1
|
Steier Z, Kim EJY, Aylard DA, Robey EA. The CD4 Versus CD8 T Cell Fate Decision: A Multiomics-Informed Perspective. Annu Rev Immunol 2024; 42:235-258. [PMID: 38271641 DOI: 10.1146/annurev-immunol-083122-040929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.
Collapse
Affiliation(s)
- Zoë Steier
- Department of Bioengineering and Center for Computational Biology, University of California, Berkeley, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, Berkeley and San Francisco, California, USA
- Current affiliation: Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Esther Jeong Yoon Kim
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Dominik A Aylard
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
2
|
Steier Z, Aylard DA, McIntyre LL, Baldwin I, Kim EJY, Lutes LK, Ergen C, Huang TS, Robey EA, Yosef N, Streets A. Single-cell multiomic analysis of thymocyte development reveals drivers of CD4 + T cell and CD8 + T cell lineage commitment. Nat Immunol 2023; 24:1579-1590. [PMID: 37580604 PMCID: PMC10457207 DOI: 10.1038/s41590-023-01584-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/12/2023] [Indexed: 08/16/2023]
Abstract
The development of CD4+ T cells and CD8+ T cells in the thymus is critical to adaptive immunity and is widely studied as a model of lineage commitment. Recognition of self-peptide major histocompatibility complex (MHC) class I or II by the T cell antigen receptor (TCR) determines the CD8+ or CD4+ T cell lineage choice, respectively, but how distinct TCR signals drive transcriptional programs of lineage commitment remains largely unknown. Here we applied CITE-seq to measure RNA and surface proteins in thymocytes from wild-type and T cell lineage-restricted mice to generate a comprehensive timeline of cell states for each T cell lineage. These analyses identified a sequential process whereby all thymocytes initiate CD4+ T cell lineage differentiation during a first wave of TCR signaling, followed by a second TCR signaling wave that coincides with CD8+ T cell lineage specification. CITE-seq and pharmaceutical inhibition experiments implicated a TCR-calcineurin-NFAT-GATA3 axis in driving the CD4+ T cell fate. Our data provide a resource for understanding cell fate decisions and implicate a sequential selection process in guiding lineage choice.
Collapse
Affiliation(s)
- Zoë Steier
- University of California, Berkeley, Department of Bioengineering, Berkeley, CA, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Dominik A Aylard
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Laura L McIntyre
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Isabel Baldwin
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Esther Jeong Yoon Kim
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Lydia K Lutes
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Can Ergen
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA
- University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley, CA, USA
| | | | - Ellen A Robey
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA.
| | - Nir Yosef
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA.
- University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley, CA, USA.
- Weizmann Institute of Science, Department of Systems Immunology, Rehovot, Israel.
| | - Aaron Streets
- University of California, Berkeley, Department of Bioengineering, Berkeley, CA, USA.
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA.
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Kästle M, Merten C, Hartig R, Plaza-Sirvent C, Schmitz I, Bommhardt U, Schraven B, Simeoni L. Type of PaperY192 within the SH2 Domain of Lck Regulates TCR Signaling Downstream of PLC-γ1 and Thymic Selection. Int J Mol Sci 2022; 23:ijms23137271. [PMID: 35806279 PMCID: PMC9267008 DOI: 10.3390/ijms23137271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Signaling via the TCR, which is initiated by the Src-family tyrosine kinase Lck, is crucial for the determination of cell fates in the thymus. Because of its pivotal role, ablation of Lck results in a profound block of T-cell development. Here, we show that, in addition to its well-known function in the initiation of TCR signaling, Lck also acts at a more downstream level. This novel function of Lck is determined by the tyrosine residue (Y192) located in its SH2 domain. Thymocytes from knock-in mice expressing a phosphomimetic Y192E mutant of Lck initiate TCR signaling upon CD3 cross-linking up to the level of PLC-γ1 phosphorylation. However, the activation of downstream pathways including Ca2+ influx and phosphorylation of Erk1/2 are impaired. Accordingly, positive and negative selections are blocked in LckY192E knock-in mice. Collectively, our data indicate that Lck has a novel function downstream of PLCγ-1 in the regulation of thymocyte differentiation and selection.
Collapse
Affiliation(s)
- Matthias Kästle
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Camilla Merten
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Carlos Plaza-Sirvent
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ingo Schmitz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| |
Collapse
|
4
|
Zeidan N, Damen H, Roy DC, Dave VP. Critical Role for TCR Signal Strength and MHC Specificity in ThPOK-Induced CD4 Helper Lineage Choice. THE JOURNAL OF IMMUNOLOGY 2019; 202:3211-3225. [PMID: 31036767 DOI: 10.4049/jimmunol.1801464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
Sustained TCR signaling is critical for ThPOK induction in MHC class II (MHCII)-signaled thymocytes leading to the CD4 helper lineage commitment. ThPOK suppresses the cytotoxic program in the signaled thymocytes and is shown to be necessary and sufficient for the CD4 helper lineage choice. Accordingly, loss and gain of ThPOK function redirects MHCII- and MHC class I (MHCI)-signaled thymocytes into the CD8 cytotoxic and CD4 helper lineage, respectively. However, the impact of a defined ThPOK level on the CD4 helper lineage choice of MHCII- and MHCI-specific thymocytes and the role of TCR signaling in this process is not evaluated. Equally, it is not clear if suppression of the cytotoxic program by ThPOK is sufficient in redirecting MHCI-restricted thymocytes into the CD4 helper lineage. In this study, we have investigated CD8 to CD4 helper lineage redirection in three independent ThPOK overexpressing transgenic mouse lines. Our analysis shows that one of the transgenic lines, despite overexpressing ThPOK compared with wild-type CD4 mature T cells and compromising cytotoxic program, failed to redirect all MHCI-signaled thymocytes into the CD4 helper lineage, resulting in the continued presence of CD8+ mature T cells and the generation of a large number of double negative mature T cells. Critically, the same ThPOK transgene completely restored the CD4 helper lineage commitment of MHCII-specific Thpok -/- thymocytes. Importantly, augmenting TCR signaling significantly enhanced the ThPOK-mediated CD4 helper lineage choice of MHCI-specific thymocytes but was still substantially less efficient than that of MHCII-specific thymocytes expressing the same amount of ThPOK. Together, these data suggest that the ThPOK-induced CD4 helper lineage commitment is strongly influenced by TCR signal strength and MHC specificity of developing thymocytes.
Collapse
Affiliation(s)
- Nabil Zeidan
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; and
| | - Hassan Damen
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Denis-Claude Roy
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Vibhuti P Dave
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; and
| |
Collapse
|
5
|
Mitchell JL, Seng A, Yankee TM. Expression patterns of Ikaros family members during positive selection and lineage commitment of human thymocytes. Immunology 2016; 149:400-412. [PMID: 27502439 DOI: 10.1111/imm.12657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/19/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
The Ikaros family of transcription factors is essential for normal T-cell development, but their expression pattern in human thymocytes remains poorly defined. Our goal is to determine how protein levels of Ikaros, Helios and Aiolos change as human thymocytes progress through the positive selection and lineage commitment stages. To accomplish this goal, we used multi-parameter flow cytometry to define the populations in which positive selection and lineage commitment are most likely to occur. After human thymocytes express CD3 and receive positive selection signals, the cells down-regulate expression of CD4 to become transitional single-positive (TSP) CD8+ thymocytes. At this stage, there was a transient increase in the Ikaros, Helios and Aiolos protein levels. After the TSP CD8+ developmental stage, some thymocytes re-express CD4 and become CD3hi double-positive thymocytes before down-regulating CD8 to become mature single-positive CD4+ thymocytes. Except for regulatory T cells, Helios protein levels declined and Aiolos protein levels transiently increased during CD4+ T-cell maturation. For thymocytes progressing toward the CD8+ T-cell lineage, TSP CD8+ thymocytes increase their expression of CD3 and maintain high levels of Aiolos protein as the cells complete their maturation. In summary, we defined the TSP CD8+ developmental stage in human T-cell development and propose that this stage is where CD4/CD8 lineage commitment occurs. Ikaros, Helios and Aiolos each undergo a transient increase in protein levels at the TSP stage before diverging in their expression patterns at later stages.
Collapse
Affiliation(s)
- Julie L Mitchell
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amara Seng
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Dan R Littman
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016; and Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
7
|
Kang BH, Park HJ, Yum HI, Park SP, Park JK, Kang EH, Lee JI, Lee EB, Park CG, Jung KC, Park SH. Thymic low affinity/avidity interaction selects natural Th1 cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5861-71. [PMID: 25972479 DOI: 10.4049/jimmunol.1401628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
Abstract
Identification of intrathymic eomesodermin(+) (Eomes(+)) CD4 T cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. Promyelocytic leukemia zinc finger protein(+) T cells and natural Th17 cells are known to be generated by sensing a high and persistent TCR strength, whereas this is not the case for Eomes(+) CD4 T cells. These cells go through low-level signal during the entire maturation pathway, which subsequently leads to induction of high susceptibility to cytokine IL-4. This event seems to be a major determinant for the generation of this type of cell. These T cells are functionally equivalent to Th1 cells that are present in the periphery, and this event takes place both in transgenic and in wild-type mice. There is additional evidence that this type of Eomes(+) innate CD4 T cell is also present in human cord blood.
Collapse
Affiliation(s)
- Byung Hyun Kang
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Hyo Jin Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Pathology, Seoul National University Bundang Hospital, SungNam 463-707, Korea
| | - Hye In Yum
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Seung Pyo Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Jin Kyun Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Eun Ha Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, SungNam 463-707, Korea
| | - Jae-Il Lee
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Eun Bong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Chung-Gyu Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea; and
| | - Kyeong Cheon Jung
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Korea; Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Pathology, Seoul National University Hospital, Seoul 110-744, Korea
| | - Seong Hoe Park
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea;
| |
Collapse
|
8
|
Ye J, Shi H, Shen Y, Peng C, Liu Y, Li C, Deng K, Geng J, Xu T, Zhuang Y, Zheng B, Tao W. PP6 controls T cell development and homeostasis by negatively regulating distal TCR signaling. THE JOURNAL OF IMMUNOLOGY 2015; 194:1654-64. [PMID: 25609840 DOI: 10.4049/jimmunol.1401692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell development and homeostasis are both regulated by TCR signals. Protein phosphorylation and dephosphorylation, which are catalyzed by protein kinases and phosphatases, respectively, serve as important switches controlling multiple downstream pathways triggered by TCR recognition of Ags. It has been well documented that protein tyrosine phosphatases are involved in negative regulation of proximal TCR signaling. However, how TCR signals are terminated or attenuated in the distal TCR signaling pathways is largely unknown. We investigated the function of Ser/Thr protein phosphatase (PP) 6 in TCR signaling. T cell lineage-specific ablation of PP6 in mice resulted in enhanced thymic positive and negative selection, and preferential expansion of fetal-derived, IL-17-producing Vγ6Vδ1(+) T cells. Both PP6-deficient peripheral CD4(+) helper and CD8(+) cytolytic cells could not maintain a naive state and became fast-proliferating and short-lived effector cells. PP6 deficiency led to profound hyperactivation of multiple distal TCR signaling molecules, including MAPKs, AKT, and NF-κB. Our studies demonstrate that PP6 acts as a critical negative regulator, not only controlling both αβ and γδ lineage development, but also maintaining naive T cell homeostasis by preventing their premature activation before Ag stimulation.
Collapse
Affiliation(s)
- Jian Ye
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hao Shi
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ye Shen
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chao Peng
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yan Liu
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chenyu Li
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Kejing Deng
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jianguo Geng
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109
| | - Tian Xu
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China; Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536
| | - Yuan Zhuang
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China; Department of Immunology, Duke University Medical Center, Durham, NC 27701; and
| | - Biao Zheng
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research of Development and Disease, School of Life Sciences, Fudan University, Shanghai 200433, China;
| |
Collapse
|
9
|
Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013; 70:4537-53. [PMID: 23793512 PMCID: PMC3827898 DOI: 10.1007/s00018-013-1393-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
The differentiation and function of peripheral helper and cytotoxic T cell lineages is coupled with the expression of CD4 and CD8 coreceptor molecules, respectively. This indicates that the control of coreceptor gene expression is closely linked with the regulation of CD4/CD8 lineage decision of DP thymocytes. Research performed during the last two decades revealed comprehensive mechanistic insight into the developmental stage- and subset/lineage-specific regulation of Cd4, Cd8a and Cd8b1 (Cd8) gene expression. These studies provided important insight into transcriptional control mechanisms during T cell development and into the regulation of cis-regulatory networks in general. Moreover, the identification of transcription factors involved in the regulation of CD4 and CD8 significantly advanced the knowledge of the transcription factor network regulating CD4/CD8 cell-fate choice of DP thymocytes. In this review, we provide an overview of the identification and characterization of CD4/CD8 cis-regulatory elements and present recent progress in our understanding of how these cis-regulatory elements control CD4/CD8 expression during T cell development and in peripheral T cells. In addition, we describe the transcription factors implicated in the regulation of coreceptor gene expression and discuss how these factors are integrated into the transcription factor network that regulates CD4/CD8 cell-fate choice of DP thymocytes.
Collapse
|
10
|
Zhang EY, Xiong J, Parker BL, Chen AY, Fields PE, Ma X, Qiu J, Yankee TM. Depletion and recovery of lymphoid subsets following morphine administration. Br J Pharmacol 2012; 164:1829-44. [PMID: 21557737 DOI: 10.1111/j.1476-5381.2011.01475.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Opioid use and abuse has been linked to significant immunosuppression, which has been attributed, in part, to drug-induced depletion of lymphocytes. We sought to define the mechanisms by which lymphocyte populations are depleted and recover following morphine treatment in mice. EXPERIMENTAL APPROACH Mice were implanted with morphine pellets and B- and T-cell subsets in the bone marrow, thymus, spleen and lymph nodes were analysed at various time points. We also examined the effects of morphine on T-cell development using an ex vivo assay. KEY RESULTS The lymphocyte populations most susceptible to morphine-induced depletion were the precursor cells undergoing selection. As the lymphocytes recovered, more lymphocyte precursors proliferated than in control mice. In addition, peripheral T-cells displayed evidence that they had undergone homeostatic proliferation during the recovery phase of the experiments. CONCLUSIONS AND IMPLICATIONS The recovery of lymphocytes following morphine-induced depletion occurred in the presence of morphine and via increased proliferation of lymphoid precursors and homeostatic proliferation of T-cells.
Collapse
Affiliation(s)
- E Y Zhang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
During alphabeta T cell development, cells diverge into alternate CD4 helper and CD8(+) cytotoxic T cell lineages. The precise correlation between a T cell's CD8 and CD4 choice and its TCR specificity to class I or class II MHC was noted more than 20 years ago, and establishing the underlying mechanism has remained a focus of intense study since then. This review deals with three formerly discrete topics that are gradually becoming interconnected: the role of TCR signaling in lineage commitment, the regulation of expression of the CD4 and CD8 genes, and transcriptional regulation of lineage commitment. It is widely accepted that TCR signaling exerts a decisive influence on lineage choice, although the underlying mechanism remains intensely debated. Current evidence suggests that both duration and intensity of TCR signaling may control lineage choice, as proposed by the kinetic signaling and quantitative instructive models, respectively. Alternate expression of the CD4 and CD8 genes is the most visible manifestation of lineage choice, and much progress has been made in defining the responsible cis elements and transcription factors. Finally, important clues to the molecular basis of lineage commitment have been provided by the recent identification of the transcription factor ThPOK as a key regulator of lineage choice. ThPOK is selectively expressed in class II-restricted cells at the CD4(+)8(lo) stage and is necessary and sufficient for development to the CD4 lineage. Given the central role of ThPOK in lineage commitment, understanding its upstream regulation and downstream gene targets is expected to reveal further important aspects of the molecular machinery underlying lineage commitment.
Collapse
Affiliation(s)
- Xi He
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
12
|
Kang YJ, Wang X, Lin SJ, Hsu YM, Chang HC. An active CD8alpha/pMHCI interaction is required for CD8 single positive thymocyte differentiation. Eur J Immunol 2010; 40:836-48. [PMID: 19950178 DOI: 10.1002/eji.200939663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recognition of viral antigenic peptides bound to major histocompatibility complex class I molecules (MHCI) by TCR is critical for initiating the responses of CD8(+) T cells that ultimately lead to elimination of virus-infected cells. This antigen recognition is enhanced by the CD8 coreceptor through its interaction with the peptide-MHCI complexes (pMHCI). Mouse CD8alphabeta can form two different complexes with pMHCI via either the CD8alpha- or CD8beta-dominated interaction. To understand the functional significance of these complexes in vivo, we generated Tg mice carrying a variant CD8alphabeta (CD8alpha(m3)beta) capable of forming only the CD8beta-dominated CD8alphabeta/pMHCI complex. These mice show sub-optimal thymic differentiation with reduced populations of CD8(+) single-positive thymocytes. Tg CD8(+) T cells exhibit a compromised developmental capacity when competing with CD8(+) T cells from B6 mice in mixed bone marrow chimera experiments. However, once these CD8(+) T cells have emigrated to the peripheral lymphoid organs, they exhibit normal effector function against viral infection. Our observations indicate that, in addition to the CD8 activity conferred by CD8beta-dominated CD8alphabeta/pMHCI complexes, full thymocyte differentiation requires additional coreceptor activities conferred by CD8alphaalpha and/or CD8alphabeta with CD8alpha-dominated CD8/pMHCI complexes.
Collapse
Affiliation(s)
- Yoon-Joong Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | | | | | | | | |
Collapse
|
13
|
Park JH, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, Kimura MY, Cui Y, Lucas PJ, Gress RE, Kubo M, Hennighausen L, Feigenbaum L, Singer A. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat Immunol 2010; 11:257-64. [PMID: 20118929 PMCID: PMC3555225 DOI: 10.1038/ni.1840] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/29/2009] [Indexed: 12/11/2022]
Abstract
Immature CD4(+)CD8(+) (double-positive (DP)) thymocytes are signaled via T cell antigen receptors (TCRs) to undergo positive selection and become responsive to intrathymic cytokines such as interleukin 7 (IL-7). We report here that cytokine signaling is required for positively selected thymocytes to express the transcription factor Runx3, specify CD8 lineage choice and differentiate into cytotoxic-lineage T cells. In DP thymocytes genetically engineered to be cytokine responsive, IL-7 signaling induced TCR-unsignaled DP thymocytes to express Runx3 and to differentiate into mature CD8(+) T cells, completely circumventing positive selection. We conclude that TCR-mediated positive selection converts DP cells into cytokine-responsive thymocytes, but it is subsequent signaling by intrathymic cytokines that specifies CD8 lineage choice and promotes differentiation into cytotoxic-lineage T cells.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Themis, a T cell-specific protein important for late thymocyte development. Nat Immunol 2009; 10:840-7. [PMID: 19597498 DOI: 10.1038/ni.1768] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/09/2009] [Indexed: 12/11/2022]
Abstract
During positive selection, thymocytes transition through a stage during which T cell antigen receptor (TCR) signaling controls CD4-versus-CD8 lineage 'choice' and subsequent maturation. Here we describe a previously unknown T cell-specific protein, Themis, that serves a distinct function during this stage. In Themis(-/-) mice, thymocyte selection was impaired and the number of transitional CD4(+)CD8(int) thymocytes as well as CD4(+) or CD8(+) single-positive thymocytes was lower. Notably, although we detected no overt TCR-proximal signaling deficiencies, Themis(-/-) CD4(+)CD8(int) thymocytes showed developmental defects consistent with attenuated signaling that were reversible by TCR stimulation. Our results identify Themis as a critical component of the T cell developmental program and suggest that Themis functions to sustain and/or integrate signals required for proper lineage commitment and maturation.
Collapse
|
15
|
Dalheimer SL, Zeng L, Draves KE, Hassaballa A, Jiwa NN, Parrish TD, Clark EA, Yankee TM. Gads-deficient thymocytes are blocked at the transitional single positive CD4+ stage. Eur J Immunol 2009; 39:1395-404. [PMID: 19337995 DOI: 10.1002/eji.200838692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Positive selection of T-cell precursors is the process by which a diverse T-cell repertoire is established. Positive selection begins at the CD4(+)CD8(+) double positive (DP) stage of development and involves at least two steps. First, DP thymocytes down-regulate CD8 to become transitional single positive (TSP) CD4(+) thymocytes. Then, cells are selected to become either mature single positive CD4(+) or mature single positive CD8(+) thymocytes. We sought to define the function of Gads during the two steps of positive selection by analyzing a Gads-deficient mouse line. In Gads(+/+) mice, most TSP CD4(+) thymocytes are TCR(hi)Bcl-2(hi)CD69(+), suggesting that essential steps in positive selection occurred in the DP stage. Despite that Gads(-/-) mice could readily generate TSP CD4(+) thymocytes, many Gads(-/-) TSP CD4(+) cells were TCR(lo)Bcl-2(lo)CD69(-), suggesting that Gads(-/-) cells proceeded to the TSP CD4(+) stage prior to being positively selected. These data suggest that positive selection is not a prerequisite for the differentiation of DP thymocytes into TSP CD4(+) thymocytes. We propose a model in which positive selection and differentiation into the TSP CD4(+) stage are separable events and Gads is only required for positive selection.
Collapse
Affiliation(s)
- Stacy L Dalheimer
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
The impact of negative selection on thymocyte migration in the medulla. Nat Immunol 2009; 10:823-30. [PMID: 19543275 PMCID: PMC2793676 DOI: 10.1038/ni.1761] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/01/2009] [Indexed: 01/14/2023]
Abstract
Developing thymocytes are screened for self-reactivity before exiting the thymus, but how thymocytes scan the medulla for self-antigens is unclear. Using two-photon microscopy, we observed that medullary thymocytes migrated rapidly and made frequent, transient contacts with dendritic cells. In the presence of a negative selecting ligand, thymocytes slowed, became confined to areas of approximately 30 microns in diameter, and had increased contact with dendritic cells surrounding confinement zones. One third of polyclonal medullary thymocytes also exhibited confined, slower migration, and may correspond to auto-reactive thymocytes. Our data suggest that many auto-reactive thymocytes do not undergo immediate arrest and death upon encounter with a negative selecting ligand, but rather adopt an altered migration program while remaining within the medullary microenvironment.
Collapse
|
17
|
GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 2009; 9:125-35. [PMID: 19151747 DOI: 10.1038/nri2476] [Citation(s) in RCA: 331] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many advances in our understanding of the molecules that regulate the development, differentiation and function of T cells have been made over the past few years. One important regulator of T-cell differentiation is the transcription factor GATA-binding protein 3 (GATA3). Although the main function of GATA3 is to act as a master transcription factor for the differentiation of T helper 2 (T(H)2) cells, new research has helped to uncover crucial functions of GATA3 in T cells that go beyond T(H)2-cell differentiation and that are important at earlier stages of haematopoietic and lymphoid-cell development. This Review focuses on the functions of GATA3 from early thymocyte development to effector T-cell differentiation. In addition, we discuss the interactions between GATA3 and other transcription factors and signalling pathways, and highlight the functional significance of the GATA3 protein structure.
Collapse
|
18
|
Singer A, Adoro S, Park JH. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol 2008; 8:788-801. [PMID: 18802443 DOI: 10.1038/nri2416] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following successful gene rearrangement at alphabeta T-cell receptor (TCR) loci, developing thymocytes express both CD4 and CD8 co-receptors and undergo a life-or-death selection event, which is known as positive selection, to identify cells that express TCRs with potentially useful ligand specificities. Positively selected thymocytes must then differentiate into either CD4(+) helper T cells or CD8(+) cytotoxic T cells, a crucial decision known as CD4/CD8-lineage choice. In this Review, we summarize recent advances in our understanding of the cellular and molecular events involved in lineage-fate decision and discuss them in the context of the major models of CD4/CD8-lineage choice.
Collapse
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
19
|
Muroi S, Naoe Y, Miyamoto C, Akiyama K, Ikawa T, Masuda K, Kawamoto H, Taniuchi I. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nat Immunol 2008; 9:1113-21. [PMID: 18776907 DOI: 10.1038/ni.1650] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 07/31/2008] [Indexed: 11/09/2022]
Abstract
CD4 and the transcription factor ThPOK are essential for the differentiation of major histocompatibility complex class II-restricted thymocytes into the helper T cell lineage; their genes (Cd4 and Zbtb7b (called 'ThPOK' here)) are repressed by transcriptional silencer elements in cytotoxic T cells. The molecular mechanisms regulating expression of these genes during helper T cell lineage differentiation remain unknown. Here we showed that inefficient upregulation of ThPOK, induced by removal of the proximal enhancer from the ThPOK locus, resulted in the transdifferentiation of helper lineage-specified cells into the cytotoxic T cell lineage. Furthermore, direct antagonism by ThPOK of the Cd4 and ThPOK silencers generated two regulatory loops that initially inhibited Cd4 downregulation and later stabilized ThPOK expression. Our results show how an initial lineage-specification signal can be amplified and stabilized during the lineage-commitment process.
Collapse
Affiliation(s)
- Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Egawa T, Littman DR. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat Immunol 2008; 9:1131-9. [PMID: 18776905 PMCID: PMC2666788 DOI: 10.1038/ni.1652] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/06/2008] [Indexed: 11/09/2022]
Abstract
The transcription factor ThPOK has been shown to be required and sufficient for CD4+CD8− thymocyte generation, yet the mechanism through which ThPOK orchestrates CD4 helper T cell lineage differentiation remains unclear. Here we utilized reporter mice to track expression of transcription factors in developing thymocytes. Distal promoter-driven Runx3 (Runx3d) expression was restricted to MHC class I-selected thymocytes. In ThPOK-deficient mice, Runx3d expression was de-repressed in MHCII-selected thymocytes, contributing to their redirection to the CD8 T cell lineage. In the absence of both ThPOK and Runx, redirection was prevented and cells potentially belonging to the CD4 lineage, presumably specified independently of ThPOK, were generated. Our results suggest that MHCII-selected thymocytes are directed towards the CD4 lineage independently of ThPOK, but require ThPOK to prevent Runx-dependent differentiation towards the CD8 lineage.
Collapse
Affiliation(s)
- Takeshi Egawa
- Molecular Pathogenesis Program, The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
21
|
He X, Park K, Wang H, He X, Zhang Y, Hua X, Li Y, Kappes DJ. CD4-CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity 2008; 28:346-58. [PMID: 18342007 DOI: 10.1016/j.immuni.2008.02.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 01/28/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
The transcription factor ThPOK is necessary and sufficient to trigger adoption of the CD4 lymphocyte fate. Here we investigate the regulation of ThPOK expression and its subsequent control of CD4+ T cell commitment. Treatment of immature thymocytes with anti-TCR (T cell receptor) showed that TCR signals were important in ThPOK induction and that the CD4+8lo stage was the likely target of the inductive TCR signal. We identified at the ThPOK locus a key distal regulatory element (DRE) that mediated its differential expression in class I- versus II-restricted CD4+8lo thymocytes. The DRE was both necessary for suppression of ThPOK expression in class I-restricted thymocytes and sufficient for its induction in class II-restricted thymocytes. Mutagenesis analysis defined an essential 80bp core DRE sequence and its potential regulatory motifs. We propose a silencer-dependent model of lineage choice, whereby inactivation of the DRE silencer by a strong TCR signal leads to CD4 commitment, whereas continued silencer activity leads to CD8 commitment.
Collapse
Affiliation(s)
- Xi He
- Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
COPD (chronic obstructive pulmonary disease) is a treatable and preventable disease state, characterized by progressive airflow limitation that is not fully reversible. It is a current and growing cause of mortality and morbidity worldwide, with the WHO (World Health Organization) projecting that total deaths attributed to COPD will increase by more than 30% in the next 10 years. The pathological hallmarks of COPD are destruction of the lung parenchyma (pulmonary emphysema), inflammation of the central airways (chronic bronchitis) and inflammation of the peripheral airways (respiratory bronchiolitis). The destructive changes and tissue remodelling observed in COPD are a result of complex interactions between cells of the innate and adaptive immune systems. The focus of the present review is directed towards the role of CD8(+) T-lymphocytes, NK (natural killer) cells and NKT cells (NK T-cells). These three classes of killer cell could all play an important part in the pathogenesis of COPD. The observed damage to the pulmonary tissue could be caused in three ways: (i) direct cytotoxic effect against the lung epithelium mediated by the activities of perforin and granzymes, (ii) FasL (Fas ligand)-induced apoptosis and/or (iii) cytokine and chemokine release. The present review considers the role of these killer cells in COPD.
Collapse
|
23
|
Abstract
CD8(+) cytotoxic and CD4(+) helper/inducer T cells develop from common thymocyte precursors that express both CD4 and CD8 molecules. Upon T cell receptor signaling, these cells initiate a differentiation program that includes complex changes in CD4 and CD8 expression, allowing identification of transitional intermediates in this developmental pathway. Little is known about regulation of these early transitions or their specific importance to CD4 and CD8 T cell development. Here, we show a severe block at the CD4(lo)CD8(lo) transitional stage of positive selection caused by loss of the nuclear HMG box protein TOX. As a result, CD4 lineage T cells, including regulatory T and CD1d-dependent natural killer T cells, fail to develop. In contrast, functional CD8(+) T cells develop in TOX-deficient mice. Our data suggest that TOX-dependent transition to the CD4(+)CD8(lo) stage is required for continued development of class II major histocompatibility complex-specific T cells, regardless of ultimate lineage fate.
Collapse
Affiliation(s)
- Parinaz Aliahmad
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
24
|
Yu Q, Sen JM. Beta-catenin regulates positive selection of thymocytes but not lineage commitment. THE JOURNAL OF IMMUNOLOGY 2007; 178:5028-34. [PMID: 17404285 PMCID: PMC2274003 DOI: 10.4049/jimmunol.178.8.5028] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Positive selection and lineage commitment to the cytolytic or helper lineage of T cells result in coordinated expression of MHC class I-restricted TCR and CD8 coreceptor or MHC class II-restricted TCR and CD4 molecule. Positive selection signals also regulate the survival and generation of requisite numbers of cytolytic or Th cells. beta-Catenin is the major transcriptional cofactor of T cell factor and plays a role in thymocyte development. In this study, using mice expressing stabilized beta-catenin and mice with T cell-specific deletion of beta-catenin, we show that beta-catenin regulates positive selection, but not lineage commitment of thymocytes. Furthermore, beta-catenin expression accelerates the timing of mature CD8 thymocyte generation such that CD4 and CD8 single-positive thymocytes mature with the same kinetics during development.
Collapse
Affiliation(s)
| | - Jyoti Misra Sen
- Address correspondence and reprint requests to Dr. Jyoti Misra Sen, Lymphocyte Development Unit, Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224. E-mail address:
| |
Collapse
|
25
|
Erman B, Alag AS, Dahle O, van Laethem F, Sarafova SD, Guinter TI, Sharrow SO, Grinberg A, Love PE, Singer A. Coreceptor signal strength regulates positive selection but does not determine CD4/CD8 lineage choice in a physiologic in vivo model. THE JOURNAL OF IMMUNOLOGY 2007; 177:6613-25. [PMID: 17082573 DOI: 10.4049/jimmunol.177.10.6613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR signals drive thymocyte development, but it remains controversial what impact, if any, the intensity of those signals have on T cell differentiation in the thymus. In this study, we assess the impact of CD8 coreceptor signal strength on positive selection and CD4/CD8 lineage choice using novel gene knockin mice in which the endogenous CD8alpha gene has been re-engineered to encode the stronger signaling cytoplasmic tail of CD4, with the re-engineered CD8alpha gene referred to as CD8.4. We found that stronger signaling CD8.4 coreceptors specifically improved the efficiency of CD8-dependent positive selection and quantitatively increased the number of MHC class I (MHC-I)-specific thymocytes signaled to differentiate into CD8+ T cells, even for thymocytes expressing a single, transgenic TCR. Importantly, however, stronger signaling CD8.4 coreceptors did not alter the CD8 lineage choice of any MHC-I-specific thymocytes, even MHC-I-specific thymocytes expressing the high-affinity F5 transgenic TCR. This study documents in a physiologic in vivo model that coreceptor signal strength alters TCR-signaling thresholds for positive selection and so is a major determinant of the CD4:CD8 ratio, but it does not influence CD4/CD8 lineage choice.
Collapse
MESH Headings
- Animals
- CD4 Antigens/biosynthesis
- CD4 Antigens/genetics
- CD4 Antigens/physiology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8 Antigens/biosynthesis
- CD8 Antigens/genetics
- CD8 Antigens/physiology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Lineage/genetics
- Cell Lineage/immunology
- Female
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Models, Immunological
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Batu Erman
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Eshima K, Suzuki H, Shinohara N. Cross-positive selection of thymocytes expressing a single TCR by multiple major histocompatibility complex molecules of both classes: implications for CD4+ versus CD8+ lineage commitment. THE JOURNAL OF IMMUNOLOGY 2006; 176:1628-36. [PMID: 16424192 DOI: 10.4049/jimmunol.176.3.1628] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study has investigated the cross-reactivity upon thymic selection of thymocytes expressing transgenic TCR derived from a murine CD8+ CTL clone. The Idhigh+ cells in this transgenic mouse had been previously shown to mature through positive selection by class I MHC, Dq or Lq molecule. By investigating on various strains, we found that the transgenic TCR cross-reacts with three different MHCs, resulting in positive or negative selection. Interestingly, in the TCR-transgenic mice of H-2q background, mature Idhigh+ T cells appeared among both CD4+ and CD8+ subsets in periphery, even in the absence of RAG-2 gene. When examined on beta2-microglobulin-/- background, CD4+, but not CD8+, Idhigh+ T cells developed, suggesting that maturation of CD8+ and CD4+ Idhigh+ cells was MHC class I (Dq/Lq) and class II (I-Aq) dependent, respectively. These results indicated that this TCR-transgenic mouse of H-2q background contains both classes of selecting MHC ligands for the transgenic TCR simultaneously. Further genetic analyses altering the gene dosage and combinations of selecting MHCs suggested novel asymmetric effects of class I and class II MHC on the positive selection of thymocytes. Implications of these observations in CD4+/CD8+ lineage commitment are discussed.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Lineage/genetics
- Cell Lineage/immunology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- H-2 Antigens/immunology
- Haplotypes
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class II/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | |
Collapse
|
27
|
Aliahmad P, Kaye J. Commitment issues: linking positive selection signals and lineage diversification in the thymus. Immunol Rev 2006; 209:253-73. [PMID: 16448547 DOI: 10.1111/j.0105-2896.2006.00345.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The thymus is responsible for the production of CD4+ helper and CD8+ cytotoxic T cells, which constitute the cellular arm of the immune system. These cell types derive from common precursors that interact with thymic stroma in a T-cell receptor (TCR)-specific fashion, generating intracellular signals that are translated into function-specific changes in gene expression. This overall process is termed positive selection, but it encompasses a number of temporally distinct and possibly mechanistically distinct cellular changes, including rescue from apoptosis, initiation of cell differentiation, and commitment to the CD4+ or CD8+ T-cell lineage. One of the puzzling features of positive selection is how specificity of the TCR controls lineage commitment, as both helper and cytolytic T cells utilize the same antigen-receptor components, with the exception of the CD4 or CD8 coreceptors themselves. In this review, we focus on the signals required for positive selection, particularly as they relate to lineage commitment. Identification of genes encoding transcriptional regulators that play a role in T-cell development has led to significant recent advances in the field. We also provide an overview of nuclear factors in this context and, where known, how their regulation is linked to the same TCR signals that have been implicated in initiating and regulating positive selection.
Collapse
Affiliation(s)
- Parinaz Aliahmad
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
28
|
Abstract
The molecular basis of CD4:CD8 lineage commitment, in particular the mechanism by which the precise correlation between lineage choice and T-cell receptor (TCR) specificity toward class I or II major histocompatibility complex is achieved, remains controversial. Both stochastic/selective and instructive models in various forms have been proposed to explain this correlation. The two main experimental approaches previously employed to elucidate this process have focused on the beginning and end of the process, i.e. the influence of TCR signaling and the alternate transcriptional control of the CD4 and CD8 loci during commitment. The recent finding that the transcription factor Th-POK is necessary and sufficient for CD4 commitment has now provided a direct entry point for studying the intracellular pathways that govern lineage commitment. Here, we review data leading to the identification and characterization of this factor and discuss the implications of these studies in the context of current models of lineage commitment.
Collapse
|
29
|
Liu X, Taylor BJ, Sun G, Bosselut R. Analyzing expression of perforin, Runx3, and Thpok genes during positive selection reveals activation of CD8-differentiation programs by MHC II-signaled thymocytes. THE JOURNAL OF IMMUNOLOGY 2005; 175:4465-74. [PMID: 16177089 DOI: 10.4049/jimmunol.175.7.4465] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intrathymic positive selection matches CD4-CD8 lineage differentiation to MHC specificity. However, it is unclear whether MHC signals induce lineage choice or simply select thymocytes of the appropriate lineage. To investigate this issue, we assessed thymocytes undergoing positive selection for expression of the CD8 lineage markers perforin and Runx3. Using both population-based and single-cell RT-PCR analyses, we found large subsets of MHC class II (MHC-II)-signaled thymocytes expressing these genes within the CD4+ 8+ and CD4+ 8(int), but not the CD4+ 8- populations of signaling competent mice. This indicates that MHC-II signals normally fail to impose CD4 differentiation and further implies that the number of mature CD8 single-positive (SP) thymocytes greatly underestimates CD8 lineage choice. We next examined whether MHC-II-restricted CD4+ 8- thymocytes remain competent to initiate CD8 lineage gene expression. In mice in which expression of the tyrosine kinase Zap70 and thereby TCR signaling were impaired selectively in SP thymocytes, MHC-II-signaled CD4+ 8- thymocytes expressed perforin and Runx3 and failed to up-regulate the CD4 marker Thpok. This indicated that impairing TCR signals at the CD4 SP stage switched gene expression patterns from CD4- to CD8-lineage specific. We conclude from these findings that MHC-II-signaled thymocytes remain competent to initiate CD8-specific gene expression even after CD8 down-regulation and that CD4 lineage differentiation is not fixed before the CD4 SP stage.
Collapse
Affiliation(s)
- Xiaolong Liu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The mechanism of CD4-CD8 lineage commitment, which ensures the correlation between T cell receptor specificity and adoption of the T killer or T helper phenotype, has long been the subject of intense debate. Various approaches are slowly elucidating the underlying molecular pathways. Analysis of the function of T cell receptor signaling (the 'top-down' approach) supports the view that differences in signal strength and/or duration 'instruct' alternative commitment. Analysis of the transcriptional regulation of the genes encoding CD4 and CD8 (the 'bottom-up' approach) has identified critical cis-acting elements and their interacting factors. Finally, identification of the transcription factor Th-POK as a central component of the CD4 lineage-determining pathway has provided a new starting point from which to unravel this intriguing process 'from the inside out'.
Collapse
|
31
|
Sarafova SD, Erman B, Yu Q, Van Laethem F, Guinter T, Sharrow SO, Feigenbaum L, Wildt KF, Ellmeier W, Singer A. Modulation of Coreceptor Transcription during Positive Selection Dictates Lineage Fate Independently of TCR/Coreceptor Specificity. Immunity 2005; 23:75-87. [PMID: 16039581 DOI: 10.1016/j.immuni.2005.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/13/2005] [Accepted: 05/19/2005] [Indexed: 11/24/2022]
Abstract
For developing T cells, coreceptor choice is matched to T cell antigen receptor (TCR) MHC specificity during positive selection in the thymus, but the mechanism remains uncertain. Here, we document that TCR-mediated positive selection signals inactivate the immature CD8(III) enhancer in double positive (DP) thymocytes, explaining in part the cessation of CD8 coreceptor transcription that occurs during positive selection. More importantly, by placing CD4 protein expression under the control of CD8 transcriptional regulatory elements, we demonstrate that cessation of CD4 coreceptor transcription during positive selection results in precisely the same lineage fate as cessation of CD8 coreceptor transcription. That is, MHC-II-signaled DP thymocytes differentiated into CD8-lineage cytotoxic T cells, despite the MHC-II specificity and CD4 dependence of their TCRs. This study demonstrates that termination of coreceptor transcription during positive selection promotes CD8-lineage fate, regardless of TCR specificity or coreceptor protein identity.
Collapse
Affiliation(s)
- Sophia D Sarafova
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sun G, Liu X, Mercado P, Jenkinson SR, Kypriotou M, Feigenbaum L, Galéra P, Bosselut R. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat Immunol 2005; 6:373-81. [PMID: 15750595 DOI: 10.1038/ni1183] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 02/14/2005] [Indexed: 11/09/2022]
Abstract
The genetic programs directing CD4 or CD8 T cell differentiation in the thymus remain poorly understood. While analyzing gene expression during intrathymic T cell selection, we found that Zfp67, encoding the zinc finger transcription factor cKrox, was upregulated during the differentiation of CD4(+) but not CD8(+) T cells. Expression of a cKrox transgene impaired CD8 T cell development and caused major histocompatibility complex class I-restricted thymocytes to differentiate into CD4(+) T cells with helper properties rather than into cytotoxic CD8(+) T cells, as normally found. CD4 lineage differentiation mediated by cKrox required its N-terminal BTB (bric-a-brac, tramtrack, broad complex) domain. These findings identify cKrox as a chief CD4 differentiation factor during positive selection.
Collapse
Affiliation(s)
- Guangping Sun
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sato T, Ohno SI, Hayashi T, Sato C, Kohu K, Satake M, Habu S. Dual Functions of Runx Proteins for Reactivating CD8 and Silencing CD4 at the Commitment Process into CD8 Thymocytes. Immunity 2005; 22:317-28. [PMID: 15780989 DOI: 10.1016/j.immuni.2005.01.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 11/19/2022]
Abstract
To understand how CD8 expression is regulated during the transition process from CD4+8+ (CD4 and CD8 double positive, DP) to CD4-8+ (CD8 single positive, CD8SP) cells in the thymus, the involvement of Runx proteins in the alteration of chromatin configuration was investigated. Using the chromatin immunoprecipitation assay, we first demonstrated that Runx proteins bind to the stage-specific CD8 enhancer, as well as the CD4 silencer, in CD8SP thymocytes. Among Runx family members, Runx3 expression was initiated in DP thymocytes receiving a positive selection signal and increased in concert with differentiation to the CD8SP stage. Furthermore, reactivation of the CD8 gene, as well as CD4 silencing, was suppressed in positively selected thymocytes of Runx dominant-negative transgenic mice. These results suggest that Runx proteins, especially Runx3, are involved in lineage specification of CD8 T cells and provide important information for understanding the mechanism for the mutually exclusive expression of coreceptors in mature thymocytes.
Collapse
Affiliation(s)
- Takehito Sato
- Department of Immunology, Tokai University School of Medicine, Boseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Merkenschlager M, Amoils S, Roldan E, Rahemtulla A, O'connor E, Fisher AG, Brown KE. Centromeric repositioning of coreceptor loci predicts their stable silencing and the CD4/CD8 lineage choice. ACTA ACUST UNITED AC 2005; 200:1437-44. [PMID: 15583016 PMCID: PMC2211953 DOI: 10.1084/jem.20041127] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The differentiation of CD4+ CD8+ double positive (DP) thymocytes requires the irreversible choice between two alternative lineages, distinguished by the mutually exclusive expression of either CD4 or CD8. Differentiating DP cells transiently down-regulate both CD4 and CD8, and this has complicated the debate whether the mechanism of CD4/CD8 lineage choice is instructive, stochastic/selective, or more complex in nature. Using fluorescence in situ hybridization, we show that the stable silencing of coreceptor loci, and ultimately lineage choice, is predicted by the spatial repositioning of coreceptor alleles to centromeric heterochromatin domains. These data provide evidence that lineage-specific developmental programs are established early during the transition from the DP to the single positive stage.
Collapse
Affiliation(s)
- Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | | | |
Collapse
|
35
|
Delaire S, Huang YH, Chan SW, Robey EA. Dynamic repositioning of CD4 and CD8 genes during T cell development. ACTA ACUST UNITED AC 2005; 200:1427-35. [PMID: 15583015 PMCID: PMC2211942 DOI: 10.1084/jem.20041041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although stable repression of CD4 and CD8 genes is a central feature of T cell lineage commitment, we lack detailed information about the timing and mechanism of this repression. Stable gene repression has been linked to the position of genes within the nucleus. Therefore, information about the nuclear position of CD4 and CD8 genes during T cell development could provide insights into both the mechanism of regulation of CD4 and CD8 genes, and the process of lineage commitment. Here, we report that lineage-specific repression of CD4 and CD8 genes is associated with the repositioning of alleles close to heterochromatin. We also provide evidence that the relocalization of CD4 and CD8 genes to heterochromatin can occur as an early response to positive selection signals. We discuss our results in terms of our current knowledge of CD4 and CD8 gene regulation and CD4 versus CD8 lineage commitment.
Collapse
Affiliation(s)
- Stephanie Delaire
- Department of Molecular and Cell Biology, 475 Life Science Additions, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
36
|
Gallegos AM, Bevan MJ. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. ACTA ACUST UNITED AC 2004; 200:1039-49. [PMID: 15492126 PMCID: PMC2211843 DOI: 10.1084/jem.20041457] [Citation(s) in RCA: 363] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intrathymic expression of tissue-specific antigens (TSAs) by medullary thymic epithelial cells (Mtecs) leads to deletion of autoreactive T cells. However, because Mtecs are known to be poor antigen-presenting cells (APCs) for tolerance to ubiquitous antigens, and very few Mtecs express a given TSA, it was unclear if central tolerance to TSA was induced directly by Mtec antigen presentation or indirectly by thymic bone marrow (BM)-derived cells via cross-presentation. We show that professional BM-derived APCs acquire TSAs from Mtecs and delete autoreactive CD8 and CD4 T cells. Although direct antigen presentation by Mtecs did not delete the CD4 T cell population tested in this study, Mtec presentation efficiently deleted both monoclonal and polyclonal populations of CD8 T cells. For developing CD8 T cells, deletion by BM-derived APC and by Mtec presentation occurred abruptly at the transitional, CD4high CD8low TCRintermediate stage, presumably as the cells transit from the cortex to the medulla. These studies reveal a cooperative relationship between Mtecs and BM-derived cells in thymic elimination of autoreactive T cells. Although Mtecs synthesize TSAs and delete a subset of autoreactive T cells, BM-derived cells extend the range of clonal deletion by cross-presenting antigen captured from Mtecs.
Collapse
Affiliation(s)
- Alena M Gallegos
- Department of Immunology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98795, USA
| | | |
Collapse
|
37
|
Mick VE, Starr TK, McCaughtry TM, McNeil LK, Hogquist KA. The Regulated Expression of a Diverse Set of Genes during Thymocyte Positive Selection In Vivo. THE JOURNAL OF IMMUNOLOGY 2004; 173:5434-44. [PMID: 15494490 DOI: 10.4049/jimmunol.173.9.5434] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A signal initiated by the newly formed Ag receptor is integrated with microenvironmental cues during T cell development to ensure positive selection of CD4+CD8+ progenitors into functionally mature CD4+ or CD8+ T lymphocytes. During this transition, a survival program is initiated, TCR gene recombination ceases, cells migrate into a new thymic microenvironment, the responsiveness of the Ag receptor is tuned, and the cells commit to a specific T lineage. To determine potential regulators of these processes, we used mRNA microarray analysis to compare gene expression changes in CD4+CD8+ thymocytes from TCR transgenic mice that have received a TCR selection signal with those that had not received a signal. We found 129 genes with expression that changed significantly during positive selection, the majority of which were not previously appreciated. A large number of these changes were confirmed by real-time PCR or flow cytometry. We have combined our findings with gene changes reported in the literature to provide a comprehensive report of the genes regulated during positive selection, and we attempted to assign these genes to positive selection process categories.
Collapse
MESH Headings
- Animals
- Cell Adhesion/genetics
- Cell Adhesion/immunology
- Cell Death/genetics
- Cell Death/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cell Survival/genetics
- Cell Survival/immunology
- Gene Expression Profiling/methods
- Gene Rearrangement, T-Lymphocyte
- Kinetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oligonucleotide Array Sequence Analysis/methods
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombination, Genetic/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Verity E Mick
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
38
|
Bosselut R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nat Rev Immunol 2004; 4:529-40. [PMID: 15229472 DOI: 10.1038/nri1392] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
39
|
Singer A, Bosselut R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv Immunol 2004; 83:91-131. [PMID: 15135629 DOI: 10.1016/s0065-2776(04)83003-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
40
|
Abstract
Mature CD4+ and CD8 + T lymphocytes develop in the thymus from precursors with diverse clonally distributed receptors, possessing binding sites with negligible, intermediate, or high affinity for selfpeptide major histocompatibility complex (MHC) ligands. Positive- and negative-selection processes acting on this precursor pool yield a peripheral T cell population comprised of cells with receptors (TCR) capable of self-peptide MHC ligand recognition, but largely depleted of those able to mediate overt self-responsiveness. The Lymphocyte Biology Section of the Laboratory of Immunology studies how self-ligand recognition guides T cell development in the thymus and influences the functionality of naive and activated T cells in the periphery. It also seeks to define the molecular basis for the discrimination between self-ligands and foreign antigens that controls T cell activation to effector function. Finally, it uses a combination of conventional cellular immunological methods, biochemical and biophysical studies, and advanced imaging techniques to visualize, quantitate, and model the various steps in the development of primary and memory T cell immune responses.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
41
|
Liu X, Bosselut R. Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo. Nat Immunol 2004; 5:280-8. [PMID: 14770180 DOI: 10.1038/ni1040] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 12/19/2003] [Indexed: 11/09/2022]
Abstract
The duration of T cell receptor (TCR) signaling is thought to be important for thymocyte differentiation into the CD4 or CD8 lineage. However, the in vivo relevance of this hypothesis is unclear. Here we divided T cell positive selection into genetically separable developmental steps by confining TCR signal transduction to discrete thymocyte developmental windows. TCR signals confined to the double-positive thymocyte stage promoted CD8, but not CD4, lineage differentiation. Major histocompatibility complex (MHC) class II-restricted thymocytes were, instead, redirected into the CD8 lineage. These findings support the hypothesis that distinct kinetics of MHC class I- and MHC class II-induced TCR signals direct intrathymic developmental decisions.
Collapse
Affiliation(s)
- Xiaolong Liu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Bosselut R, Guinter TI, Sharrow SO, Singer A. Unraveling a revealing paradox: Why major histocompatibility complex I-signaled thymocytes "paradoxically" appear as CD4+8lo transitional cells during positive selection of CD8+ T cells. J Exp Med 2003; 197:1709-19. [PMID: 12810689 PMCID: PMC2193957 DOI: 10.1084/jem.20030170] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The mechanism by which T cell receptor specificity determines the outcome of the CD4/CD8 lineage decision in the thymus is not known. An important clue is the fact that major histocompatibility complex (MHC)-I-signaled thymocytes paradoxically appear as CD4+8lo transitional cells during their differentiation into CD8+ T cells. Lineage commitment is generally thought to occur at the CD4+8+ (double positive) stage of differentiation and to result in silencing of the opposite coreceptor gene. From this perspective, the appearance of MHC-I-signaled thymocytes as CD4+8lo cells would be due to effects on CD8 surface protein expression, not CD8 gene expression. But contrary to this perspective, this study demonstrates that MHC-I-signaled thymocytes appear as CD4+8lo cells because of transient down-regulation of CD8 gene expression, not because of changes in CD8 surface protein expression or distribution. This study also demonstrates that initial cessation of CD8 gene expression in MHC-I-signaled thymocytes is not necessarily indicative of commitment to the CD4+ T cell lineage, as such thymocytes retain the potential to differentiate into CD8+ T cells. These results challenge classical concepts of lineage commitment but fulfill predictions of the kinetic signaling model.
Collapse
Affiliation(s)
- Remy Bosselut
- Laboratory of Immune Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
43
|
Chong MMW, Cornish AL, Darwiche R, Stanley EG, Purton JF, Godfrey DI, Hilton DJ, Starr R, Alexander WS, Kay TWH. Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependent CD8+ T cell differentiation. Immunity 2003; 18:475-87. [PMID: 12705851 DOI: 10.1016/s1074-7613(03)00078-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To determine the tissue-specific functions of SOCS-1, mice were generated in which the SOCS-1 gene could be deleted in individual tissues. A reporter gene of SOCS-1 promoter activity was also inserted. Using the reporter, high SOCS-1 expression was found at the CD4(+)CD8(+) stage in thymocyte development. To investigate the function of this expression, the SOCS-1 gene was specifically deleted throughout the thymocyte/T/NKT cell compartment. Unlike SOCS-1(-/-) mice, these mice did not develop lethal multiorgan inflammation but developed multiple lymphoid abnormalities, including enhanced differentiation of thymocytes toward CD8(+) T cells and very high percentages of peripheral CD8(+) T cells with a memory phenotype (CD44(hi)CD25(lo)CD69(lo)). These phenotypes were found to correlate with hypersensitivity to the gamma-common family of cytokines.
Collapse
Affiliation(s)
- Mark M W Chong
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu X, Adams A, Wildt KF, Aronow B, Feigenbaum L, Bosselut R. Restricting Zap70 expression to CD4+CD8+ thymocytes reveals a T cell receptor-dependent proofreading mechanism controlling the completion of positive selection. J Exp Med 2003; 197:363-73. [PMID: 12566420 PMCID: PMC2193832 DOI: 10.1084/jem.20021698] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although T cell receptor (TCR) signals are essential for intrathymic T cell-positive selection, it remains controversial whether they only serve to initiate this process, or whether they are required throughout to promote thymocyte differentiation and survival. To address this issue, we have devised a novel approach to interfere with thymocyte TCR signaling in a developmental stage-specific manner in vivo. We have reconstituted mice deficient for Zap70, a tyrosine kinase required for TCR signaling and normally expressed throughout T cell development, with a Zap70 transgene driven by the adenosine deaminase (ADA) gene enhancer, which is active in CD4(+)CD8(+) thymocytes but inactive in CD4(+) or CD8(+) single-positive (SP) thymocytes. In such mice, termination of Zap70 expression impaired TCR signal transduction and arrested thymocyte development after the initiation, but before the completion, of positive selection. Arrested thymocytes had terminated Rag gene expression and up-regulated TCR and Bcl-2 expression, but failed to differentiate into mature CD4 or CD8 SP thymocytes, to be rescued from death by neglect or to sustain interleukin 7R alpha expression. These observations identify a TCR-dependent proofreading mechanism that verifies thymocyte TCR specificity and differentiation choices before the completion of positive selection.
Collapse
Affiliation(s)
- Xiaolong Liu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
T cell lineage commitment as the double-positive (DP) thymocyte matures into the single-positive (SP) T cell requires the irreversible repression or maintenance of CD4 gene expression. Signals transmitted from the T cell antigen receptor (TCR) during thymic selection are believed to be linked to the transcriptional regulation of the CD4 gene; thus, a study of the factors that control CD4 gene expression may lead to further insight into the molecular mechanisms that drive T cell development. This review discusses the work conducted to date to identify and characterize the transcriptional control elements in the CD4 locus and the factors that mediate their function. From these studies, it is clear that the molecular mechanisms controlling CD4 gene expression are very complex and are controlled by many different signals as the thymocyte develops.
Collapse
Affiliation(s)
- Gerald Siu
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
46
|
Abstract
Cell-fate decisions are controlled typically by conserved receptors that interact with co-evolved ligands. Therefore, the lineage-specific differentiation of immature CD4+ CD8+ T cells into CD4+ or CD8+ mature T cells is unusual in that it is regulated by clonally expressed, somatically generated T-cell receptors (TCRs) of unpredictable fine specificity. Yet, each mature T cell generally retains expression of the co-receptor molecule (CD4 or CD8) that has an MHC-binding property that matches that of its TCR. Two models were proposed initially to explain this remarkable outcome--'instruction' of lineage choice by initial signalling events or 'selection' after a stochastic fate decision that limits further development to cells with coordinated TCR and co-receptor specificities. Aspects of both models now appear to be correct; mistake-prone instruction of lineage choice precedes a subsequent selection step that filters out most incorrect decisions.
Collapse
Affiliation(s)
- Ronald N Germain
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA.
| |
Collapse
|
47
|
Singer A. New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr Opin Immunol 2002; 14:207-15. [PMID: 11869894 DOI: 10.1016/s0952-7915(02)00323-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Double-positive thymocytes are short-lived bipotential cells whose developmental fate is determined by the specificity of their TCRs. A relatively small number of double-positive thymocytes undergo positive selection in the thymus and these are signaled to differentiate either into CD4(+) or CD8(+) mature T cells. The mechanism by which double-positive thymocytes determine their appropriate CD4/CD8 fate has been the subject of intense theoretical debate and rigorous experimental analysis. In the last year, 'signal duration' has been offered as a replacement for 'signal strength' as a major determinant of the CD4/CD8 decision, a deceptively minor refinement that requires a major change in our understanding of how signaled double-positive thymocytes differentiate into mature T cells. Indeed, the kinetic signaling model provides a radically new perspective on the mechanism by which the CD4/CD8 lineage decision is made.
Collapse
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Fujimoto Y, Tu L, Miller AS, Bock C, Fujimoto M, Doyle C, Steeber DA, Tedder TF. CD83 expression influences CD4+ T cell development in the thymus. Cell 2002; 108:755-67. [PMID: 11955430 DOI: 10.1016/s0092-8674(02)00673-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T lymphocyte selection and lineage commitment in the thymus requires multiple signals. Herein, CD4+ T cell generation required engagement of CD83, a surface molecule expressed by thymic epithelial and dendritic cells. CD83-deficient (CD83-/-) mice had a specific block in CD4+ single-positive thymocyte development without increased CD4+CD8+ double- or CD8+ single-positive thymocytes. This resulted in a selective 75%-90% reduction in peripheral CD4+ T cells, predominantly within the naive subset. Wild-type thymocytes and bone marrow stem cells failed to differentiate into mature CD4+ T cells when transferred into CD83-/- mice, while CD83-/- thymocytes and stem cells developed normally in wild-type mice. Thereby, CD83 expression represents an additional regulatory component for CD4+ T cell development in the thymus.
Collapse
Affiliation(s)
- Yoko Fujimoto
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Puls KL, Hogquist KA, Reilly N, Wright MD. CD53, a thymocyte selection marker whose induction requires a lower affinity TCR-MHC interaction than CD69, but is up-regulated with slower kinetics. Int Immunol 2002; 14:249-58. [PMID: 11867561 DOI: 10.1093/intimm/14.3.249] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular mechanisms that govern the survival, maturation and export of thymocytes are the subject of intense study, and candidates for involvement in these processes might be identified by their differential expression during thymocyte selection. One such molecule is the tetraspanin CD53, which is not expressed on most CD4(+)CD8(+) double-positive (DP) cells in the normal mouse. We have examined CD53 expression on DP from several class I- and class II-restricted TCR transgenic (Tg) mice, and have found a strong correlation between CD53 expression and positive selection. CD53 expression in DP was formally demonstrated to be dependent upon MHC recognition as evidenced by studying DP from MHC-deficient mice which totally lack expression of this molecule. This link between selection and CD53 expression was reminiscent of CD69, and indeed the majority of selected DP from normal mice that express CD53 also express CD69. We compared CD53 and CD69 induction in vitro using pre-selected thymocytes from TCR-Tg mice that were stimulated either with mAb against TCR or with antigen-presenting cells (APC) pulsed with peptides. The data shows that with either stimulus, CD69 is induced rapidly on the thymocyte surface with expression detected in as little as 2 h. CD53 induction is slower with maximal expression taking up to 20 h. We also stimulated pre-selected thymocytes from the OT-1 TCR-Tg strain with APC pulsed with peptides of varying affinities for the TCR. Here low-affinity peptides which induce CD69 expression poorly were able to induce significant levels of CD53 expression. These data demonstrate that the induction of CD53 and CD69 upon selection is not identical. Thus a combination of the CD69 and CD53 selection markers may be a powerful tool to isolate thymocytes that have either been very recently selected or have arisen from differing MHC--TCR affinity interactions during selection.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/metabolism
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Biomarkers/analysis
- Clone Cells
- Histocompatibility Antigens/metabolism
- Kinetics
- Lectins, C-Type
- Mice
- Mice, SCID
- Mice, Transgenic
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- Tetraspanin 25
- Thymus Gland/cytology
- Thymus Gland/immunology
- Up-Regulation
Collapse
Affiliation(s)
- Kirsten L Puls
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Australia
| | | | | | | |
Collapse
|
50
|
Leung RK, Thomson K, Gallimore A, Jones E, Van den Broek M, Sierro S, Alsheikhly AR, McMichael A, Rahemtulla A. Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nat Immunol 2001; 2:1167-73. [PMID: 11694883 DOI: 10.1038/ni733] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanism of T cell lineage commitment remains controversial; to examine it we deleted the CD4-silencer element in the germ line of a mouse using a combination of gene targeting and Cre/LoxP-mediated recombination. We found that these mice were unable to extinguish CD4 expression either in immature thymocytes or mature CD8+ cytotoxic T cells (CTLs), which resulted in the development of major histocompatibility complex class II-restricted double-positive CTLs in the periphery. This finding strongly supports a stochastic over an instructive mechanism of coreceptor down-regulation.
Collapse
Affiliation(s)
- R K Leung
- Nuffield Department of Clinical Medicine, University of Oxford, Level 7, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|