1
|
Nielsen HV, Yang L, Mueller JL, Ritter AJ, Hiwa R, Proekt I, Rackaityte E, Aylard D, Gupta M, Scharer CD, Anderson MS, Au-Yeung BB, Zikherman J. Nr4a1 and Nr4a3 redundantly control clonal deletion and contribute to an anergy-like transcriptome in auto-reactive thymocytes to impose tolerance in mice. Nat Commun 2025; 16:784. [PMID: 39824797 PMCID: PMC11742425 DOI: 10.1038/s41467-025-55839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen. Importantly, thymocytes lacking Nr4a1/3 acquire an anergy-like signature after escaping clonal deletion and Treg lineage diversion. We further show that the Nr4a family helps mediate a broad transcriptional program in self-reactive thymocytes that resembles anergy and may operate at the margins of canonical thymic tolerance mechanisms to restrain self-reactive T cells after thymic egress.
Collapse
MESH Headings
- Animals
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Thymocytes/immunology
- Thymocytes/metabolism
- Clonal Deletion/immunology
- Clonal Deletion/genetics
- Mice
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Steroid/immunology
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Receptors, Thyroid Hormone/immunology
- Transcriptome/immunology
- Thymus Gland/immunology
- Thymus Gland/cytology
- Mice, Inbred C57BL
- T-Lymphocytes, Regulatory/immunology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/immunology
- Clonal Anergy/genetics
- Clonal Anergy/immunology
- Mice, Knockout
- Immune Tolerance
- Nerve Tissue Proteins
Collapse
Affiliation(s)
- Hailyn V Nielsen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Letitia Yang
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, 94143, USA
| | - James L Mueller
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Alexander J Ritter
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Ryosuke Hiwa
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Irina Proekt
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Elze Rackaityte
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - Dominik Aylard
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Mansi Gupta
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Mark S Anderson
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Byron B Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
David NA, Lee RD, LaRue RS, Joo S, Farrar MA. Nuclear corepressors NCOR1 and NCOR2 entrain thymocyte signaling, selection, and emigration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559810. [PMID: 37808728 PMCID: PMC10557688 DOI: 10.1101/2023.09.27.559810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
T cell development proceeds via discrete stages that require both gene induction and gene repression. Transcription factors direct gene repression by associating with corepressor complexes containing chromatin-remodeling enzymes; the corepressors NCOR1 and NCOR2 recruit histone deacetylases to these complexes to silence transcription of target genes. Earlier work identified the importance of NCOR1 in promoting the survival of positively-selected thymocytes. Here, we used flow cytometry and single-cell RNA sequencing to identify a broader role for NCOR1 and NCOR2 in regulating thymocyte development. Using Cd4-cre mice, we found that conditional deletion of NCOR2 had no effect on thymocyte development, whereas conditional deletion of NCOR1 had a modest effect. In contrast, Cd4-cre x Ncor1f/f x Ncor2f/f mice exhibited a significant block in thymocyte development at the DP to SP transition. Combined NCOR1/2 deletion resulted in increased signaling through the T cell receptor, ultimately resulting in elevated BIM expression and increased negative selection. The NF-κB, NUR77, and MAPK signaling pathways were also upregulated in the absence of NCOR1/2, contributing to altered CD4/CD8 lineage commitment, TCR rearrangement, and thymocyte emigration. Taken together, our data identify multiple critical roles for the combined action of NCOR1 and NCOR2 over the course of thymocyte development.
Collapse
Affiliation(s)
- Natalie A David
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Robin D Lee
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Rebecca S LaRue
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Sookyong Joo
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
3
|
Funasaki S, Hatano A, Nakatsumi H, Koga D, Sugahara O, Yumimoto K, Baba M, Matsumoto M, Nakayama KI. A stepwise and digital pattern of RSK phosphorylation determines the outcome of thymic selection. iScience 2023; 26:107552. [PMID: 37646020 PMCID: PMC10460994 DOI: 10.1016/j.isci.2023.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/02/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Developing CD4+CD8+ double-positive (DP) thymocytes with randomly generated T cell receptors (TCRs) undergo positive (maturation) or negative (apoptosis) selection on the basis of the strength of TCR stimulation. Selection fate is determined by engagement of TCR ligands with a subtle difference in affinity, but the molecular details of TCR signaling leading to the different selection outcomes have remained unclear. We performed phosphoproteome analysis of DP thymocytes and found that p90 ribosomal protein kinase (RSK) phosphorylation at Thr562 was induced specifically by high-affinity peptide ligands. Such phosphorylation of RSK triggered its translocation to the nucleus, where it phosphorylated the nuclear receptor Nur77 and thereby promoted its mitochondrial translocation for apoptosis induction. Inhibition of RSK activity protected DP thymocytes from antigen-induced cell death. We propose that RSK phosphorylation constitutes a mechanism by which DP thymocytes generate a stepwise and binary signal in response to exposure to TCR ligands with a graded affinity.
Collapse
Affiliation(s)
- Shintaro Funasaki
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Daisuke Koga
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Osamu Sugahara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaya Baba
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
4
|
Bending D, Zikherman J. Nr4a nuclear receptors: markers and modulators of antigen receptor signaling. Curr Opin Immunol 2023; 81:102285. [PMID: 36764055 DOI: 10.1016/j.coi.2023.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Nr4a1-3 encode a small family of orphan nuclear hormone receptors with transcriptional activity. Their expression reflects both acute and chronic antigen-receptor signaling in T and B-cells, and they have been implicated in critical aspects of lymphocyte development, tolerance, and function. These include roles in regulatory T-cell (Treg), thymic-negative selection, humoral responses, anergy, and exhaustion. Here, we review recent advances in this field such as functional roles in B-cells, transcriptional targets, and mechanism of action. We highlight recurrent themes, including integration of antigen-receptor signaling with costimulatory input, as well as unanswered questions and translational applications of this work.
Collapse
Affiliation(s)
- David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Hsiung S, Egawa T. Population dynamics and gene regulation of T cells in response to chronic antigen stimulation. Int Immunol 2023; 35:67-77. [PMID: 36334059 DOI: 10.1093/intimm/dxac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
Abstract
T cells are activated by antigen and co-stimulatory receptor signaling and undergo robust proliferation and differentiation into effector cells with protective function. Such quantitatively and qualitatively amplified T cell responses are effective in controlling acute infection and are followed by contraction of the effector population and the formation of resting memory T cells for enhanced protection against previously experienced antigens. However, in the face of persistent antigen during chronic viral infection, in autoimmunity, or in the tumor microenvironment, T cells exhibit distinct responses relative to those in acute insult in several aspects, including reduced clonal expansion and impaired effector function associated with inhibitory receptor expression, a state known as exhaustion. Nevertheless, their responses to chronic infection and tumors are sustained through the establishment of hierarchical heterogeneity, which preserves the duration of the response by generating newly differentiated effector cells. In this review, we highlight recent findings on distinct dynamics of T cell responses under "exhausting" conditions and the roles of the transcription factors that support attenuated yet long-lasting T cell responses as well as the establishment of dysfunctional states.
Collapse
Affiliation(s)
- Sunnie Hsiung
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| |
Collapse
|
6
|
Mountz JD, Gao M, Ponder DM, Liu S, Sun CW, Alduraibi F, Sullivan K, Pat B, Dell'Italia LJ, Hsu HC. IL-4 receptor blockade is a global repressor of naïve B cell development and responses in a dupilumab-treated patient. Clin Immunol 2022; 244:109130. [PMID: 36189576 PMCID: PMC9741950 DOI: 10.1016/j.clim.2022.109130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Here, we report a case of atopic dermatitis (AD) in a patient who received biweekly doses of dupilumab, an antibody against the IL-4 receptor α chain (IL-4Rα). Single cell RNA-sequencing showed that naïve B cells expressed the highest levels of IL4R compared to other B cell subpopulations. Compared to controls, the dupilumab-treated patient exhibited diminished percentages of IL4R+IGHD+ naïve B cells and down-regulation of IL4R, FCER2 (CD23), and IGHD. Dupilumab treatment resulted in upregulation of genes associated with apoptosis and inhibition of B cell receptor signaling and down-regulation of class-switch and memory B cell development genes. The dupilumab-treated patient exhibited a rapid decline in COVID-19 anti-spike and anti-receptor binding domain antibodies between 4 and 8 and 11 months post COVID-19 vaccination. Our data suggest that intact and persistent IL-4 signaling is necessary for maintaining robust survival and development of naïve B cells, and maintaining a long term vaccine response.
Collapse
Affiliation(s)
- John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, USA; Department of Veterans Affairs Health Care System, Birmingham, AL, USA.
| | - Min Gao
- Informatics Institute, The University of Alabama at Birmingham, USA
| | - David M Ponder
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, USA
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, USA
| | - Chiao-Wang Sun
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, USA
| | - Fatima Alduraibi
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, USA
| | - Kathryn Sullivan
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, USA
| | - Betty Pat
- Department of Veterans Affairs Health Care System, Birmingham, AL, USA; Department of Medicine, Division of Cardiovascular Disease, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Louis J Dell'Italia
- Department of Veterans Affairs Health Care System, Birmingham, AL, USA; Department of Medicine, Division of Cardiovascular Disease, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, USA.
| |
Collapse
|
7
|
Sekiya T. Comparison Between Nr4a Transcription Factor Regulation and Function in Lymphoid and Tumor Treg Cells. Front Immunol 2022; 13:866339. [PMID: 35514961 PMCID: PMC9062029 DOI: 10.3389/fimmu.2022.866339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Although the “lymphoid” function of regulatory T (Treg) cells is crucial for organismal homeostasis, these cells are also known to suppress the antitumor immune response in the tumor microenvironments. Thus, a detailed understanding of Treg cell maintenance and function in both lymphoid organs and tumor environments may help to establish novel methods for the reactivating antitumor immunity, while retaining necessary immune tolerance towards self and non-hazardous antigens. Previous studies have hypothesized that Treg cells behave similarly in lymphoid organs and in tumor environments; however, few studies have been conducted specifically researching Treg cell activity in tumor environments. In addition, several recent studies identified a novel mechanism regulating Treg cell function in tumor environments. Our group has previously described the critical roles of the Nr4a family of nuclear orphan receptors, comprising Nr4a1, Nr4a2, and Nr4a3, in the differentiation and maintenance of Treg cells in lymphoid organs. Subsequently, it was found that Nr4a factors help to maintain Treg cell function in tumor environments, thereby playing a suppressive role against T cell antitumor immunity. Importantly, there were some differences between the activities of these Nr4a factors under these conditions, including the specific function of the COX/PGE2 axis in tumor environments. This review was designed to investigate the role of Nr4a factors in the regulation of Treg cell activities both in the lymphoid organs and tumor environments, highlighting the commonalities and differences in their behaviors between Treg cells in these two different environments.
Collapse
Affiliation(s)
- Takashi Sekiya
- Section of Immune Response Modification, Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan.,Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
8
|
Hiwa R, Brooks JF, Mueller JL, Nielsen HV, Zikherman J. NR4A nuclear receptors in T and B lymphocytes: Gatekeepers of immune tolerance . Immunol Rev 2022; 307:116-133. [PMID: 35174510 DOI: 10.1111/imr.13072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
Abstract
Random VDJ recombination early in T and B cell development enables the adaptive immune system to recognize a vast array of evolving pathogens via antigen receptors. However, the potential of such randomly generated TCRs and BCRs to recognize and respond to self-antigens requires layers of tolerance mechanisms to mitigate the risk of life-threatening autoimmunity. Since they were originally cloned more than three decades ago, the NR4A family of nuclear hormone receptors have been implicated in many critical aspects of immune tolerance, including negative selection of thymocytes, peripheral T cell tolerance, regulatory T cells (Treg), and most recently in peripheral B cell tolerance. In this review, we discuss important insights from many laboratories as well as our own group into the function and mechanisms by which this small class of primary response genes promotes self-tolerance and immune homeostasis to balance the need for host defense against the inherent risks posed by the adaptive immune system.
Collapse
Affiliation(s)
- Ryosuke Hiwa
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA
- Department of Rheumatology and Clinical Immunology, Kyoto University Hospital, Kyoto, Japan
| | - Jeremy F Brooks
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA
| | - James L Mueller
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA
| | - Hailyn V Nielsen
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA
| | - Julie Zikherman
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Tian Y, Huang B, Li J, Tian X, Zeng X. Identification of the Association Between Toll-Like Receptors and T-Cell Activation in Takayasu’s Arteritis. Front Immunol 2022; 12:792901. [PMID: 35126357 PMCID: PMC8812403 DOI: 10.3389/fimmu.2021.792901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
To explore the relationships between Toll-like receptors (TLRs) and the activation and differentiation of T-cells in Takayasu’s arteritis (TAK), using real-time fluorescence quantitative polymerase chain reaction, mRNA abundance of 29 target genes in peripheral blood mononuclear cells (PBMCs) were detected from 27 TAK patients and 10 healthy controls. Compared with the healthy control group, the untreated TAK group and the treated TAK group had an increased mRNA level of TLR2 and TLR4. A sample-to-sample matrix revealed that 80% of healthy controls could be separated from the TAK patients. Correlation analysis showed that the inactive-treated TAK group exhibited a unique pattern of inverse correlations between the TLRs gene clusters (including TLR1/2/4/6/8, BCL6, TIGIT, NR4A1, etc) and the gene cluster associated with T-cell activation and differentiation (including TCR, CD28, T-bet, GATA3, FOXP3, CCL5, etc). The dynamic gene co-expression network indicated the TAK groups had more active communication between TLRs and T-cell activation than healthy controls. BCL6, CCL5, FOXP3, GATA3, CD28, T-bet, TIGIT, IκBα, and NR4A1 were likely to have a close functional relation with TLRs at the inactive stage. The co-expression of TLR4 and TLR6 could serve as a biomarker of disease activity in treated TAK (the area under curve/sensitivity/specificity, 0.919/100%/90.9%). The largest gene co-expression cluster of the inactive-treated TAK group was associated with TLR signaling pathways, while the largest gene co-expression cluster of the active-treated TAK group was associated with the activation and differentiation of T-cells. The miRNA sequencing of the plasma exosomes combining miRDB, DIANA-TarBase, and miRTarBase databases suggested that the miR-548 family miR-584, miR-3613, and miR-335 might play an important role in the cross-talk between TLRs and T-cells at the inactive stage. This study found a novel relation between TLRs and T-cell in the pathogenesis of autoimmune diseases, proposed a new concept of TLR-co-expression signature which might distinguish different disease activity of TAK, and highlighted the miRNA of exosomes in TLR signaling pathway in TAK.
Collapse
Affiliation(s)
- Yixiao Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Biqing Huang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Jing Li, ; Xiaofeng Zeng,
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Jing Li, ; Xiaofeng Zeng,
| |
Collapse
|
10
|
Hiwa R, Nielsen HV, Mueller JL, Mandla R, Zikherman J. NR4A family members regulate T cell tolerance to preserve immune homeostasis and suppress autoimmunity. JCI Insight 2021; 6:e151005. [PMID: 34343134 PMCID: PMC8492309 DOI: 10.1172/jci.insight.151005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
The NR4A family of orphan nuclear receptors (Nr4a1–3) plays redundant roles to establish and maintain Treg identity; deletion of multiple family members in the thymus results in Treg deficiency and a severe inflammatory disease. Consequently, it has been challenging to unmask redundant functions of the NR4A family in other immune cells. Here we use a competitive bone marrow chimera strategy, coupled with conditional genetic tools, to rescue Treg homeostasis and unmask such functions. Unexpectedly, chimeras harboring Nr4a1–/– Nr4a3–/– (double-knockout, DKO) bone marrow developed autoantibodies and a systemic inflammatory disease despite a replete Treg compartment of largely WT origin. This disease differs qualitatively from that seen with Treg deficiency and is B cell extrinsic. Negative selection of DKO thymocytes is profoundly impaired in a cell-intrinsic manner. Consistent with escape of self-reactive T cells into the periphery, DKO T cells with functional, phenotypic, and transcriptional features of anergy accumulated in chimeric mice. Nevertheless, we observed upregulation of genes encoding inflammatory mediators in anergic DKO T cells, and DKO T cells exhibited enhanced capacity for IL-2 production. These studies reveal cell-intrinsic roles for the NR4A family in both central and peripheral T cell tolerance and demonstrate that each is essential to preserve immune homeostasis.
Collapse
Affiliation(s)
- Ryosuke Hiwa
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - Hailyn V Nielsen
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - James L Mueller
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - Ravi Mandla
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - Julie Zikherman
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| |
Collapse
|
11
|
Boulet S, Odagiu L, Dong M, Lebel MÈ, Daudelin JF, Melichar HJ, Labrecque N. NR4A3 Mediates Thymic Negative Selection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1055-1064. [PMID: 34312259 DOI: 10.4049/jimmunol.1901228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Central tolerance aims to limit the production of T lymphocytes bearing TCR with high affinity for self-peptide presented by MHC molecules. The accumulation of thymocytes with such receptors is limited by negative selection or by diversion into alternative differentiation, including T regulatory cell commitment. A role for the orphan nuclear receptor NR4A3 in negative selection has been suggested, but its function in this process has never been investigated. We find that Nr4a3 transcription is upregulated in postselection double-positive thymocytes, particularly those that have received a strong selecting signal and are destined for negative selection. Indeed, we found an accumulation of cells bearing a negative selection phenotype in NR4A3-deficient mice as compared with wild-type controls, suggesting that Nr4a3 transcriptional induction is necessary to limit accumulation of self-reactive thymocytes. This is consistent with a decrease of cleaved caspase-3+-signaled thymocytes and more T regulatory and CD4+Foxp3-HELIOS+ cells in the NR4A3-deficient thymus. We further tested the role for NR4A3 in negative selection by reconstituting transgenic mice expressing the OVA Ag under the control of the insulin promoter with bone marrow cells from OT-I Nr4a3 +/+ or OT-I Nr4a3 -/- mice. Accumulation of autoreactive CD8 thymocytes and autoimmune diabetes developed only in the absence of NR4A3. Overall, our results demonstrate an important role for NR4A3 in T cell development.
Collapse
Affiliation(s)
- Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Livia Odagiu
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Mengqi Dong
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Marie-Ève Lebel
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | | | - Heather J Melichar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Sekiya T, Kagawa S, Masaki K, Fukunaga K, Yoshimura A, Takaki S. Regulation of peripheral Th/Treg differentiation and suppression of airway inflammation by Nr4a transcription factors. iScience 2021; 24:102166. [PMID: 33665581 PMCID: PMC7907427 DOI: 10.1016/j.isci.2021.102166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Helper T (Th) and regulatory T (Treg) cell differentiation programs promote the eradication of pathogens, while minimizing adverse immune reactions. Here, we found that Nr4a family of nuclear receptors supports Treg cell induction and represses Th1 and Th2 cell differentiation from naive CD4+ T cells. Nr4a factors are transiently induced in CD4+ T cells immediately after antigen stimulation, thereby mediating epigenetic changes. In differentiating Treg cells, Nr4a factors mainly upregulated the early responsive genes in the Treg cell-specifying gene set, either directly or in cooperation with Ets family transcription factors. In contrast, Nr4a factors repressed AP-1 activity by interrupting a positive feedback loop for Batf factor expression, thus suppressing Th2 cell-associated genes. In an allergic airway inflammation model, Nr4a factors suppressed the pathogenesis, mediating oral tolerance. Lastly, pharmacological activation of an engineered Nr4a molecule prevented allergic airway inflammation, indicating that Nr4a factors may be novel therapeutic targets for inflammatory diseases. Among “Treg signature genes”, Nr4a factors mainly induce early responsive ones Nr4a activate target genes directly or by supporting Ets factors' function Nr4a factors repress Th2-driving positive feedback loop for Batf factor expression Pharmacological activation of Nr4a factors' activity prevented airway inflammation
Collapse
Affiliation(s)
- Takashi Sekiya
- Section of Immune Response Modification, Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan.,Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoshi Takaki
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| |
Collapse
|
13
|
Joyce S, Okoye GD, Van Kaer L. Natural Killer T Lymphocytes Integrate Innate Sensory Information and Relay Context to Effector Immune Responses. Crit Rev Immunol 2021; 41:55-88. [PMID: 35381143 PMCID: PMC11078124 DOI: 10.1615/critrevimmunol.2021040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is now appreciated that a group of lymphoid lineage cells, collectively called innate-like effector lymphocytes, have evolved to integrate information relayed by the innate sensory immune system about the state of the local tissue environment and to pass on this context to downstream effector innate and adaptive immune responses. Thereby, innate functions engrained into such innate-like lymphoid lineage cells during development can control the quality and magnitude of an immune response to a tissue-altering pathogen and facilitate the formation of memory engrams within the immune system. These goals are accomplished by the innate lymphoid cells that lack antigen-specific receptors, γδ T cell receptor (TCR)-expressing T cells, and several αβ TCR-expressing T cell subsets-such as natural killer T cells, mucosal-associated invariant T cells, et cetera. Whilst we briefly consider the commonalities in the origins and functions of these diverse lymphoid subsets to provide context, the primary topic of this review is to discuss how the semi-invariant natural killer T cells got this way in evolution through lineage commitment and onward ontogeny. What emerges from this discourse is the question: Has a "limbic immune system" emerged (screaming quietly in plain sight!) out of what has been dubbed "in-betweeners"?
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
14
|
Kumar A, Hill TM, Gordy LE, Suryadevara N, Wu L, Flyak AI, Bezbradica JS, Van Kaer L, Joyce S. Nur77 controls tolerance induction, terminal differentiation, and effector functions in semi-invariant natural killer T cells. Proc Natl Acad Sci U S A 2020; 117:17156-17165. [PMID: 32611812 PMCID: PMC7382224 DOI: 10.1073/pnas.2001665117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Semi-invariant natural killer T (iNKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. iNKT cells constitutively express high levels of Nr4a1-encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. The function of Nur77 in iNKT cells is unknown. Here we report that sustained Nur77 overexpression (Nur77tg) in mouse thymocytes abrogates iNKT cell development. Introgression of a rearranged Vα14-Jα18 TCR-α chain gene into the Nur77tg (Nur77tg;Vα14tg) mouse rescued iNKT cell development up to the early precursor stage, stage 0. iNKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors and yielded IL-4-producing NKT2 cell subset but not IFN-γ-producing NKT1 cell subset. Nonetheless, the developing thymic iNKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to a strong glycolipid agonist. Thus, Nur77 integrates signals emanating from the TCR to control thymic iNKT cell tolerance induction, terminal differentiation, and effector functions.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Mice
- Mice, Knockout
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell
- Thymocytes
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Timothy M Hill
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Chemistry and Life Science, US Military Academy, West Point, NY 10996
| | - Laura E Gordy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Lan Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biology, Caltech, Pasadena, CA 91125
| | - Jelena S Bezbradica
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
15
|
Odagiu L, May J, Boulet S, Baldwin TA, Labrecque N. Role of the Orphan Nuclear Receptor NR4A Family in T-Cell Biology. Front Endocrinol (Lausanne) 2020; 11:624122. [PMID: 33597928 PMCID: PMC7883379 DOI: 10.3389/fendo.2020.624122] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear orphan receptors NR4A1, NR4A2, and NR4A3 are immediate early genes that are induced by various signals. They act as transcription factors and their activity is not regulated by ligand binding and are thus regulated via their expression levels. Their expression is transiently induced in T cells by triggering of the T cell receptor following antigen recognition during both thymic differentiation and peripheral T cell responses. In this review, we will discuss how NR4A family members impact different aspects of the life of a T cell from thymic differentiation to peripheral response against infections and cancer.
Collapse
Affiliation(s)
- Livia Odagiu
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Julia May
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Salix Boulet
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Troy A. Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Troy A. Baldwin, ; Nathalie Labrecque,
| | - Nathalie Labrecque
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Troy A. Baldwin, ; Nathalie Labrecque,
| |
Collapse
|
16
|
Trudler D, Levy‐Barazany H, Nash Y, Samuel L, Sharon R, Frenkel D. Alpha synuclein deficiency increases CD4
+
T‐cells pro‐inflammatory profile in a Nurr1‐dependent manner. J Neurochem 2019; 152:61-71. [DOI: 10.1111/jnc.14871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Dorit Trudler
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Hilit Levy‐Barazany
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Yuval Nash
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Liron Samuel
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Ronit Sharon
- Faculty of Medicine Biochemistry and Molecular Biology IMRIC The Hebrew University Jerusalem Jerusalem Israel
| | - Dan Frenkel
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| |
Collapse
|
17
|
Mittelstadt PR, Taves MD, Ashwell JD. Glucocorticoids Oppose Thymocyte Negative Selection by Inhibiting Helios and Nur77. THE JOURNAL OF IMMUNOLOGY 2019; 203:2163-2170. [PMID: 31527196 DOI: 10.4049/jimmunol.1900559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Glucocorticoid (GC) signaling in thymocytes shapes the TCR repertoire by antagonizing thymocyte negative selection. The transcription factors Nur77 and Helios, which are upregulated in TCR-signaled thymocytes, have been implicated in negative selection. In this study, we found that GCs inhibited Helios and, to a lesser extent, Nur77 upregulation in TCR-stimulated mouse thymocytes. Inhibition was increased by GC preincubation, and reductions in mRNA were prevented by a protein synthesis inhibitor, suggesting that GCs suppress indirectly via an intermediary factor. Upregulation of Helios in TCR-stimulated thymocytes was unaffected by deletion of Nur77, indicating Nur77 and Helios are regulated independently. Whereas CD4+ thymocytes are positively selected in wild-type AND TCR-transgenic B6 mice, loss of GC receptor expression resulted in increased negative selection. Correspondingly, Helios and Nur77 levels were elevated in TCRhiCD4+CD8+ (TCR-signaled) thymocytes. Notably, deletion of Helios fully reversed this negative selection, whereas deletion of Nur77 had no effect on CD4+CD8+ cell numbers but reversed the loss of mature CD4+ thymocytes. Thus, Nur77 and Helios are GC targets that play nonredundant roles in setting the signaling threshold for thymocyte negative selection.
Collapse
Affiliation(s)
- Paul R Mittelstadt
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matthew D Taves
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Tel-Karthaus N, Kers-Rebel ED, Looman MW, Ichinose H, de Vries CJ, Ansems M. Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Front Immunol 2018; 9:1797. [PMID: 30123220 PMCID: PMC6085422 DOI: 10.3389/fimmu.2018.01797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system. Proper function of DCs is crucial to elicit an effective immune response against pathogens and to induce antitumor immunity. Different members of the nuclear receptor (NR) family of transcription factors have been reported to affect proper function of immune cells. Nur77 is a member of the NR4A subfamily of orphan NRs that is expressed and has a function within the immune system. We now show that Nur77 is expressed in different murine DCs subsets in vitro and ex vivo, in human monocyte-derived DCs (moDCs) and in freshly isolated human BDCA1+ DCs, but its expression is dispensable for DC development in the spleen and lymph nodes. We show, by siRNA-mediated knockdown of Nur77 in human moDCs and by using Nur77-/- murine DCs, that Nur77-deficient DCs have enhanced inflammatory responses leading to increased T cell proliferation. Treatment of human moDCs with 6-mercaptopurine, an activator of Nur77, leads to diminished DC activation resulting in an impaired capacity to induce IFNγ production by allogeneic T cells. Altogether, our data show a yet unexplored role for Nur77 in modifying the activation status of murine and human DCs. Ultimately, targeting Nur77 may prove to be efficacious in boosting or diminishing the activation status of DCs and may lead to the development of improved DC-based immunotherapies in, respectively, cancer treatment or treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nina Tel-Karthaus
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther D Kers-Rebel
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike W Looman
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Carlie J de Vries
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Marleen Ansems
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
19
|
Sekiya T, Hibino S, Saeki K, Kanamori M, Takaki S, Yoshimura A. Nr4a Receptors Regulate Development and Death of Labile Treg Precursors to Prevent Generation of Pathogenic Self-Reactive Cells. Cell Rep 2018; 24:1627-1638.e6. [DOI: 10.1016/j.celrep.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/11/2018] [Accepted: 07/01/2018] [Indexed: 02/01/2023] Open
|
20
|
Banta KL, Wang X, Das P, Winoto A. B cell lymphoma 2 (Bcl-2) residues essential for Bcl-2's apoptosis-inducing interaction with Nur77/Nor-1 orphan steroid receptors. J Biol Chem 2018; 293:4724-4734. [PMID: 29414782 DOI: 10.1074/jbc.ra117.001101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/30/2018] [Indexed: 01/14/2023] Open
Abstract
Apoptosis is mediated through the extrinsic or intrinsic pathway. Key regulators of the intrinsic apoptotic pathway are the family of B cell lymphoma 2 (Bcl-2) proteins. The activity of the prototypical Bcl-2 protein is usually considered antiapoptotic. However, under some conditions, Bcl-2 associates with the orphan nuclear hormone receptors Nur77 and Nor-1, converting Bcl-2 into a proapoptotic molecule. Expression of Nur77 and Nor-1 is induced by a variety of signals, including those leading to apoptosis. Translocation of Nur77/Nor-1 to mitochondria results in their association with Bcl-2, exposing the Bcl-2 homology (BH) 3 domain and causing apoptosis. However, the molecular details of this interaction are incompletely understood. Here, through extensive Bcl-2 mutagenesis and functional assays, we identified residues within Bcl-2 that are essential for its interaction with Nur77/Nor-1. Although an initial report has suggested that an unstructured loop region between the Bcl-2 BH4 and BH3 domains is required for Bcl-2's interaction with Nur77/Nor-1, we found that it is dispensable for this interaction. Instead, we found important interacting residues at the BH4 domain and crucial interacting residues between the BH1 and BH2 domains. Bcl-2 alanine mutants at this region could no longer interact with Nur77/Nor-1 and could not initiate Nur77/Bcl-2-mediated cell death. However, they still retained their anti-apoptotic capability in two different death assays. These results establish crucial residues in Bcl-2 required for Nur77/Nor-1-mediated apoptosis and point to potential new strategies for manipulating Bcl-2 function.
Collapse
Affiliation(s)
- Karl L Banta
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California 94720-3200
| | - Xinyue Wang
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California 94720-3200
| | - Phani Das
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California 94720-3200
| | - Astar Winoto
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California 94720-3200.
| |
Collapse
|
21
|
NR4A1 and NR4A3 restrict HSC proliferation via reciprocal regulation of C/EBPα and inflammatory signaling. Blood 2018; 131:1081-1093. [PMID: 29343483 DOI: 10.1182/blood-2017-07-795757] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the NR4A subfamily of nuclear receptors have complex, overlapping roles during hematopoietic cell development and also function as tumor suppressors of hematologic malignancies. We previously identified NR4A1 and NR4A3 (NR4A1/3) as functionally redundant suppressors of acute myeloid leukemia (AML) development. However, their role in hematopoietic stem cell (HSC) homeostasis remains to be disclosed. Using a conditional Nr4a1/Nr4a3 knockout mouse (CDKO), we show that codepletion of NR4A1/3 promotes acute changes in HSC homeostasis including loss of HSC quiescence, accumulation of oxidative stress, and DNA damage while maintaining stem cell regenerative and differentiation capacity. Molecular profiling of CDKO HSCs revealed widespread upregulation of genetic programs governing cell cycle and inflammation and an aberrant activation of the interferon and NF-κB signaling pathways in the absence of stimuli. Mechanistically, we demonstrate that NR4A1/3 restrict HSC proliferation in part through activation of a C/EBPα-driven antiproliferative network by directly binding to a hematopoietic-specific Cebpa enhancer and activating Cebpa transcription. In addition, NR4A1/3 occupy the regulatory regions of NF-κB-regulated inflammatory cytokines, antagonizing the activation of NF-κB signaling. Taken together, our results reveal a novel coordinate control of HSC quiescence by NR4A1/3 through direct activation of C/EBPα and suppression of activation of NF-κB-driven proliferative inflammatory responses.
Collapse
|
22
|
Oh J, Wang W, Thomas R, Su DM. Capacity of tTreg generation is not impaired in the atrophied thymus. PLoS Biol 2017; 15:e2003352. [PMID: 29117183 PMCID: PMC5695848 DOI: 10.1371/journal.pbio.2003352] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/20/2017] [Accepted: 10/23/2017] [Indexed: 01/21/2023] Open
Abstract
Postnatal thymic epithelial cell (TEC) homeostatic defect- or natural aging-induced thymic atrophy results in a decline in central T-cell tolerance establishment, which is constituted by thymocyte negative selection and cluster of differentiation (CD) 4+ thymic regulatory T (tTreg) cell generation. Emerging evidence shows this decline mainly results from defects in negative selection, but there is insufficient evidence regarding whether tTreg cell generation is also impaired. We mechanistically studied tTreg cell generation in the atrophied thymus by utilizing both postnatal TEC-defective (resulting from FoxN1-floxed conditional knockout [cKO]) and naturally aged mouse models. We found that the capacity of tTreg cell generation was not impaired compared to CD4+ thymic conventional T cells, suggesting thymic atrophy positively influences tTreg cell generation. This is potentially attributed to decreased T cell receptor (TCR) signaling strength due to inefficiency in promiscuous expression of self-antigens or presenting a neo-self-antigen by medullary TECs, displaying decreased negative selection-related marker genes (Nur77 and CD5high) in CD4 single positive (SP) thymocytes. Our results provide evidence that the atrophied thymus attempts to balance the defective negative selection by enhancing tTreg cell generation to maintain central T-cell tolerance in the elderly. Once the balance is broken, age-related diseases could take place. Chronic inflammation in the elderly is partially attributed to atrophy of the thymus—an organ that regulates the immune system—and in particular the ability of organisms to recognize their own cells—a phenomenon known as central tolerance. Immune central tolerance is established by two processes: first, immune cells that react strongly to self are eliminated in a process called negative selection, and second, thymic regulatory T (tTreg) cells are generated to suppress self-reactive immune reactions. The former has already been reported to be defective in the aged thymus, but whether the generation of new tTreg cells is also impaired has remained unclear. Here, we analyzed the effect of aging on tTreg cell generation and found that the atrophied thymus is still able to make new tTreg cells; indeed, we show that tTreg cell generation capacity is enhanced when compared with other naïve T cells from the same thymus. We conclude that the balance of defective negative selection with enhanced tTreg cell generation may be necessary to avoid autoimmune diseases during aging.
Collapse
Affiliation(s)
- Jiyoung Oh
- Department of Microbiology, Immunology, & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Weikan Wang
- Department of Microbiology, Immunology, & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Rachel Thomas
- Department of Microbiology, Immunology, & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Dong-Ming Su
- Department of Microbiology, Immunology, & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Hu QN, Suen AYW, Henao Caviedes LM, Baldwin TA. Nur77 Regulates Nondeletional Mechanisms of Tolerance in T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:3147-3157. [PMID: 28947542 DOI: 10.4049/jimmunol.1701085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 02/03/2023]
Abstract
Negative selection against highly self-reactive thymocytes is critical for preventing autoimmunity. Thymocyte deletion, anergy induction, and agonist selection are all forms of negative selection that can occur following a high-affinity TCR signal. Of Bim and Nur77, two TCR-induced proteins with proapoptotic function, Bim has been shown to be important for clonal deletion in several model systems, whereas Nur77 was often dispensable. However, Nur77 has been reported to influence other aspects of T cell development by mechanisms that may not be related to its proapoptotic function. In this study, we examined the role of Nur77 during thymocyte development in the presence and absence of Bim to separate apoptotic from nonapoptotic functions of Nur77. Polyclonal Bim-/- and Bim-/-Nur77-/- mice exhibited comparable accumulation of high-affinity signaled CD4+CD8+ double-positive thymocytes and CD8+ and CD4+ single-positive thymocytes. However, combined Bim and Nur77 deficiency increased the frequency of thymic Foxp3+ T regulatory cells and Foxp3-FR4hiCD73hi anergic phenotype CD4+ T cells compared with Bim-/- mice, suggesting that Nur77 expression impairs the development of nonconventional tolerance-inducing cell fates. Using the OT-I RIP-mOVA model, we found that Nur77 deficiency did not substantially impact clonal deletion nor did it exacerbate the defect in clonal deletion in the absence of Bim. However, additional loss of Nur77 in the absence of Bim led to diabetes induction, suggesting that Nur77 promotes tolerance in this context. Together, these data reveal novel nondeletional roles for Nur77 that differ between T cell subsets and have implications for self-tolerance.
Collapse
Affiliation(s)
- Qian Nancy Hu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Alexander Y W Suen
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Laura M Henao Caviedes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
24
|
Dnmt3a regulates T-cell development and suppresses T-ALL transformation. Leukemia 2017; 31:2479-2490. [PMID: 28321121 PMCID: PMC5636646 DOI: 10.1038/leu.2017.89] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic neoplasm resulting from the malignant transformation of T-cell progenitors, and comprises approximately 15% and 25% of pediatric and adult ALL cases respectively. It is well-established that activating NOTCH1 mutations are the major genetic lesions driving T-ALL in most patients, but efforts to develop targeted therapies against this pathway have produced limited success in decreasing leukemic burden and come with significant clinical side effects. A finer detailed understanding of the genetic and molecular mechanisms underlying T-ALL is required identify patients at increased risk for treatment failure and the development of precision medicine strategies. Generation of genetic models that more accurately reflect the normal developmental history of T-ALL are necessary to identify new avenues for treatment. The DNA methyltransferase enzyme DNMT3A is also recurrently mutated in T-ALL patients, and we show here that inactivation of Dnmt3a combined with Notch1 gain-of-function leads to an aggressive T-ALL in mouse models. Moreover, conditional inactivation of Dnmt3a in mouse hematopoietic cells leads to an accumulation of immature progenitors in the thymus which are less apoptotic. These data demonstrate that Dnmt3a is required for normal T-cell development, and acts as a T-ALL tumor suppressor.
Collapse
|
25
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
26
|
Ashouri JF, Weiss A. Endogenous Nur77 Is a Specific Indicator of Antigen Receptor Signaling in Human T and B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:657-668. [PMID: 27940659 DOI: 10.4049/jimmunol.1601301] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Distinguishing true Ag-stimulated lymphocytes from bystanders activated by the inflammatory milieu has been difficult. Nur77 is an immediate early gene whose expression is rapidly upregulated by TCR signaling in murine T cells and human thymocytes. Nur77-GFP transgenes serve as specific TCR and BCR signaling reporters in murine transgenic models. In this study, we demonstrate that endogenous Nur77 protein expression can serve as a reporter of TCR and BCR specific signaling in human PBMCs. Nur77 protein amounts were assessed by immunofluorescence and flow cytometry in T and B cells isolated from human PBMCs obtained from healthy donors that had been stimulated by their respective Ag receptors. We demonstrate that endogenous Nur77 is a more specific reporter of Ag-specific signaling events than the commonly used CD69 activation marker in both human T and B cells. This is reflective of the disparity in signaling pathways that regulate the expression of Nur77 and CD69. Assessing endogenous Nur77 protein expression has great potential to identify Ag-activated lymphocytes in human disease.
Collapse
Affiliation(s)
- Judith F Ashouri
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, and the Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA 94143
| | - Arthur Weiss
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, and the Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
27
|
Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Semin Immunopathol 2016; 38:739-763. [DOI: 10.1007/s00281-016-0575-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|
28
|
Expression of Twist2 is controlled by T-cell receptor signaling and determines the survival and death of thymocytes. Cell Death Differ 2016; 23:1804-1814. [PMID: 27391798 DOI: 10.1038/cdd.2016.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 12/15/2022] Open
Abstract
Self-reactive thymocytes are eliminated by negative selection, whereas competent thymocytes survive by positive selection. The strength of the T-cell receptor (TCR) signal determines the fate of thymocytes undergoing either positive or negative selection. The TCR signal strength is relatively higher in negative selection than in positive selection and induces pro-apoptotic molecules such as Nur77 and Nor-1, which are members of the orphan nuclear receptor family, that then cause TCR-mediated apoptosis. However, at the molecular level, it remains unclear how positive or negative selection is distinguished based on the TCR signal. We found that the expression of Twist2 is differentially regulated in positively and negatively selected thymocytes. In particular, TCR signal strength that elicits positive selection induces Twist2 expression via the Ca2+-Cacineurin-NFATc3 pathway, whereas strength of the TCR signal that results in negative selection abolishes NFATc3-dependent Twist2 induction via specific activation of the JNK pathway. Using Twist2-deficient and Twist2 transgenic mice, we also found that Twist2 determines thymocyte sensitivity to TCR-mediated apoptosis by regulating the expression of Nur77 and Nor-1. Twist2 partially retains histone deacetylase 7 (HDAC7) in the nucleus and recruits it to the Nur77 promoter region to repress Nur77 in positively selected thymocytes. Thus our results suggest a molecular mechanism of how thymocytes interpret the strength of the TCR signal and how TCR sensitivity is controlled during thymic selection.
Collapse
|
29
|
Protective features of peripheral monocytes/macrophages in stroke. Biochim Biophys Acta Mol Basis Dis 2015; 1862:329-38. [PMID: 26584587 DOI: 10.1016/j.bbadis.2015.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Hematogenous recruitment of monocytes and macrophages has traditionally been viewed as a harmful process causing exacerbation of brain injury after stroke. However, emerging findings suggest equally important protective features. Inflammatory monocytes are rapidly recruited to ischemic brain via a CCR2-dependent pathway and undergo secondary differentiation in the target tissue towards non-inflammatory macrophages, mediating neuroprotection and repair of the ischemic neurovascular unit. In contrast, independent recruitment of non-inflammatory monocytes via CX3CR1 does not occur. Thus, protective features of hematogenous macrophages mainly depend on initial CCR2-dependent cell recruitment. Under therapeutic considerations, specific modulation of monocyte-derived macrophages will therefore be more appropriate than non-selectively blocking their hematogenous recruitment. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
30
|
Nur77 deficiency leads to systemic inflammation in elderly mice. JOURNAL OF INFLAMMATION-LONDON 2015; 12:40. [PMID: 26113803 PMCID: PMC4480882 DOI: 10.1186/s12950-015-0085-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/18/2015] [Indexed: 01/18/2023]
Abstract
Background Nur77, an orphan member of the nuclear receptor superfamily, has been implicated in the regulation of inflammation. However, the in vivo function of Nur77 remains largely unexplored. In the current study, we investigated the role of Nur77 in inflammation and immunity in mice. Findings We found that elderly 8-month-old Nur77-deficient mice (Nur77−/−) developed systemic inflammation. Compared to wild-type (WT) mice (Nur77+/+), Nur77−/− mice showed splenomegaly, severe infiltration of inflammatory cells in several organs including liver, lung, spleen and kidney, increased hyperplasia of fibrous tissue in the lung and enlargement of kidney glomeruli. Additionally, Nur77−/− mice had increased production of pro-inflammatory cytokines and immunoglobulin, and elicited pro-inflammatory M1-like polarization in macrophages as revealed by increased expression of CXCL11 and INDO, and decreased expression of MRC1. Conclusions These in vivo observations provide evidence for a pivotal role for Nur77 in the regulation of systemic inflammation and emphasize the pathogenic significance of Nur77 in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0085-0) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Hu QN, Baldwin TA. Differential roles for Bim and Nur77 in thymocyte clonal deletion induced by ubiquitous self-antigen. THE JOURNAL OF IMMUNOLOGY 2015; 194:2643-53. [PMID: 25687757 DOI: 10.4049/jimmunol.1400030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Negative selection, primarily mediated through clonal deletion of self-reactive thymocytes, is critical for establishing self-tolerance and preventing autoimmunity. Recent studies suggest that the molecular mechanisms of negative selection differ depending on the thymic compartment and developmental stage at which thymocytes are deleted. Using the physiological HY(cd4) TCR transgenic model of negative selection against ubiquitous self-antigen, we previously found that one of the principal mediators implicated in clonal deletion, Bim, is required for caspase-3 activation but is ultimately dispensable for negative selection. On the basis of these data, we hypothesized that Nur77, another molecule thought to be a key mediator of clonal deletion, could be responsible for Bim-independent deletion. Despite comparable Nur77 induction in thymocytes during negative selection, Bim deficiency resulted in an accumulation of high-affinity-signaled thymocytes as well as impairment in caspase-mediated and caspase-independent cell death. Although these data suggested that Bim may be required for Nur77-mediated cell death, we found that transgenic Nur77 expression was sufficient to induce apoptosis independently of Bim. However, transgenic Nur77-induced apoptosis was significantly inhibited in the context of TCR signaling, suggesting that endogenous Nur77 could be similarly regulated during negative selection. Although Nur77 deficiency alone did not alter positive or negative selection, combined deficiency in Bim and Nur77 impaired clonal deletion efficiency and significantly increased positive selection efficiency. Collectively, these data shed light on the different roles for Bim and Nur77 during ubiquitous Ag-mediated clonal deletion and highlight potential differences from their reported roles in tissue-restricted Ag-mediated clonal deletion.
Collapse
Affiliation(s)
- Qian Nancy Hu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
32
|
Kiss B, Tóth K, Sarang Z, Garabuczi É, Szondy Z. Retinoids induce Nur77-dependent apoptosis in mouse thymocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:660-70. [PMID: 25576519 DOI: 10.1016/j.bbamcr.2014.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/20/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022]
Abstract
Nur77 is a transcription factor, which plays a determinant role in mediating T cell receptor-induced cell death of thymocytes. In addition to regulation of transcription, Nur77 contributes to apoptosis induction by targeting mitochondria, where it can convert Bcl-2, an anti-apoptotic protein into a proapoptotic molecule. Previous studies have demonstrated that retinoids are actively produced in the mouse thymus and can induce a transcription-dependent apoptosis in mouse thymocytes. Here we show that retinoic acids induce the expression of Nur77, and retinoid-induced apoptosis is completely dependent on Nur77, as retinoids were unable to induce apoptosis in Nur77 null thymocytes. In wild-type thymocytes retinoids induced enhanced expression of the apoptosis-related genes FasL, TRAIL, NDG-1, Gpr65 and Bid, all of them in a Nur77-dependent manner. The combined action of these proteins led to Caspase 8-dependent Bid cleavage in the mitochondria. In addition, we could demonstrate the Nur77-dependent induction of STAT1 leading to enhanced Bim expression, and the mitochondrial translocation of Nur77 leading to the exposure of the Bcl-2/BH3 domain. The retinoid-induced apoptosis was dependent on both Caspase 8 and STAT1. Our data together indicate that retinoids induce a Nur77-dependent cell death program in thymocytes activating the mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- Beáta Kiss
- Department of Dental Biochemistry, Signaling and Apoptosis Research Group, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Katalin Tóth
- Department of Dental Biochemistry, Signaling and Apoptosis Research Group, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Signaling and Apoptosis Research Group, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Éva Garabuczi
- Department of Dental Biochemistry, Signaling and Apoptosis Research Group, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Zsuzsa Szondy
- Department of Dental Biochemistry, Signaling and Apoptosis Research Group, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary.
| |
Collapse
|
33
|
Burger ML, Leung KK, Bennett MJ, Winoto A. T cell-specific inhibition of multiple apoptotic pathways blocks negative selection and causes autoimmunity. eLife 2014; 3. [PMID: 25182415 PMCID: PMC4171708 DOI: 10.7554/elife.03468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/29/2014] [Indexed: 12/19/2022] Open
Abstract
T cell self-tolerance is thought to involve peripheral tolerance and negative selection, involving apoptosis of autoreactive thymocytes. However, evidence supporting an essential role for negative selection is limited. Loss of Bim, a Bcl-2 BH3-only protein essential for thymocyte apoptosis, rarely results in autoimmunity on the C57BL/6 background. Mice with T cell-specific over-expression of Bcl-2, that blocks multiple BH3-only proteins, are also largely normal. The nuclear receptor Nur77, also implicated in negative selection, might function redundantly to promote apoptosis by associating with Bcl-2 and exposing its potentially pro-apoptotic BH3 domain. Here, we report that T cell-specific expression of a Bcl2 BH3 mutant transgene results in enhanced rescue of thymocytes from negative selection. Concomitantly, Treg development is increased. However, aged BH3 mutant mice progressively accumulate activated, autoreactive T cells, culminating in development of multi-organ autoimmunity and lethality. These data provide strong evidence that negative selection is crucial for establishing T cell tolerance.
Collapse
Affiliation(s)
- Megan L Burger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Kenneth K Leung
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Margaux J Bennett
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Astar Winoto
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
34
|
Abstract
Regulatory T (Treg) cells, as central mediators of immune suppression, play crucial roles in many aspects of immune system's physiology and pathophysiology. The transcription factor Foxp3 has been characterized as a master gene of Tregs. Yet Treg cells possess a distinct pattern of gene expression, including upregulation of immune-suppressive genes and silencing of inflammatory cytokine genes. Recent studies have revealed the molecular mechanisms that establish and maintain such gene regulation in Treg cells. This review discusses recent progress in our understanding of molecular features of Treg cells, with particular attention to Treg-cell lineage commitment and stability.
Collapse
|
35
|
Caton AJ, Kropf E, Simons DM, Aitken M, Weissler KA, Jordan MS. Strength of TCR signal from self-peptide modulates autoreactive thymocyte deletion and Foxp3(+) Treg-cell formation. Eur J Immunol 2013; 44:785-93. [PMID: 24307208 DOI: 10.1002/eji.201343767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/09/2013] [Accepted: 11/26/2013] [Indexed: 11/11/2022]
Abstract
Autoreactive CD4(+) CD8(-) (CD4SP) thymocytes can be subjected to deletion when they encounter self-peptide during their development, but they can also undergo selection to become CD4SPFoxp3(+) Treg cells. We have analyzed the relationship between these distinct developmental fates using mice in which signals transmitted by the TCR have been attenuated by mutation of a critical tyrosine residue of the adapter protein SLP-76. In mice containing polyclonal TCR repertoires, the mutation caused increased frequencies of CD4SPFoxp3(+) thymocytes. CD4SP thymocytes expressing TCR Vβ-chains that are subjected to deletion by endogenous retroviral superantigens were also present at increased frequencies, particularly among Foxp3(+) thymocytes. In transgenic mice in which CD4SP thymocytes expressing an autoreactive TCR undergo both deletion and Treg-cell formation in response to a defined self-peptide, SLP-76 mutation abrogated deletion of autoreactive CD4SP thymocytes. Notably, Foxp3(+) Treg-cell formation still occurred, albeit with a reduced efficiency, and the mutation was also associated with decreased Nur77 expression by the autoreactive CD4SP thymocytes. These studies provide evidence that the strength of the TCR signal can play a direct role in directing the extent of both thymocyte deletion and Treg-cell differentiation, and suggest that distinct TCR signaling thresholds and/or pathways can promote CD4SP thymocyte deletion versus Treg-cell formation.
Collapse
|
36
|
'Nurr'ishing Treg cells: Nr4a transcription factors control Foxp3 expression. Nat Immunol 2013; 14:201-3. [PMID: 23416671 DOI: 10.1038/ni.2546] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Antidiabetogenic MHC class II promotes the differentiation of MHC-promiscuous autoreactive T cells into FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 2013; 110:3471-6. [PMID: 23401506 DOI: 10.1073/pnas.1211391110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polymorphisms in MHC class II molecules, in particular around β-chain position-57 (β57), afford susceptibility/resistance to multiple autoimmune diseases, including type 1 diabetes, through obscure mechanisms. Here, we show that the antidiabetogenic MHC class II molecule I-A(b) affords diabetes resistance by promoting the differentiation of MHC-promiscuous autoreactive CD4(+) T cells into disease-suppressing natural regulatory T cells, in a β56-67-regulated manner. We compared the tolerogenic and antidiabetogenic properties of CD11c promoter-driven transgenes encoding I-A(b) or a form of I-A(b) carrying residues 56-67 of I-Aβ(g7) (I-A(b-g7)) in wild-type nonobese diabetic (NOD) mice, as well as NOD mice coexpressing a diabetogenic and I-A(g7)-restricted, but MHC-promiscuous T-cell receptor (4.1). Both I-A transgenes protected NOD and 4.1-NOD mice from diabetes. However, whereas I-A(b) induced 4.1-CD4(+) thymocyte deletion and 4.1-CD4(+)Foxp3(+) regulatory T-cell development, I-A(b-g7) promoted 4.1-CD4(+)Foxp3(+) Treg development without inducing clonal deletion. Furthermore, non-T-cell receptor transgenic NOD.CD11cP-I-A(b) and NOD.CD11cP-IA(b-g7) mice both exported regulatory T cells with superior antidiabetogenic properties than wild-type NOD mice. We propose that I-A(b), and possibly other protective MHC class II molecules, afford disease resistance by engaging a naturally occurring constellation of MHC-promiscuous autoreactive T-cell clonotypes, promoting their deviation into autoregulatory T cells.
Collapse
|
38
|
Sekiya T, Kashiwagi I, Yoshida R, Fukaya T, Morita R, Kimura A, Ichinose H, Metzger D, Chambon P, Yoshimura A. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat Immunol 2013. [PMID: 23334790 DOI: 10.1038/ni.2520.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulatory T cells (T(reg) cells) develop from progenitor thymocytes after the engagement of T cell antigen receptors (TCRs) with high-affinity ligands, but the underlying molecular mechanisms are still unclear. Here we show that the Nr4a nuclear receptors, which are encoded by immediate-early genes upregulated by TCR stimulation in thymocytes, have essential roles in T(reg) cell development. Mice that lacked all Nr4a factors could not produce T(reg) cells and died early owing to systemic autoimmunity. Nr4a receptors directly activated the promoter of the gene encoding the transcription factor Foxp3, and forced activation of Nr4a receptors bypassed low-strength TCR signaling to drive the T(reg) cell developmental program. Our results suggest that Nr4a receptors have key roles in determining CD4(+) T cell fates in the thymus and thus contribute to immune homeostasis.
Collapse
Affiliation(s)
- Takashi Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sekiya T, Kashiwagi I, Yoshida R, Fukaya T, Morita R, Kimura A, Ichinose H, Metzger D, Chambon P, Yoshimura A. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat Immunol 2013; 14:230-7. [PMID: 23334790 DOI: 10.1038/ni.2520] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/12/2012] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (T(reg) cells) develop from progenitor thymocytes after the engagement of T cell antigen receptors (TCRs) with high-affinity ligands, but the underlying molecular mechanisms are still unclear. Here we show that the Nr4a nuclear receptors, which are encoded by immediate-early genes upregulated by TCR stimulation in thymocytes, have essential roles in T(reg) cell development. Mice that lacked all Nr4a factors could not produce T(reg) cells and died early owing to systemic autoimmunity. Nr4a receptors directly activated the promoter of the gene encoding the transcription factor Foxp3, and forced activation of Nr4a receptors bypassed low-strength TCR signaling to drive the T(reg) cell developmental program. Our results suggest that Nr4a receptors have key roles in determining CD4(+) T cell fates in the thymus and thus contribute to immune homeostasis.
Collapse
Affiliation(s)
- Takashi Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hu Q, Nicol SA, Suen AYW, Baldwin TA. Examination of thymic positive and negative selection by flow cytometry. J Vis Exp 2012:4269. [PMID: 23093039 DOI: 10.3791/4269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A healthy immune system requires that T cells respond to foreign antigens while remaining tolerant to self-antigens. Random rearrangement of the T cell receptor (TCR) α and β loci generates a T cell repertoire with vast diversity in antigen specificity, both to self and foreign. Selection of the repertoire during development in the thymus is critical for generating safe and useful T cells. Defects in thymic selection contribute to the development of autoimmune and immunodeficiency disorders(1-4). T cell progenitors enter the thymus as double negative (DN) thymocytes that do not express CD4 or CD8 co-receptors. Expression of the αβTCR and both co-receptors occurs at the double positive (DP) stage. Interaction of the αβTCR with self-peptide-MHC (pMHC) presented by thymic cells determines the fate of the DP thymocyte. High affinity interactions lead to negative selection and elimination of self-reactive thymocytes. Low affinity interactions result in positive selection and development of CD4 or CD8 single positive (SP) T cells capable of recognizing foreign antigens presented by self-MHC(5). Positive selection can be studied in mice with a polyclonal (wildtype) TCR repertoire by observing the generation of mature T cells. However, they are not ideal for the study of negative selection, which involves deletion of small antigen-specific populations. Many model systems have been used to study negative selection but vary in their ability to recapitulate physiological events(6). For example, in vitro stimulation of thymocytes lacks the thymic environment that is intimately involved in selection, while administration of exogenous antigen can lead to non-specific deletion of thymocytes(7-9). Currently, the best tools for studying in vivo negative selection are mice that express a transgenic TCR specific for endogenous self-antigen. However, many classical TCR transgenic models are characterized by premature expression of the transgenic TCRα chain at the DN stage, resulting in premature negative selection. Our lab has developed the HY(cd4) model, in which the transgenic HY TCRα is conditionally expressed at the DP stage, allowing negative selection to occur during the DP to SP transition as occurs in wildtype mice(10). Here, we describe a flow cytometry-based protocol to examine thymic positive and negative selection in the HY(cd4) mouse model. While negative selection in HY(cd4) mice is highly physiological, these methods can also be applied to other TCR transgenic models. We will also present general strategies for analyzing positive selection in a polyclonal repertoire applicable to any genetically manipulated mice.
Collapse
Affiliation(s)
- Qian Hu
- Department of Medical Microbiology and Immunology, University of Alberta, AB, Canada
| | | | | | | |
Collapse
|
41
|
Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc Natl Acad Sci U S A 2012; 109:3891-6. [PMID: 22345564 DOI: 10.1073/pnas.1200090109] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immature thymocytes expressing autoreactive T-cell receptors (TCR) can adopt differing cell fates: clonal deletion by apoptosis or deviation into alternative lineages such as FoxP3(+) regulatory T cells (Treg). We revisited the role of the transcription factor Nr4a1 (Nur77), an immediate-early response gene induced by TCR engagement. Nr4a1KO mice show clear quantitative defects in antigen-induced clonal deletion. The impact of the Nr4a1 deletion is not enhanced by deletion of the proapoptotic factor Bim. In addition, Nr4a1 curtails initial differentiation into the Treg lineage in TCR transgenic mice and in nontransgenic mice. Transcriptional profiling of Nr4a1KO thymocytes under selection conditions reveals that Nr4a1 activates the transcription of several targets, consistent with these diverse actions: (i) Nr4a1 partakes in the induction of Bim after TCR triggering; (ii) perhaps paradoxically, Nr4a1 positively controls several transcripts of the Treg signature, in particular Ikzf2 and Tnfrsf9; (iii) consistent with its prosurvival and metabolic role in the liver, Nr4a1 is also required for the induction by TCR of a coordinated set of enzymes of the glycolytic and Krebs cycle pathways, which we propose may antagonize Treg selection as does activation of mTOR/Akt. Thus, Nr4a1 appears to act as a balancing molecule in fate determination at a critical juncture of T-cell differentiation.
Collapse
|
42
|
Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E, Zaugg C, Pei H, Geissmann F, Ley K, Hedrick CC. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 2011; 110:416-27. [PMID: 22194622 DOI: 10.1161/circresaha.111.253377] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE NR4A1 (Nur77) is a nuclear receptor that is expressed in macrophages and within atherosclerotic lesions, yet its function in atherosclerosis is unknown. OBJECTIVE Nur77 regulates the development of monocytes, particularly patrolling Ly6C(-) monocytes that may be involved in resolution of inflammation. We sought to determine how absence of nuclear receptor subfamily 4, group A, member 1 (NR4A1) in hematopoietic cells affected atherosclerosis development. METHODS AND RESULTS Nur77(-/-) chimeric mice on a Ldlr(-/-) background showed a 3-fold increase in atherosclerosis development when fed a Western diet for 20 weeks, despite having a drastic reduction in Ly6C(-) patrolling monocytes. In a second model, mice deficient in both Nur77 and ApoE (ApoE(-/-)Nur77(-/-)) also showed increased atherosclerosis after 11 weeks of Western diet. Atherosclerosis was associated with a significant change in macrophage polarization toward a proinflammatory phenotype, with high expression of tumor necrosis factor-α and nitric oxide and low expression of Arginase-I. Moreover, we found increased expression of toll-like receptor 4 mRNA and protein in Nur77(-/-) macrophages as well as increased phosphorylation of the p65 subunit of NFκB. Inhibition of NFκB activity blocked excess activation of Nur77(-/-) macrophages. CONCLUSIONS We conclude that the absence of Nur77 in monocytes and macrophages results in enhanced toll-like receptor signaling and polarization of macrophages toward a proinflammatory M1 phenotype. Despite having fewer monocytes, Nur77(-/-) mice developed significant atherosclerosis when fed a Western diet. These studies indicate that Nur77 is a novel target for modulating the inflammatory phenotype of monocytes and macrophages and may be important for regulation of atherogenesis.
Collapse
Affiliation(s)
- Richard N Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Characterization of the multiple sclerosis traits: Nuclear receptors (NR) impaired apoptosis pathway and the role of 1-alpha 25-dihydroxyvitamin D3. J Neurol Sci 2011; 311:9-14. [DOI: 10.1016/j.jns.2011.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/29/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022]
|
44
|
Cozzo Picca C, Simons DM, Oh S, Aitken M, Perng OA, Mergenthaler C, Kropf E, Erikson J, Caton AJ. CD4⁺CD25⁺Foxp3⁺ regulatory T cell formation requires more specific recognition of a self-peptide than thymocyte deletion. Proc Natl Acad Sci U S A 2011; 108:14890-5. [PMID: 21873239 PMCID: PMC3169143 DOI: 10.1073/pnas.1103810108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells are generated during thymocyte development and play a crucial role in preventing the immune system from attacking the body's cells and tissues. However, how the formation of these cells is directed by T-cell receptor (TCR) recognition of self-peptide:major histocompatibility complex (MHC) ligands remains poorly understood. We show that an agonist self-peptide with which a TCR is strongly reactive can induce a combination of thymocyte deletion and CD4(+)CD25(+)Foxp3(+) Treg cell formation in vivo. A weakly cross-reactive partial agonist self-peptide could similarly induce thymocyte deletion, but failed to induce Treg cell formation. These studies indicate that CD4(+)CD25(+)Foxp3(+) Treg cell formation can require highly stringent recognition of an agonist self-peptide by developing thymocytes. They also refine the "avidity" model of thymocyte selection by demonstrating that the quality of the signal mediated by agonist self-peptides, rather than the overall intensity of TCR signaling, can be a critical factor in directing autoreactive thymocytes to undergo CD4(+)CD25(+)Foxp3(+) Treg cell formation and/or deletion during their development.
Collapse
Affiliation(s)
| | | | - Soyoung Oh
- The Wistar Institute, Philadelphia, PA 19104
| | | | | | | | | | - Jan Erikson
- The Wistar Institute, Philadelphia, PA 19104
| | | |
Collapse
|
45
|
Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol 2011; 12:778-85. [PMID: 21725321 DOI: 10.1038/ni.2063] [Citation(s) in RCA: 495] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/27/2011] [Indexed: 12/12/2022]
Abstract
The transcription factors that regulate differentiation into the monocyte subset in bone marrow have not yet been identified. Here we found that the orphan nuclear receptor NR4A1 controlled the differentiation of Ly6C- monocytes. Ly6C- monocytes, which function in a surveillance role in circulation, were absent from Nr4a1-/- mice. Normal numbers of myeloid progenitor cells were present in Nr4a1-/- mice, which indicated that the defect occurred during later stages of monocyte development. The defect was cell intrinsic, as wild-type mice that received bone marrow from Nr4a1-/- mice developed fewer patrolling monocytes than did recipients of wild-type bone marrow. The Ly6C- monocytes remaining in the bone marrow of Nr4a1-/- mice were arrested in S phase of the cell cycle and underwent apoptosis. Thus, NR4A1 functions as a master regulator of the differentiation and survival of 'patrolling' Ly6C- monocytes.
Collapse
Affiliation(s)
- Richard N Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hawk JD, Abel T. The role of NR4A transcription factors in memory formation. Brain Res Bull 2011; 85:21-9. [PMID: 21316423 DOI: 10.1016/j.brainresbull.2011.02.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/27/2011] [Accepted: 02/01/2011] [Indexed: 12/21/2022]
Abstract
In various physiological contexts, Nr4a genes are transcribed in response to external stimuli as part of an immediate early response that initiates a cascade of gene expression ultimately leading to distinct physiological outcomes in each of these contexts. The signaling pathway that initiates Nr4a gene expression in most of these contexts consists of elevated intracellular cAMP activating PKA, which in turn leads to phosphorylation of CREB and new gene synthesis. This cAMP-PKA-CREB pathway is a central molecular pathway in the formation of a long-term memory. Indeed, learning induces Nr4a family gene expression, and long-term memory formation requires at least two waves of transcription after learning, suggesting that NR4A nuclear receptors may contribute to the second of these waves of gene expression. In this article, we review insights gained in other physiological contexts regarding Nr4a function and regulation, and highlight how these lessons can be applied to the study of memory formation.
Collapse
Affiliation(s)
- Josh D Hawk
- University of Pennsylvania, Neuroscience Graduate Group, Philadelphia, PA, United States.
| | | |
Collapse
|
47
|
Thompson J, Burger ML, Whang H, Winoto A. Protein kinase C regulates mitochondrial targeting of Nur77 and its family member Nor-1 in thymocytes undergoing apoptosis. Eur J Immunol 2010; 40:2041-9. [PMID: 20411565 DOI: 10.1002/eji.200940231] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nur77 orphan steroid receptor and its family member Nor-1 are required for apoptosis of developing T cells. In thymocytes, signals from the TCR complex induce Nur77 and Nor-1 expression followed by translocation from the nucleus to mitochondria. Nur77 and Nor-1 associate with Bcl-2 in the mitochondria, resulting in a conformation change that exposes the Bcl-2 BH3 domain, a presumed pro-apoptotic molecule of Bcl-2. As Nur77 and Nor-1 are heavily phosphorylated, we examined the requirement of Nur77 and Nor-1 phosphorylation in mitochondria translocation and Bcl-2 BH3 exposure. We found that HK434, a PKC agonist, in combination with calcium ionophore, can induce Nur77 and Nor-1 phosphorylation, translocation, Bcl-2 BH3 exposure and thymocyte apoptosis. Inhibitors of both classical and novel forms of PKC were able to block this process. In contrast, only the general but not classical PKC-specific inhibitors were able to block the same process initiated by PMA, a commonly used PKC agonist. These data demonstrate a differential activation of PKC isoforms by PMA and HK434 in thymocytes, and show the importance of PKC in mitochondria translocation of Nur77/Nor-1 and Bcl-2 conformation change during TCR-induced thymocyte apoptosis.
Collapse
Affiliation(s)
- Jennifer Thompson
- Cancer Research Laboratory and Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
48
|
Chung YC, Tsai YJ, Shiu TY, Sun YY, Wang PF, Chen CL. Screening large numbers of expression patterns of transcription factors in late stages of the mouse thymus. Gene Expr Patterns 2010; 11:84-92. [PMID: 20932939 DOI: 10.1016/j.gep.2010.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 12/27/2022]
Abstract
Transcription factor families are well known to be involved in the intrinsic pathways that regulate the organogenesis, early development, and microenvironment of the thymus. However, identification of the transcription factors (TFs) involved in the late development of the thymus, particularly later than embryonic day 15.5 (E15.5), is progressing slowly. In this study, we used in situ hybridization to screen numerous expression patterns of the TFs involved in the development of the mouse thymus. More than 400 members, including unique TFs and some transcription co-factors, were tested. Among the screened TFs, 160 were found to be expressed in the thymus after E15.5, and 74 of these were expressed in restricted areas.
Collapse
|
49
|
|
50
|
Gasp, a Grb2-associating protein, is critical for positive selection of thymocytes. Proc Natl Acad Sci U S A 2009; 106:16345-50. [PMID: 19805304 DOI: 10.1073/pnas.0908593106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
T cells develop in the thymus through positive and negative selection, which are responsible for shaping the T cell receptor (TCR) repertoire. To elucidate the molecular mechanisms involved in selection remains an area of intense interest. Here, we identified and characterized a gene product Gasp (Grb2-associating protein, also called Themis) that is critically required for positive selection. Gasp is a cytosolic protein with no known functional motifs that is expressed only in T cells, especially immature CD4/CD8 double positive (DP) thymocytes. In the absence of Gasp, differentiation of both CD4 and CD8 single positive cells in the thymus was severely inhibited, whereas all other TCR-induced events such as beta-selection, negative selection, peripheral activation, and homeostatic proliferation were unaffected. We found that Gasp constitutively associates with Grb2 via its N-terminal Src homology 3 domain, suggesting that Gasp acts as a thymocyte-specific adaptor for Grb2 or regulates Ras signaling in DP thymocytes. Collectively, we have described a gene called Gasp that is critical for positive selection.
Collapse
|