1
|
Zhang C, Liu Y, Jiang J, Chen C, Duan Z, Su H, Wang S, Tian B, Shi Y, Xiang R, Luo Y. Targeting tumor cell-to-macrophage communication by blocking Vtn-C1qbp interaction inhibits tumor progression via enhancing macrophage phagocytosis. Theranostics 2024; 14:2757-2776. [PMID: 38773982 PMCID: PMC11103506 DOI: 10.7150/thno.94537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024] Open
Abstract
Background: Cancer cells are capable of evading clearance by macrophages through overexpression of anti-phagocytic surface proteins known as "don't eat me" signals. Monoclonal antibodies that antagonize the "don't-eat-me" signaling in macrophages and tumor cells by targeting phagocytic checkpoints have shown therapeutic promises in several cancer types. However, studies on the responses to these drugs have revealed the existence of other unknown "don't eat me" signals. Moreover, identification of key molecules and interactions regulating macrophage phagocytosis is required for tumor therapy. Methods: CRISPR screen was used to identify genes that impede macrophage phagocytosis. To explore the function of Vtn and C1qbp in phagocytosis, knockdown and subsequent functional experiments were conducted. Flow cytometry were performed to explore the phagocytosis rate, polarization of macrophage, and immune microenvironment of mouse tumor. To explore the underlying molecular mechanisms, RNA sequencing, immunoprecipitation, mass spectrometry, and immunofluorescence were conducted. Then, in vivo experiments in mouse models were conducted to explore the probability of Vtn knockdown combined with anti-CD47 therapy in breast cancer. Single-cell sequencing data from the Gene Expression Omnibus from The Cancer Genome Atlas database were analyzed. Results: We performed a genome-wide CRISPR screen to identify genes that impede macrophage phagocytosis, followed by analysis of cell-to-cell interaction databases. We identified a ligand-receptor pair of Vitronectin (Vtn) and complement C1Q binding protein (C1qbp) in tumor cells or macrophages, respectively. We demonstrated tumor cell-secreted Vtn interacts with C1qbp localized on the cell surface of tumor-associated macrophages, inhibiting phagocytosis of tumor cells and shifting macrophages towards the M2-like subtype in the tumor microenvironment. Mechanistically, the Vtn-C1qbp axis facilitated FcγRIIIA/CD16-induced Shp1 recruitment, which reduced the phosphorylation of Syk. Furthermore, the combination of Vtn knockdown and anti-CD47 antibody effectively enhanced phagocytosis and infiltration of macrophages, resulting in a reduction of tumor growth in vivo. Conclusions: This work has revealed that the Vtn-C1qbp axis is a new anti-phagocytic signal in tumors, and targeting Vtn and its interaction with C1qbp may sensitize cancer to immunotherapy, providing a new molecular target for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Chen Zhang
- The School of Medicine, College of Pharmacy, Nankai University, Tianjin 300071, China
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yi Liu
- The School of Medicine, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jiayu Jiang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213149, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213149, China
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213149, China
| | - Huifang Su
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213149, China
| | - Shijian Wang
- The School of Medicine, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Baorui Tian
- The School of Medicine, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yi Shi
- The School of Medicine, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- The School of Medicine, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213149, China
| |
Collapse
|
2
|
Ghebrehiwet B, Zaniewski M, Fernandez A, DiGiovanni M, Reyes TN, Ji P, Savitt AG, Williams JL, Seeliger MA, Peerschke EIB. The C1q and gC1qR axis as a novel checkpoint inhibitor in cancer. Front Immunol 2024; 15:1351656. [PMID: 38711524 PMCID: PMC11070495 DOI: 10.3389/fimmu.2024.1351656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved. The complement system is emerging as a potential novel target for cancer therapy. Data accumulated to date show that complement proteins, and in particular C1q and its receptors cC1qR/CR and gC1qR/p33/HABP1, are overexpressed in most cancer cells and together are involved not only in shaping the inflammatory tumor microenvironment, but also in the regulation of angiogenesis, metastasis, and cell proliferation. In addition to the soluble form of C1q that is found in plasma, the C1q molecule is also found anchored on the cell membrane of monocytes, macrophages, dendritic cells, and cancer cells, via a 22aa long leader peptide found only in the A-chain. This orientation leaves its 6 globular heads exposed outwardly and thus available for high affinity binding to a wide range of molecular ligands that enhance tumor cell survival, migration, and proliferation. Similarly, the gC1qR molecule is not only overexpressed in most cancer types but is also released into the microenvironment where it has been shown to be associated with cancer cell proliferation and metastasis by activation of the complement and kinin systems. Co-culture of either T cells or cancer cells with purified C1q or anti-gC1qR has been shown to induce an anti-proliferative response. It is therefore postulated that in the tumor microenvironment, the interaction between C1q expressing cancer cells and gC1qR bearing cytotoxic T cells results in T cell suppression in a manner akin to the PD-L1 and PD-1 interaction.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Michal Zaniewski
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Audrey Fernandez
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Mathew DiGiovanni
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Tiana N. Reyes
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ping Ji
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Anne G. Savitt
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Jennie L. Williams
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Markus A. Seeliger
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, United States
| | - Ellinor I. B. Peerschke
- Department of Laboratory Medicine, Memorial Sloane Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
3
|
Coller BS, Ghebrehiwet B, Pessin M. Ellinor Peerschke, PhD (1954-2023). J Thromb Haemost 2024; 22:889-891. [PMID: 38104722 DOI: 10.1016/j.jtha.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Affiliation(s)
- Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, the Rockefeller University, New York, NY 10065, USA.
| | - Berhane Ghebrehiwet
- Division Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University Health Sciences Center, Stony Brook, NY 11794-8161, USA
| | - Melissa Pessin
- Department of Pathology, UCM Clinical Laboratories, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Wang S, Fairall L, Pham TK, Ragan TJ, Vashi D, Collins M, Dominguez C, Schwabe JR. A potential histone-chaperone activity for the MIER1 histone deacetylase complex. Nucleic Acids Res 2023; 51:6006-6019. [PMID: 37099381 PMCID: PMC10325919 DOI: 10.1093/nar/gkad294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023] Open
Abstract
Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.
Collapse
Affiliation(s)
- Siyu Wang
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Louise Fairall
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Trong Khoa Pham
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Timothy J Ragan
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Dipti Vashi
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Cyril Dominguez
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - John W R Schwabe
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
5
|
Delgardo M, Tang AJ, Tudor T, Pascual-Leone A, Connolly ES. Role of gC1qR as a modulator of endothelial cell permeability and contributor to post-stroke inflammation and edema formation. Front Cell Neurosci 2023; 17:1123365. [PMID: 37383840 PMCID: PMC10294424 DOI: 10.3389/fncel.2023.1123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. A serious risk of acute ischemic stroke (AIS) arises after the stroke event, due to inflammation and edema formation. Inflammation and edema in the brain are mediated by bradykinin, the formation of which is dependent upon a multi-ligand receptor protein called gC1qR. There are currently no preventive treatments for the secondary damage of AIS produced by inflammation and edema. This review aims to summarize recent research regarding the role of gC1qR in bradykinin formation, its role in inflammation and edema following ischemic injury, and potential therapeutic approaches to preventing post-stroke inflammation and edema formation.
Collapse
|
6
|
Balduit A, Vidergar R, Zacchi P, Mangogna A, Agostinis C, Grandolfo M, Bottin C, Salton F, Confalonieri P, Rocca A, Zanconati F, Confalonieri M, Kishore U, Ghebrehiwet B, Bulla R. Complement protein C1q stimulates hyaluronic acid degradation via gC1qR/HABP1/p32 in malignant pleural mesothelioma. Front Immunol 2023; 14:1151194. [PMID: 37334363 PMCID: PMC10275365 DOI: 10.3389/fimmu.2023.1151194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Complement component C1q can act as a pro-tumorigenic factor in the tumor microenvironment (TME). The TME in malignant pleural mesothelioma (MPM) is rich in C1q and hyaluronic acid (HA), whose interaction enhances adhesion, migration and proliferation of malignant cells. HA-bound C1q is also capable of modulating HA synthesis. Thus, we investigated whether HA-C1q interaction would affect HA degradation, analyzing the main degradation enzymes, hyaluronidase (HYAL)1 and HYAL2, and a C1q receptor candidate. We first proceeded with the characterization of HYALs in MPM cells, especially HYAL2, since bioinformatics survival analysis revealed that higher HYAL2 mRNA levels have an unfavorable prognostic index in MPM patients. Interestingly, Real-Time quantitative PCR, flow cytometry and Western blot highlighted an upregulation of HYAL2 after seeding of primary MPM cells onto HA-bound C1q. In an attempt to unveil the receptors potentially involved in HA-C1q signaling, a striking co-localization between HYAL2 and globular C1q receptor/HABP1/p32 (gC1qR) was found by immunofluorescence, surface biotinylation and proximity ligation assays. RNA interference experiments revealed a potentially regulatory function exerted by gC1qR on HYAL2 expression, since C1QBP (gene for gC1qR) silencing unexpectedly caused HYAL2 downregulation. In addition, the functional blockage of gC1qR by a specific antibody hindered HA-C1q signaling and prevented HYAL2 upregulation. Thus, C1q-HA interplay is responsible for enhanced HYAL2 expression, suggesting an increased rate of HA catabolism and the release of pro-inflammatory and pro-tumorigenic HA fragments in the MPM TME. Our data support the notion of an overall tumor-promoting property of C1q. Moreover, the overlapping localization and physical interaction between HYAL2 and gC1qR suggests a potential regulatory effect of gC1qR within a putative HA-C1q macromolecular complex.
Collapse
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Romana Vidergar
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Micaela Grandolfo
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Francesco Salton
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Paola Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Andrea Rocca
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
- Struttura Complessa di Anatomia ed Istologia Patologica, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Li C, Mori LP, Lyu S, Bronson R, Getzler AJ, Pipkin ME, Valente ST. The chaperone protein p32 stabilizes HIV-1 Tat and strengthens the p-TEFb/RNAPII/TAR complex promoting HIV transcription elongation. Proc Natl Acad Sci U S A 2023; 120:e2217476120. [PMID: 36584296 PMCID: PMC9910500 DOI: 10.1073/pnas.2217476120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022] Open
Abstract
HIV gene expression is modulated by the combinatorial activity of the HIV transcriptional activator, Tat, host transcription factors, and chromatin remodeling complexes. To identify host factors regulating HIV transcription, we used specific single-guide RNAs and endonuclease-deficient Cas9 to perform chromatin affinity purification of the integrated HIV promoter followed by mass spectrometry. The scaffold protein, p32, also called ASF/SF2 splicing factor-associated protein, was identified among the top enriched factors present in actively transcribing HIV promoters but absent in silenced ones. Chromatin immunoprecipitation analysis confirmed the presence of p32 on active HIV promoters and its enhanced recruitment by Tat. HIV uses Tat to efficiently recruit positive transcription elongation factor b (p-TEFb) (CDK9/CCNT1) to TAR, an RNA secondary structure that forms from the first 59 bp of HIV transcripts, to enhance RNAPII transcriptional elongation. The RNA interference of p32 significantly reduced HIV transcription in primary CD4+T cells and in HIV chronically infected cells, independently of either HIV splicing or p32 anti-splicing activity. Conversely, overexpression of p32 specifically increased Tat-dependent HIV transcription. p32 was found to directly interact with Tat's basic domain enhancing Tat stability and half-life. Conversely, p32 associates with Tat via N- and C-terminal domains. Likely due its scaffold properties, p32 also promoted Tat association with TAR, p-TEFb, and RNAPII enhancing Tat-dependent HIV transcription. In sum, we identified p32 as a host factor that interacts with and stabilizes Tat protein, promotes Tat-dependent transcriptional regulation, and may be explored for HIV-targeted transcriptional inhibition.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Luisa P. Mori
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Shuang Lyu
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Ronald Bronson
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Adam J. Getzler
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Susana T. Valente
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| |
Collapse
|
8
|
Lei Y, Li X, Qin D, Zhang Y, Wang Y. gC1qR: A New Target for Cancer Immunotherapy. Front Immunol 2023; 14:1095943. [PMID: 36776869 PMCID: PMC9909189 DOI: 10.3389/fimmu.2023.1095943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Although breakthroughs in cancer treatment have been achieved, immunotherapy yields only modest benefits in most patients. There is still a gap in clarifying the immune evasiveness and immune-resistance mechanisms. Identifying other candidate targets for cancer immunotherapy is therefore a clear unmet clinical need. The complement system, a pillar of innate immunity, has recently entered the limelight due to its immunoregulatory functions in the tumor microenvironment (TME). In particular, gC1qR, a receptor for globular heads of C1q, serves as a promising new target and has attracted more attention. gC1qR, also named P32/C1qBP/HABP1, is a multifunctional protein that is overexpressed in various cancers and holds prognostic value. It regulates the tumorigenic, progression and metastatic properties of tumor cells through several downstream signaling pathways, including the Wnt/β-catenin, PKC-NF-κB and Akt/PKB pathways. A few preclinical experiments conducted through gC1qR interventions, such as monoclonal antibody, chimeric antigen receptor T-cell (CAR-T) therapy, and tumor vaccination, have shown encouraging results in anticancer activity. The efficacy may rely on the regulatory role on the TME, induction of tumor cells apoptosis and antiangiogenic activity. Nevertheless, the current understanding of the relationship between cancer immunotherapy and gC1qR remains elusive and often contradictory, posing both opportunities and challenges for therapeutic translation in the clinic. In this review, we focus on the current understanding of gC1qR function in cancer immunology and highlight the vital roles in regulating the TME. We also examines the rationale behind targeting gC1qR and discusses the potential for translating into clinical practice.
Collapse
Affiliation(s)
- Yanna Lei
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Diyuan Qin
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Tang X, Arora G, Matias J, Hart T, Cui Y, Fikrig E. A tick C1q protein alters infectivity of the Lyme disease agent by modulating interferon γ. Cell Rep 2022; 41:111673. [PMID: 36417869 PMCID: PMC9909562 DOI: 10.1016/j.celrep.2022.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
In North America, the Lyme disease agent, Borrelia burgdorferi, is commonly transmitted by the black-legged tick, Ixodes scapularis. Tick saliva facilitates blood feeding and enhances pathogen survival and transmission. Here, we demonstrate that I. scapularis complement C1q-like protein 3 (IsC1ql3), a tick salivary protein, directly interacts with B. burgdorferi and is important during the initial stage of spirochetal infection of mice. Mice fed upon by B. burgdorferi-infected IsC1ql3-silenced ticks, or IsC1ql3-immunized mice fed upon by B. burgdorferi-infected ticks, have a lower spirochete burden during the early phase of infection compared with control animals. Mechanically, IsC1ql3 interacts with the globular C1q receptor present on the surface of CD4+ and CD8+ T cells, resulting in decreased production of interferon γ. IsC1ql3 is a C1q-domain-containing protein identified in arthropod vectors and has an important role in B. burgdorferi infectivity as the spirochete transitions from the tick to vertebrate host.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Thomas Hart
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Maeda N, Tsuchida J, Nishimune Y, Tanaka H. Analysis of Ser/Thr Kinase HASPIN-Interacting Proteins in the Spermatids. Int J Mol Sci 2022; 23:ijms23169060. [PMID: 36012324 PMCID: PMC9409403 DOI: 10.3390/ijms23169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
HASPIN is predominantly expressed in spermatids, and plays an important role in cell division in somatic and meiotic cells through histone H3 phosphorylation. The literature published to date has suggested that HASPIN may play multiple roles in cells. Here, 10 gene products from the mouse testis cDNA library that interact with HASPIN were isolated using the two-hybrid system. Among them, CENPJ/CPAP, KPNA6/importin alpha 6, and C1QBP/HABP1 were analyzed in detail for their interactions with HASPIN, with HASPIN phosphorylated C1QBP as the substrate. The results indicated that HASPIN is involved in spermatogenesis through the phosphorylation of C1QBP in spermatids, and also may be involved in the formation of centrosomes.
Collapse
Affiliation(s)
- Naoko Maeda
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Junji Tsuchida
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yoshitake Nishimune
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Nagasaki, Japan
- Correspondence: ; Tel./Fax: +81-956-20-5651
| |
Collapse
|
11
|
Egusquiza-Alvarez CA, Robles-Flores M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 2022; 148:1831-1854. [PMID: 35441886 DOI: 10.1007/s00432-022-04001-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.
Collapse
Affiliation(s)
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
12
|
Zhang Y, Vontz AJ, Kallenberger EM, Xu X, Ploscariu NT, Ramyar KX, Garcia BL, Ghebrehiwet B, Geisbrecht BV. gC1qR/C1qBP/HABP-1: Structural Analysis of the Trimeric Core Region, Interactions With a Novel Panel of Monoclonal Antibodies, and Their Influence on Binding to FXII. Front Immunol 2022; 13:887742. [PMID: 35865516 PMCID: PMC9294231 DOI: 10.3389/fimmu.2022.887742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
The protein gC1qR/C1qBP/HABP-1 plays an essential role in mitochondrial biogenesis, but becomes localized at the cellular surface in numerous pathophysiological states. When this occurs on endothelial cells, surface-exposed gC1qR activates the classical pathway of complement. It also promotes assembly of a multi-protein complex comprised of coagulation factor XII (FXII), pre-kallikrein (PK), and high-molecular weight kininogen (HMWK) that activates the contact system and the kinin-generating system. Since surface-exposed gC1qR triggers intravascular inflammatory pathways, there is interest in identifying molecules that block gC1qR function. Here we further that objective by reporting the outcome of a structure/function investigation of gC1qR, its interactions with FXII, and the impact of a panel of monoclonal anti-gC1qR antibodies on FXII binding to gC1qR. Although deletion mutants have been used extensively to assess gC1qR function, none of these proteins have been characterized structurally. To that end, we determined a 2.2 Å resolution crystal structure of a gC1qR mutant lacking both of its acidic loops, but which retained nanomolar-affinity binding to FXII and FXIIa. This structure revealed that the trimeric gC1qR assembly was maintained despite loss of roughly thirty residues. Characterization of a novel panel of anti-gC1qR monoclonal antibodies identified several with biochemical properties distinct from previously described antibodies, as well as one which bound to the first acidic loop of gC1qR. Intriguingly, we found that each of these antibodies could partly inhibit binding of FXII and FXIIa to gC1qR. Based on these results and previously published studies, we offer new perspectives for developing gC1qR inhibitors.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Alexander J. Vontz
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Ethan M. Kallenberger
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Xin Xu
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Nicoleta T. Ploscariu
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Kasra X. Ramyar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Brandon L. Garcia
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States,*Correspondence: Berhane Ghebrehiwet, ; Brian V. Geisbrecht,
| | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States,*Correspondence: Berhane Ghebrehiwet, ; Brian V. Geisbrecht,
| |
Collapse
|
13
|
Chalenko YM, Abdulkadieva MM, Safarova PV, Kalinin EV, Slonova DA, Yermolaeva SA. InlB protein secreted by Listeria monocytogenes controls the pathogen interaction with macrophages. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The virulence of gram-positive bacterium Listeria monocytogenes depends on its capacity to infect non-professional phagocytes and proliferate inside them. Listerias monocytogenes captured by mononuclear phagocytic cells during the infectious process are resistant to lysosomal digestion and can proliferate inside macrophages. Internalin B (InlB), one of the key pathogenicity factors of L. monocytogenes, interacts with mammalian receptors c-Met and gC1q-R. For epithelial cells, such interactions with surface receptors promote activation of these receptors and cytoskeletal remodeling, which leads to massive bacterial invasion into nonprofessional phagocytes. For macrophages, by contrast, nothing is known about the role of InlB in their interactions with L. monocytogenes apart from the fact that both receptors are abundantly expressed by macrophages and participate in the development of immune reactions. This study aimed at determination of the potential role of InlB in the interactions between L. monocytogenes and macrophages. We found that 1) InlB expression promoted a significant 3.5-fold increase in the rates of L. monocytogenes capture by macrophages; 2) the 24 h fold increase in bacterial number inside macrophages constituted 182.5 ± 16.7, 96 ± 12 and 13.3 ± 3 for EGDe∆inlB, EGDe and EGDe∆inlB::pInlB strains, respectively; 3) the EGDe∆inlB::pInlB strain, complemented with a plasmid copy of inlB, produced InlB at 3.3fold higher rates than the type strain EGDe. We conclude that InlB negatively affects the survival of listeria inside macrophages. The results enable advanced understanding of the host-pathogen interactions for L. monocytogenes.
Collapse
Affiliation(s)
- YM Chalenko
- Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | | | - PV Safarova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - EV Kalinin
- Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - DA Slonova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - SA Yermolaeva
- Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
14
|
Abstract
Tumorigenesis has long been linked to the evasion of the immune system and the uncontrolled proliferation of transformed cells. The complement system, a major arm of innate immunity, is a key factor in the progression of cancer because many of its components have critical regulatory roles in the tumor microenvironment. For example, complement anaphylatoxins directly and indirectly inhibit antitumor T-cell responses in primary and metastatic sites, enhance proliferation of tumor cells, and promote metastasis and tumor angiogenesis. Many recent studies have provided evidence that cancer is able to hijack the immunoregulatory components of the complement system which fundamentally are tasked with protecting the body against abnormal cells and pathogens. Indeed, recent evidence shows that many types of cancer use C1q receptors (C1qRs) to promote tumor growth and progression. More importantly, most cancer cells express both C1q and its major receptors (gC1qR and cC1qR) on their surface which are essential for cell proliferation and survival. In this review, we discuss the ability of cancer to control and manipulate the complement system in the tumor microenvironment and identify possible therapeutic targets, including C1q and gC1qR.
Collapse
Affiliation(s)
- Danyaal Ain
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Talha Shaikh
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Samantha Manimala
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| |
Collapse
|
15
|
Wang Y, Zhang B, Zhao S, Wang Y, Chu X, Li XC. SpgC1qR interacts with WSSV VP28 exhibiting antiviral activity. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100052. [DOI: 10.1016/j.fsirep.2022.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022] Open
|
16
|
Phan QT, Lin J, Solis NV, Eng M, Swidergall M, Wang F, Li S, Gaffen SL, Chou TF, Filler SG. The Globular C1q Receptor Is Required for Epidermal Growth Factor Receptor Signaling during Candida albicans Infection. mBio 2021; 12:e0271621. [PMID: 34724825 PMCID: PMC8561387 DOI: 10.1128/mbio.02716-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
During oropharyngeal candidiasis, Candida albicans activates the epidermal growth factor receptor (EGFR), which induces oral epithelial cells to endocytose the fungus and synthesize proinflammatory mediators. To elucidate EGFR signaling pathways that are stimulated by C. albicans, we used proteomics to identify 1,214 proteins that were associated with EGFR in C. albicans-infected cells. Seven of these proteins were selected for additional study. Among these proteins, WW domain-binding protein 2, Toll-interacting protein, interferon-induced transmembrane protein 3 (IFITM3), and the globular C1q receptor (gC1qR) were found to associate with EGFR in viable oral epithelial cells. Each of these proteins was required for maximal endocytosis of C. albicans, and all regulated fungus-induced production of interleukin-1β (IL-1β) and/or IL-8, either positively or negatively. gC1qR was found to function as a key coreceptor with EGFR. Interacting with the C. albicans Als3 invasin, gC1qR was required for the fungus to induce autophosphorylation of both EGFR and the ephrin type A receptor 2. The combination of gC1qR and EGFR was necessary for maximal endocytosis of C. albicans and secretion of IL-1β, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by human oral epithelial cells. In mouse oral epithelial cells, inhibition of gC1qR failed to block C. albicans-induced phosphorylation, and knockdown of IFITM3 did not inhibit C. albicans endocytosis, indicating that gC1qR and IFITM3 function differently in mouse versus human oral epithelial cells. Thus, this work provides an atlas of proteins that associate with EGFR and identifies several that play a central role in the response of human oral epithelial cells to C. albicans infection. IMPORTANCE Oral epithelial cells play a key role in the pathogenesis of oropharyngeal candidiasis. In addition to being target host cells for C. albicans adherence and invasion, they secrete proinflammatory cytokines and chemokines that recruit T cells and activated phagocytes to foci of infection. It is known that C. albicans activates EGFR on oral epithelial cells, which induces these cells to endocytose the organism and stimulates them to secrete proinflammatory mediators. To elucidate the EGFR signaling pathways that govern these responses, we analyzed the epithelial cell proteins that associate with EGFR in C. albicans-infected epithelial cells. We identified four proteins that physically associate with EGFR and that regulate different aspects of the epithelial response to C. albicans. One of these is gC1qR, which is required for C. albicans to activate EGFR, induce endocytosis, and stimulate the secretion of proinflammatory mediators, indicating that gC1qR functions as a key coreceptor with EGFR.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Norma V. Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Michael Eng
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Marc Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Feng Wang
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Shan Li
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tsui-Fen Chou
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G. Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
17
|
Zhai X, Liu K, Fang H, Zhang Q, Gao X, Liu F, Zhou S, Wang X, Niu Y, Hong Y, Lin SH, Liu WH, Xiao C, Li Q, Xiao N. Mitochondrial C1qbp promotes differentiation of effector CD8 + T cells via metabolic-epigenetic reprogramming. SCIENCE ADVANCES 2021; 7:eabk0490. [PMID: 34860557 PMCID: PMC8641941 DOI: 10.1126/sciadv.abk0490] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/15/2021] [Indexed: 05/27/2023]
Abstract
Early-activated CD8+ T cells increase both aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS). However, whether and how the augmentation of OXPHOS regulates differentiation of effector CD8+ T cell remains unclear. Here, we found that C1qbp was intrinsically required for such differentiation in antiviral and antitumor immune responses. Activated C1qbp-deficient CD8+ T cells failed to increase mitochondrial respiratory capacities, resulting in diminished acetyl–coenzyme A as well as elevated fumarate and 2-hydroxyglutarate. Consequently, hypoacetylation of H3K27 and hypermethylation of H3K27 and CpG sites were associated with transcriptional down-regulation of effector signature genes. The effector differentiation of C1qbp-sufficient or C1qbp-deficient CD8+ T cells was reversed by fumarate or a combination of histone deacetylase inhibitor and acetate. Therefore, these findings identify C1qbp as a pivotal positive regulator in the differentiation of effector CD8+ T cells and highlight a metabolic-epigenetic axis in this process.
Collapse
Affiliation(s)
- Xingyuan Zhai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kai Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongkun Fang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Quan Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianjun Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shangshang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xinming Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yujia Niu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiyuan Li
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
18
|
Sahu BS, Nguyen ME, Rodriguez P, Pallais JP, Ghosh V, Razzoli M, Sham YY, Salton SR, Bartolomucci A. The molecular identity of the TLQP-21 peptide receptor. Cell Mol Life Sci 2021; 78:7133-7144. [PMID: 34626205 PMCID: PMC8629782 DOI: 10.1007/s00018-021-03944-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
The TLQP-21 neuropeptide has been implicated in functions as diverse as lipolysis, neurodegeneration and metabolism, thus suggesting an important role in several human diseases. Three binding targets have been proposed for TLQP-21: C3aR1, gC1qR and HSPA8. The aim of this review is to critically evaluate the molecular identity of the TLQP-21 receptor and the proposed multi-receptor mechanism of action. Several studies confirm a critical role for C3aR1 in TLQP-21 biological activity and a largely conserved mode of binding, receptor activation and signaling with C3a, its first-identified endogenous ligand. Conversely, data supporting a role of gC1qR and HSPA8 in TLQP-21 activity remain limited, with no signal transduction pathways being described. Overall, C3aR1 is the only receptor for which a necessary and sufficient role in TLQP-21 activity has been confirmed thus far. This conclusion calls into question the validity of a multi-receptor mechanism of action for TLQP-21 and should inform future studies.
Collapse
Affiliation(s)
- Bhavani S Sahu
- National Brain Research Centre, NH-8, Manesar, Gurugram, Haryana, 122052, India
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Vinayak Ghosh
- National Brain Research Centre, NH-8, Manesar, Gurugram, Haryana, 122052, India
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - Stephen R Salton
- Departments of Neuroscience and Geriatrics and Palliative Medicine, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Savitt AG, Manimala S, White T, Fandaros M, Yin W, Duan H, Xu X, Geisbrecht BV, Rubenstein DA, Kaplan AP, Peerschke EI, Ghebrehiwet B. SARS-CoV-2 Exacerbates COVID-19 Pathology Through Activation of the Complement and Kinin Systems. Front Immunol 2021; 12:767347. [PMID: 34804054 PMCID: PMC8602850 DOI: 10.3389/fimmu.2021.767347] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Infection with SARS-CoV-2 triggers the simultaneous activation of innate inflammatory pathways including the complement system and the kallikrein-kinin system (KKS) generating in the process potent vasoactive peptides that contribute to severe acute respiratory syndrome (SARS) and multi-organ failure. The genome of SARS-CoV-2 encodes four major structural proteins - the spike (S) protein, nucleocapsid (N) protein, membrane (M) protein, and the envelope (E) protein. However, the role of these proteins in either binding to or activation of the complement system and/or the KKS is still incompletely understood. In these studies, we used: solid phase ELISA, hemolytic assay and surface plasmon resonance (SPR) techniques to examine if recombinant proteins corresponding to S1, N, M and E: (a) bind to C1q, gC1qR, FXII and high molecular weight kininogen (HK), and (b) activate complement and/or the KKS. Our data show that the viral proteins: (a) bind C1q and activate the classical pathway of complement, (b) bind FXII and HK, and activate the KKS in normal human plasma to generate bradykinin and (c) bind to gC1qR, the receptor for the globular heads of C1q (gC1q) which in turn could serve as a platform for the activation of both the complement system and KKS. Collectively, our data indicate that the SARS-CoV-2 viral particle can independently activate major innate inflammatory pathways for maximal damage and efficiency. Therefore, if efficient therapeutic modalities for the treatment of COVID-19 are to be designed, a strategy that includes blockade of the four major structural proteins may provide the best option.
Collapse
Affiliation(s)
- Anne G Savitt
- Department of Microbiology & Immunology, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States
| | - Samantha Manimala
- Department of Medicine, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States
| | - Tiara White
- Department of Microbiology & Immunology, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States
| | - Marina Fandaros
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Huiquan Duan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Xin Xu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Allen P Kaplan
- Pulmonary and Critical Care Division, The Medical University of South Carolina, Charleston, SC, United States
| | - Ellinor I Peerschke
- The Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Berhane Ghebrehiwet
- Department of Microbiology & Immunology, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
20
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
21
|
Konrath S, Mailer RK, Renné T. Mechanism, Functions, and Diagnostic Relevance of FXII Activation by Foreign Surfaces. Hamostaseologie 2021; 41:489-501. [PMID: 34592776 DOI: 10.1055/a-1528-0499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Factor XII (FXII) is a serine protease zymogen produced by hepatocytes and secreted into plasma. The highly glycosylated coagulation protein consists of six domains and a proline-rich region that regulate activation and function. Activation of FXII results from a conformational change induced by binding ("contact") with negatively charged surfaces. The activated serine protease FXIIa drives both the proinflammatory kallikrein-kinin pathway and the procoagulant intrinsic coagulation cascade, respectively. Deficiency in FXII is associated with a prolonged activated partial thromboplastin time (aPTT) but not with an increased bleeding tendency. However, genetic or pharmacological deficiency impairs both arterial and venous thrombosis in experimental models. This review summarizes current knowledge of FXII structure, mechanisms of FXII contact activation, and the importance of FXII for diagnostic coagulation testing and thrombosis.
Collapse
Affiliation(s)
- Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Egusquiza-Alvarez CA, Castañeda-Patlán MC, Albarran-Gutierrez S, Gonzalez-Aguilar H, Moreno-Londoño AP, Maldonado V, Melendez-Zajgla J, Robles-Flores M. Overexpression of Multifunctional Protein p32 Promotes a Malignant Phenotype in Colorectal Cancer Cells. Front Oncol 2021; 11:642940. [PMID: 34136383 PMCID: PMC8201776 DOI: 10.3389/fonc.2021.642940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
p32 is a multifunctional and multicompartmental protein that has been found upregulated in numerous adenocarcinomas, including colorectal malignancy. High levels of p32 expression have been correlated with poor prognosis in colorectal cancer. However, the functions performed by p32 in colorectal cancer have not been characterized. Here we show that p32 is overexpressed in colorectal cancer cell lines compared to non-malignant colon cells. Colon cancer cells also display higher nuclear levels of p32 than nuclear levels found in non-malignant cells. Moreover, we demonstrate that p32 regulates the expression levels of genes tightly related to malignant phenotypes such as HAS-2 and PDCD4. Remarkably, we demonstrate that knockdown of p32 negatively affects Akt/mTOR signaling activation, inhibits the migration ability of colon malignant cells, and sensitizes them to cell death induced by oxidative stress and chemotherapeutic agents, but not to cell death induced by nutritional stress. In addition, knockdown of p32 significantly decreased clonogenic capacity and in vivo tumorigenesis in a xenograft mice model. Altogether, our results demonstrate that p32 is an important promoter of malignant phenotype in colorectal cancer cells, suggesting that it could be used as a therapeutic target in colorectal cancer treatment.
Collapse
Affiliation(s)
| | - M Cristina Castañeda-Patlán
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Sara Albarran-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Héctor Gonzalez-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Angela P Moreno-Londoño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetics and Functional Genomics Laboratories, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Epigenetics and Functional Genomics Laboratories, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
23
|
DeBlasio SL, Wilson JR, Tamborindeguy C, Johnson RS, Pinheiro PV, MacCoss MJ, Gray SM, Heck M. Affinity Purification-Mass Spectrometry Identifies a Novel Interaction between a Polerovirus and a Conserved Innate Immunity Aphid Protein that Regulates Transmission Efficiency. J Proteome Res 2021; 20:3365-3387. [PMID: 34019426 DOI: 10.1021/acs.jproteome.1c00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vast majority of plant viruses are transmitted by insect vectors, with many crucial aspects of the transmission process being mediated by key protein-protein interactions. Still, very few vector proteins interacting with viruses have been identified and functionally characterized. Potato leafroll virus (PLRV) is transmitted most efficiently by Myzus persicae, the green peach aphid, in a circulative, non-propagative manner. Using affinity purification coupled to high-resolution mass spectrometry (AP-MS), we identified 11 proteins from M. persicaedisplaying a high probability of interaction with PLRV and an additional 23 vector proteins with medium confidence interaction scores. Three of these aphid proteins were confirmed to directly interact with the structural proteins of PLRV and other luteovirid species via yeast two-hybrid. Immunolocalization of one of these direct PLRV-interacting proteins, an orthologue of the human innate immunity protein complement component 1 Q subcomponent-binding protein (C1QBP), shows that MpC1QBP partially co-localizes with PLRV in cytoplasmic puncta and along the periphery of aphid gut epithelial cells. Artificial diet delivery to aphids of a chemical inhibitor of C1QBP leads to increased PLRV acquisition by aphids and subsequently increased titer in inoculated plants, supporting a role for C1QBP in the acquisition and transmission efficiency of PLRV by M. persicae. This study presents the first use of AP-MS for the in vivo isolation of a functionally relevant insect vector-virus protein complex. MS data are available from ProteomeXchange.org using the project identifier PXD022167.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York 14853, United States.,Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States
| | - Jennifer R Wilson
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cecilia Tamborindeguy
- Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Patricia V Pinheiro
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Stewart M Gray
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York 14853, United States.,Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Koo BH, Won MH, Kim YM, Ryoo S. Arginase II protein regulates Parkin-dependent p32 degradation that contributes to Ca2+-dependent eNOS activation in endothelial cells. Cardiovasc Res 2021; 118:1344-1358. [PMID: 33964139 PMCID: PMC8953445 DOI: 10.1093/cvr/cvab163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Aims Arginase II (ArgII) plays a key role in the regulation of Ca2+ between the cytosol and mitochondria in a p32-dependent manner. p32 contributes to endothelial nitric oxide synthase (eNOS) activation through the Ca2+/CaMKII/AMPK/p38MAPK/Akt signalling cascade. Therefore, we investigated a novel function of ArgII in the regulation of p32 stability. Methods and results mRNA levels were measured by quantitative reverse transcription-PCR, and protein levels and activation were confirmed by western blot analysis. Ca2+ concentrations were measured by FACS analysis and a vascular tension assay was performed. ArgII bound to p32, and ArgII protein knockdown using siArgII facilitated the ubiquitin-dependent proteasomal degradation of p32. β-lactone, a proteasome inhibitor, inhibited the p32 degradation associated with endothelial dysfunction in a Ca2+-dependent manner. The amino acids Lys154, Lys 180, and Lys220 of the p32 protein were identified as putative ubiquitination sites. When these sites were mutated, p32 was resistant to degradation in the presence of siArgII, and endothelial function was impaired. Knockdown of Pink/Parkin as an E3-ubiquitin ligase with siRNAs resulted in increased p32, decreased [Ca2+]c, and attenuated CaMKII-dependent eNOS activation by siArgII. siArgII-dependent Parkin activation was attenuated by KN93, a CaMKII inhibitor. Knockdown of ArgII mRNA and its gene, but not inhibition of its activity, accelerated the interaction between p32 and Parkin and reduced p32 levels. In aortas of ArgII−/− mice, p32 levels were reduced by activated Parkin and inhibition of CaMKII attenuated Parkin-dependent p32 lysis. siParkin blunted the phosphorylation of the activated CaMKII/AMPK/p38MAPK/Akt/eNOS signalling cascade. However, ApoE−/− mice fed a high-cholesterol diet had greater ArgII activity, significantly attenuated phosphorylation of Parkin, and increased p32 levels. Incubation with siArgII augmented p32 ubiquitination through Parkin activation, and induced signalling cascade activation. Conclusion The results suggest a novel function for ArgII protein in Parkin-dependent ubiquitination of p32 that is associated with Ca2+-mediated eNOS activation in endothelial cells.
Collapse
Affiliation(s)
| | | | - Young-Myeong Kim
- Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, 24341, Korea
| | | |
Collapse
|
25
|
Mashreghi M, Faal Maleki M, Karimi M, Kalalinia F, Badiee A, Jaafari MR. Improving anti-tumour efficacy of PEGylated liposomal doxorubicin by dual targeting of tumour cells and tumour endothelial cells using anti-p32 CGKRK peptide. J Drug Target 2021; 29:617-630. [PMID: 33393376 DOI: 10.1080/1061186x.2020.1870230] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to surface-functionalize PEGylated liposomal doxorubicin (PLD) using anti-p32 CGKRK peptide to evaluate its anti-angiogenic and anti-tumour activities. CGKRK was conjugated to DSPE-mPEG2000-maleimide and post-inserted into PLD at 25, 50, 100, 200 and 400 peptides per each liposome and characterised for their size, zeta potential, drug loading, release properties; and cell binding, cell uptake and cytotoxicity on three C26, 4T1 and human umbilical vein endothelial cell (HUVEC) cell lines. The in vitro results indicated the better efficiency of the PLD-100 (PLD with 100 CGKRK) formulation on 4T1 and HUVEC cell lines. The results of anti-tube formation and spheroid assay indicated the efficiencies of the PLD-100 formulation compared with Caelyx® in vitro. The in vivo studies indicated the higher tumour accumulation of PLD-100 formulation in comparison with Caelyx® which also implied the higher survival rates in mice treated with PLD-100 formulation. Histological evaluations demonstrated that PLD-100 had no side-effects on major organs. In conclusion, the results of this study indicated that PLD-CGKRK- could efficiently target endothelial and tumour parenchymal cells which enhance the therapeutic efficacy of PLD and merits further investigation.
Collapse
Affiliation(s)
- Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Faal Maleki
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Karimi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Raschdorf A, Sünderhauf A, Skibbe K, Ghebrehiwet B, Peerschke EI, Sina C, Derer S. Heterozygous P32/ C1QBP/ HABP1 Polymorphism rs56014026 Reduces Mitochondrial Oxidative Phosphorylation and Is Expressed in Low-grade Colorectal Carcinomas. Front Oncol 2021; 10:631592. [PMID: 33628739 PMCID: PMC7897657 DOI: 10.3389/fonc.2020.631592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rapid proliferation of cancer cells is enabled by favoring aerobic glycolysis over mitochondrial oxidative phosphorylation (OXPHOS). P32 (C1QBP/gC1qR) is essential for mitochondrial protein translation and thus indispensable for OXPHOS activity. It is ubiquitously expressed and directed to the mitochondrial matrix in almost all cell types with an excessive up-regulation of p32 expression reported for tumor tissues. We recently demonstrated high levels of non-mitochondrial p32 to be associated with high-grade colorectal carcinoma. Mutations in human p32 are likely to disrupt proper mitochondrial function giving rise to various diseases including cancer. Hence, we aimed to investigate the impact of the most common single nucleotide polymorphism (SNP) rs56014026 in the coding sequence of p32 on tumor cell metabolism. In silico homology modeling of the resulting p.Thr130Met mutated p32 revealed that the single amino acid substitution potentially induces a strong conformational change in the protein, mainly affecting the mitochondrial targeting sequence (MTS). In vitro experiments confirmed an impaired mitochondrial import of mutated p32-T130M, resulting in reduced OXPHOS activity and a shift towards a low metabolic phenotype. Overexpression of p32-T130M maintained terminal differentiation of a goblet cell-like colorectal cancer cell line compared to p32-wt without affecting cell proliferation. Sanger sequencing of tumor samples from 128 CRC patients identified the heterozygous SNP rs56014026 in two well-differentiated, low proliferating adenocarcinomas, supporting our in vitro data. Together, the SNP rs56014026 reduces metabolic activity and proliferation while promoting differentiation in tumor cells.
Collapse
Affiliation(s)
- Annika Raschdorf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kerstin Skibbe
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ellinor I Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
27
|
Sünderhauf A, Hicken M, Schlichting H, Skibbe K, Ragab M, Raschdorf A, Hirose M, Schäffler H, Bokemeyer A, Bettenworth D, Savitt AG, Perner S, Ibrahim S, Peerschke EI, Ghebrehiwet B, Derer S, Sina C. Loss of Mucosal p32/gC1qR/HABP1 Triggers Energy Deficiency and Impairs Goblet Cell Differentiation in Ulcerative Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:229-250. [PMID: 33515804 PMCID: PMC8135049 DOI: 10.1016/j.jcmgh.2021.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Cell differentiation in the colonic crypt is driven by a metabolic switch from glycolysis to mitochondrial oxidation. Mitochondrial and goblet cell dysfunction have been attributed to the pathology of ulcerative colitis (UC). We hypothesized that p32/gC1qR/HABP1, which critically maintains oxidative phosphorylation, is involved in goblet cell differentiation and hence in the pathogenesis of UC. METHODS Ex vivo, goblet cell differentiation in relation to p32 expression and mitochondrial function was studied in tissue biopsies from UC patients versus controls. Functional studies were performed in goblet cell-like HT29-MTX cells in vitro. Mitochondrial respiratory chain complex V-deficient, ATP8 mutant mice were utilized as a confirmatory model. Nutritional intervention studies were performed in C57BL/6 mice. RESULTS In UC patients in remission, colonic goblet cell differentiation was significantly decreased compared to controls in a p32-dependent manner. Plasma/serum L-lactate and colonic pAMPK level were increased, pointing at high glycolytic activity and energy deficiency. Consistently, p32 silencing in mucus-secreting HT29-MTX cells abolished butyrate-induced differentiation and induced a shift towards glycolysis. In ATP8 mutant mice, colonic p32 expression correlated with loss of differentiated goblet cells, resulting in a thinner mucus layer. Conversely, feeding mice an isocaloric glucose-free, high-protein diet increased mucosal energy supply that promoted colonic p32 level, goblet cell differentiation and mucus production. CONCLUSION We here describe a new molecular mechanism linking mucosal energy deficiency in UC to impaired, p32-dependent goblet cell differentiation that may be therapeutically prevented by nutritional intervention.
Collapse
Affiliation(s)
- Annika Sünderhauf
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Maren Hicken
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Heidi Schlichting
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kerstin Skibbe
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Mohab Ragab
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Annika Raschdorf
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Holger Schäffler
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Arne Bokemeyer
- Gastroenterology and Hepatology, Department of Medicine B, University Hospital Münster, Münster, Germany
| | - Dominik Bettenworth
- Gastroenterology and Hepatology, Department of Medicine B, University Hospital Münster, Münster, Germany
| | - Anne G Savitt
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Lübeck, Germany; Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ellinor I Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Stefanie Derer
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Christian Sina
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; Division of Nutritional Medicine, 1st Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| |
Collapse
|
28
|
Li J, Guo M, Tian X, Wang X, Yang X, Wu P, Liu C, Xiao Z, Qu Y, Yin Y, Wang C, Zhang Y, Zhu Z, Liu Z, Peng C, Zhu T, Liang Q. Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis. MED 2021. [PMID: 32838362 DOI: 10.1101/2020.03.31.019216] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a global public health concern due to relatively easy person-to-person transmission and the current lack of effective antiviral therapy. However, the exact molecular mechanisms of SARS-CoV-2 pathogenesis remain largely unknown. METHODS Genome-wide screening was used to establish intraviral and viral-host interactomes. Quantitative proteomics was used to investigate the peripheral blood mononuclear cell (PBMC) proteome signature in COVID-19. FINDINGS We elucidated 286 host proteins targeted by SARS-CoV-2 and >350 host proteins that are significantly perturbed in COVID-19-derived PBMCs. This signature in severe COVID-19 PBMCs reveals a significant upregulation of cellular proteins related to neutrophil activation and blood coagulation, as well as a downregulation of proteins mediating T cell receptor signaling. From the interactome, we further identified that non-structural protein 10 interacts with NF-κB-repressing factor (NKRF) to facilitate interleukin-8 (IL-8) induction, which potentially contributes to IL-8-mediated chemotaxis of neutrophils and the overexuberant host inflammatory response observed in COVID-19 patients. CONCLUSIONS Our study not only presents a systematic examination of SARS-CoV-2-induced perturbation of host targets and cellular networks but it also reveals insights into the mechanisms by which SARS-CoV-2 triggers cytokine storms, representing a powerful resource in the pursuit of therapeutic interventions. FUNDING National Key Research and Development Project of China, National Natural Science Foundation of China, National Science and Technology Major Project, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Science and Technology Commission, Shanghai Municipal Health Commission, Shanghai Municipal Key Clinical Specialty, Innovative Research Team of High-level Local Universities in Shanghai, Interdisciplinary Program of Shanghai Jiao Tong University, SII Challenge Fund for COVID-19 Research, Chinese Academy of Sciences (CAS) Large Research Infrastructure of Maintenance and Remolding Project, and Chinese Academy of Sciences Key Technology Talent Program.
Collapse
Affiliation(s)
- Jingjiao Li
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingquan Guo
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xin Wang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing Yang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chengrong Liu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixuan Xiao
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yafei Qu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhenshan Liu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Tongyu Zhu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiming Liang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
29
|
Gautam I, Storad Z, Filipiak L, Huss C, Meikle CK, Worth RG, Wuescher LM. From Classical to Unconventional: The Immune Receptors Facilitating Platelet Responses to Infection and Inflammation. BIOLOGY 2020; 9:E343. [PMID: 33092021 PMCID: PMC7589078 DOI: 10.3390/biology9100343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Platelets have long been recognized for their role in maintaining the balance between hemostasis and thrombosis. While their contributions to blood clotting have been well established, it has been increasingly evident that their roles extend to both innate and adaptive immune functions during infection and inflammation. In this comprehensive review, we describe the various ways in which platelets interact with different microbes and elicit immune responses either directly, or through modulation of leukocyte behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (I.G.); (Z.S.); (L.F.); (C.H.); (C.K.M.); (R.G.W.)
| |
Collapse
|
30
|
Hosszu KK, Valentino A, Peerschke EI, Ghebrehiwet B. SLE: Novel Postulates for Therapeutic Options. Front Immunol 2020; 11:583853. [PMID: 33117397 PMCID: PMC7575694 DOI: 10.3389/fimmu.2020.583853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic deficiency in C1q is a strong susceptibility factor for systemic lupus erythematosus (SLE). There are two major hypotheses that potentially explain the role of C1q in SLE. The first postulates that C1q deficiency abrogates apoptotic cell clearance, leading to persistently high loads of potentially immunogenic self-antigens that trigger autoimmune responses. While C1q undoubtedly plays an important role in apoptotic clearance, an essential biological process such as removal of self- waste is so critical for host survival that multiple ligand-receptor combinations do fortunately exist to ensure that proper disposal of apoptotic debris is accomplished even in the absence of C1q. The second hypothesis is based on the observation that locally synthesized C1q plays a critical role in regulating the earliest stages of monocyte to dendritic cell (DC) differentiation and function. Indeed, circulating C1q has been shown to keep monocytes in a pre-dendritic state by silencing key molecular players and ensuring that unwarranted DC-driven immune responses do not occur. Monocytes are also able to display macromolecular C1 on their surface, representing a novel mechanism for the recognition of circulating "danger." Translation of this danger signal in turn, provides the requisite "license" to trigger a differentiation pathway that leads to adaptive immune response. Based on this evidence, the second hypothesis proposes that deficiency in C1q dysregulates monocyte-to-DC differentiation and causes inefficient or defective maintenance of self-tolerance. The fact that C1q receptors (cC1qR and gC1qR) are also expressed on the surface of both monocytes and DCs, suggests that C1q/C1qR may regulate DC differentiation and function through specific cell-signaling pathways. While their primary ligand is C1q, C1qRs can also independently recognize a vast array of plasma proteins as well as pathogen-associated molecular ligands, indicating that these molecules may collaborate in antigen recognition and processing, and thus regulate DC-differentiation. This review will therefore focus on the role of C1q and C1qRs in SLE and explore the gC1qR/C1q axis as a potential target for therapy.
Collapse
Affiliation(s)
- Kinga K Hosszu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alisa Valentino
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ellinor I Peerschke
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
31
|
Anti gC1qR/p32/HABP1 Antibody Therapy Decreases Tumor Growth in an Orthotopic Murine Xenotransplant Model of Triple Negative Breast Cancer. Antibodies (Basel) 2020; 9:antib9040051. [PMID: 33036212 PMCID: PMC7709104 DOI: 10.3390/antib9040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023] Open
Abstract
gC1qR is highly expressed in breast cancer and plays a role in cancer cell proliferation. This study explored therapy with gC1qR monoclonal antibody 60.11, directed against the C1q binding domain of gC1qR, in a murine orthotopic xenotransplant model of triple negative breast cancer. MDA231 breast cancer cells were injected into the mammary fat pad of athymic nu/nu female mice. Mice were segregated into three groups (n = 5, each) and treated with the vehicle (group 1) or gC1qR antibody 60.11 (100 mg/kg) twice weekly, starting at day 3 post-implantation (group 2) or when the tumor volume reached 100 mm3 (group 3). At study termination (d = 35), the average tumor volume in the control group measured 895 ± 143 mm3, compared to 401 ± 48 mm3 and 701 ± 100 mm3 in groups 2 and 3, respectively (p < 0.05). Immunohistochemical staining of excised tumors revealed increased apoptosis (caspase 3 and TUNEL staining) in 60.11-treated mice compared to controls, and decreased angiogenesis (CD31 staining). Slightly decreased white blood cell counts were noted in 60.11-treated mice. Otherwise, no overt toxicities were observed. These data are the first to demonstrate an in vivo anti-tumor effect of 60.11 therapy in a mouse model of triple negative breast cancer.
Collapse
|
32
|
Sünderhauf A, Raschdorf A, Hicken M, Schlichting H, Fetzer F, Brethack AK, Perner S, Kemper C, Ghebrehiwet B, Sina C, Derer S. GC1qR Cleavage by Caspase-1 Drives Aerobic Glycolysis in Tumor Cells. Front Oncol 2020; 10:575854. [PMID: 33102234 PMCID: PMC7556196 DOI: 10.3389/fonc.2020.575854] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Self-sustained cell proliferation constitutes one hallmark of cancer enabled by aerobic glycolysis which is characterized by imbalanced glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) activity, named the Warburg effect. The C1q binding protein (C1QBP; gC1qR) is pivotal for mitochondrial protein translation and thus OXPHOS activity. Due to its fundamental role in balancing OXPHOS and glycolysis, c1qbp -/- mice display embryonic lethality, while gC1qR is excessively up-regulated in cancer. Although gC1qR encompasses an N-terminal mitochondrial leader it is also located in other cellular compartments. Hence, we aimed to investigate mechanisms regulating gC1qR cellular localization and its impact on tumor cell metabolism. We identified two caspase-1 cleavage sites in human gC1qR. GC1qR cleavage by active caspase-1 was unraveled as a cellular mechanism that prevents mitochondrial gC1qR import, thereby enabling aerobic glycolysis and enhanced cell proliferation. Ex vivo, tumor grading correlated with non-mitochondrial-located gC1qR as well as with caspase-1 activation in colorectal carcinoma patients. Together, active caspase-1 cleaves gC1qR and boosts aerobic glycolysis in tumor cells.
Collapse
Affiliation(s)
- Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Annika Raschdorf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Maren Hicken
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Heidi Schlichting
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Franziska Fetzer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Ann-Kathrin Brethack
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Lübeck, Germany.,Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Claudia Kemper
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany.,1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
33
|
Peerschke E, Stier K, Li X, Kandov E, de Stanchina E, Chang Q, Xiong Y, Manova-Todorova K, Fan N, Barlas A, Ghebrehiwet B, Adusumilli PS. gC1qR/HABP1/p32 Is a Potential New Therapeutic Target Against Mesothelioma. Front Oncol 2020; 10:1413. [PMID: 32903438 PMCID: PMC7435067 DOI: 10.3389/fonc.2020.01413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
Mesothelioma is an aggressive cancer of the serous membranes with poor prognosis despite combination therapy consisting of surgery, radiotherapy, and platinum-based chemotherapy. Targeted therapies, including immunotherapies, have reported limited success, suggesting the need for additional therapeutic targets. This study investigates a potential new therapeutic target, gC1qR/HABP1/p32 (gC1qR), which is overexpressed in all morphologic subtypes of mesothelioma. gC1qR is a complement receptor that is associated with several cellular functions, including cell proliferation and angiogenesis. In vitro and in vivo experiments were conducted to test the hypothesis that targeting gC1qR with a specific gC1qR monoclonal antibody 60.11 reduces mesothelioma tumor growth, using the biphasic mesothelioma cell line MSTO-211H (MSTO). In vitro studies demonstrate cell surface and extracellular gC1qR expression by MSTO cells, and a modest 25.3 ± 1.8% (n = 4) reduction in cell proliferation by the gC1qR blocking 60.11 antibody. This inhibition was specific for targeting the C1q binding domain of gC1qR at aa 76–93, as a separate monoclonal antibody 74.5.2, directed against amino acids 204–218, had no discernable effect. In vivo studies, using a murine orthotopic xenotransplant model, demonstrated an even greater reduction in MSTO tumor growth (50% inhibition) in mice treated with the 60.11 antibody compared to controls. Immunohistochemical studies of resected tumors revealed increased cellular apoptosis by caspase 3 and TUNEL staining, in 60.11 treated tumors compared to controls, as well as impaired angiogenesis by decreased CD31 staining. Taken together, these data identify gC1qR as a potential new therapeutic target against mesothelioma with both antiproliferative and antiangiogenic properties.
Collapse
Affiliation(s)
- Ellinor Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kenneth Stier
- Departments of Medicine and Pathology, Stony Brook University, Stony Brook, New York, NY, United States
| | - Xiaoyu Li
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Surgery, Thoracic Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Evelyn Kandov
- Departments of Medicine and Pathology, Stony Brook University, Stony Brook, New York, NY, United States
| | - Elisa de Stanchina
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Qing Chang
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Yuquan Xiong
- Department of Surgery, Thoracic Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ning Fan
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Afsar Barlas
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Berhane Ghebrehiwet
- Departments of Medicine and Pathology, Stony Brook University, Stony Brook, New York, NY, United States
| | - Prasad S Adusumilli
- Department of Surgery, Thoracic Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
34
|
Choi K, Koo BH, Yoon BJ, Jung M, Yun HY, Jeon BH, Won MH, Kim YM, Mun JY, Lim HK, Ryoo S. Overexpressed p32 localized in the endoplasmic reticulum and mitochondria negatively regulates calcium‑dependent endothelial nitric oxide synthase activit. Mol Med Rep 2020; 22:2395-2403. [PMID: 32705193 PMCID: PMC7411372 DOI: 10.3892/mmr.2020.11307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022] Open
Abstract
The p32 protein plays a crucial role in the regulation of cytosolic Ca2+ concentrations ([Ca2+]c) that contributes to the Ca2+-dependent signaling cascade. Using an adenovirus and plasmid p32-overexpression system, the aim of the study was to evaluate the role of p32 in the regulation of [Ca2+] and its potential associated with Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation in endothelial cells. Using electron and confocal microscopic analysis, p32 overexpression was observed to be localized to mitochondria and the endoplasmic reticulum and played an important role in Ca2+ translocation, resulting in increased [Ca2+] in these organelles and reducing cytosolic [Ca2+] ([Ca2+]c). This decreased [Ca2+]c following p32 overexpression attenuated the Ca2+-dependent signaling cascade of calcium/calmodulin dependent protein kinase II (CaMKII)/AKT/eNOS phosphorylation. Moreover, in aortic endothelia of wild-type mice intravenously administered adenovirus encoding the p32 gene, increased p32 levels reduced NO production and accelerated reactive oxygen species (ROS) generation. In a vascular tension assay, p32 overexpression decreased acetylcholine (Ach)-induced vasorelaxation and augmented phenylephrine (PE)-dependent vasoconstriction. Notably, decreased levels of arginase II (ArgII) protein using siArgII were associated with downregulation of overexpressed p32 protein, which contributed to CaMKII-dependent eNOS phosphorylation at Ser1177. These results indicated that increased protein levels of p32 caused endothelial dysfunction through attenuation of the Ca2+-dependent signaling cascade and that ArgII protein participated in the stability of p32. Therefore, p32 may be a novel target for the treatment of vascular diseases associated with endothelial disorders.
Collapse
Affiliation(s)
- Kwanhoon Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Bon-Hyeock Koo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Byeong Jun Yoon
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Minkyo Jung
- Department of Neural Circuits Research, Korea Brain Research Institute, Dong, Daegu 41068, Republic of Korea
| | - Hye Young Yun
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Byung Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Young Mun
- Department of Neural Circuits Research, Korea Brain Research Institute, Dong, Daegu 41068, Republic of Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
35
|
Lukácsi S, Mácsik-Valent B, Nagy-Baló Z, Kovács KG, Kliment K, Bajtay Z, Erdei A. Utilization of complement receptors in immune cell-microbe interaction. FEBS Lett 2020; 594:2695-2713. [PMID: 31989596 DOI: 10.1002/1873-3468.13743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
The complement system is a major humoral component of immunity and is essential for the fast elimination of pathogens invading the body. In addition to its indispensable role in innate immunity, the complement system is also involved in pathogen clearance during the effector phase of adaptive immunity. The fastest way of killing the invader is lysis by the membrane attack complex, which is formed by the terminal components of the complement cascade. Not all pathogens are lysed however and, if opsonized by a variety of molecules, they undergo phagocytosis and disposal inside immune cells. The most important complement-derived opsonins are C1q, the first component of the classical pathway, MBL, the initiator of the lectin pathway and C3-derived activation fragments, including C3b, iC3b and C3d, which all serve as ligands for their corresponding receptors. In this review, we discuss how complement receptors are utilized by various immune cells to tackle invading microbes, or by pathogens to evade host response.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - Zsuzsa Nagy-Baló
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Kristóf G Kovács
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
36
|
Li Y, Wei Y, Hao W, Zhao W, Zhou Y, Wang D, Xiao S, Fang L. Porcine reproductive and respiratory syndrome virus infection promotes C1QBP secretion to enhance inflammatory responses. Vet Microbiol 2019; 241:108563. [PMID: 31928703 DOI: 10.1016/j.vetmic.2019.108563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Complement component 1, q subcomponent binding protein (C1QBP) is a receptor for the globular heads of C1q and modulates various biological processes including infection, inflammation, autoimmunity, and cancer. In our previous study to identify differentially expressed secretory proteins in Marc-145 cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), mass spectrum data showed that C1QBP was secreted after PRRSV infection. However, the biological significance of secreted C1QBP remains unclear. In this study, we confirmed that PRRSV infection promoted C1QBP secretion in Marc-145 cells and porcine alveolar macrophages (PAMs), the target cells of PRRSV in vivo. Knockdown of endogenous C1QBP decreased PRRSV-induced inflammatory responses. The purified recombinant porcine C1QBP (poC1QBP) had proinflammatory effects. The exogenous addition of poC1QBP significantly enhanced PRRSV-induced inflammatory responses and abolished the inhibitory effects mediated by poC1QBP-knockdown. Taken together, these results demonstrate that PRRSV infection promotes poC1QBP secretion that enhances inflammatory responses.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ying Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wanjun Hao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenkai Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
37
|
Ghebrehiwet B, Geisbrecht BV, Xu X, Savitt AG, Peerschke EIB. The C1q Receptors: Focus on gC1qR/p33 (C1qBP, p32, HABP-1) 1. Semin Immunol 2019; 45:101338. [PMID: 31744753 DOI: 10.1016/j.smim.2019.101338] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
In the past several years, a number of C1q binding surface proteins or receptors have been described. This is not of course surprising considering the complexity of the C1q molecule and its ability to bind to a wide range of cellular and plasma proteins via both its collagen-like [cC1q] region and its heterotrimeric globular heads [gC1q] each of which in turn is capable of binding a specific ligand. However, while each of these "receptor" molecules undoubtedly plays a specific function within its restricted microenvironment, and therefore merits full attention, this review nonetheless, will singularly focus on the structure and function of gC1qR-a multi-functional and multi-compartmental protein, which plays an important role in inflammation, infection, and cancer. Although first identified as a receptor for C1q, gC1qR has been shown to bind to a plethora of proteins found in plasma, on the cell surface and on pathogenic microorganisms. The plasma proteins that bind to gC1qR are mostly blood coagulation proteins and include high molecular weight kininogen [HK], Factor XII [Hageman factor], fibrinogen, thrombin [FII], and multimeric vitronectin. This suggests that gC1qR can play an important role in modulating not only of fibrin formation, particularly at local sites of immune injury and/or inflammation, but by activating the kinin/kallikrein system, it is also able to generate, bradykinin, a powerful vasoactive peptide that is largely responsible for the swelling seen in angioedema. Another important function of gC1qR is in cancer, where it has been shown to play a role in tumor cell survival, growth and metastatic invasion by interacting with critical molecules in the tumor cell microenvironment including those of the complement system and kinin system. Finally, by virtue of its ability to interact with a growing list of pathogen-associated molecules, including bacterial and viral ligands, gC1qR is becoming recognized as an important pathogen recognition receptor [PRR]. Given the numerous roles it plays in a growing list of disease settings, gC1qR has now become a potential target for the development of monoclonal antibody-based and/or small molecule-based therapies.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794-8161 USA.
| | - Brian V Geisbrecht
- Kansas State University, Department of Biochemistry and Molecular Biophysics Manhattan, KS 66506 USA
| | - Xin Xu
- Kansas State University, Department of Biochemistry and Molecular Biophysics Manhattan, KS 66506 USA
| | - Anne G Savitt
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794-8161 USA
| | - Ellinor I B Peerschke
- The Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, 10065, USA
| |
Collapse
|
38
|
Koo BH, Hwang HM, Yi BG, Lim HK, Jeon BH, Hoe KL, Kwon YG, Won MH, Kim YM, Berkowitz DE, Ryoo S. Arginase II Contributes to the Ca 2+/CaMKII/eNOS Axis by Regulating Ca 2+ Concentration Between the Cytosol and Mitochondria in a p32-Dependent Manner. J Am Heart Assoc 2019; 7:e009579. [PMID: 30371203 PMCID: PMC6222941 DOI: 10.1161/jaha.118.009579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Arginase II activity contributes to reciprocal regulation of endothelial nitric oxide synthase (eNOS). We tested the hypotheses that arginase II activity participates in the regulation of Ca2+/Ca2+/calmodulin‐dependent kinase II/eNOS activation, and this process is dependent on mitochondrial p32. Methods and Results Downregulation of arginase II increased the concentration of cytosolic Ca2+ ([Ca2+]c) and decreased mitochondrial Ca2+ ([Ca2+]m) in microscopic and fluorescence‐activated cell sorting analyses, resulting in augmented eNOS Ser1177 phosphorylation and decreased eNOS Thr495 phosphorylation through Ca2+/Ca2+/calmodulin‐dependent kinase II. These changes were observed in human umbilical vein endothelial cells treated with small interfering RNA against p32 (sip32). Using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, fluorescence immunoassay, and ion chromatography, inhibition of arginase II reduced the amount of spermine, a binding molecule, and the release of Ca2+ from p32. In addition, arginase II gene knockdown using small interfering RNA and knockout arginase II‐null mice resulted in reduced p32 protein level. In the aortas of wild‐type mice, small interfering RNA against p32 induced eNOS Ser1177 phosphorylation and enhanced NO‐dependent vasorelaxation. Arginase activity, p32 protein expression, spermine amount, and [Ca2+]m were increased in the aortas from apolipoprotein E (ApoE−/−) mice fed a high‐cholesterol diet, and intravenous administration of small interfering RNA against p32 restored Ca2+/Ca2+/calmodulin‐dependent kinase II‐dependent eNOS Ser1177 phosphorylation and improved endothelial dysfunction. The effects of arginase II downregulation were not associated with elevated NO production when tested in aortic endothelia from eNOS knockout mice. Conclusions These data demonstrate a novel function of arginase II in regulation of Ca2+‐dependent eNOS phosphorylation. This novel mechanism drives arginase activation, mitochondrial dysfunction, endothelial dysfunction, and atherogenesis.
Collapse
Affiliation(s)
- Bon-Hyeock Koo
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| | - Hye-Mi Hwang
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| | - Bong-Gu Yi
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| | - Hyun Kyo Lim
- 4 Department of Anesthesiology and Pain Medicine Yonsei University Wonju College of Medicine Wonju Korea
| | - Byeong Hwa Jeon
- 5 Infectious Signaling Network Research Center Department of Physiology School of Medicine Chungnam National University Daejeon Korea
| | - Kwang Lae Hoe
- 6 Department of New Drug Discovery and Development Chungnam National University Daejeon Korea
| | | | - Moo-Ho Won
- 2 Department of Neurobiology School of medicine Kangwon National University Chuncheon Korea
| | - Young Myeong Kim
- 3 College of Natural Sciences and Departments of Molecular and Cellular Biochemistry School of medicine Kangwon National University Chuncheon Korea
| | - Dan E Berkowitz
- 8 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Sungwoo Ryoo
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| |
Collapse
|
39
|
Shen S, Che Z, Zhao X, Shao Y, Zhang W, Guo M, Li C. Characterization of a gC1qR homolog from sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:216-222. [PMID: 31336155 DOI: 10.1016/j.fsi.2019.07.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
gC1qR is a multifunctional and multiligand binding protein that plays important roles in inflammation and infection. In this study, a novel gC1qR homolog called AjgC1qR from the invertebrate sea cucumber Apostichopus japonicus was cloned and characterized. The open reading frame of AjgC1qR encoded 292 amino acid residues with a conserved mitochondrial targeting sequence and MAM33 domain. Multiple sequence alignment and phylogenetic analyses proved that AjgC1qR is a homolog of the gC1qR family. Spatial mRNA transcription in five tissues revealed the ubiquitous expression of AjgC1qR. The highest and lowest levels of expression were found in the tentacle and muscle, respectively, and AjgC1qR expression was remarkably up-regulated in coelomocytes after Vibrio splendidus challenge. Moreover, the recombinant rAjgC1qR protein exhibited high binding activity toward pathogen-associated molecules, such as lipopolysaccharides, peptidoglycan, and mannan. These findings demonstrate that AjgC1qR may play important roles in innate immunity and function as a pathogen recognition receptor.
Collapse
Affiliation(s)
- Sikou Shen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhongjie Che
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
40
|
Reichhardt MP, Lundin K, Lokki AI, Recher G, Vuoristo S, Katayama S, Tapanainen JS, Kere J, Meri S, Tuuri T. Complement in Human Pre-implantation Embryos: Attack and Defense. Front Immunol 2019; 10:2234. [PMID: 31620138 PMCID: PMC6759579 DOI: 10.3389/fimmu.2019.02234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
It is essential for early human life that mucosal immunological responses to developing embryos are tightly regulated. An imbalance of the complement system is a common feature of pregnancy complications. We hereby present the first full analysis of the expression and deposition of complement molecules in human pre-implantation embryos. Thus, far, immunological imbalance has been considered in stages of pregnancy following implantation. We here show that complement activation against developing human embryos takes place already at the pre-implantation stage. Using confocal microscopy, we observed deposition of activation products on healthy developing embryos, which highlights the need for strict complement regulation. We show that embryos express complement membrane inhibitors and bind soluble regulators. These findings show that mucosal complement targets human embryos, and indicate potential adverse pregnancy outcomes, if regulation of activation fails. In addition, single-cell RNA sequencing revealed cellular expression of complement activators. This shows that the embryonic cells themselves have the capacity to express and activate C3 and C5. The specific local embryonic expression of complement components, regulators, and deposition of activation products on the surface of embryos suggests that complement has immunoregulatory functions and furthermore may impact cellular homeostasis and differentiation at the earliest stages of life.
Collapse
Affiliation(s)
- Martin P Reichhardt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.,Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - A Inkeri Lokki
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Gaëlle Recher
- Institut d'Optique Graduate School, CNRS - Université de Bordeaux, Talence, France
| | - Sanna Vuoristo
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,PEDEGO Research Unit, Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, Oulu, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden.,School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Stem Cells and Metabolism Research Program, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Ghate NB, Kim J, Shin Y, Situ A, Ulmer TS, An W. p32 is a negative regulator of p53 tetramerization and transactivation. Mol Oncol 2019; 13:1976-1992. [PMID: 31293051 PMCID: PMC6717765 DOI: 10.1002/1878-0261.12543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/03/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023] Open
Abstract
p53 is a sequence-specific transcription factor, and proper regulation of p53 transcriptional activity is critical for orchestrating different tumor-suppressive mechanisms. p32 is a multifunctional protein which interacts with a large number of viral proteins and transcription factors. Here, we investigate the effect of p32 on p53 transactivation and identify a novel mechanism by which p32 alters the functional characteristics of p53. Specifically, p32 attenuates p53-dependent transcription through impairment of p53 binding to its response elements on target genes. Upon p32 expression, p53 levels bound at target genes are decreased, and p53 target genes are inactivated, strongly indicating that p32 restricts p53 occupancy and function at target genes. The primary mechanism contributing to the observed action of p32 is the ability of p32 to interact with the p53 tetramerization domain and to block p53 tetramerization, which in turn enhances nuclear export and degradation of p53, leading to defective p53 transactivation. Collectively, these data establish p32 as a negative regulator of p53 function and suggest the therapeutic potential of targeting p32 for cancer treatment.
Collapse
Affiliation(s)
- Nikhil Baban Ghate
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jinman Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Alan Situ
- Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Tobias S. Ulmer
- Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
42
|
Arginase II activity regulates cytosolic Ca 2+ level in a p32-dependent manner that contributes to Ca 2+-dependent vasoconstriction in native low-density lipoprotein-stimulated vascular smooth muscle cells. Exp Mol Med 2019; 51:1-12. [PMID: 31155612 PMCID: PMC6545325 DOI: 10.1038/s12276-019-0262-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 12/04/2022] Open
Abstract
Although arginase II (ArgII) is abundant in mitochondria, Ca2+-accumulating organelles, the relationship between ArgII activity and Ca2+ translocation into mitochondria and the regulation of cytosolic Ca2+ signaling are completely unknown. We investigated the effects of ArgII activity on mitochondrial Ca2+ uptake through mitochondrial p32 protein (p32m) and on CaMKII-dependent vascular smooth muscle cell (VSMC) contraction. Native low-density lipoprotein stimulation induced an increase in [Ca2+]m as measured by CoCl2-quenched calcein-AM fluorescence, which was prevented by Arg inhibition in hAoSMCs and reduced in mAoSMCs from ArgII−/− mice. Conversely, [Ca2+]c analyzed with Fluo-4 AM was increased by Arg inhibition and ArgII gene knockout. The increased [Ca2+]c resulted in CaMKII and MLC 20 phosphorylation, which was associated with enhanced vasoconstriction activity to phenylephrine (PE) in the vascular tension assay. Cy5-tagged siRNA against mitochondrial p32 mRNA (sip32m) abolished mitochondrial Ca2+ uptake and induced activation of CaMKII. Spermine, a polyamine, induced mitochondrial Ca2+ uptake and dephosphorylation of CaMKII and was completely inhibited by sip32m incubation. In mAoSMCs from ApoE-null mice fed a high-cholesterol diet (ApoE−/− +HCD), Arg activity was increased, and spermine concentration was higher than that of wild-type mice. Furthermore, [Ca2+]m and p32m levels were elevated, and CaMKII phosphorylation was reduced in mAoSMCs from ApoE−/− +HCD. In vascular tension experiments, an attenuated response to vasoconstrictors in de-endothelialized aorta from ApoE−/− +HCD was recovered by incubation of sip32m. ArgII activity-dependent production of spermine augments Ca2+ transition from the cytosol to the mitochondria in a p32m-dependent manner and regulates CaMKII-dependent constriction in VSMCs. Researchers have illuminated how a protein, arginase II (ArgII), is involved in development of vascular diseases such as atherosclerosis, or narrowing of the arteries by plaque deposits. Blood vessel diameter is regulated by layers of muscle; the balance between constriction and relaxation is critical for blood flow and vascular health. Increased ArgII is known to be a factor in arterial disease; however, the details of regulation, and how they relate to plaque deposition, remain poorly understood. Sungwoo Ryoo at Kangwon National University, Chuncheon, South Korea and co-workers investigated how ArgII levels affect arterial constriction and relaxation in mice. Decreasing ArgII restored the muscle cells’ contraction response by preventing excessive calcium accumulation in the cellular powerhouse, mitochondria. These results may aid in developing treatments for one of the leading causes of death worldwide.
Collapse
|
43
|
Rashidi S, Mojtahedi Z, Shahriari B, Kalantar K, Ghalamfarsa G, Mohebali M, Hatam G. An immunoproteomic approach to identifying immunoreactive proteins in Leishmania infantum amastigotes using sera of dogs infected with canine visceral leishmaniasis. Pathog Glob Health 2019; 113:124-132. [PMID: 31099725 DOI: 10.1080/20477724.2019.1616952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Visceral leishmaniasis (VL), the most severe form of leishmaniasis, is caused by Leishmania donovani and Leishmania infantum. The infected dogs with canine visceral leishmaniasis (CVL) are important reservoirs for VL in humans, so the diagnosis, treatment and vaccination of the infected dogs will ultimately decrease the rate of human VL. Proteomics and immunoproteomics techniques have facilitated the introduction of novel drug, vaccine and diagnostic targets. Our immunoproteomic study was conducted to identify new immunoreactive proteins in amastigote form of L. infantum. The strain of L. infantum (MCAN/IR/07/Moheb-gh) was obtained from CVL-infected dogs. J774 macrophage cells were infected with the L. infantum promastigotes. The infected macrophages were ruptured, and pure amastigotes were extracted from the macrophages. After protein extraction, two-dimensional gel electrophoresis was employed for protein separation followed by Western blotting. Western blotting was performed, using symptomatic and asymptomatic sera of the infected dogs with CVL. Thirteen repeatable immunoreactive spots were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Some, including prohibitin, ornithine aminotransferase, annexin A4, and apolipoprotein A-I, have been critically involved in metabolic pathways, survival, and pathogenicity of Leishmania parasites. Further investigations are required to confirm our identified immunoreactive proteins as a biomarker for CVL.
Collapse
Affiliation(s)
- Sajad Rashidi
- a Department of Parasitology and Mycology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Mojtahedi
- b Institute for Cancer Research, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Bahador Shahriari
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kurosh Kalantar
- d Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ghasem Ghalamfarsa
- e Medicinal Plants Research Center, Faculty of Medicine , Yasuj University of Medical Sciences , Yasuj , Iran
| | - Mehdi Mohebali
- f Department of Medical Parasitology and Mycology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Hatam
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
44
|
Systematic Multiomics Analysis of Alterations in C1QBP mRNA Expression and Relevance for Clinical Outcomes in Cancers. J Clin Med 2019; 8:jcm8040513. [PMID: 30991713 PMCID: PMC6517981 DOI: 10.3390/jcm8040513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022] Open
Abstract
C1QBP (Complement Component 1 Q Subcomponent-Binding Protein), a multicompartmental protein, participates in various cellular processes, including mRNA splicing, ribosome biogenesis, protein synthesis in mitochondria, apoptosis, transcriptional regulation, and infection processes of viruses. The correlation of C1QBP expression with patient survival and molecular function of C1QBP in relation to cancer progression has not been comprehensively studied. Therefore, we sought to systematically investigate the expression of C1QBP to evaluate the change of C1QBP expression and the relationship with patient survival and affected pathways in breast, lung, colon, and bladder cancers as well as lymphoma. Relative expression levels of C1QBP were analyzed using the Oncomine, Gene Expression Across Normal and Tumor Tissue (GENT), and The Cancer Genome Atlas (TCGA) databases. Mutations and copy number alterations in C1QBP were also analyzed using cBioPortal, and subsequently, the relationship between C1QBP expression and survival probability of cancer patients was explored using the PrognoScan database and the R2: Kaplan Meier Scanner. Additionally, the relative expression of C1QBP in other cancers, and correlation of C1QBP expression with patient survival were investigated. Gene ontology and pathway analysis of commonly differentially coexpressed genes with C1QBP in breast, lung, colon, and bladder cancers as well as lymphoma revealed the C1QBP-correlated pathways in these cancers. This data-driven study demonstrates the correlation of C1QBP expression with patient survival and identifies possible C1QBP-involved pathways, which may serve as targets of a novel therapeutic modality for various human cancers.
Collapse
|
45
|
Zhang J, Liu Y, Li Y, Su N, Zhou Y, Xiang J, Sun Y. Biological function of a gC1qR homolog (EcgC1qR) of Exopalaemon carinicauda in defending bacteria challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 82:378-385. [PMID: 30144564 DOI: 10.1016/j.fsi.2018.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The gC1qR is a ubiquitously expressed cell protein that interacts with the globular heads of C1q (gC1q) and many other ligands. In this study, one gC1qR homolog gene was obtained from Exopalaemon carinicauda and named EcgC1qR. The complete nucleotide sequence of EcgC1qR contained a 774 bp open reading frame (ORF) encoding EcgC1qR precursor of 257 amino acids. The deduced amino acid sequence of EcgC1qR revealed a 55-amino-acid-long mitochondrial targeting sequence at the N-terminal and a mitochondrial acidic matrix protein of 33 kDa (MAM33) domain. The genomic organization of EcgC1qR gene showed that EcgC1qR gene contained five exons and four introns. EcgC1qR could express in all of the detected tissues and its expression was much higher in hepatopancreas and hemocytes. The expression of EcgC1qR in the hepatopancreas of prawns challenged with Vibrio parahaemolyticus and Aeromonas hydrophila changed in a time-dependent manner. The expression of EcgC1qR in prawns challenged with V. parahaemolyticus was up-regulated at 6 h (p < 0.05), and significantly up-regulated at 12 h and 24 h (p < 0.01), and then returned to the control levels at 48 h post-challenge (p > 0.05). At the same time, the expression in Aeromonas-challenged group was significantly up-regulated at 6, 12 and 24 h. The recombinant EcgC1qR could inhibit the growth of two tested bacteria. In addition, we successfully deleted EcgC1qR gene through CRISPR/Cas9 technology and it was the first time to obtain the mutant of gC1qR homolog gene in crustacean. It's a great progress to study the biological function of gC1qR in crustacean in future.
Collapse
Affiliation(s)
- Jiquan Zhang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujie Liu
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yanyan Li
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Naike Su
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yaru Zhou
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jianhai Xiang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yuying Sun
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
46
|
Hong X, Yu Z, Chen Z, Jiang H, Niu Y, Huang Z. High molecular weight fibroblast growth factor 2 induces apoptosis by interacting with complement component 1 Q subcomponent-binding protein in vitro. J Cell Biochem 2018; 119:8807-8817. [PMID: 30159917 PMCID: PMC6220755 DOI: 10.1002/jcb.27131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/04/2018] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is a multifunctional cell growth factor that regulates cell proliferation, differentiation, adhesion, migration, and apoptosis. FGF2 has multiple isoforms, including an 18-kDa low molecular weight isoform (lo-FGF2) and 22-, 23-, 24-, and 34-kDa high molecular weight isoforms (hi-FGF2). Hi-FGF2 overexpression induces chromatin compaction, which requires the mitochondria and leads to apoptosis. Complement component 1 Q subcomponent-binding protein (C1QBP) plays an important role in mitochondria-dependent apoptosis by regulating the opening of the mitochondrial permeability transition pore. However, the interaction between C1QBP and hi-FGF2 and its role in hi-FGF2-mediated apoptosis remain unclear. Here, we found that hi-FGF2 overexpression induced depolarization of the mitochondrial membrane, cytochrome c release into the cytosol, and a considerable increase in C1QBP messenger RNA and protein expression. Furthermore, coimmunoprecipitation results showed that the mitochondrial protein, C1QBP, interacts with hi-FGF2. C1QBP knockdown using small interfering RNA significantly decreased the localization of hi-FGF2 to the mitochondria and increased the rate of apoptosis. Our results highlight a novel mechanism underlying hi-FGF2-induced, mitochondria-driven cell death involving the direct interaction between hi-FGF2 and C1QBP and the upregulation of C1QBP expression.
Collapse
Affiliation(s)
- Xiaobing Hong
- The Second Affiliated Hospital, Shantou University Medical CollegeShantouChina
| | - Zelin Yu
- The Second Affiliated Hospital, Shantou University Medical CollegeShantouChina
| | - Zhonglin Chen
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Hongyan Jiang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Yongdong Niu
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Zhanqin Huang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| |
Collapse
|
47
|
Chen M, Ding M, Li Y, Zhong X, Liu S, Guo Z, Yin X, Fu S, Ye J. The complement component 1 q (C1q) in Nile tilapia (Oreochromis niloticus): Functional characterization in host defense against bacterial infection and effect on cytokine response in macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:98-108. [PMID: 29890197 DOI: 10.1016/j.dci.2018.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Complement component 1q (C1q) is the initial protein of the classical complement pathway and plays an important role in immune response against bacterial infection. In this study, the full-length of C1q subcomponent A, B and C chain genes (C1qA, C1qB and C1qC) were identified and characterized from Nile tilapia (Oreochromis niloticus). Molecular characterization of these three C1q subcomponents (OnC1qs) harbored conserved amino acids through analyses of multiple sequence alignment and phylogenetic tree, which were homologous to other teleost species. Expression analysis revealed that the OnC1qs were highly expressed in liver. After the in vivo challenges of Streptococcus agalactiae and LPS, the mRNA expressions of OnC1qs were significantly up-regulated in liver. Meanwhile, the concentration variation of OnC1qs at the protein level from tilapia serum after challenge with S. agalactiae were measured by a competitive-inhibition ELISA. In addition, the up-regulation expressions of OnC1qs were also demonstrated in head kidney adherent leukocytes and the cell culture medium in vitro stimulation with S. agalactiae, Aeromonas hydrophila and LPS, respectively. Moreover, the recombinant OnC1qs enhanced expression of cytokines IL-6, IL-8 and IL-10 in head kidney adherent leukocytes, and were able to bind both heat-aggregated mouse IgG and IgM. Taken together, the results of this study indicated that OnC1qs might be involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Meng Chen
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Mingmei Ding
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yuan Li
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaofang Zhong
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Shuo Liu
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Shengli Fu
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China.
| |
Collapse
|
48
|
Deppermann C, Kubes P. Start a fire, kill the bug: The role of platelets in inflammation and infection. Innate Immun 2018; 24:335-348. [PMID: 30049243 PMCID: PMC6830908 DOI: 10.1177/1753425918789255] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022] Open
Abstract
Platelets are the main players in thrombosis and hemostasis; however they also play important roles during inflammation and infection. Through their surface receptors, platelets can directly interact with pathogens and immune cells. Platelets form complexes with neutrophils to modulate their capacities to produce reactive oxygen species or form neutrophil extracellular traps. Furthermore, they release microbicidal factors and cytokines that kill pathogens and influence the immune response, respectively. Platelets also maintain the vascular integrity during inflammation by a mechanism that is different from classical platelet activation. In this review we summarize the current knowledge about how platelets interact with the innate immune system during inflammation and infection and highlight recent advances in the field.
Collapse
Affiliation(s)
- Carsten Deppermann
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
49
|
Matsumoto K, Kose S, Kuwahara I, Yoshimura M, Imamoto N, Yoshida M. Y-box protein-associated acidic protein (YBAP1/C1QBP) affects the localization and cytoplasmic functions of YB-1. Sci Rep 2018; 8:6198. [PMID: 29670170 PMCID: PMC5906478 DOI: 10.1038/s41598-018-24401-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
The Y-box proteins are multifunctional nucleic acid-binding proteins involved in various aspects of gene regulation. The founding member of the Y-box protein family, YB-1, functions as a transcription factor as well as a principal component of messenger ribonucleoprotein particles (mRNPs) in somatic cells. The nuclear level of YB-1 is well correlated with poor prognosis in many human cancers. Previously, we showed that a Y-box protein–associated acidic protein, YBAP1, which is identical to complement component 1, q subcomponent-binding protein (C1QBP, also called gC1qR, hyaluronan-binding protein 1 [HABP1] or ASF/SF2-associated protein p32), relieves translational repression by YB-1. Here we show that the nuclear localization of YB-1 harboring a point mutation in the cold shock domain was inhibited when co-expressed with YBAP1, whereas cytoplasmic accumulation of the wild-type YB-1 was not affected. We showed that YBAP1 inhibited the interaction between YB-1 and transportin 1. In the cytoplasm, YBAP1 affected the accumulation of YB-1 to processing bodies (P-bodies) and partially abrogated the mRNA stabilization by YB-1. Our results, indicating that YBAP1/C1QBP regulates the nucleo-cytoplasmic distribution of YB-1 and its cytoplasmic functions, are consistent with a model that YBAP1/C1QBP acts as an mRNP remodeling factor.
Collapse
Affiliation(s)
- Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan. .,Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan.
| | - Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Wako, Saitama, Japan
| | - Iku Kuwahara
- Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Mami Yoshimura
- Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Wako, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
50
|
Reid KBM. Complement Component C1q: Historical Perspective of a Functionally Versatile, and Structurally Unusual, Serum Protein. Front Immunol 2018; 9:764. [PMID: 29692784 PMCID: PMC5902488 DOI: 10.3389/fimmu.2018.00764] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Complement component C1q plays an important recognition role in adaptive, and innate, immunity through its ability to interact, via its six globular head regions, with both immunoglobulin and non-immunoglobulin activators of the complement system, and also in the clearance of cell debris, and by playing a role in regulation of cellular events by interacting with a wide range of cell surface molecules. The presence of collagen-like triple-helical structures within C1q appears crucial to the presentation, and multivalent binding, of the globular heads of C1q to targets, and also to its association with the proenzyme complex of C1r2–C1s2, to yield the C1 complex. The possible role that movement of these collagen-like structures may play in the activation of the C1 complex is a controversial area, with there still being no definitive answer as to how the first C1r proenzyme molecule becomes activated within the C1 complex, thus allowing it to activate proenzyme C1s, and initiate and the consequent cascade of events in the activation of the classical pathway of complement. The globular heads of C1q are similar to domains found within the tumor necrosis factor (TNF) superfamily of proteins, and have been shown to bind to a very wide range of ligands. In addition to its well-defined roles in infection and immunity, a variety of other functions associated with C1q include possible roles, in the development of problems in the central nervous system, which occur with aging, and perhaps in the regulation of tumor growth.
Collapse
Affiliation(s)
- Kenneth B M Reid
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|