1
|
Lee HK, Notario GR, Won SY, Kim JH, Lee SM, Kim HS, Cho SR. Elevated sclerostin levels contribute to reduced bone mineral density in non-ambulatory stroke patients. Bone Rep 2025; 25:101829. [PMID: 40225703 PMCID: PMC11986488 DOI: 10.1016/j.bonr.2025.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 04/15/2025] Open
Abstract
Osteoporosis following stroke is a significant impediment to patient recovery. Decreased mechanical loading and locomotion following the onset of paralysis in stroke patients, especially those who are non-ambulatory, contributes greatly to bone loss. Sclerostin, a protein encoded by the SOST gene, accumulates as a result of reduced mechanical loading and inhibits bone formation. This study explores the relationship between mechanical unloading, sclerostin levels, and bone mineral density (BMD) in stroke patients, utilizing three cohorts. Analysis of Cohort 1, consisting of patients with available sclerostin level measurements, found significantly elevated sclerostin levels in non-ambulatory patients compared to ambulatory patients, indicating the influence of ambulatory status on sclerostin regulation. Cohort 2, consisting of patients with BMD measurements, demonstrated that prolonged mechanical unloading in non-ambulatory patients resulted in a greater decline in BMD over time. Analysis in Cohort 3 patients, who had bilateral BMD measurements available, revealed that hemiplegic sides subjected to reduced mechanical loading exhibited lower BMD compared to non-hemiplegic sides. These findings collectively confirm the hypothesis that reduced mechanical loading elevates sclerostin levels and accelerates bone loss. By integrating data across the three cohorts, this study underscores the critical impact of mechanical unloading on bone health, particularly in chronic stroke patients with limited mobility. Our study provides clinical insights for treatments integrating ambulatory status, sclerostin levels, and BMD in chronic stroke patients and highlights an increased need for therapeutics targeting mechanical loading pathways and sclerostin accumulation which can be administered to treat chronic osteoporosis following stroke.
Collapse
Affiliation(s)
- Hye Kyoung Lee
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Geneva Rose Notario
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Won
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Min Lee
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Nursing, Yonsei University College of Nursing, Seoul, Republic of Korea
| | - Ha Seong Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Seosong Hospital, Incheon, Republic of Korea
| | - Sung-Rae Cho
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Seo J, Ko R, Kim M, Seo J, Lee H, Kim D, Jeong W, Kim HS, Lee SY. Pim1 promotes the maintenance of bone homeostasis by regulating osteoclast function. Exp Mol Med 2025; 57:733-744. [PMID: 40164682 PMCID: PMC12046003 DOI: 10.1038/s12276-025-01421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
The Pim1 (proviral integration site for Moloney leukemia virus 1) protein is a serine/threonine kinase that is essential for cell proliferation, apoptosis and innate immune responses. Here we show that Pim1 promotes osteoclast resorptive function without affecting osteoclast numbers. Specifically, we found that mice lacking Pim1 (Pim1-/-) developed increased trabecular bone mass and indices such as trabecular bone-mass density. This was due to the direct phosphorylation of TRAF6 by Pim1 in mature osteoclasts, which activated the Akt-GSK3β signaling pathway. This, in turn, promoted the acetylation and consequent stabilization of microtubules, which permitted the formation of the osteoclast sealing zone. In vivo experiments then showed that, when mice with lipopolysaccharide-induced bone loss or tumor-induced osteolysis were treated with SGI-1776, a Pim1 inhibitor that is more selective for Pim1, the bone loss was significantly ameliorated. Thus, Pim1 plays an important role in osteoclast function and may be a therapeutic target for bone-related diseases.
Collapse
Affiliation(s)
- Jeongin Seo
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Ryeojin Ko
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Minhee Kim
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Jeongmin Seo
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Woojin Jeong
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea.
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
3
|
Bukhari MMM, Khabooshani M, Naqvi SM, McNamara LM. Estrogen deficiency alters vascularization and mineralization dynamics: insight from a novel 3-D humanized and vascularized bone organoid model. Am J Physiol Cell Physiol 2025; 328:C743-C756. [PMID: 39819034 DOI: 10.1152/ajpcell.00738.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Osteoporosis is not merely a disease of bone loss but also involves changes in the mineral composition of the bone that remains. In vitro studies have investigated these changes and revealed that estrogen deficiency alters osteoblast mineral deposition, osteocyte mechanosensitivity, and osteocyte regulation of osteoclastogenesis. During healthy bone development, vascular cells stimulate bone mineralization via endochondral ossification, but estrogen deficiency impairs vascularization. Yet, existing in vitro bone models overlook the role of vascular cells in osteoporosis pathology. Thus, here we 1) develop an advanced three-dimensional (3-D) vascularized, mineralized, and humanized bone model following the endochondral ossification process, and 2) apply this model to mimic postmenopausal estrogen withdrawal and provide a mechanistic understanding of changes in vascularization and bone mineralization in estrogen deficiency. We confirmed the successful development of a vascularized and mineralized human bone model via endochondral ossification, which induced the self-organization of vasculature, associated with hypertrophy (collagen X), and promoted mineralization. When the model was applied to study estrogen deficiency, we reported the development of distinct vessel-like structures (CD31+) in the postmenopausal 3-D constructs. Moreover, during estrogen withdrawal vascularized bone demonstrated a significant increase in mineral deposition and apoptosis, which did not occur in nonvascularized bone. These findings reveal a potential mechanism for bone mineral heterogeneity in osteoporotic bone, whereby vascularized bone becomes highly mineralized whereas in nonvascularized regions this effect is not observed.NEW & NOTEWORTHY Here we develop an in vitro three-dimensional (3-D) vascularized and humanized bone model following an endochondral ossification approach. We applied the model to recapitulate estrogen deficiency as representative of the osteoporotic phenotype. The results of this study reveal that estrogen deficiency exacerbates formation of 3-D vessel-like structures in vascularized models and thereby drives mineral deposition.
Collapse
Affiliation(s)
- Muhammad M M Bukhari
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Mostafa Khabooshani
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Syeda M Naqvi
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Tian X, Zhang B. The association between sex hormones and bone mineral density in US females. Sci Rep 2025; 15:5546. [PMID: 39953073 PMCID: PMC11829004 DOI: 10.1038/s41598-025-89985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Osteoporosis and osteoporosis-related fractures exhibits a higher prevalence among females, particularly those aged 50 and above, implying a potential association between sex hormones and bone mineral density (BMD). However, the precise role of sex hormones in BMD remains elusive. Meanwhile, estradiol-to-testosterone ratio (E2/T ratio) or testosterone-to-estradiol ratio (T/E2 ratio) is a new biomarker of sex hormone milieu. We investigated whether sex hormones, E2/T ratio and T/E2 ratio were associated with BMD or fractures risk in US females. This study is a cross-sectional study, and the data sourced from the National Health and Nutrition Examination Survey (NHANES) 2013-2014 cycle. This study primarily focuses on females aged 50 and above, employing weighted multivariate linear regression, restricted cubic spline (RCS) model to examine the association between sex hormones and BMD or FRAX scores. We included 1,012 females. Testosterone was not associated with BMD or fracture risk. Increasing estradiol and E2/T ratio were positively correlated with BMD and negatively correlated with osteoporosis-related fractures risk, while increasing T/E2 ratio was negatively correlated with BMD and increased risk of osteoporosis-related fractures. The T/E2 ratio showed better specificity for predicting low BMD compared to estradiol alone. These findings suggest that hormonal ratios can serve as predictive biomarkers for osteoporosis and fractures. This study highlights the potential of E2/T and T/E2 ratios as biomarkers for assessing osteoporosis risk in postmenopausal women. Incorporating these ratios into clinical practice could improve early diagnosis and risk stratification for osteoporosis-related fractures. Future longitudinal studies are needed to confirm these findings and further explore the causal relationships between sex hormones and bone health.
Collapse
Affiliation(s)
- Xiaoyuan Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Bocheng Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
5
|
Nasme F, Behera J, Tyagi P, Debnath N, Falcone JC, Tyagi N. The potential link between the development of Alzheimer's disease and osteoporosis. Biogerontology 2025; 26:43. [PMID: 39832071 DOI: 10.1007/s10522-024-10181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures. Recent studies have revealed an intriguing link between AD and OP, highlighting shared pathological features indicative of common regulatory pathophysiological pathways. In this article, we elucidate the signaling mechanisms that regulate the pathology of AD and OP and offer insights into the intricate network of factors contributing to these conditions. We also examine the role of bone-derived factors in the progression of AD, underscoring the plausibility of bidirectional communication between the brain and the skeletal system. The presence of amyloid plaques in the brain of individuals with AD is akin to the accumulation of brain Aβ in vascular dementia, pointing towards the need for further investigation of shared molecular mechanisms. Moreover, we discuss the role of bone-derived microRNAs that may regulate the pathological progression of AD, providing a novel perspective on the role of skeletal factors in neurodegenerative diseases. The insights presented here should help researchers engaged in exploring innovative therapeutic approaches targeting both neurodegenerative and skeletal disorders in aging populations.
Collapse
Affiliation(s)
- Fariha Nasme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Prisha Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu, Jammu & Kashmir, 181143, India
| | - Jeff C Falcone
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
6
|
Sheng MHC, Rundle CH, Baylink DJ, Lau KHW. Conditional Deletion of Gremlin-1 in Cathepsin K-expressing Mature Osteoclasts Altered the Skeletal Response to Calcium Depletion in Sex-Dependent Manner. Calcif Tissue Int 2025; 116:28. [PMID: 39789342 PMCID: PMC11717885 DOI: 10.1007/s00223-024-01337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover. In response to calcium depletion, male cKO mutants showed greater increases in osteoclastic resorption and trabecular bone loss than male WT littermates, indicating an enhanced skeletal sensitivity to calcium depletion in male mutants. The enhanced sensitivity to calcium depletion was sex-dependent, as female cKO mutants showed lower increases in osteoclastic resorption and bone loss than female WT littermates as well as male cKO mutants. The sex disparity in osteoclastic resorption response to calcium stress was intrinsic to osteoclasts since osteoclasts of male but not female cKO mutants showed greater in vitro bone resorption activity than osteoclasts of WT littermates of respective sex. Male cKO mutants displayed smaller bone formation response to calcium depletion than male WT littermates, while female mutants showed bigger bone formation response than female WT littermates, indicating that cKO mutants also displayed sex disparity in bone formation response. The sex disparity in bone formation response was not caused by intrinsic differences in osteoblasts but might be due to sex-dependent differential osteoclastic release of osteogenic factors. In summary, osteoclast-derived gremlin-1 has complicated and sex-dependent regulatory roles in skeletal response to calcium stress.
Collapse
Affiliation(s)
- Matilda H-C Sheng
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.
- Department of Medicine and Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Charles H Rundle
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine and Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - David J Baylink
- Department of Medicine and Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine and Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
7
|
Li G, Wang A, Tang W, Fu W, Tian Q, Jian J, Lata M, Hettinghouse A, Ding Y, Wei J, Zhao X, Wang M, Dong Q, Liu C, Xu Y. Progranulin deficiency associates with postmenopausal osteoporosis via increasing ubiquitination of estrogen receptor α. Genes Dis 2025; 12:101221. [PMID: 39559258 PMCID: PMC11570241 DOI: 10.1016/j.gendis.2024.101221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 11/20/2024] Open
Abstract
Estrogen deficiency is considered the most important cause of postmenopausal osteoporosis. However, the underlying mechanism is still not completely understood. In this study, progranulin (PGRN) was isolated as a key regulator of bone mineral density in postmenopausal women through high throughput proteomics screening. In addition, PGRN-deficient mice exhibited significantly lower bone mass than their littermates in an ovariectomy-induced osteoporosis model. Furthermore, estrogen-mediated inhibition of osteoclastogenesis and bone resorption as well as its protection against ovariectomy-induced bone loss largely depended on PGRN. Mechanistic studies revealed the existence of a positive feedback regulatory loop between PGRN and estrogen signaling. In addition, loss of PGRN led to the reduction of estrogen receptor α, the important estrogen receptor involved in estrogen regulation of osteoporosis, through enhancing its degradation via K48-linked ubiquitination. These findings not only provide a previously unrecognized interplay between PGRN and estrogen signaling in regulating osteoclastogenesis and osteoporosis but may also present a new therapeutic approach for the prevention and treatment of postmenopausal osteoporosis by targeting PGRN/estrogen receptor α.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Osteoporosis Institute of Soochow University, Suzhou, Jiangsu 215004, China
| | - Aifei Wang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Osteoporosis Institute of Soochow University, Suzhou, Jiangsu 215004, China
| | - Wei Tang
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qingyun Tian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Michal Lata
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Yuanjing Ding
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Orthopaedic Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd., Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Qirong Dong
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Youjia Xu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Osteoporosis Institute of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
8
|
Sharma N, Simic MK, Davies BK, Olesen JB, Søe K, McDonald MM. Isolation and Generation of Osteoclasts. Methods Mol Biol 2025; 2885:23-49. [PMID: 40448754 DOI: 10.1007/978-1-0716-4306-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
This chapter describes the isolation, expansion, staining, and imaging of osteoclasts from murine (MKS, BKD, and MMM) and human (NS, JBO, and KS) sources. We cover in detail both traditional and more modern methods of assessing osteoclast formation and function in vitro including advances in image acquisition and automated analyses. Importantly, we provide in-depth methods for human osteoclast culture systems, methods to assess human osteoclast function, and highlight potential methodological pitfalls and ways to overcome them. This collection of protocols provides a valuable resource for labs either initiating in vitro osteoclast assays or aiming to expand on traditional methods.
Collapse
Affiliation(s)
- Neha Sharma
- Clinical Cell Biology, Pathology Research Unit, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Marija K Simic
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bethan K Davies
- Department of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Michelle M McDonald
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
9
|
Sophocleous A, Idris AI. Ovariectomy/Orchidectomy in Rodents. Methods Mol Biol 2025; 2885:323-330. [PMID: 40448768 DOI: 10.1007/978-1-0716-4306-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
This chapter describes the surgical procedures for ovariectomy and orchidectomy in mice and rats. In addition to providing technical details of the surgical techniques, details of anesthesia options and pre-, peri-, and post-operative care are also included.
Collapse
Affiliation(s)
- Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Aymen I Idris
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
10
|
Goldscheitter GM, Seneshaw M, Mirshahi F, Buettmann EG, Genetos DC, Sanyal AJ, Donahue HJ. Sexual dimorphism of MASLD-driven bone loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625246. [PMID: 39651131 PMCID: PMC11623524 DOI: 10.1101/2024.11.25.625246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is highly prevalent with major risk of progression to Metabolic Dysfunction-Associated Steatohepatitis (MASH) and Hepatocellular Carcinoma (HCC). Recently, osteoporosis and bone fracture have emerged as sexually-dimorphic comorbidities of MASLD yet the mechanisms of this bone loss are unknown. Herein, we address these knowledge gaps using DIAMOND mice which develop MASLD, MASH, and HCC via Western diet exposure. We examined the skeletal phenotype of male DIAMOND mice after 16, 36, and 48 weeks of exposure to Western or control diet. At 16 weeks, male DIAMOND mice with MASLD lose trabecular bone but retain mechanical bone integrity. At 48 weeks, males lose cortical bone and mechanical integrity, indicating severe skeletal weakening. Female DIAMOND mice were protected from cortical and trabecular MASLD-associated bone loss and skeletal fragility at all timepoints. Using NicheNet, a publicly available database of hepatic mRNA expression in DIAMOND mice, and a PTH-induced model of bone loss, we suggest Ctgf, Rarres2, Anxa2, Fgf21, and Mmp13 are liver-secreted ligands inducing bone resorption. This study is the first preclinical investigation of bone loss in MASLD, and the first to suggest the role of Ctgf, Rarrest2, Anxa2, Fgf21, and Mmp13 as drivers of this pathology.
Collapse
Affiliation(s)
- Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
- Medical Scientist Training Program, School of Medicine, Richmond, VA 23298-0341, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, VA 23298-0341, USA
| | - Mulugeta Seneshaw
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0341, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, VA 23298-0341, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0341, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, VA 23298-0341, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0341, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, VA 23298-0341, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
11
|
Liu X, Liu S, Sun H, Zhang J, Li M, Shi Y, Wang G, Chen W, Cao Y, Lu G, Ning Y, Zhao Y. NVP-BHG712 alleviates ovariectomy-induced osteoporosis by modulating osteoclastogenesis. Eur J Pharmacol 2024; 983:177000. [PMID: 39278311 DOI: 10.1016/j.ejphar.2024.177000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Postmenopausal osteoporosis (PMOP) is closely related to the pathogenesis of osteoclasts, with the Cathepsin K (CTSK) protein playing a crucial role. Our study aimed to screen small molecule compounds targeting CTSK and evaluate their impact on PMOP. Through molecular docking, we identified NVP-BHG712 as significantly inhibiting osteoclast differentiation and bone resorption. NVP-BHG712 also effectively suppressed CTSK activity and exhibited strong binding affinity to CTSK protein. Furthermore, NVP-BHG712 regulated the expression of inflammatory factors and modulated the balance between M1 and M2 macrophage polarization. In the mouse model of ovariectomy-induced osteoporosis, NVP-BHG712 rescued bone loss by inhibiting excessive osteoclast activation. These findings suggest that NVP-BHG712 may be a promising treatment for pathological osteoporosis by alleviating osteoclast function.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shuang Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Huanxin Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Ming Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yuxuan Shi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Guolong Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Wendi Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yongzhi Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunna Ning
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
12
|
Chen J, Liang X, Wang Y, Dejiquzong, Zhang Y, Chen L, Liu Q, Zhao X. The association between age at menopause and bone health in Southwest China women: mediation effect of body mass index. BMC Public Health 2024; 24:3153. [PMID: 39538207 PMCID: PMC11562631 DOI: 10.1186/s12889-024-20628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Previous studies have yielded inconsistent findings regarding the association between age at menopause and bone health, with limited exploration of potential mediating factors, particularly in the less-developed muti-ethnic regions of China. Our objective was to analyze the association between age at menopause and bone health among postmenopausal women in southwest China, while also examining the mediating effect of body mass index (BMI) and the moderating effect of years since menopause on this association. METHODS AND RESULTS The analysis included a total of 15,352 naturally postmenopausal women obtained from the baseline data of the China Multi-Ethnic Cohort (CMEC) Study. Multiple linear regression was used for multivariate analysis. Mediation analysis was conducted to examine the mediating role of BMI in the association between age at menopause and bone health. A significant positive association was observed between age at menopause and bone health index (Quantitative ultrasound index, QUI). Specifically, with each year's delay in age at menopause, there was an increase of 0.260 (95% confidence interval (CI): 0.152-0.368) in QUI. Notably, women with later menopause (menopausal age ≥ 53 years) exhibited a higher QUI (β: 2.684, 95%CI: 1.503-3.865). Additionally, BMI partially mediated the relationship between age at menopause and QUI, accounting for 9.0% of the total effect, with an indirect effect coefficient β(95%CI) was 0.023(0.014, 0.032). Besides, it is worth mentioning that years since menopause moderated the association between age at menopause and bone health as well as the mediating effect of BMI. CONCLUSION Naturally postmenopausal women with a later age at menopause demonstrate enhanced bone health. Maintaining a moderately high BMI, without progressing to overweight or obesity, may provide health benefits for postmenopausal women, especially for those with a longer duration since menopause.
Collapse
Affiliation(s)
- Jiayi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 17 South-Road of People, Chengdu City, Sichuan, 610041, China
- Chengdu Center for Disease Control and Prevention, Chengdu City, China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention, Chengdu City, China
| | - Yanjiao Wang
- School of Public Health, Kunming Medical University, Kunming City, China
| | - Dejiquzong
- School of Medicine, Tibet University, Lhasa City, China
| | - Yuxin Zhang
- Guizhou Medical University, Guiyang City, China
| | - Liling Chen
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing City, China
| | - Qiaolan Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 17 South-Road of People, Chengdu City, Sichuan, 610041, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 17 South-Road of People, Chengdu City, Sichuan, 610041, China
| |
Collapse
|
13
|
Turker Yavas F, Sevil Kilimci F, Akkoc AN, Sahiner HS, Bardakci Yilmaz Ö. Melatonin's protective role against Bisphenol F and S-induced skeletal damage: A morphometric and histological study in rat. Ann Anat 2024; 256:152314. [PMID: 39053668 DOI: 10.1016/j.aanat.2024.152314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to evaluate the potential effects of Bisphenol F and S exposure on the skeletal structures of Sprague-Dawley rats. Given the increasing concern about the potential endocrine-disrupting effects of Bisphenol analogs on bone health, this research sought to elucidate their impact in conjunction with Melatonin. Using 80 male Sprague Dawley rats, bones were subjected to a 3-point bending test to assess mechanical properties, and histopathological evaluation was conducted after fixation and decalcification. Statistical analysis was performed using SPSS. The results of the mechanical tests revealed significant differences in deformation and elastic modulus values between groups treated with Bisphenol F+Melatonin and Bisphenol S+Melatonin compared to the control groups. However, the histological images showed no significant differences between the groups. In the discussion, it was noted that the injection of Bisphenol F and Melatonin together increased bone hardness, suggesting that Bisphenol F and Bisphenol S may mitigate the negative effects of melatonin on bone. We attributed the absence of histological differences to the male gender of the studied rats and previous exposure considerations. This study shows that Melatonin can reduce Bisphenol F and Bisphenol S' rapid adjustment effects and increase bone elasticity. The side effects of Bisphenol F and S, as well as the prophylactic effects of Melatonin, can be observed and improved by carefully adjusting the duration, dose, and gender selection.
Collapse
Affiliation(s)
- Firuze Turker Yavas
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Anatomy, Aydin 09016, Turkey.
| | - Figen Sevil Kilimci
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Anatomy, Aydin 09016, Turkey
| | - Ayse Nur Akkoc
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pathology, Aydin 09016, Turkey
| | - Hande Sultan Sahiner
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Aydin 09016, Turkey
| | - Özge Bardakci Yilmaz
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Aydin 09016, Turkey
| |
Collapse
|
14
|
Metzger CE, Olayooye P, Tak LY, Culpepper O, LaPlant AN, Jalaie P, Andoh PM, Bandara W, Reul ON, Tomaschke AA, Surowiec RK. Estrogen deficiency induces changes in bone matrix bound water that do not closely correspond with bone turnover. Bone 2024; 186:117173. [PMID: 38906519 DOI: 10.1016/j.bone.2024.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Postmenopausal osteoporosis, marked by estrogen deficiency, is a major contributor to osteoporotic fractures, yet early prediction of fractures in this population remains challenging. Our goal was to explore the temporal changes in bone-specific inflammation, oxidative stress, bone turnover, and bone-matrix water, and their relationship with estrogen deficiency-induced modifications in bone structure and mechanical properties. Additionally, we sought to determine if emerging clinically translatable imaging techniques could capture early bone modifications prior to standard clinical imaging. Two-month-old female Sprague Dawley rats (n = 48) underwent ovariectomy (OVX, n = 24) or sham operations (n = 24). A subgroup of n = 8 rats per group was sacrificed at 2-, 5-, and 10-weeks post-surgery to assess the temporal relationships of inflammation, oxidative stress, bone turnover, bone matrix water, mechanics, and imaging outcomes. OVX rats exhibited higher body weight compared to sham rats at all time points. By 5-weeks, OVX animals showed elevated markers of inflammation and oxidative stress in cortical bone, which persisted throughout the study, while cortical bone formation rate did not differ from sham until 10-weeks. DXA outcomes did not reveal differences between OVX and sham at any time point. Bound water, assessed using ultrashort echo time magnetic resonance imaging (UTE MRI), was lower in OVX at the earliest time point (2-weeks) and reduced again at 10-weeks with no difference at 5-weeks. These data demonstrate that bound water assessment using novel UTE MRI technology was lower at the earliest time point following OVX. However, no temporal relationship with bone turnover, inflammation, or oxidative stress was observed at the time points assessed in this study. These findings underscore both the increased need to understand bone hydration changes and highlight the usefulness of UTE MRI for non-invasive bone hydration measurements.
Collapse
Affiliation(s)
- Corinne E Metzger
- Dept. of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Peter Olayooye
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Landon Y Tak
- Dept. of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Oli Culpepper
- Dept. of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Alec N LaPlant
- Dept. of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Dept. of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Peter Jalaie
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Pearl-Marie Andoh
- Dept. of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Wikum Bandara
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Olivia N Reul
- Dept. of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Andrew A Tomaschke
- Dept. of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Dept. of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Dept. of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Zhao N, Yin X, Chen L, Tang S, Lin H, Cui L, Jin X, Xie Z, Jiang N, Cui L, Yu W, Cummings SR, Wang L, Xia W. Associations of different dietary patterns, bone mineral density, and fracture risk among elderly women: the China Osteoporosis Prevalence Study. Front Endocrinol (Lausanne) 2024; 15:1378158. [PMID: 38933818 PMCID: PMC11199729 DOI: 10.3389/fendo.2024.1378158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Objective Despite the fact that China amounts to one-fifth of the world's population, has a higher proportion of the elderly, and has a higher prevalence of osteoporosis and fracture, limited studies have investigated the association between dietary patterns and bone mineral density (BMD) as well as fracture risk among the elderly Chinese population. We aimed to investigate the association between different dietary patterns and BMD as well as the risk of fractures, and this association may vary between elderly women and men. Methods Building upon the China Osteoporosis Prevalence Study, we included 17,489 subjects aged ≥40 years old randomly sampled across 44 counties/districts of 11 provinces or municipalities in China who completed a food frequency questionnaire. BMD was measured by dual x-ray absorptiometry. Vertebral fracture was defined based on lateral spine radiographs using the semi-quantitative technique of Genant. Results A diet rich in "carnivorous", "vegetarian", "dairy, fruit, and egg" was significantly associated with higher BMD at total hip (TH), femoral neck (FN), and lumbar spine 1-4 (L1-4). Yet, a diet rich in "beverage and fried food" was associated with a lower BMD at the FN and L1-4. High quartiles of the carnivorous diet were associated with 34%-39% reduced risk of clinical fracture in the past 5 years and vertebral fracture. Stronger associations were observed among women. Sensitivity analysis among postmenopausal women presented even stronger positive associations between carnivorous and vegetarian diets and high BMD, as well as between carnivorous diet and reduced risk of fractures. Conclusions Our study suggested that a diet rich in meat, vegetables, and dairy, fruit, and eggs might be associated with greater BMD and a lower fracture risk, while beverage and fried foods may be associated with a lower BMD at L1-4, especially among elderly women. These findings are relevant to provide recommendations on dietary nutrition regarding the elderly population at high risk of osteoporosis and fractures, especially postmenopausal women.
Collapse
Affiliation(s)
- Nan Zhao
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangjun Yin
- Division of Elderly Health, National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Shunyu Tang
- Division of Elderly Health, National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Lin
- Department of Orthopaedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Lu Cui
- Division of Elderly Health, National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaolan Jin
- Department of Endocrinology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Zhongjian Xie
- Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ning Jiang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Cui
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, United States
| | - Linhong Wang
- National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Li Y, Liu C, Lu J, Sun H, Li Y. Relationship between muscle and subcutaneous adipose tissue size and density and proximal femur bone in elderly women with hip fracture. Aging Clin Exp Res 2024; 36:130. [PMID: 38862865 PMCID: PMC11166751 DOI: 10.1007/s40520-024-02782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Both osteoporosis and sarcopenia are associated with aging, increasing the likelihood of falls in older adults and consequently raising the risk of hip fractures (HF). AIMS To explore the relationship between the size and density of muscle and subcutaneous adipose tissue (SAT) and the bone mineral density (BMD) of the proximal femur in elderly women with HF. METHODS Quantitative computed tomography (QCT) was conducted on the hips of 661 female participants who experienced low-energy acute HFs to measure both areal BMD (aBMD) and volume BMD (vBMD). Measurements were taken for the cross-sectional area (CSA) and density of the muscle around the hip and adjacent SAT. Multivariable linear regression models were applied to assess the relationship between these parameters. RESULTS Most increases in the density of the gluteus medius and minimus muscle (G.Med/MinM) were correlated with higher BMD in the femoral neck fracture (FNF) group with osteoporosis. In the FNF group, gluteus maximus muscle (G.MaxM) density was negatively associated with the BMD parameters of the proximal femur in individuals with osteoporosis, while they were positively associated with nonosteoporosis. In the intertrochanteric fracture (ITF) group without osteoporosis, both FN aBMD and FN vBMD showed significant correlations with G.Med/MinM density. DISCUSSION In women with HFs, bone and muscle are closely related. CONCLUSIONS In older women with HFs, density but not CSA of the G.Med/MinM were associated with BMD parameters of the proximal femur. Osteoporosis may influence the relationship between G.MaxM density and proximal femur BMD in elderly women with FNF.
Collapse
Affiliation(s)
- Yangtong Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chenjun Liu
- National Center for Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jing Lu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hui Sun
- National Center for Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
17
|
Gandhi N, Omer S, Harrison RE. In Vitro Cell Culture Model for Osteoclast Activation during Estrogen Withdrawal. Int J Mol Sci 2024; 25:6134. [PMID: 38892322 PMCID: PMC11173070 DOI: 10.3390/ijms25116134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Estrogen (17β-estradiol) deficiency post-menopause alters bone homeostasis whereby bone resorption by osteoclasts exceeds bone formation by osteoblasts, leading to osteoporosis in females. We established an in vitro model to examine the consequences of estrogen withdrawal (E2-WD) on osteoclasts derived from the mouse macrophage RAW 264.7 cell line and utilized it to investigate the mechanism behind the enhanced osteoclast activity post-menopause. We found that a greater population of osteoclasts that underwent E2-WD contained a podosome belt necessary for osteoclasts to adhere and resorb bone and possessed elevated resorptive activity compared to osteoclasts exposed to estrogen (E2) continuously. Our results show that compared to osteoclasts that received E2 continuously, those that underwent E2-WD had a faster rate of microtubule (MT) growth, reduced RhoA activation, and shorter podosome lifespan. Thus, altered podosome and MT dynamics induced by the withdrawal of estrogen supports podosome belt assembly/stability in osteoclasts, which may explain their enhanced bone resorption activity.
Collapse
Affiliation(s)
- Nisha Gandhi
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Safia Omer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| |
Collapse
|
18
|
Raiser SN, Schroeder AN, Lawley RJ, Tenforde AS. Bone health and the masters runner. PM R 2024; 16:363-373. [PMID: 38532664 DOI: 10.1002/pmrj.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024]
Abstract
Masters runners are often defined as those ages 35 years and older who train and compete in running events. These runners represent a growing population of the overall running community and experience running-related injuries including bone stress injuries (BSIs). Similar to younger runners, health considerations in masters runners include the goal to optimize bone health with focus on mitigating age-associated loss of bone strength and preventing BSIs through a combination of ensuring appropriate physical activity, optimizing nutrition, and correcting faulty biomechanics. Importantly, BSIs in masters runners may include characteristics of both overuse injury from insufficient recovery and failure of bone weakened by age-related loss of bone (insufficiency fractures). This narrative review covers the limited available research on strategies to optimize bone health in masters runners. Applying knowledge on masters athletes and extrapolating from other populations, we propose strategies on treatment and prevention of BSIs. Finally, the review highlights gaps in knowledge that require further age-specific discoveries to advance treatment and prevention.
Collapse
Affiliation(s)
- Sara N Raiser
- Department of Physical Medicine & Rehabilitation, University of Virginia, Charlottesville, Virginia, USA
| | - Allison N Schroeder
- Department of Orthopedics, University Hospitals and Case Western Reserve University, Cleveland, Ohio, USA
| | - Richard J Lawley
- Department of Physical Medicine & Rehabilitation, Loyola University Medical Center, Maywood, Illinois, USA
| | - Adam S Tenforde
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
19
|
Brown TJ, Rutland CS, Choi KK, Tse F, Peffers MJ, Mongan NP, Arkill KP, Ritchie A, Clarke PA, Ratan H, Allegrucci C, Grabowska AM, James V. Modulation of the pre-metastatic bone niche: molecular changes mediated by bone-homing prostate cancer extracellular vesicles. Front Cell Dev Biol 2024; 12:1354606. [PMID: 38455075 PMCID: PMC10919403 DOI: 10.3389/fcell.2024.1354606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Prostate cancer (PCa) is a leading male malignancy worldwide, often progressing to bone metastasis, with limited curative options. Extracellular vesicles (EVs) have emerged as key players in cancer communication and metastasis, promoting the formation of supportive microenvironments in distant sites. Our previous studies have highlighted the role of PCa EVs in modulating osteoblasts and facilitating tumor progression. However, the early pre-metastatic changes induced by PCa EVs within the bone microenvironment remain poorly understood. To investigate the early effects of repeated exposure to PCa EVs in vivo, mimicking EVs being shed from the primary tumor, PCa EVs isolated from cell line PC3MLuc2a were fluorescently labelled and repeatedly administered via tail vein injection to adult CD1 NuNu male mice for a period of 4 weeks. In vivo imagining, histological analysis and gene expression profiling were performed to assess the impact of PCa EVs on the bone microenvironment. We demonstrate for the first time that PCa EVs home to both bone and lymph nodes following repeated exposures. Furthermore, the accumulation of EVs within the bone leads to distinct molecular changes indicative of disrupted bone homeostasis (e.g., changes to signaling pathways such as Paxillin p = 0.0163, Estrogen Receptor p = 0.0271, RHOA p = 0.0287, Ribonucleotide reductase p = 0.0307 and ERK/MAPK p = 0.0299). Changes in key regulators of these pathways were confirmed in vitro on human osteoblasts. In addition, our data compares the known gene signature of osteocytes and demonstrates a high proportion of overlap (52.2%), suggesting a potential role for this cell type in response to PCa EV exposure. No changes in bone histology or immunohistochemistry were detected, indicating that PCa EV mediated changes were induced at the molecular level. This study provides novel insights into the alterations induced by PCa EVs on the bone microenvironment. The observed molecular changes indicate changes in key pathways and suggest a role for osteocytes in these EV mediated early changes to bone. Further research to understand these early events may aid in the development of targeted interventions to disrupt the metastatic cascade in PCa.
Collapse
Affiliation(s)
- Thomas J. Brown
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Katie K. Choi
- Faculty of Medicine and Health Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Feng Tse
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Mandy J. Peffers
- Institute of Ageing and Chronic Disease, Liverpool, United Kingdom
| | - Nigel P. Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Kenton P. Arkill
- Faculty of Medicine and Health Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Alison Ritchie
- Faculty of Medicine and Health Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Philip A. Clarke
- Faculty of Medicine and Health Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Hari Ratan
- Faculty of Medicine and Health Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Cinzia Allegrucci
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Anna M. Grabowska
- Faculty of Medicine and Health Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Victoria James
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
20
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
21
|
Pinto KP, Fidalgo TKDS, de Lima CO, Lopes RT, Freitas-Fernandes LB, Valente AP, Sassone LM, Silva EJNL. Chronic alcohol and nicotine consumption as catalyst for systemic inflammatory storm and bone destruction in apical periodontitis. Int Endod J 2024; 57:178-194. [PMID: 37966374 DOI: 10.1111/iej.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
AIM To assess the periapical alveolar bone pattern and the serum levels of proinflammatory cytokines, biochemical markers and metabolites in rats subjected to chronic alcohol and nicotine consumption and induced apical periodontitis. METHODOLOGY Twenty-eight male Wistar rats were divided into four groups: Control, Alcohol, Nicotine and Alcohol+Nicotine. The alcohol groups were exposed to self-administration of a 25% alcohol solution, while the other groups were given only filtered water. The nicotine groups received daily intraperitoneal injections of a nicotine solution (0.19 μL of nicotine/mL), whereas the other groups received saline solution. Periapical lesions were induced by exposing the pulps of the left mandibular first molars for 28 days. After euthanasia, the mandibles were removed and the percentage bone volume, bone mineral density, trabecular thickness, trabecular separation and trabecular number of the periapical bone were measured using micro-computed tomography images. Serum samples were collected for analysis of proinflammatory cytokines (IL-1β, IL-4, IL-6 and TNF-α), biochemical and metabolomic analysis. Statistical analysis was performed with a significance level of 5%. Nonparametric data were analysed using the Kruskal-Wallis test followed by Dunn's test, while one-way anova followed by Tukey's test was performed for parametric data. RESULTS The groups exposed to alcohol or nicotine consumption exhibited an altered bone pattern indicating lower bone density and higher levels of IL-1β, IL-6 and TNF-α compared to the Control group (p < .05). Significant differences were observed among the groups in the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, cholesterol, triglycerides, urea, creatinine, albumin, uric acid, bilirubin and calcium. Metabolomic analysis revealed significant differences in glycine, phosphocholine, lysine, lactate, valine, pyruvate and lipids (CH2 CH2 CO), n(CH2 ) and n(CH3 ). Most of these parameters were even more altered in the simultaneous consumption of both substances compared to single consumption. CONCLUSION Alcohol and nicotine chronic consumption altered several metabolic markers, impaired liver and kidney function, increased the production of systemic proinflammatory mediators and harmed the periapical bone microarchitecture in the presence of apical periodontitis. The simultaneous consumption of alcohol and nicotine intensified these detrimental effects.
Collapse
Affiliation(s)
- Karem Paula Pinto
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Tatiana Kelly da Silva Fidalgo
- Department of Community and Preventive Dentistry, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | - Ricardo Tadeu Lopes
- Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Liana Bastos Freitas-Fernandes
- National Center for Nuclear Magnetic Resonance, Medical Biochemistry, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- National Center for Nuclear Magnetic Resonance, Medical Biochemistry, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Luciana Moura Sassone
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Emmanuel João Nogueira Leal Silva
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
- Departament of Endodontics, Grande Rio University (UNIGRANRIO), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Alake SE, Ice J, Robinson K, Price P, Hatter B, Wozniak K, Lin D, Chowanadisai W, Smith BJ, Lucas EA. Reduced estrogen signaling contributes to bone loss and cardiac dysfunction in interleukin-10 knockout mice. Physiol Rep 2024; 12:e15914. [PMID: 38217044 PMCID: PMC10787104 DOI: 10.14814/phy2.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Characterization of the interleukin (IL)-10 knockout (KO) mouse with chronic gut inflammation, cardiovascular dysfunction, and bone loss suggests a critical role for this cytokine in interorgan communication within the gut, bone, and cardiovascular axis. We sought to understand the role of IL-10 in the cross-talk between these systems. Six-week-old IL-10 KO mice and their wild type (WT) counterparts were maintained on a standard rodent diet for 3 or 6 months. Gene expression of proinflammatory markers and Fgf23, serum 17β-estradiol (E2), and cardiac protein expression were assessed. Ileal Il17a and Tnf mRNA increased while Il6 mRNA increased in the bone and heart by at least 2-fold in IL-10 KO mice. Bone Dmp1 and Phex mRNA were repressed at 6 months in IL-10 KO mice, resulting in increased Fgf23 mRNA (~4-fold) that contributed to increased fibrosis. In the IL-10 KO mice, gut bacterial β-glucuronidase activity and ovarian Cyp19a1 mRNA were lower (p < 0.05), consistent with reduced serum E2 and reduced cardiac pNOS3 (Ser1119 ) in these mice. Treatment of ileal lymphocytes with E2 reduced gut inflammation in WT but not IL-10 KO mice. In conclusion, our data suggest that diminished estrogen and defective bone mineralization increased FGF23 which contributed to cardiac fibrosis in the IL-10 KO mouse.
Collapse
Affiliation(s)
- Sanmi E. Alake
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - John Ice
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Kara Robinson
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Payton Price
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Bethany Hatter
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Karen Wozniak
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Dingbo Lin
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Winyoo Chowanadisai
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Brenda J. Smith
- Department of Obstetrics and GynecologyIndiana School of MedicineIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana School of MedicineIndianapolisIndianaUSA
| | - Edralin A. Lucas
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
23
|
Tsuchiya A, Suzuki M, Ito R, Batubara I, Yamauchi K, Mitsunaga T. New flavan trimer from Daemonorops draco as osteoclastogenesis inhibitor. Fitoterapia 2024; 172:105757. [PMID: 38008129 DOI: 10.1016/j.fitote.2023.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Dragon's blood is a red resin obtained from different plants and is considered highly efficacious and used in medicine owing its wound healing function. Two new compounds (7 and 8) were isolated from the dragon's blood of Daemonorops draco fruits, along with eight known compounds (1-6, 9, and 10). Their structures, including their absolute configurations, were elucidated by nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and electronic circular dichroism (ECD) analysis. According to the spectroscopic data, 8 was determined to be a quinone methide derivative of flavan and 7 was deduced to be a flavan trimer. All compounds were evaluated for their anti-osteoclastogenesis activity, compound 1 and 7 exhibited anti-osteoclastogenesis activity with IC50 values of 31.3 and 36.8 μM, respectively.
Collapse
Affiliation(s)
- Ayaka Tsuchiya
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Maki Suzuki
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Ryotaro Ito
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Irmanida Batubara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Gedung Kimia Wing 1 Lantai 3, Jalan Tanjung Kampus IPB, Dramaga, Babakan, Kec. Dramaga, Bogor, Jawa Barat 16680, Indonesia
| | - Kosei Yamauchi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Tohru Mitsunaga
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| |
Collapse
|
24
|
Isola JVV, Ocañas SR, Hubbart CR, Ko S, Mondal SA, Hense JD, Carter HNC, Schneider A, Kovats S, Alberola-Ila J, Freeman WM, Stout MB. A single-cell atlas of the aging mouse ovary. NATURE AGING 2024; 4:145-162. [PMID: 38200272 PMCID: PMC10798902 DOI: 10.1038/s43587-023-00552-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Ovarian aging leads to diminished fertility, dysregulated endocrine signaling and increased chronic disease burden. These effects begin to emerge long before follicular exhaustion. Female humans experience a sharp decline in fertility around 35 years of age, which corresponds to declines in oocyte quality. Despite a growing body of work, the field lacks a comprehensive cellular map of the transcriptomic changes in the aging mouse ovary to identify early drivers of ovarian decline. To fill this gap we performed single-cell RNA sequencing on ovarian tissue from young (3-month-old) and reproductively aged (9-month-old) mice. Our analysis revealed a doubling of immune cells in the aged ovary, with lymphocyte proportions increasing the most, which was confirmed by flow cytometry. We also found an age-related downregulation of collagenase pathways in stromal fibroblasts, which corresponds to rises in ovarian fibrosis. Follicular cells displayed stress-response, immunogenic and fibrotic signaling pathway inductions with aging. This report provides critical insights into mechanisms responsible for ovarian aging phenotypes. The data can be explored interactively via a Shiny-based web application.
Collapse
Affiliation(s)
- José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sarah R Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Physiology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Chase R Hubbart
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Samim Ali Mondal
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jessica D Hense
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Nutrition College, Federal University of Pelotas, Pelotas, Brazil
| | - Hannah N C Carter
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Susan Kovats
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - José Alberola-Ila
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
25
|
Bose S, Robertson SF, Vu AA. Garlic extract enhances bioceramic bone scaffolds through upregulating ALP & BGLAP expression in hMSC-monocyte co-culture. BIOMATERIALS ADVANCES 2023; 154:213622. [PMID: 37742556 DOI: 10.1016/j.bioadv.2023.213622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Bone homeostasis is predicated by osteoblast and osteoclast cell cycles where gene expressions are responsible for their differentiation from human mesenchymal stem cells (hMSC) and monocytes, respectively. The pro-osteogenic potential of an hMSC-monocyte co-culture can be measured through complementary DNA (mRNA synthesis) within the nucleus, known as quantitative polymerase chain reaction (qPCR). Through this technique, the effects of garlic extract (allicin) release from calcium phosphate bone scaffolds on gene expression of bone forming and bone remodeling cells was explored. Results show this complex biomaterial system enhances hMSC differentiation through the upregulation of bone-forming proteins. Osteoblastic gene markers alkaline phosphatase (ALP) and osteocalcin (BGLAP), are respectively upregulated by 3-fold and 1.6-fold by day 14. These mature osteoblasts then upregulate the receptor activator of nuclear factor-kB ligand (RANKL) which recruits osteoclast cells, as captured by a nearly 2-fold higher osteoclast expression of tartrate-resistance acid-phosphatase (ACP5). This also activates antagonist osteoprotegerin (OPG) expression in osteoblasts, decreasing osteoclast resorption potential and ACP5 expression by day 21. The pro-osteogenic environment with garlic extract release is further quantified by a 4× increase in phosphatase activity and visibly captured in immunofluorescent tagged confocal images. Also corroborated by enhanced collagen formation in a preliminary in vivo rat distal femur model, this work collectively reveals how garlic extract can enhance bioceramic scaffolds for bone tissue regenerative applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Samuel F Robertson
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Ashley A Vu
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
26
|
Kim C. Extracellular Signal-Regulated Kinases Play Essential but Contrasting Roles in Osteoclast Differentiation. Int J Mol Sci 2023; 24:15342. [PMID: 37895023 PMCID: PMC10607827 DOI: 10.3390/ijms242015342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bone homeostasis is regulated by the balanced actions of osteoblasts that form the bone and osteoclasts (OCs) that resorb the bone. Bone-resorbing OCs are differentiated from hematopoietic monocyte/macrophage lineage cells, whereas osteoblasts are derived from mesenchymal progenitors. OC differentiation is induced by two key cytokines, macrophage colony-stimulating factor (M-CSF), a factor essential for the proliferation and survival of the OCs, and receptor activator of nuclear factor kappa-B ligand (RANKL), a factor for responsible for the differentiation of the OCs. Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases, play an essential role in regulating the proliferation, differentiation, and function of OCs. ERKs have been known to play a critical role in the differentiation and activation of OCs. In most cases, ERKs positively regulate OC differentiation and function. However, several reports present conflicting conclusions. Interestingly, the inhibition of OC differentiation by ERK1/2 is observed only in OCs differentiated from RAW 264.7 cells. Therefore, in this review, we summarize the current understanding of the conflicting actions of ERK1/2 in OC differentiation.
Collapse
Affiliation(s)
- Chaekyun Kim
- BK21 Program in Biomedical Science & Engineering, Laboratory for Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
27
|
Ashby FJ, Castillo EJ, Ludwig Y, Andraka NK, Chen C, Jamieson JC, Kabbej N, Sommerville JD, Aguirre JI, Heldermon CD. Femoral Structure and Biomechanical Characteristics in Sanfilippo Syndrome Type-B Mice. Int J Mol Sci 2023; 24:13988. [PMID: 37762291 PMCID: PMC10530914 DOI: 10.3390/ijms241813988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Sanfilippo syndrome Type-B, also known as mucopolysaccharidosis IIIB (MPS IIIB), accounts for approximately one-third of all Sanfilippo syndrome patients and is characterized by a similar natural history as Type-A. Patients suffer from developmental regression, bone malformation, organomegaly, GI distress, and profound neurological deficits. Despite human trials of enzyme replacement therapy (ERT) (SBC-103, AX250) in MPS IIIB, there is currently no FDA approved treatment and a few palliative options. The major concerns of ERT and gene therapy for the treatment of bone malformation are the inadequate biodistribution of the missing enzyme, N-acetyl-α-glucosaminidase (NAGLU), and that the skeleton is a poorly hit target tissue in ERT and gene therapy. Each of the four known human types of MPS III (A, B, C, and D) is usually regarded as having mild bone manifestations, yet it remains poorly characterized. This study aimed to determine bone mineral content (BMC), volumetric bone mineral density (vBMD), and biomechanical properties in femurs MPS IIIB C57BL/6 mice compared to phenotypic control C57BL/6 mice. Significant differences were observed in MPS IIIB mice within various cortical and cancellous bone parameters for both males and females (p < 0.05). Here, we establish some osteogenic manifestations of MPS IIIB within the mouse model by radiographic and biomechanical tests, which are also differentially affected by age and sex. This suggests that some skeletal features of the MPS IIIB mouse model may be used as biomarkers of peripheral disease correction for preclinical treatment of MPS IIIB.
Collapse
Affiliation(s)
- Frederick James Ashby
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Evelyn J. Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA; (E.J.C.); (J.I.A.)
| | - Yan Ludwig
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Natalia K. Andraka
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Cong Chen
- Department of Orthopaedic Surgery & Sports Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Julia C. Jamieson
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Nadia Kabbej
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - John D. Sommerville
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Jose I. Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA; (E.J.C.); (J.I.A.)
| | - Coy D. Heldermon
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| |
Collapse
|
28
|
Patel K, Mangu SR, Sukhdeo SV, Sharan K. Sesamol improves bone mass in ovary intact growing and adult rats but accelerates bone deterioration in the ovariectomized rats. J Nutr Biochem 2023:109384. [PMID: 37209954 DOI: 10.1016/j.jnutbio.2023.109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sesamol, an active component in sesame seeds, is known for its health benefits. However, its effect on bone metabolism remains unexplored. The present study aims to investigate the effect of sesamol on growing, adult and osteoporotic skeleton and its mechanism of action. Sesamol at various doses were administered orally to growing, ovariectomized, and ovary-intact rats. Alterations in bone parameters were examined using micro-CT and histological studies. Western blot and mRNA expression from long bones were performed. We further evaluated the effect of sesamol on osteoblast and osteoclast function and its mode of action in the cell culture system. These data showed that sesamol was able to promote peak bone mass in growing rats. However, sesamol had the opposite effect in ovariectomized rats, evident from gross deterioration of trabecular and cortical microarchitecture. Concurrently, it improved the bone mass in adult rats. In vitro results revealed that sesamol enhances the bone formation by stimulating osteoblast differentiation through MAPK, AKT, and BMP-2 signaling. In contrast, it enhances osteoclast differentiation and expression of osteoclast-specific genes in osteoclast differentiation medium. Interestingly, in presence of estrogen, the effect reversed and sesamol decreased osteoclast differentiation, in vitro. Sesamol improves bone microarchitecture in growing and ovary-intact rats, whereas it enhances the bone deterioration in ovariectomized rats. While sesamol promotes bone formation, its opposing effect on the skeleton can be attributed to its dual effect on osteoclastogenesis in presence and absence of estrogen. These findings in the preclinical context suggests a special attention towards the detrimental effect of sesamol in postmenopausal women.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Yu C, Yang W, Yang L, Ye L, Sun R, Gu T, Ying X, Wang M, Tang R, Fan S, Yao S. Synergistic Effect of Magneto-Mechanical Bioengineered Stem Cells and Magnetic Field to Alleviate Osteoporosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19976-19988. [PMID: 37058439 DOI: 10.1021/acsami.3c01139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Therapeutic bioengineering based on stem cell therapy holds great promise in biomedical applications. However, the application of this treatment is limited in orthopedics because of their poor survival, weak localization, and low cell retention. In this work, magneto-mechanical bioengineered cells consisting of magnetic silica nanoparticles (MSNPs) and mesenchymal stem cells (MSCs) are prepared to alleviate osteoporosis. The magneto-mechanical bioengineered MSCs with spatial localization, cell retention, and directional tracking capabilities could be mediated by a guided magnetic field (MF) in vitro and in vivo. Furthermore, high uptake rates of the MSNPs ensure the efficient construction of magnetically controlled MSCs within 2 h. In conjunction with external MF, the magneto-mechanical bioengineered MSCs have the potential for the activation of the YAP/β-catenin signaling pathway, which could further promote osteogenesis, mineralization, and angiogenesis. The synergistic effects of MSNPs and guided MF could also decline bone resorption to rebalance bone metabolism in bone loss diseases. In vivo experiments confirm that the functional MSCs and guided MF could effectively alleviate postmenopausal osteoporosis, and the bone mass of the treated osteoporotic bones by using the bioengineered cells for 6 weeks is nearly identical to that of the healthy ones. Our results provide a new avenue for osteoporosis management and treatment, which contribute to the future advancement of magneto-mechanical bioengineering and treatment.
Collapse
Affiliation(s)
- Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Linjun Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Xiaozhang Ying
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou 310003, Zhejiang, China
| | - Monian Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
30
|
Marques-Carvalho A, Sardão VA, Kim HN, Almeida M. ECSIT is essential for RANKL-induced stimulation of mitochondria in osteoclasts and a target for the anti-osteoclastogenic effects of estrogens. Front Endocrinol (Lausanne) 2023; 14:1110369. [PMID: 37152948 PMCID: PMC10157190 DOI: 10.3389/fendo.2023.1110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Estrogens inhibit bone resorption and preserve bone mass, at least in part, via direct effects on osteoclasts. The binding of RANKL, the critical cytokine for osteoclast differentiation, to its receptor in osteoclast precursor cells of the monocyte lineage recruits the adaptor protein TRAF6 and activates multiple signaling pathways. Early effects of RANKL include stimulation of mitochondria. 17β-estradiol (E2) prevents the effects of RANKL on mitochondria and promotes mitochondria mediated apoptotic cell death. However, the molecular mechanisms responsible for the actions of RANKL and estrogens on mitochondria remain unknown. Evolutionarily Conserved Signaling Intermediate in Toll Pathway (ECSIT) is a complex I-associated protein that regulates immune responses in macrophages following the engagement of Toll-like receptors, which also recruit TRAF6. Here, we examined whether ECSIT could be implicated in the rapid effects of RANKL and E2 on osteoclast progenitors. Methods Bone marrow-derived macrophages (BMMs) from C57BL/6 mice were cultured with RANKL (30 ng/ml) with or without E2 (10-8 M). ECSIT-TRAF6 interaction was evaluated by co-immunoprecipitation and ECSIT levels in mitochondria and cytosolic fractions by Western blot. ShRNA lentivirus particles were used to knockdown ECSIT. Osteoclasts were enumerated after tartrate-resistant acid phosphatase staining. Oxygen consumption and extracellular acidification rates were measured with Seahorse XFe96 Analyzer. ATP, lactate, and NAD/NADH were measured with commercial assay kits. NADH oxidation to NAD was used to evaluate Complex I activity. Total and mitochondrial ROS, and mitochondrial membrane potential were measured with H2DCFDA, MitoSOX, and TMRM probes, respectively. Degradation of DEVD-AFC was used to measure Caspase-3 activity. Results We found that RANKL promoted ECSIT-TRAF6 interaction and increased the levels of ECSIT in mitochondria. E2 abrogated these effects of RANKL. Silencing of ECSIT decreased osteoclast differentiation and abrogated the inhibitory effects of E2 on osteoclastogenesis. Loss of ECSIT decreased complex I activity, oxygen consumption, NAD+/NADH redox ratio, and ATP production and increased mitochondrial ROS. In the absence of ECSIT, the stimulatory actions of RANKL on complex I activity and all other markers of oxidative phosphorylation, as well as their inhibition by E2, were prevented. Instead, RANKL stimulated apoptosis of osteoclast progenitors. Discussion These findings suggest that dysregulated mitochondria cause a switch in RANKL signaling from pro-survival to pro-apoptotic. In addition, our results indicate that ECSIT represents a central node for the early effects of RANKL on mitochondria and that inhibition of ECSIT-mediated mitochondria stimulation might contribute to the bone protective actions of estrogens.
Collapse
Affiliation(s)
- Adriana Marques-Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Vilma A. Sardão
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Aging (MIA-Portugal), University of Coimbra, Coimbra, Portugal
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
31
|
Burciaga SD, Saavedra F, Fischer L, Johnstone K, Jensen ED. Protein kinase D3 conditional knockout impairs osteoclast formation and increases trabecular bone volume in male mice. Bone 2023; 172:116759. [PMID: 37044359 DOI: 10.1016/j.bone.2023.116759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Studies using kinase inhibitors have shown that the protein kinase D (PRKD) family of serine/threonine kinases are required for formation and function of osteoclasts in culture. However, the involvement of individual protein kinase D genes and their in vivo significance to skeletal dynamics remains unclear. In the current study we present data indicating that protein kinase D3 is the primary form of PRKD expressed in osteoclasts. We hypothesized that loss of PRKD3 would impair osteoclast formation, thereby decreasing bone resorption and increasing bone mass. Conditional knockout (cKO) of Prkd3 using a murine Cre/Lox system driven by cFms-Cre revealed that its loss in osteoclast-lineage cells reduced osteoclast differentiation and resorptive function in culture. Examination of the Prkd3 cKO mice showed that bone parameters were unaffected in the femur at 4 weeks of age, but consistent with our hypothesis, Prkd3 conditional knockout resulted in 18 % increased trabecular bone mass in male mice at 12 weeks and a similar increase at 6 months. These effects were not observed in female mice. As a further test of our hypothesis, we asked if Prkd3 cKO could protect against bone loss in a ligature-induced periodontal disease model but did not see any reduction in bone destruction in this system. Together, our data indicate that PRKD3 promotes osteoclastogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel D Burciaga
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Flavia Saavedra
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Lori Fischer
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Karen Johnstone
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Eric D Jensen
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Alva-Gallegos R, Carazo A, Mladěnka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104089. [PMID: 36841273 DOI: 10.1016/j.etap.2023.104089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The oestrogen receptor (ER) from the nuclear receptor family is involved in different physiological processes, which can be affected by multiple xenobiotics. Some of these compounds, such as bisphenols, pesticides, and phthalates, are widespread as consequence of human activities and are commonly present also in human organism. Xenobiotics able to interact with ER and trigger a hormone-like response, are known as endocrine disruptors. In this review, we aim to summarize the available knowledge on products derived from human industrial activity and other xenobiotics reported to interact with ER. ER-disrupting chemicals behave differently towards oestrogen-dependent cell lines than endogenous oestradiol. In low concentrations, they stimulate proliferation, whereas at higher concentrations, are toxic to cells. In addition, most of the knowledge on the topic is based on individual compound testing, and only a few studies assess xenobiotic combinations, which better resemble real circumstances. Confirmation from in vivo models is lacking also.
Collapse
Affiliation(s)
- Raul Alva-Gallegos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
33
|
Aldukhayel A. Prevalence and patterns of bone mineral density disorders among women in Buraidah, KSA. J Taibah Univ Med Sci 2023; 18:348-355. [PMID: 37102077 PMCID: PMC10124114 DOI: 10.1016/j.jtumed.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
Objectives Bone mineral density (BMD) disorders are disorders of bone mineralization in which bone density is reduced (T score <-1). BMD causes health and social burdens on individuals and communities. This study estimated the prevalence and determined the patterns of BMD disorders among women in Buraidah, KSA. Methods A cross-sectional study was conducted in 342 women visiting the DEXA Scanning Center in Buraidah. Dual-energy X-ray absorptiometry (DEXA) scan was used to measure the BMD, and cutoffs were defined based on World Health Organization criteria: normal = T score >-1, osteopenia = T score <-1 to >-2.5, and osteoporosis = T score ≤-2.5. Sociodemographic and health-related data were collected. Logistic regression was used to measure the association of various participant characteristics with BMD disorders. Results The mean age of the participants was 61.2 ± 7.54 years. The overall prevalence of BMD disorders was 76%, of whom 42% had osteopenia, 24% had both osteoporosis and osteopenia, and 10% had osteoporosis. Body mass index, menopause, hypertension, oral hypoglycemics, and calcium supplementation were significant predictors of BMD disorders. Conclusions The high prevalence of BMD disorders among women in KSA necessitates establishing and strengthening osteoporosis prevention programs to ensure healthy aging among women in KSA. Large-scale community-based studies are needed to accurately estimate the burden and risk factors of BMD disorders in the community.
Collapse
|
34
|
Estevez-Fregoso E, Kilic A, Rodríguez-Vera D, Nicanor-Juárez LE, Romero-Rizo CEM, Farfán-García ED, Soriano-Ursúa MA. Effects of Boron-Containing Compounds on Liposoluble Hormone Functions. INORGANICS 2023; 11:84. [DOI: 10.3390/inorganics11020084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2024] Open
Abstract
Boron-containing compounds (BCC), particularly boronic acids and derivatives, are being increasingly tested as diagnostic and therapeutic agents. Some effects of BCC involve phenomena linked to the action of steroid or thyroid hormones; among these, are the effects on muscle mass or basal metabolism. Additionally, some toxicology reports on mammals, including humans, sound an alert concerning damage to several systems, among which are the negative effects on the induction of male infertility. Systemic and local mechanisms to explain changes in metabolism and impaired fertility were collected and presented. Then, we presented the putative pharmacodynamic and pharmacokinetic mechanisms involved and demonstrated in these events. In addition, it is proposed that there are adducts of some oxygenated BCC with cis-diols in fructose, an essential source of energy for sperm–cell motility, an uncoupling of sex hormone-binding globulin (SHBG) and its ligands, and the modulation of the DNA synthetic rate. These effects share the reactivity of boron-containing compounds on the cis-diols of key molecules. Moreover, data reporting no DNA damage after BCC administration are included. Further studies are required to support the clear role of BCC through these events to disrupt metabolism or fertility in mammals. If such phenomena are confirmed and elucidated, an advance could be useful to design strategies for avoiding BCC toxicity after BCC administration, and possibly for designing metabolism regulators and contraceptive drugs, among other purposes. Boronic derivatives and carboranes have been proposed and studied in this field.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Ahmet Kilic
- Department of Chemistry, Harran University, 63190 Sanliurfa, Turkey
| | - Diana Rodríguez-Vera
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Luis E. Nicanor-Juárez
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - C. Elena M. Romero-Rizo
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Eunice D. Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Marvin A. Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| |
Collapse
|
35
|
Elmas H, Duran C, Can M, Tolu I, Guney I. The Relationship between Bone Mineral Densitometry and Visceral Adiposity Index in Postmenopausal Women. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:82-88. [PMID: 36977405 PMCID: PMC10078891 DOI: 10.1055/s-0043-1764497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE It was aimed to compare visceral adiposity index (VAI) levels in patients with normal bone mineral density (BMD), osteopenia, and osteoporosis. METHODS One hundred twenty postmenopausal women (40 with normal BMD, 40 with osteopenia, and 40 with osteoporosis) between the ages of 50 to 70 years were included in the study. For females, the VAI was calculated using the formula (waist circumference [WC]/[36.58 + (1.89 x body mass index (BMI))]) x (1.52/High-density lipoprotein [HDL]-cholesterol [mmol/L]) x (triglyceride [TG]/0.81 [mmol/L]). RESULTS The time of menopause from the beginning was similar in all groups. Waist circumference was found to be higher in those with normal BMD than in the osteopenic and osteoporotic groups (p = 0.018 and p < 0.001, respectively), and it was also higher in the osteopenic group than in the osteoporotic group (p = 0.003). Height and body weight, BMI, blood pressure, insulin, glucose, HDL-cholesterol, and homeostasis model assessment-insulin resistance (HOMA-IR) levels were similar in all groups. Triglyceride levels were found to be higher in the normal BMD group, compared with the osteoporotic group (p = 0.005). The level of VAI was detected as higher in those with normal BMD, compared with the women with osteoporosis (p = 0.002). Additionally, the correlation analysis showed a positive correlation between dual-energy X-ray absorptiometry (DXA) spine T-scores, WC, VAI, and a negative correlation between DXA spine T-scores and age. CONCLUSION In our study, we found higher VAI levels in those with normal BMD, compared with women with osteoporosis. We consider that further studies with a larger sample size will be beneficial in elucidating the entity.
Collapse
Affiliation(s)
- Halis Elmas
- Department of Internal Medicine, Reyhanli State Hospital, Hatay, Turkey
| | - Cevdet Duran
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Usak University School of Medicine, Usak, Turkey
| | - Mustafa Can
- Division of Endocrinology and Metabolism, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Ismet Tolu
- Department of Radiology, University of Health Sciences, Konya City Hospital, Konya, Turkey
| | - Ibrahim Guney
- University of Health Sciences, Konya City Hospital, Konya, Turkey
| |
Collapse
|
36
|
Elmugadam A, Elfadil GA, Hamad AI, El Shikieri AB, Aledrissy M, Altayb HN. Atherogenic Index of Plasma and Anthropometric Measurements among Osteoporotic Postmenopausal Sudanese Women: Possible Risk for Cardiovascular Disease. J Aging Res 2022; 2022:1545127. [PMID: 36199371 PMCID: PMC9529371 DOI: 10.1155/2022/1545127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Data examining the health of menopausal women and the prevalence of osteoporosis remain to be limited in Africa, especially in sub-Saharan countries. Thus, in this current study, we aimed to assess the atherogenic index of plasma (AIP) and anthropometric measurements of osteoporotic postmenopausal women and determine their risk for cardiovascular disease (CVD). METHODS This is a cross-sectional, community-based study. Postmenopausal women (n = 300), aged ≥45 years, were recruited from Khartoum state, Sudan. Dual-energy X-ray absorptiometry was used to assess bone density. Weight, height, and waist circumference were measured twice. Fasting blood samples (5 ml) were collected to determine total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). AIP was calculated as an indicator of CVD risk. RESULTS The mean age of the postmenopausal women was 61.6 ± 10.2 years (range 47-90 years). Women (n = 80) had the normal T-score, and an equal number had osteoporosis (n = 110) and osteopenia (n = 110). The prevalence of osteoporosis was 36.7%. Many postmenopausal women with normal T-scores suffered from general (71.2%) and central (94%) obesity. Postmenopausal women had high TC (24.4%), TG (25.6%), LDL-C (13.7%), and low HDL-C (76.0%) levels. Osteoporotic women (36.4%) were found to have a medium to high risk of CVD as determined by AIP. Women with normal T-scores had a higher number of CVD risk factors. A positive correlation was noted between AIP and TC among osteopenic (r = 0.292; P=0.002) and osteoporotic women (r = 0.265; P < 0.001). CONCLUSION Osteoporosis was prevalent among Sudanese postmenopausal women who also had an increased risk for CVD. Public health education about osteoporosis and CVD risk is thus recommended.
Collapse
Affiliation(s)
- Abdelgadir Elmugadam
- Department of Clinical Chemistry, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - Ghada A. Elfadil
- Department of Clinical Chemistry, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - Abdalrahman Ismail Hamad
- Department of Clinical Chemistry, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | | | | | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Biason-Lauber A, Lang-Muritano M. Estrogens: Two nuclear receptors, multiple possibilities. Mol Cell Endocrinol 2022; 554:111710. [PMID: 35787463 DOI: 10.1016/j.mce.2022.111710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Much is known about estrogen action in experimental animal models and in human physiology. This article reviews the mechanisms of estrogen activity in animals and humans and the role of its two receptors α and β in terms of structure and mechanisms of action in various tissues in health and in relationship with human pathologies (e.g., osteoporosis). Recently, the spectrum of clinical pictures of estrogen resistance caused by estrogen receptors gene variants has been widened by our description of a woman with β-receptor defect, which could be added to the already known descriptions of α-receptor defect in women and men and β-receptor defect in men. The essential role of the β-receptor in the development of the gonad stands out. We summarize the clinical pictures due to estrogen resistance in men and women and focus on long-term follow-up of two women, one with α- and the other with β-receptor resistance. Some open questions remain on the complex interactions between the two receptors on bone metabolism and hypothalamus-pituitary-gonadal axis, which need further deepening and research.
Collapse
Affiliation(s)
- Anna Biason-Lauber
- University of Fribourg, Division of Endocrinology, Chemin du Musée 5, 1700, Fribourg, Switzerland.
| | - Mariarosaria Lang-Muritano
- Division of Pediatric Endocrinology and Diabetology, Switzerland; Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| |
Collapse
|
38
|
Jörg DJ, Fuertinger DH, Cherif A, Bushinsky DA, Mermelstein A, Raimann JG, Kotanko P. Modeling osteoporosis to design and optimize pharmacological therapies comprising multiple drug types. eLife 2022; 11:76228. [PMID: 35942681 PMCID: PMC9363122 DOI: 10.7554/elife.76228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
For the treatment of postmenopausal osteoporosis, several drug classes with different mechanisms of action are available. Since only a limited set of dosing regimens and drug combinations can be tested in clinical trials, it is currently unclear whether common medication strategies achieve optimal bone mineral density gains or are outperformed by alternative dosing schemes and combination therapies that have not been explored so far. Here, we develop a mathematical framework of drug interventions for postmenopausal osteoporosis that unifies fundamental mechanisms of bone remodeling and the mechanisms of action of four drug classes: bisphosphonates, parathyroid hormone analogs, sclerostin inhibitors, and receptor activator of NF-κB ligand inhibitors. Using data from several clinical trials, we calibrate and validate the model, demonstrating its predictive capacity for complex medication scenarios, including sequential and parallel drug combinations. Via simulations, we reveal that there is a large potential to improve gains in bone mineral density by exploiting synergistic interactions between different drug classes, without increasing the total amount of drug administered.
Collapse
Affiliation(s)
- David J Jörg
- Biomedical Modeling and Simulation Group, Global Research and Development, Fresenius Medical Care Germany, Bad Homburg, Germany
| | - Doris H Fuertinger
- Biomedical Modeling and Simulation Group, Global Research and Development, Fresenius Medical Care Germany, Bad Homburg, Germany
| | | | - David A Bushinsky
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, United States
| | | | | | - Peter Kotanko
- Renal Research Institute, New York, United States.,Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
39
|
Fang K, Murakami Y, Kanda S, Shimono T, Dang AT, Ono M, Nishiyama T. Unkeito Suppresses RANKL-Mediated Osteoclastogenesis via the Blimp1-Bcl6 and NF-κB Signaling Pathways and Enhancing Osteoclast Apoptosis. Int J Mol Sci 2022; 23:ijms23147814. [PMID: 35887169 PMCID: PMC9323376 DOI: 10.3390/ijms23147814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a common bone disease, particularly in menopausal women. Herein, we screened four Kampo medicines (Unkeito (UKT), Kamishoyosan (KSS), Kamikihito (KKT), and Ninjinyoeito (NYT)), frequently used to treat menopausal syndromes, for their effects on receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation in RAW 264 cells. Considering that UKT exhibited the most potent effect, we examined its effect on RANKL-induced osteoclastogenesis, the induction of osteoclast apoptosis, and the mechanisms underlying its effects. UKT inhibits RANKL-induced osteoclast differentiation in the early stage and decreases osteoclast-related genes, including tartrate-resistant acid phosphatase (Trap), dendritic cell-specific transmembrane protein (Dcstamp), matrix metalloproteinase-9 (Mmp9), and cathepsin K (Ctsk). Specifically, UKT inhibits the nuclear factor of activated T cells 1 (NFATc1), which is essential for osteoclastogenesis. UKT increases Bcl6, which antagonizes NFATc1 and Dc-stamp, thereby blocking the progression of osteoclasts to maturation. UKT also decreased nuclear translocation by downregulating the activity of p65/NF-κB. In addition, UKT enhances mononuclear osteoclast apoptosis via activation of caspase-3. Herein, we demonstrate that UKT suppresses RANKL-mediated osteoclastogenesis via the Blimp1–Bcl6 and NF-κB signaling pathways and enhances mononuclear osteoclast apoptosis. Furthermore, UKT prevents bone loss in OVX mice. Thus, UKT might be a potential therapeutic agent for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
| | - Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
- Regenerative Research Center for Intractable Diseases, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
- Regenerative Research Center for Intractable Diseases, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2403
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
- Regenerative Research Center for Intractable Diseases, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
| | - Anh Tuan Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (M.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (M.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
| |
Collapse
|
40
|
Ma M, Liu X, Jia G, Geng B, Xia Y. The association between body fat distribution and bone mineral density: evidence from the US population. BMC Endocr Disord 2022; 22:170. [PMID: 35787696 PMCID: PMC9254427 DOI: 10.1186/s12902-022-01087-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To investigate the association between different body fat distribution and different sites of BMD in male and female populations. METHODS Use the National Health and Nutrition Examination Survey (NHANES) datasets to select participants. The weighted linear regression model investigated the difference in body fat and Bone Mineral Density (BMD) in different gender. Multivariate adjusted smoothing curve-fitting and multiple linear regression models were used to explore whether an association existed between body fat distribution and BMD. Last, a subgroup analysis was performed according to age and gender group. RESULTS Overall, 2881 participants were included in this study. Compared to males, female participants had lower BMD (P < 0.05) and higher Gynoid fat mass (P < 0.00001), while there was no difference between Android fat mass (P = 0.91). Android fat mass was positively associated with Total femur BMD (Males, β = 0.044, 95% CI = 0.037, 0.051, P < 0.00001; Females, β = 0.044, 95% CI = 0.039, 0.049, P < 0.00001), Femoral neck BMD (Males, β = 0.034, 95% CI = 0.027, 0.041, P < 0.00001; Females, β = 0.032, 95% CI = 0.027, 0.037, P < 0.00001), and Total spine BMD (Males, β = 0.036, 95% CI = 0.029, 0.044, P < 0.00001; Females, β = 0.025, 95% CI = 0.019, 0.031, P < 0.00001). The Gynoid fat mass, subgroup analysis of age and ethnicity reached similar results. CONCLUSION Body fat in different regions was positively associated with BMD in different sites, and this association persisted in subgroup analyses across age and race in different gender.
Collapse
Affiliation(s)
- Ming Ma
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Second Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Orthopaedic Clinical Medical Research Center, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
| | - Xiaolong Liu
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Second Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Orthopaedic Clinical Medical Research Center, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
| | - Gengxin Jia
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Second Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Orthopaedic Clinical Medical Research Center, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
| | - Bin Geng
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Second Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Orthopaedic Clinical Medical Research Center, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Technology Center for Intelligent Orthopedic Industry, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
| | - Yayi Xia
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Second Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Orthopaedic Clinical Medical Research Center, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
- Technology Center for Intelligent Orthopedic Industry, No. 82 Cuiyingmen, Chengguan District, Lanzhou City, 730000 Gansu Province China
| |
Collapse
|
41
|
Kim R, Kim SW, Kim H, Ku SY. The impact of sex steroids on osteonecrosis of the jaw. Osteoporos Sarcopenia 2022; 8:58-67. [PMID: 35832420 PMCID: PMC9263170 DOI: 10.1016/j.afos.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sex steroid hormones play a major role in bone homeostasis. Therefore, the use of sex hormones or drugs may increase the risk of osteonecrosis of the jaw (ONJ), a complication caused by damaged bone homeostasis. However, few are known the impact of medications changing sex hormone levels on ONJ. The pathophysiology of ONJ is not clearly understood and many hypotheses exist: cessation of bone remodeling caused by its anti-resorptive effect on osteoclasts; compromised microcirculation due to medication affecting angiogenesis, including bisphosphonate; and impairment of defense mechanism toward local infection. The use of high-dose intravenous bisphosphonate in cancer patients is associated with a high prevalence of ONJ. Exogenous estrogen or androgen replacement was reported to be associated with ONJ. Polycystic ovarian syndrome (PCOS) patients demonstrate an androgen excess status, and androgen overproduction serves as a protective factor in the bone mineral density of young women. To date, there are no reports of ONJ occurrence due to androgen overproduction. In contrast, few reports on the occurrence of ONJ due to estrogen deficiency induced by drugs, such as selective estrogen receptor modulator (SERM), aromatase inhibitors, and gonadotropin-releasing hormone (GnRH) agonists, are available. Thus, the role of sex steroids in the development of ONJ is not known. Further studies are required to demonstrate the exact role of sex steroids in bone homeostasis and ONJ progression. In this review, we will discuss the relationship between medication associated with sex steroids and ONJ.
Collapse
Affiliation(s)
- Ranhee Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang, South Korea
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
| |
Collapse
|
42
|
Puerarin specifically disrupts osteoclast activation via blocking integrin-β3 Pyk2/Src/Cbl signaling pathway. J Orthop Translat 2022; 33:55-69. [PMID: 35228997 PMCID: PMC8858883 DOI: 10.1016/j.jot.2022.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Given the limitations of current anti-resorption agents for postmenopausal osteoporosis, there is a need for alternatives without impairing coupling crosstalk between bone resorption and bone formation ie. osteoclastogenesis. Puerarin, a unique C-glycoside isoflavonoid, was found to be able to prevent bone loss by inhibiting bone resorption, but the underlying mechanism was controversial. In this study, we investigated the effects of puerarin on osteoclastic differentiation, activation and bone resorption and its underlying molecular mechanism in vitro, and then evaluated the effects of puerarin on bone metabolism using an ovariectomized (OVX) rat model. Methods In vitro, the effect of puerarin on osteoclastic cytotoxicity, differentiation, apoptosis, activation and function were studied in raw 264.7 cells and mouse BMMs. Mechanistically, osteoclast-related makers were determined by RT-PCR, western blot, immunofluorescence, and kinase activity assay. In vivo, Micro-CT, histology, serum bone biomarker, and mechanical testing were used to evaluate the effects of puerarin on preventing osteoporosis. Results Puerarin significantly inhibited osteoclast activation and bone resorption, without affecting osteoclastogenesis or apoptosis. In terms of mechanism, the expressions of protein of integrin-β3 and phosphorylations of Src, Pyk2 and Cbl were lower in puerarin group than those in the control group. Oral administration of puerarin prevented OVX-induced trabecular bone loss and significantly improved bone strength in rats. Moreover, puerarin significantly decreased trap positive osteoclast numbers and serum TRAP-5b, CTx1, without affecting bone formation rate. Conclusions Collectively, puerarin prevented the bone loss in OVX rat through suppression of osteoclast activation and bone resorption, by inhibiting integrin-β3-Pyk2/Cbl/Src signaling pathway, without affecting osteoclasts formation or apoptosis. Translational potential of this article These results demonstrate the unique mechanism of puerarin on bone metabolism and provide a novel agent for prevention of postmenopausal osteoporosis.
Collapse
|
43
|
Canto-Cetina T, Rojano-Mejía D, Coral-Vázquez RM, Cetina-Manzanilla JA, Polanco-Reyes L, Canto P. Bone Mineral Density and Fractures In Postmenopausal Women Of Mayan-Mestizo Ethnic Origin With Different Body Mass Indices. Ann Hum Biol 2022; 48:567-571. [PMID: 35139707 DOI: 10.1080/03014460.2022.2041093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Obesity protects against bone loss, but it increases the risk of fragility fractures. AIM To determine if bone mineral density (BMD) and the prevalence of fractures are different in postmenopausal Mayan-mestizo women grouped according to their body mass index. SUBJECTS AND METHODS We studied 600 postmenopausal Maya-Mestizo women. A structured questionnaire for risk factors was applied. Body mass index (BMI) was determined. BMD was assessed at the lumbar spine and total hip by dual-energy X-ray absorptiometry. History of low trauma fracture was determined from medical records. ANOVA was used to compare mean BMD between women with different BMI. To compare the frequency of fractures according to BMI group, we used χ2. RESULTS According to WHO classification of BMI, 16.3% of women had normal BMI, 35.3% were overweight, and 48.4% had obesity. We found that women with obesity had a higher BMD versus women with normal BMI or overweight in all the anatomical sites analysed. The prevalence of history of fractures was 18.2%. We did not find differences between the women of different BMI; the wrist was the most frequent skeletal site of the fracture. CONCLUSIONS Obesity in postmenopausal Maya-Mestizo women is not a risk factor for developing fragility fractures.
Collapse
Affiliation(s)
- Thelma Canto-Cetina
- Laboratorio de Biología de la Reproducción, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Mérida Yucatán, México
| | - David Rojano-Mejía
- UMAE Hospital de Traumatología, Ortopedia y Rehabilitación "Dr. Victorio de la Fuente Narváez", Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México.,Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | | | - Lucila Polanco-Reyes
- Laboratorio de Biología de la Reproducción, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Mérida Yucatán, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de Ciudad de México, México.,Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| |
Collapse
|
44
|
Regular Exercise and Weight-Control Behavior Are Protective Factors against Osteoporosis for General Population: A Propensity Score-Matched Analysis from Taiwan Biobank Participants. Nutrients 2022; 14:nu14030641. [PMID: 35277000 PMCID: PMC8838409 DOI: 10.3390/nu14030641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The rising prevalence of osteoporosis, which can lead to osteoporotic fractures, increases morbidity, mortality, and socioeconomic burden. Multiple factors influencing bone mass have already been identified. The aim of this study was to investigate whether exercise habits and weight-control behaviors can lower the incidence of osteoporosis in the general population. This retrospective study recruited all participants aged 35–70 years who underwent dual-energy X-ray absorptiometry (DXA) from Taiwan Biobank (TWB). The final analysis consisted of 3320 eligible participants divided into two groups; demographic characteristics, prevalence of clinical symptoms, comorbidities, and daily behavior were collected using a self-reported questionnaire. After propensity score matching with a 1:1 ratio, 1107 out of 2214 individuals were classified into the osteoporosis group. Age, body fat rate, body shape, diabetes mellitus, and social status were found to affect the incidence of osteoporosis. Subjects with a habit of regular exercise and weight-control behavior showed decreased odds of osteoporosis. (odds ratio: 0.709 and 0.753, 95% confidence interval: 0.599–0.839 and 0.636–0.890). In the general population, regular exercise or weight-control behavior lowers the incidence of osteoporosis.
Collapse
|
45
|
Yang L, Deng H, Pan W, Huang X, Xu K, Zhang X, Hu X, Gu X. The Inverse Association of Leg Fat Mass and Osteoporosis in Individuals with Type 2 Diabetes Independent of Lean Mass. Diabetes Metab Syndr Obes 2022; 15:1321-1330. [PMID: 35519662 PMCID: PMC9063940 DOI: 10.2147/dmso.s358717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Recent studies revealed that high levels of thigh fat were independently associated with better glucose and lipid metabolism, as well as lower risk of hypertension and cardiometabolic disease. Therefore, the purpose of this study was to evaluate the association between leg fat mass (FM) and osteoporosis (OP) in individuals with type 2 diabetes (T2DM). PATIENTS AND METHODS In this cross-sectional study, a total of 1,259 individuals aged 50 years or older with T2DM (female 536, male 723) were included. A bioelectrical impedance analyser was used to assess the segment body composition containing FM and lean mass (LM) of arms, legs, and trunk. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry. RESULTS Leg FM was positively correlated with BMD of all sites in females and BMD of femoral neck and total hip in males after adjusting age, diabetes duration, glucose and lipid metabolism indexes, and lifestyle (all P<0.05). LM was positively associated with BMD at almost sites (P<0.001), while leg FM/LM ratio had no relationship with BMD at any skeleton sites (P>0.05). Compared with the bottom tertile group of leg FM, the risk of OP was significantly lower in the top tertile group both in females (T3 vs T1: OR=0.206, 95% CI=0.098-0.433, P<0.001) and males (T3 vs T1: OR=0.385, 95% CI=0.182-0.815, P<0.05), even after adjusting for LM. CONCLUSION In the present study, higher leg FM was correlated with the lower risk of OP in both men and postmenopausal women with T2DM independently of total LM.
Collapse
Affiliation(s)
- Lijuan Yang
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Huihui Deng
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Wei Pan
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaoyan Huang
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Ke Xu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xingxing Zhang
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiang Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Xiang Hu; Xuejiang Gu, Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, People’s Republic of China, Tel/Fax +86-577-55579381, Email ;
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
46
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Recent Advances in Osteoclast Biological Behavior. Front Cell Dev Biol 2021; 9:788680. [PMID: 34957116 PMCID: PMC8694526 DOI: 10.3389/fcell.2021.788680] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
With the progress of the aging population, bone-related diseases such as osteoporosis and osteoarthritis have become urgent problems. Recent studies have demonstrated the importance of osteoclasts in bone homeostasis, implying these will be an important mediator in the treatment of bone-related diseases. Up to now, several reviews have been performed on part of osteoclast biological behaviors such as differentiation, function, or apoptosis. However, few reviews have shown the complete osteoclast biology and research advances in recent years. Therefore, in this review, we focus on the origin, differentiation, apoptosis, behavior changes and coupling signals with osteoblasts, providing a simple but comprehensive overview of osteoclasts for subsequent studies.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Irsik DL, Bollag WB, Isales CM. Renal Contributions to Age-Related Changes in Mineral Metabolism. JBMR Plus 2021; 5:e10517. [PMID: 34693188 PMCID: PMC8520061 DOI: 10.1002/jbm4.10517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 11/10/2022] Open
Abstract
Aging results in a general decline in function in most systems. This is particularly true with respect to the skeleton and renal systems, impacting mineral homeostasis. Calcium and phosphate regulation requires tight coordination among the intestine, bone, parathyroid gland, and kidney. The role of the intestine is to absorb calcium and phosphate from the diet. The bone stores or releases calcium and phosphate depending on the body's needs. In response to low plasma ionized calcium concentration, the parathyroid gland produces parathyroid hormone, which modulates bone turnover. The kidney reabsorbs or excretes the minerals and serves as the final regulator of plasma concentration. Many hormones are involved in this process in addition to parathyroid hormone, including fibroblast growth factor 23 produced by the bone and calcitriol synthesized by the kidney. Sclerostin, calcitonin, osteoprotegerin, and receptor activator of nuclear factor‐κB ligand also contribute to tissue‐specific regulation. Changes in the function of organs due to aging or disease can perturb this balance. During aging, the intestine cannot absorb calcium efficiently due to decreased expression of key proteins. In the bone, the balance between bone formation and bone resorption tends toward the latter in older individuals. The kidney may not filter blood as efficiently in the later decades of life, and the expression of certain proteins necessary for mineral homeostasis declines with age. These changes often lead to dysregulation of organismal mineral homeostasis. This review will focus on how mineral homeostasis is impacted by aging with a particular emphasis on the kidney's role in this process. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Debra L Irsik
- Charlie Norwood VA Medical Center Augusta GA USA.,Department of Neuroscience and Regenerative Medicine Augusta University Augusta GA USA
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center Augusta GA USA.,Department of Physiology Augusta University Augusta GA USA
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine Augusta University Augusta GA USA.,Division of Endocrinology, Department of Medicine Augusta University Augusta GA USA
| |
Collapse
|
48
|
Shahida S, Rehman S, Ilyas N, Khan MI, Hameed U, Hafeez M, Iqbal S, Elboughdiri N, Ghernaout D, Salih AA, Matouq M. Determination of Blood Calcium and Lead Concentrations in Osteoporotic and Osteopenic Patients in Pakistan. ACS OMEGA 2021; 6:28373-28378. [PMID: 34723034 PMCID: PMC8552473 DOI: 10.1021/acsomega.1c04565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 05/31/2023]
Abstract
Osteoporosis is the leading cause of deformity and bones fracture all over the world and has some relationship with the blood concentrations of calcium and lead. Therefore, in the current study, the blood samples of 58 control and 56 clinically diagnosed osteoporotic and osteopenic patients were taken from different hospitals in Pakistan and analyzed for calcium and lead concentrations using atomic absorption spectrometry. In female control samples, the mean calcium value was found to be 98.53 ± 4.81 μg/mL, and in male control samples, the mean blood calcium level was found to be 121.33 ± 7.27 μg/mL. In female control samples, the mean lead value was found to be 0.133 ± 0.005 μg/mL, and in male control samples, the mean lead level was found to be 0.183 ± 0.008 μg/mL. All the male and female control samples showed a mean value of calcium of 115.63 ± 5.2 μg/mL and a mean value of lead of 0.153 ± 0.007 μg/mL. In osteoporotic female patients, the decline in the mean calcium value was found to be 34.93 ± 1.9 μg/mL, and in male patients, the decrease in the mean calcium level was found to be 47.73 ± 2.5 μg/mL. The increase in the mean value of lead in osteoporotic females was 4.13 ± 0.22 μg/mL, whereas in male patients, the increase in the mean lead value was 0.95 ± 0.07 μg/mL. All the male and female patients showed a decrease in the mean value of calcium of 41.43 ± 2.2 μg/mL and an increase in the mean value of Pb of 3.63 ± 0.16 μg/mL.
Collapse
Affiliation(s)
- Shabnam Shahida
- Department
of Chemistry, University of Poonch, Rawalakot, Azad Kashmir 7475, Pakistan
| | - Sohaila Rehman
- Chemistry
Division, Pakistan Institute of Nuclear
Science and Technology, P.O. Nilore, Islamabad 44000, Pakistan
| | - Nabila Ilyas
- Department
of Chemistry, University of Poonch, Rawalakot, Azad Kashmir 7475, Pakistan
| | - Muhammad Imran Khan
- Research
Institute of Sciences and Engineering, University
of Sharjah, Sharjah 27272, United Arab Emirates
| | - Usman Hameed
- Department
of Chemistry, Women University of Azad Jammu
& Kashmir, Bagh 12500, Pakistan
| | - Muhammad Hafeez
- Department
of Chemistry, University of Azad Jammu and
Kashmir, Muzaffarabad 12500, Pakistan
| | - Sajid Iqbal
- Chemistry
Division, Pakistan Institute of Nuclear
Science and Technology, P.O. Nilore, Islamabad 44000, Pakistan
| | - Noureddine Elboughdiri
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
- Chemical
Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Djamel Ghernaout
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
- Chemical
Engineering Department, Faculty of Engineering, University of Blida, P.O. Box 270, Blida 09000, Algeria
| | - Alsamani Ahmed Salih
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
| | - Mohammed Matouq
- Chemical
Engineering Department, Al-Balqa Applied
University, Amman, P.O. Box 4486, 11131, Jordan
| |
Collapse
|
49
|
Winter EM, Kooijman S, Appelman-Dijkstra NM, Meijer OC, Rensen PC, Schilperoort M. Chronobiology and Chronotherapy of Osteoporosis. JBMR Plus 2021; 5:e10504. [PMID: 34693186 PMCID: PMC8520066 DOI: 10.1002/jbm4.10504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022] Open
Abstract
Physiological circadian (ie, 24-hour) rhythms are critical for bone health. Animal studies have shown that genes involved in the intrinsic molecular clock demonstrate potent circadian expression patterns in bone and that genetic disruption of these clock genes results in a disturbed bone structure and quality. More importantly, circulating markers of bone remodeling show diurnal variation in mice as well as humans, and circadian disruption by, eg, working night shifts is associated with the bone remodeling disorder osteoporosis. In this review, we provide an overview of the current literature on rhythmic bone remodeling and its underlying mechanisms and identify critical knowledge gaps. In addition, we discuss novel (chrono)therapeutic strategies to reduce osteoporosis by utilizing our knowledge on circadian regulation of bone. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Elizabeth M Winter
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands.,Department of Medicine, Center for Bone Quality Leiden University Medical Center Leiden The Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands
| | - Natasha M Appelman-Dijkstra
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands.,Department of Medicine, Center for Bone Quality Leiden University Medical Center Leiden The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands
| | - Patrick Cn Rensen
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands
| | - Maaike Schilperoort
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands
| |
Collapse
|
50
|
Kim HM, Lee SM, Choi J, Soung NK, Heo JD. Effects of Bisphenol A and Its Alternatives, Bisphenol F and Tetramethyl Bisphenol F on Osteoclast Differentiation. Molecules 2021; 26:molecules26206100. [PMID: 34684681 PMCID: PMC8539477 DOI: 10.3390/molecules26206100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Bisphenol A (BPA) is a typical environmental endocrine disruptor that exhibits estrogen-mimicking, hormone-like properties and can cause the collapse of bone homeostasis by an imbalance between osteoblasts and osteoclasts. Various BPA substitutes, structurally similar to BPA, have been used to manufacture ‘BPA-free’ products; however, the regulatory role of BPA alternatives in osteoclast differentiation still remains unelucidated. This study aimed to investigate the effects of these chemicals on osteoclast differentiation using the mouse osteoclast precursor cell line RAW 264.7. Results confirmed that both BPA and its alternatives, bisphenol F and tetramethyl bisphenol F (TMBPF), were nontoxic to RAW 264.7 cells. In particular, tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell staining and activity calculation assays revealed that TMBPF enhanced osteoclast differentiation upon stimulation of the receptor activator of nuclear factor-kappa B ligand (RANKL). Additionally, TMBPF activated the mRNA expression of osteoclast-related target genes, such as the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CtsK). Western blotting analysis indicated activation of the mitogen-activated protein kinase signaling pathway, including phosphorylation of c-Jun N-terminal kinase and p38. Together, the results suggest that TMBPF enhances osteoclast differentiation, and it is critical for bone homeostasis and skeletal health.
Collapse
Affiliation(s)
- Hye-Min Kim
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju-si 52834, Gyeongsangnam-do, Korea; (H.-M.K.); (S.-M.L.); (J.C.)
| | - Seon-Min Lee
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju-si 52834, Gyeongsangnam-do, Korea; (H.-M.K.); (S.-M.L.); (J.C.)
| | - Jungil Choi
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju-si 52834, Gyeongsangnam-do, Korea; (H.-M.K.); (S.-M.L.); (J.C.)
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Korea;
| | - Jeong-Doo Heo
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju-si 52834, Gyeongsangnam-do, Korea; (H.-M.K.); (S.-M.L.); (J.C.)
- Correspondence:
| |
Collapse
|