds to pro-apoptotic proteins such as Bim and prevents apoptosis induction. On the other hand, the BH4 domain of Bcl-2 binds to the inositol 1,4,5-trisphosphate receptor (IP3R), preventing Ca2+ signals that mediate cell death. In normal T-cells, Bcl-2 levels increase during the immune response, protecting against cell death, and then decline as apoptosis ensues and the immune response dissipates. But in many cancers Bcl-2 is aberrantly expressed and exploited to prevent cell death by inhibiting IP3R-mediated Ca2+ elevation. This review summarizes what is known about the mechanism of Bcl-2's control over IP3R-mediated Ca2+ release and cell death induction. Early insights into the role of Ca2+ elevation in corticosteroid-mediated cell death serves as a model for how targeting IP3R-mediated Ca2+ elevation can be a highly effective therapeutic approach for different types of cancer. Moreover, the successful development of ABT-199 (Venetoclax), a small molecule targeting the BH3 domain of Bcl-2 but without effects on Ca2+, serves as proof of principle that targeting Bcl-2 can be an effective therapeutic approach. BIRD-2, a synthetic peptide that inhibits Bcl-2-IP3R interaction, induces cell death induction in ABT-199 (Venetoclax)-resistant cancer models, attesting to the value of developing therapeutic agents that selectively target Bcl-2-IP3R interaction, inducing Ca2+-mediated cell death.
Collapse
Affiliation(s)
- Clark W Distelhorst
- Case Western University School of Medicine, Case Comprehensive Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, United States of America.
| |
Collapse
|
3
|
Ward N, Baqai J, Zehnpfennig A, Fine N, Huang J, Smith MD. Bcl-2 maturation pattern in T-cells distinguishes thymic neoplasm/hyperplasia, T-lymphoblastic lymphoma, and reactive lymph nodes. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 94:444-450. [DOI: 10.1002/cyto.b.21541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas Ward
- Department of Clinical Pathology; William Beaumont Hospital; Royal Oak MI
| | - Junaid Baqai
- Pathology Associates of Central Illinois, Memorial Medical Center; Springfield Ill
| | | | - Nancy Fine
- Department of Clinical Pathology; William Beaumont Hospital; Royal Oak MI
| | - James Huang
- Department of Clinical Pathology; William Beaumont Hospital; Royal Oak MI
| | - Marc D. Smith
- Department of Clinical Pathology; William Beaumont Hospital; Royal Oak MI
| |
Collapse
|
4
|
Greenberg EF, Lavik AR, Distelhorst CW. Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: potential new target for cancer treatment. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2205-10. [PMID: 24642270 PMCID: PMC4119508 DOI: 10.1016/j.bbamcr.2014.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 01/23/2023]
Abstract
The anti-apoptotic protein Bcl-2 is a versatile regulator of cell survival. Its interactions with its own pro-apoptotic family members are widely recognized for their role in promoting the survival of cancer cells. These interactions are thus being targeted for cancer treatment. Less widely recognized is the interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (InsP3R), an InsP3-gated Ca(2+) channel located on the endoplasmic reticulum. The nature of this interaction, the mechanism by which it controls Ca(2+) release from the ER, its role in T-cell development and survival, and the possibility of targeting it as a novel cancer treatment strategy are summarized in this review. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Edward F Greenberg
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, University Hospitals Case Medical Center, USA; MetroHealth Medical Center, USA.
| | - Andrew R Lavik
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, University Hospitals Case Medical Center, USA.
| | - Clark W Distelhorst
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, University Hospitals Case Medical Center, USA.
| |
Collapse
|
5
|
Feedback regulation mediated by Bcl-2 and DARPP-32 regulates inositol 1,4,5-trisphosphate receptor phosphorylation and promotes cell survival. Proc Natl Acad Sci U S A 2014; 111:1186-91. [PMID: 24395794 DOI: 10.1073/pnas.1323098111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 interacts with the inositol 1,4,5-trisphosphate receptor (InsP3R) and thus prevents InsP3-induced Ca(2+) elevation that induces apoptosis. Here we report that Bcl-2 binds dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), a protein kinase A (PKA)-activated and calcineurin (CaN)-deactivated inhibitor of protein phosphatase 1 (PP1). Bcl-2 docks DARPP-32 and CaN in a complex on the InsP3R, creating a negative feedback loop that prevents exaggerated Ca(2+) release by decreasing PKA-mediated InsP3R phosphorylation. T-cell activation increases PKA activity, phosphorylating both the InsP3R and DARPP-32. Phosphorylated DARPP-32 inhibits PP1, enhancing InsP3R phosphorylation and Ca(2+) release. Elevated Ca(2+) activates CaN, which dephosphorylates DARPP-32 to dampen Ca(2+) release by eliminating PP1 inhibition to enable it to dephosphorylate the InsP3R. Knocking down either Bcl-2 or DARPP-32 abrogates this feedback mechanism, resulting in increased Ca(2+) elevation and apoptosis. This feedback mechanism appears to be exploited by high levels of Bcl-2 in chronic lymphocytic leukemia cells, repressing B-cell receptor-induced Ca(2+) elevation and apoptosis.
Collapse
|
6
|
Zhong F, Davis MC, McColl KS, Distelhorst CW. Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. ACTA ACUST UNITED AC 2006; 172:127-37. [PMID: 16391001 PMCID: PMC2063540 DOI: 10.1083/jcb.200506189] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To investigate the effect of Bcl-2 on Ca2+ signaling in T cells, we continuously monitored Ca2+ concentration in Bcl-2–positive and –negative clones of the WEHI7.2 T cell line after T cell receptor (TCR) activation by anti-CD3 antibody. In Bcl-2–negative cells, high concentrations of anti-CD3 antibody induced a transient Ca2+ elevation, triggering apoptosis. In contrast, low concentrations of anti-CD3 antibody induced Ca2+ oscillations, activating the nuclear factor of activated T cells (NFAT), a prosurvival transcription factor. Bcl-2 blocked the transient Ca2+ elevation induced by high anti-CD3, thereby inhibiting apoptosis, but did not inhibit Ca2+ oscillations and NFAT activation induced by low anti-CD3. Reduction in the level of all three inositol 1,4,5-trisphosphate (InsP3) receptor subtypes by small interfering RNA inhibited the Ca2+ elevation induced by high but not low anti-CD3, suggesting that Ca2+ responses to high and low anti-CD3 may have different requirements for the InsP3 receptor. Therefore, Bcl-2 selectively inhibits proapoptotic Ca2+ elevation induced by strong TCR activation without hindering prosurvival Ca2+ signals induced by weak TCR activation.
Collapse
Affiliation(s)
- Fei Zhong
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
7
|
Phillips JA, Brondstetter TI, English CA, Lee HE, Virts EL, Thoman ML. IL-7 gene therapy in aging restores early thymopoiesis without reversing involution. THE JOURNAL OF IMMUNOLOGY 2004; 173:4867-74. [PMID: 15470027 DOI: 10.4049/jimmunol.173.8.4867] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymic involution begins early in life and continues throughout adulthood, resulting in a decreased population of naive T cells in the periphery and a reduced ability to fight off newly encountered infectious diseases. We have previously shown that the first step of thymopoiesis is specifically blocked in aging. This block at the DN1 to DN2 transition and the subsequent loss of thymic output in old age mirrors the changes seen in IL-7-deficient mice, and it is hypothesized that decreased intrathymic IL-7 is involved in age-related thymic involution. To separate the effect of IL-7 on thymic involution from its function as a peripheral lymphocyte growth cofactor, we injected IL-7-secreting stromal cells into the thymi of recipient mice. The increased local concentration of IL-7 maintained the first step of thymopoiesis at a level far higher than was seen in age-matched controls. However, despite this success, there was no decrease in thymic involution or increase in T cell output. The inability of IL-7 to prevent involution led us to the discovery of an additional age-sensitive step in thymopoiesis, proliferation of the DN4 population, which is unaffected by IL-7 expression.
Collapse
|
8
|
Abstract
En route to maturing as T cell receptor (TCR) alphabeta-expressing cells, the development of thymocytes is contingent on expression of a pre-TCR complex comprising a TCRbeta chain paired with a surrogate TCRalpha chain, pre-Talpha (pTalpha). The pre-TCR has been proposed to promote cell survival, proliferation, differentiation, and lineage commitment. However, the precise molecular mechanisms governing this variety of effects remain elusive. Here, we present a cellular system designed to biochemically dissect signals elicited upon pre-TCR expression. Using the T cell line 4G4 stably transfected with one of the two known pTalpha isoforms or selective pTalpha deletion mutants and TCRbeta, we were able to observe that expression of a functional pre-TCR complex is sufficient to control the levels of surface Fas protein, the stimulation of mitogen-activated and stress-regulated kinases, and the activation status of the p53 antioncogene. We demonstrate that this regulation has a major impact on the expression of important regulators of apoptosis, such as Bcl-2 family members, and the cell cycle, such as p21(WAF). Furthermore, we show here that cells expressing a functional pre-TCR are more resistant to different types of DNA damage-induced apoptosis and that these effects are contingent on an intact cytoplasmic tail of pTalpha. We finally propose that the presence of a functional pre-TCR complex triggers many intracellular pathways capable of driving and ensuring thymocyte survival in the presence of DNA damage.
Collapse
Affiliation(s)
- Cristina Murga
- Centro de Biologia Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | |
Collapse
|
9
|
Middlebrook AJ, Martina C, Chang Y, Lukas RJ, DeLuca D. Effects of nicotine exposure on T cell development in fetal thymus organ culture: arrest of T cell maturation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2915-24. [PMID: 12218105 DOI: 10.4049/jimmunol.169.6.2915] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is evidence for both physiological functions of the natural neurotransmitter, acetylcholine, and pharmacological actions of the plant alkaloid, nicotine, on the development and function of the immune system. The effects of continuous exposure to nicotine over a 12-day course of fetal thymus organ culture (FTOC) were studied, and thymocytes were analyzed by flow cytometry. In the presence of very low concentrations of nicotine many more immature T cells (defined by low or negative TCR expression) and fewer mature T cells (intermediate or high expression of TCR) were produced. In addition, the numbers of cells expressing CD69 and, to a lesser extent, CD95 (Fas) were increased. These effects took place when fetal thymus lobes from younger (13-14 days gestation) pups were used for FTOC. If FTOC were set up using tissue from older (15-16 days gestation pups), nicotine had little effect, suggesting that it may act only on immature T cell precursors. Consistent with an increase in immature cells, the expression of recombinase-activating genes was found to be elevated. Nicotine effects were partially blocked by the simultaneous addition of the nicotinic antagonist d-tubocurarine. Furthermore, d-tubocurarine alone blocked the development of both immature and mature murine thymocytes, suggesting the presence of an endogenous ligand that may engage nicotinic acetylcholine receptors on developing thymocytes and influence the course of normal thymic ontogeny.
Collapse
Affiliation(s)
- Aaron J Middlebrook
- Department of Microbiology and Immunology, University of Arizona College of Medicine, Tucson, AZ 85274, USA
| | | | | | | | | |
Collapse
|
10
|
Malissen B, Ardouin L, Lin SY, Gillet A, Malissen M. Function of the CD3 subunits of the pre-TCR and TCR complexes during T cell development. Adv Immunol 1999; 72:103-48. [PMID: 10361573 DOI: 10.1016/s0065-2776(08)60018-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- B Malissen
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
11
|
Ross PE, Ehring GR, Cahalan MD. Dynamics of ATP-induced calcium signaling in single mouse thymocytes. J Cell Biol 1997; 138:987-98. [PMID: 9281578 PMCID: PMC2136769 DOI: 10.1083/jcb.138.5.987] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/1997] [Revised: 07/01/1997] [Indexed: 02/05/2023] Open
Abstract
Extracellular ATP (ATPo) elicits a robust change in the concentration of intracellular Ca2+ ([Ca2+]i) in fura-2-loaded mouse thymocytes. Most thymocytes (60%) exposed to ATPo exhibited a biphasic rise in [Ca2+]i; [Ca2+]i rose slowly at first to a mean value of 260 nM after 163 s and then increased rapidly to a peak level of 735 nM. In many cells, a declining plateau, which lasted for more than 10 min, followed the crest in [Ca2+]i. Experiments performed in the absence of extracellular [Ca2+]o abolished the rise in thymocyte [Ca2+]i, indicating that Ca2+ influx, rather than the release of stored Ca2+, is stimulated by ATPo. ATPo- mediated Ca2+ influx was potentiated as the [Mg2+]o was reduced, confirming that ATP4- is the active agonist form. In the absence of Mg2+o, 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) proved to be the most effective agonist of those tested. The rank order of potency for adenine nucleotides was BzATP4->ATP4->MgATP2->ADP3-, suggesting purinoreceptors of the P2X7/P2Z class mediate the ATPo response. Phenotyping experiments illustrate that both immature (CD4-CD8-, CD4+CD8+) and mature (CD4+CD8-, CD4-CD8+) thymocyte populations respond to ATP. Further separation of the double-positive population by size revealed that the ATPo-mediated [Ca2+]i response was much more pronounced in large (actively dividing) than in small (terminally differentiated) CD4+CD8+ thymocytes. We conclude that thymocytes vary in sensitivity to ATPo depending upon the degree of maturation and suggest that ATPo may be involved in processes that control cellular differentiation within the thymus.
Collapse
Affiliation(s)
- P E Ross
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|
12
|
Chow SC, Snowden R, Orrenius S, Cohen GM. Susceptibility of different subsets of immature thymocytes to apoptosis. FEBS Lett 1997; 408:141-6. [PMID: 9187355 DOI: 10.1016/s0014-5793(97)00308-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study the susceptibility of different subsets of immature rat thymocytes to undergo apoptosis was examined. Unfractionated rat thymocytes were negatively enriched into immature double positive (CD4+ CD8+), immature single positive (CD4- CD8+ CD3-) and triple negative (CD4- CD8- CD3-) thymocytes. These enriched subsets of immature thymocytes were then exposed to various apoptotic stimuli such as dexamethasone, etoposide and thapsigargin which readily induced apoptosis in unfractionated rat thymocytes. We found that the double positive thymocytes and their precursor cells, i.e. the single positive immature thymocytes, were equally sensitive to apoptosis after treatment with the apoptotic stimuli. In sharp contrast, the early migrants or precursor-containing thymocytes which are triple negative have a lower spontaneous apoptosis rate and were relatively resistant to all the apoptotic stimuli. These findings showed a breakpoint in thymocyte sensitivity to apoptosis which occurs after the onset of CD8 expression, suggesting that susceptibility of thymocytes to apoptosis is developmentally regulated.
Collapse
Affiliation(s)
- S C Chow
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
Transcription Factor Activation during Signal-induced Apoptosis of Immature CD4+CD8+ Thymocytes. J Biol Chem 1997. [DOI: 10.1016/s0021-9258(18)35511-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Abstract
Abstract
To investigate the role of bcl-2 in lymphohematopoiesis, a long-term bone marrow reconstitution system was established. Transplantation of 1,000 c-Kit+ Sca-1+ and lineage markers negative cells from bcl-2−/− mouse bone marrow resulted in long-term reconstitution of nonlymphoid cells. However, T cells were totally absent and B-lymphocyte development was severely impaired at a very early stage of differentiation in the chimeric mouse. On the other hand, transplantation of day 14 fetal liver cells from bcl-2−/− mice resulted in generation of both T and B cells in the recipient, albeit transiently. These data suggest that bcl-2 plays a critical role in the development of lymphoid progenitor cells from the hematopoietic stem cell (HSC), but is not essential for the development of nonlymphoid cells and the self-renewal of HSC. In addition, lymphopoiesis from fetal liver HSC appears to be less dependent on bcl-2 than adult bone marrow HSC.
Collapse
|
15
|
Ucker DS. Death and dying in the immune system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 41:179-218. [PMID: 9204146 DOI: 10.1016/s1054-3589(08)61059-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612, USA
| |
Collapse
|
16
|
Chiu L, Cherwinski H, Ransom J, Dunne JF. Flow cytometric ratio analysis of the Hoechst 33342 emission spectrum: multiparametric characterization of apoptotic lymphocytes. J Immunol Methods 1996; 189:157-71. [PMID: 8613668 DOI: 10.1016/0022-1759(95)00214-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The apoptotic response to various stimuli is an important part of immune regulation, and the ability to identify apoptotic lymphocytes within a complex population is a prerequisite to a more detailed understanding of its role in vivo, We described a flow cytometric technique which utilizes viable cells and enables simultaneous identification of apoptotic cells and analyses of immunophenotype, cell cycle progression, membrane integrity and light scatter properties. It is based upon analysis of two regions of the emission spectrum of the DNA-binding vital dye hoechst 33342. We established a precise correlation between the ratio of red to blue fluorescence emission and apoptosis based upon nuclear morphology and the presence of characteristic DNA degradation patterns. In human peripheral blood lymphocytes (PBL) and mouse thymocytes we incorporated light scatter properties, cell cycle stage, relevant cell surface immunophenotypic markers (CD25 or CD4) and CD8) and a marker of plasma membrane integrity (merocyanine 540) to enable multiparametric phenotyping of apoptotic cells. We show that staurosporine-induced apoptosis of ConA-stimulated PBL is not correlated with cell cycle stage but is selective for activated cells since the frequency of large, CD25+ cells is decreased by staurosporine. Dexamethasone and ionomycin differ in their ability to induce apoptosis selectively in murine thymocyte subsets. Dexamethasone kills a broad spectrum of the CD4/8 immunophenotypes with no selectively for cell cycle stage. Ionomycin selectively deplete CD4+8+ cells, especially those in the Go/G1 region of the cell cycle, and spared CD4-8+ cells. This technique is broadly advantageous for in vitro and ex vivo models of apoptosis in that it interrogates individual viable cells and correlates membrane and nuclear apoptotic changes with standard flow cytometric immunophenotyping.
Collapse
Affiliation(s)
- L Chiu
- Syntex Discovery Research, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
17
|
Grillot DA, Merino R, Núñez G. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med 1995; 182:1973-83. [PMID: 7500043 PMCID: PMC2192263 DOI: 10.1084/jem.182.6.1973] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The survival of T lymphocytes is tightly controlled during development. Here, we show that Bcl-xL, a protein homologue of Bcl-2, is highly regulated in the thymus in a pattern different than that of Bcl-2. The maximum expression was in CD4+CD8+ thymocytes, a developmental stage where Bcl-2 is downregulated. To assess the role of Bcl-xL in thymocyte apoptosis, we generated mice overexpressing an E mu-bcl-x transgene within the T cell compartment. Constitutive expression of Bcl-xL resulted in accumulation of thymocytes and mature T cells in lymphoid organs. Thymocytes overexpressing Bcl-xL exhibited increased viability in vitro and were resistant to apoptosis induced by different signals, including glucocorticoid, gamma irradiation, calcium ionophore, and CD3 cross-linking. However, Bcl-xL was unable to block clonal deletion of thymocytes reactive with self-superantigens or H-Y antigen. These studies demonstrate that Bcl-2 and Bcl-xL, two functionally related proteins, are regulated independently during T cell development. In contrast to Bcl-2, which has been implicated in the maintenance of mature T cells, Bcl-xL appears to provide a survival signal for the maintenance of more immature CD4+CD8+ thymocytes before positive selection.
Collapse
Affiliation(s)
- D A Grillot
- Department of Pathology, University of Michigan, Ann Arbor 48109-0608, USA
| | | | | |
Collapse
|
18
|
Tanaka Y, Ardouin L, Gillet A, Lin SY, Magnan A, Malissen B, Malissen M. Early T-cell development in CD3-deficient mice. Immunol Rev 1995; 148:171-99. [PMID: 8825287 DOI: 10.1111/j.1600-065x.1995.tb00098.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
MESH Headings
- Animals
- CD3 Complex/genetics
- CD3 Complex/immunology
- Gene Rearrangement, T-Lymphocyte/genetics
- Humans
- Hyaluronan Receptors/immunology
- Membrane Glycoproteins/immunology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Mutant Strains
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Interleukin-2/immunology
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- Y Tanaka
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Petrie HT, Livak F, Burtrum D, Mazel S. T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production. J Exp Med 1995; 182:121-7. [PMID: 7790812 PMCID: PMC2192092 DOI: 10.1084/jem.182.1.121] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The antigen-specific receptors of T and B lymphocytes are generated by somatic recombination between noncontiguous gene segments encoding the variable portions of these molecules. The semirandom nature of this process, while desirable for the generation of diversity, has been thought to exact a high price in terms of sterile (out-of-frame) products. Historically, the majority of T lymphocytes generated in mammals were thought to be useless, either because they generated such sterile rearrangements or because the receptors generated did not appropriately recognize self-molecules (i.e., positive and negative selection). In the studies described here, we characterize the onset of T cell receptor (TCR) alpha and beta chain gene rearrangements and quantitate their progression throughout T cell development. The results show that T cell production efficiency is enhanced through (a) rearrangement of TCR-beta chain genes early during T cell development, with selective expansion of those cells possessing in-frame rearrangements; (b) deletion of sterile rearrangements at the TCR-alpha chain locus through ordered (proximal to distal) sequential recombination; and (c) modification of nonselectable alpha/beta heterodimer specificities through generation and expression of new TCR-alpha chains. In addition, we demonstrate strict correlations between successful TCR-beta gene rearrangement, the onset of TCR-alpha gene rearrangement, rapid cell division, and programmed cell death, which together serve to maintain cell turnover and homeostasis during T cell development.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Differentiation
- Gene Rearrangement, T-Lymphocyte
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Homeostasis
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-bcl-2
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin-2/biosynthesis
- Recombination, Genetic
- T-Lymphocyte Subsets
Collapse
Affiliation(s)
- H T Petrie
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Clonal elimination accounts for self-tolerance induction in the thymus and also affects mature T cells responding to exogenous antigens in the periphery. Recent evidence on the microenvironments, cell-cell interactions and signalling requirements for clonal deletion of immature and mature T cells is discussed.
Collapse
Affiliation(s)
- J Sprent
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
21
|
McConkey DJ, Orrenius S. Calcium and cyclosporin A in the regulation of apoptosis. Curr Top Microbiol Immunol 1995; 200:95-105. [PMID: 7634840 DOI: 10.1007/978-3-642-79437-7_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- D J McConkey
- Department of Cell Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
22
|
Jondal M, Xue Y, McConkey DJ, Okret S. Thymocyte apoptosis by glucocorticoids and cAMP. Curr Top Microbiol Immunol 1995; 200:67-79. [PMID: 7634838 DOI: 10.1007/978-3-642-79437-7_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M Jondal
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- P Kisielow
- Basel Institute for Immunology, Switzerland
| | | |
Collapse
|
24
|
Dyall R, Nikolić-Zugić J. The majority of postselection CD4+ single-positive thymocytes requires the thymus to produce long-lived, functional T cells. J Exp Med 1995; 181:235-45. [PMID: 7528769 PMCID: PMC2191814 DOI: 10.1084/jem.181.1.235] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously isolated, and characterized in vitro, two subsets of CD4hi T cell receptor (TCR)hi single positive (SP) thymocytes: CD8- and CD8lo. In this report, we have analyzed phenotypic, functional, and developmental characteristics of these "late" CD4hi SP thymocyte subsets. The TCRhi phenotype and the elimination of T cells expressing TCR V beta segments reactive with endogenous mouse mammary tumor virus (MMTV) products suggested that both subsets had undergone positive and negative selection. CD8-4hi thymocytes were functional, as judged by their ability to: (a) induce lethal graft versus host disease (GVHD); (b) survive and expand in peripheral lymphoid organs; and (c) proliferate, rather than undergo apoptosis, in response to in vitro TCR cross-linking. By contrast, CD8lo4hi cells could not induce GVHD, were unable to expand (and perhaps even survive) in peripheral organs and underwent apoptosis upon TCR cross-linking. However, when reintroduced into the thymus, these cells matured into functional, long-lived CD8-4hi lymphocytes. These results document an obligatory requirement for the thymic microenvironment in the final maturation of the majority of CD4hi SP postselection thymocytes, and demonstrate the existence of a previously unrecognized control point in T cell development.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, T-Lymphocyte/analysis
- Apoptosis
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8 Antigens/metabolism
- Carrier Proteins/analysis
- Cell Differentiation
- Cell Movement
- Cell Separation
- Cell Survival
- Flow Cytometry
- Graft vs Host Disease/immunology
- Hyaluronan Receptors
- Lectins, C-Type
- Lymphocyte Subsets/cytology
- Lymphoid Tissue/cytology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell/physiology
- Receptors, Cell Surface/analysis
- Receptors, Lymphocyte Homing/analysis
- Thymus Gland/immunology
Collapse
Affiliation(s)
- R Dyall
- Laboratory of T Cell Development, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York 10021
| | | |
Collapse
|
25
|
Abstract
The immune system provides a unique vantage point from which to view the interrelationship between differentiation and cell death, as apoptosis is a prominent feature of B- and T-lymphocyte development. Two common themes emerge from recent experimental observations. First, survival signals are crucial during the differentiation process. The upregulation of Bcl-2 during positive selection suggests that this molecule serves as a survival signal to maintain lymphoid homeostasis. Second, if cell death is repressed, cellular differentiation can occur in the absence of inductive signals.
Collapse
Affiliation(s)
- G P Linette
- Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO 63110
| | | |
Collapse
|
26
|
Affiliation(s)
- J M Penninger
- Amgen Institute, University of Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Gratiot-Deans J, Merino R, Nuñez G, Turka LA. Bcl-2 expression during T-cell development: early loss and late return occur at specific stages of commitment to differentiation and survival. Proc Natl Acad Sci U S A 1994; 91:10685-9. [PMID: 7938012 PMCID: PMC45086 DOI: 10.1073/pnas.91.22.10685] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During T-cell development CD3-CD4-CD8- (double-negative) thymocytes proliferative and produce an enormous number of CD3loCD4+CD8+ (double-positive) thymocytes which are destined to die intrathymically unless rescued by positive selection. Those which survive become mature CD3hiCD4/8+ (single-positive) cells and are the precursor of peripheral blood lymphocytes. The product of the bcl-2 protooncogene has been implicated in preventing programmed cell death and is required for prolonged lymphocyte survival following maturation. Previously we and others have reported that Bcl-2 protein expression is biphasic, being high in proliferating double-negative stem cells, low in all double-positive thymocytes except for 1-5% of these cells, and restored in mature, single-positive thymocytes. However, it remained unclear which signaling and selection events regulate Bcl-2 during T-cell maturation. Now we have utilized four-color flow cytometry in normal and genetically altered mice for a detailed analysis of Bcl-2 expression as it relates to T-cell receptor (TCR) expression and positive selection. These studies show that (i) expression of a transgenic TCR in double-negative thymocytes does not lead to premature loss of Bcl-2; thus, Bcl-2 downregulation is not solely due to TCR expression; (ii) Bcl-2 expression is lost at the early transitional CD3-/loCD4-CD8+ stage, prior to expression of CD4; (iii) the Bcl-2+ double-positive thymocytes are those which have undergone positive selection; and (iv) upregulation of Bcl-2 during positive selection requires participation of the CD4 or CD8 co-receptor. These results demonstrate that Bcl-2 and TCR expression are regulated independently during T-cell development, and suggest a role for the CD4 or CD8 co-receptor in Bcl-2 induction during positive selection.
Collapse
Affiliation(s)
- J Gratiot-Deans
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|
28
|
Curnow SJ, Schmitt-Verhulst AM. The balance between deletion and activation of CD4+8+ thymocytes is controlled by T cell receptor-antigen interactions and is affected by cyclosporin A. Eur J Immunol 1994; 24:2401-9. [PMID: 7925567 DOI: 10.1002/eji.1830241021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sensitivity of immature thymocytes to antigen-induced deletion has been shown to correlate with their differentiation status. By using an in vitro approach we have investigated whether parameters of antigenic stimulation may also affect the response of thymocytes. Two T cell receptor (TcR)-transgenic (Tg) mouse models have been compared, both of which recognize the allo-antigen H-2Kb but are functionally CD8"-dependent" (KB5.C20-Tg) and "-independent" (BM3.3-Tg). Presentation of the antigen H-2Kb on the surface of fibroblasts; to thymocytes in vitro, resulted in the apoptosis of CD4+8+ thymocytes. In contrast to in vivo deletion, in vitro deletion was much greater for KB5.C20-Tg than for BM3.3-Tg. In the absence of engagement of CD8 (using an altered H-2Kb-alpha 3 domain or CD8-specific antibodies), the H-2Kb-induced deletion of CD4+8+ thymocytes was decreased for KB5.C20-Tg, but no change in the pattern of deletion for BM3.3-Tg occurred. CD4+8+ thymocytes which remained viable after in vitro exposure to antigen, were shown to have been activated. Cyclosporin A (CsA), which has been reported to inhibit activation-induced cell death, did not affect antigen-induced deletion of CD4+8+ thymocytes from KB5.C20-Tg. More strikingly, deletion of CD4+8+ thymocytes from BM3.3-Tg increased, whilst activation was partially inhibited by CsA. These results provide direct evidence that presentation of antigen to thymocytes can result in deletion or activation, depending on not only the differentiation status of the cell, but also parameters of TcR-antigen interaction. Additionally, the effects of CsA suggest that activation can prevent the induction of deletion.
Collapse
Affiliation(s)
- S J Curnow
- Centre d'Immunologie, INSERM-CNRS de Marseille-Luminy, Parc Scientifique de Luminy, France
| | | |
Collapse
|
29
|
Abstract
The processes known as positive and negative selection that determine the fate of T and B cells depend on finely tuned interactions between the T-cell receptor complex, CD4 or CD8 co-receptors, and a peptide-MHC complex. New work indicates that the avidity of this interaction is critical in the determination of its outcome. The effects of these interactions on developing thymocytes are also a function of the unique activation properties with which thymocytes are programmed just before they undergo selection.
Collapse
Affiliation(s)
- E V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena 91125
| |
Collapse
|