1
|
Solar M, Grayck MR, McCarthy WC, Zheng L, Lacayo OA, Sherlock LG, Zhou R, Orlicky DJ, Wright CJ. Absence of IκBβ/NFκB signaling does not attenuate acetaminophen-induced hepatic injury. Anat Rec (Hoboken) 2025; 308:1251-1264. [PMID: 36426684 PMCID: PMC10209348 DOI: 10.1002/ar.25126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Acetaminophen (N-acetyl-p-aminophenol [APAP]) toxicity is a common cause of acute liver failure. Innate immune signaling and specifically NFκB activation play a complex role in mediating the hepatic response to toxic APAP exposures. While inflammatory innate immune responses contribute to APAP-induced injury, these same pathways play a role in regeneration and repair. Previous studies have shown that attenuating IκBβ/NFκB signaling downstream of TLR4 activation can limit injury, but whether this pathway contributes to APAP-induced hepatic injury is unknown. We hypothesized that the absence of IκBβ/NFκB signaling in the setting of toxic APAP exposure would attenuate APAP-induced hepatic injury. To test this, we exposed adult male WT and IκBβ-/- mice to APAP (280 mg/kg, IP) and evaluated liver histology at early (2-24 hr) and late (48-72 hr) time points. Furthermore, we interrogated the hepatic expression of NFκB inflammatory (Cxcl1, Tnf, Il1b, Il6, Ptgs2, and Ccl2), anti-inflammatory (Il10, Tnfaip3, and Nfkbia), and Nrf2/antioxidant (Gclc, Hmox, and Nqo1) target genes previously demonstrated to play a role in APAP-induced injury. Conflicting with our hypothesis, we found that hepatic injury was similar in WT and IκBβ-/- mice. Acutely, the induced expression of some target genes was similar in WT and IκBβ-/- mice (Tnfaip3, Nfkbia, and Gclc), while others were either not induced (Cxcl1, Tnf, Ptgs2, and Il10) or significantly attenuated (Ccl2) in IκBβ-/- mice. At later time points, APAP-induced hepatic expression of Il1b, Il6, and Gclc was significantly attenuated in IκBβ-/- mice. Based on these findings, the therapeutic potential of targeting IκBβ/NFκB signaling to treat toxic APAP-induced hepatic injury is likely limited.
Collapse
Affiliation(s)
- Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Maya R. Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - William C. McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Oscar A. Lacayo
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Laura G. Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Ruby Zhou
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - David J. Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Clyde J. Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
2
|
Nurmi K, Silventoinen K, Keskitalo S, Rajamäki K, Kouri VP, Kinnunen M, Jalil S, Maldonado R, Wartiovaara K, Nievas EI, Denita-Juárez SP, Duncan CJA, Kuismin O, Saarela J, Romo I, Martelius T, Parantainen J, Beklen A, Bilicka M, Matikainen S, Nordström DC, Kaustio M, Wartiovaara-Kautto U, Kilpivaara O, Klein C, Hauck F, Jahkola T, Hautala T, Varjosalo M, Barreto G, Seppänen MRJ, Eklund KK. Truncating NFKB1 variants cause combined NLRP3 inflammasome activation and type I interferon signaling and predispose to necrotizing fasciitis. Cell Rep Med 2024; 5:101503. [PMID: 38593810 PMCID: PMC11031424 DOI: 10.1016/j.xcrm.2024.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1β secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-β (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1β and/or IFN-I signaling could represent a therapeutic approach for these patients.
Collapse
Affiliation(s)
- Katariina Nurmi
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Kristiina Silventoinen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Salla Keskitalo
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, RPU, UH, 00014 Helsinki, Finland
| | - Vesa-Petteri Kouri
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Matias Kinnunen
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Sami Jalil
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | - Rocio Maldonado
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | - Kirmo Wartiovaara
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | | | | | - Christopher J A Duncan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 4HH, UK
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital (OUH), 90014 Oulu, Finland; PEDEGO Research Unit and Medical Research Center Oulu, OUH and University of Oulu (OU), 90014 Oulu, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland, HiLIFE, UH, 00014 Helsinki, Finland; Centre for Molecular Medicine Norway, University of Oslo, 0313 Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Inka Romo
- Inflammation Center, Department of Infectious Disease, HUH, 00029 Helsinki, Finland
| | - Timi Martelius
- Inflammation Center, Department of Infectious Disease, HUH, 00029 Helsinki, Finland
| | - Jukka Parantainen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Arzu Beklen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Marcelina Bilicka
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Sampsa Matikainen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Dan C Nordström
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Internal Medicine and Rehabilitation, HUH and UH, 00029 Helsinki, Finland
| | - Meri Kaustio
- Institute for Molecular Medicine Finland, HiLIFE, UH, 00014 Helsinki, Finland
| | - Ulla Wartiovaara-Kautto
- Department of Hematology, HUH, Comprehensive Cancer Center, UH, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, RPU, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, RPU, Faculty of Medicine, UH, 00014 Helsinki, Finland; Department of Medical and Clinical Genetics/Medicum, Faculty of Medicine, UH, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, UH, 00014 Helsinki, Finland; HUS Diagnostic Center, HUSLAB Laboratory of Genetics, HUH, 00029 Helsinki, Finland
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Tiina Jahkola
- Department of Plastic Surgery, HUH, 00029 Helsinki, Finland
| | - Timo Hautala
- Research Unit of Internal Medicine and Biomedicine, OU, and Infectious Diseases Clinic, OUH, 90014 Oulu, Finland
| | - Markku Varjosalo
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Goncalo Barreto
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, HUH and UH, 00029 Helsinki, Finland; Rare Disease Center, Children and Adolescents, HUH and UH, 00029 Helsinki, Finland.
| | - Kari K Eklund
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Rheumatology, HUH and UH, 00029 Helsinki, Finland; Orton Orthopaedic Hospital, 00280 Helsinki, Finland.
| |
Collapse
|
3
|
Xue Y, Pan L, Vlahopoulos S, Wang K, Zheng X, Radak Z, Bacsi A, Tanner L, Brasier AR, Ba X, Boldogh I. Epigenetic control of type III interferon expression by 8-oxoguanine and its reader 8-oxoguanine DNA glycosylase1. Front Immunol 2023; 14:1161160. [PMID: 37600772 PMCID: PMC10436556 DOI: 10.3389/fimmu.2023.1161160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/23/2023] [Indexed: 08/22/2023] Open
Abstract
Interferons (IFNs) are secreted cytokines with the ability to activate expression of IFN stimulated genes that increase resistance of cells to virus infections. Activated transcription factors in conjunction with chromatin remodelers induce epigenetic changes that reprogram IFN responses. Unexpectedly, 8-oxoguanine DNA glycosylase1 (Ogg1) knockout mice show enhanced stimuli-driven IFN expression that confers increased resistance to viral and bacterial infections and allergen challenges. Here, we tested the hypothesis that the DNA repair protein OGG1 recognizes 8-oxoguanine (8-oxoGua) in promoters modulating IFN expression. We found that functional inhibition, genetic ablation, and inactivation by post-translational modification of OGG1 significantly augment IFN-λ expression in epithelial cells infected by human respiratory syncytial virus (RSV). Mechanistically, OGG1 bound to 8-oxoGua in proximity to interferon response elements, which inhibits the IRF3/IRF7 and NF-κB/RelA DNA occupancy, while promoting the suppressor NF-κB1/p50-p50 homodimer binding to the IFN-λ2/3 promoter. In a mouse model of bronchiolitis induced by RSV infection, functional ablation of OGG1 by a small molecule inhibitor (TH5487) enhances IFN-λ production, decreases immunopathology, neutrophilia, and confers antiviral protection. These findings suggest that the ROS-generated epigenetic mark 8-oxoGua via its reader OGG1 serves as a homeostatic thresholding factor in IFN-λ expression. Pharmaceutical targeting of OGG1 activity may have clinical utility in modulating antiviral response.
Collapse
Affiliation(s)
- Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Spiros Vlahopoulos
- Horemeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian, University of Athens, Athens, Greece
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Zsolt Radak
- Research Institute of Molecular Exercise Science, University of Sport Science, Budapest, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Allan R. Brasier
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4
|
NF-κB1 Contributes to Imiquimod-Induced Psoriasis-Like Skin Inflammation by Inducing Vγ4 +Vδ4 +γδT17 Cells. J Invest Dermatol 2021; 142:1639-1649.e5. [PMID: 34774872 DOI: 10.1016/j.jid.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
Recent studies have identified NF-κB1 as a new disease susceptibility gene for psoriasis. Although accumulating evidence has shown the importance of NF-κB signaling in various cell types in the pathogenesis of psoriasis, it remains unclear how NF-κB1 contributes to the pathogenesis of psoriasis. In this study, we examined psoriasis-like skin diseases induced by topical administration of imiquimod in Nf-κb1‒deficient (Nf-κb1-/-) mice and littermate wild-type (WT) mice. Compared with WT mice, Nf-κb1-/- mice exhibited attenuated skin inflammation. The numbers of Vγ4+Vδ4+γδT17 cells, which cause skin inflammation in this model, were significantly reduced in the skin and draining lymph nodes in imiquimod-treated Nf-κb1-/- mice. Nf-κb1 is preferentially phosphorylated in Vγ4+Vδ4+γδT17 cells in WT mice. In vitro proliferation of Vγ4+Vδ4+γδT17 cells but not conventional CD4+ T cells was significantly impaired in Nf-κb1-/- mice compared with that in WT mice. RNA-sequencing analyses revealed that the expression of E2 factor target genes was decreased in Vγ4+Vδ4+γδT cells by the absence of NF-κB1. Consistently, the cell cycle progression of Vγ4+Vδ4+γδT cells was reduced in Nf-κb1-/- mice compared with that in WT mice. These results suggest that Nf-κb1 plays a crucial role in the pathogenesis of imiquimod-induced psoriasis-like skin inflammation by promoting the proliferation of Vγ4+Vδ4+γδT17 cells.
Collapse
|
5
|
Wangsanut T, Brann KR, Adcox HE, Carlyon JA. Orientia tsutsugamushi modulates cellular levels of NF-κB inhibitor p105. PLoS Negl Trop Dis 2021; 15:e0009339. [PMID: 33857149 PMCID: PMC8078813 DOI: 10.1371/journal.pntd.0009339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Background Scrub typhus is a neglected tropical disease that threatens more than one billion people. If antibiotic therapy is delayed, often due to mis- or late diagnosis, the case fatality rate can increase considerably. Scrub typhus is caused by the obligate intracellular bacterium, Orientia tsutsugamushi, which invades phagocytes and endothelial cells in vivo and diverse tissue culture cell types in vitro. The ability of O. tsutsugamushi to replicate in the cytoplasm indicates that it has evolved to counter eukaryotic host cell immune defense mechanisms. The transcription factor, NF-κB, is a tightly regulated initiator of proinflammatory and antimicrobial responses. Typically, the inhibitory proteins p105 and IκBα sequester the NF-κB p50:p65 heterodimer in the cytoplasm. Canonical activation of NF-κB via TNFα involves IKKβ-mediated serine phosphorylation of IκBα and p105, which leads to their degradation and enables NF-κB nuclear translocation. A portion of p105 is also processed into p50. O. tsutsugamushi impairs NF-κB translocation into the nucleus, but how it does so is incompletely defined. Principal findings Western blot, densitometry, and quantitative RT-PCR analyses of O. tsutsugamushi infected host cells were used to determine if the pathogen’s ability to inhibit NF-κB is linked to modulation of p105. Results demonstrate that p105 levels are elevated several-fold in O. tsutsugamushi infected HeLa and RF/6A cells with only a nominal increase in p50. The O. tsutsugamushi-stimulated increase in p105 is bacterial dose- and protein synthesis-dependent, but does not occur at the level of host cell transcription. While TNFα-induced phosphorylation of p105 serine 932 proceeds unhindered in infected cells, p105 levels remain elevated and NF-κB p65 is retained in the cytoplasm. Conclusions O. tsutsugamushi specifically stabilizes p105 to inhibit the canonical NF-κB pathway, which advances understanding of how it counters host immunity to establish infection. Scrub typhus is a neglected disease that can be fatal and occurs predominantly in the Asia-Pacific, one of the most densely populated regions of the world. Notably, cases continue to emerge outside this area. The etiologic agent is Orientia tsutsugamushi, a bacterial pathogen that infects certain leukocytes and cells that line blood vessels in animals and humans. The success of O. tsutsugamushi to colonize these cells is at least partially attributable to its ability to counter host immunity. In this study, we demonstrate that O. tsutsugamushi stabilizes p105, a mammalian inhibitor of the transcription factor, NF-κB, which is otherwise key for activating proinflammatory and antimicrobial gene expression. O. tsutsugamushi is the first example of a bacterium that inhibits NF-κB by promoting elevated levels of p105 and impairing its degradation. Our findings provide fundamental information that helps explain how this important pathogen has evolved to stealthily establish infection in host cells.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Katelynn R. Brann
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
- * E-mail:
| |
Collapse
|
6
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
7
|
Trahtemberg U, Mevorach D. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells. Front Immunol 2017; 8:1356. [PMID: 29118755 PMCID: PMC5661053 DOI: 10.3389/fimmu.2017.01356] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022] Open
Abstract
Inefficient and abnormal clearance of apoptotic cells (efferocytosis) contributes to systemic autoimmune disease in humans and mice, and inefficient chromosomal DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By contrast, efficient clearance allows immune homeostasis, generally leads to a non-inflammatory state for both macrophages and dendritic cells (DCs), and contributes to maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic cells is phosphatidylserine (PtdSer). Apoptotic cells themselves are major contributors to the “anti-inflammatory” nature of the engulfment process, some by secreting thrombospondin-1 (TSP-1) or adenosine monophosphate and possibly other immune modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic cells also produce “find me” and “tolerate me” signals to attract and immune modulate macrophages and DCs that express specific receptors for some of these signals. Neither macrophages nor DCs are uniform, and each cell type may variably express membrane proteins that function as receptors for PtdSer or for opsonins like complement or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. Macrophages and DCs also express scavenger receptors, CD36, and integrins that function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein and that differentially engage in various multi-ligand interactions between apoptotic cells and phagocytes. In this review, we describe the anti-inflammatory and pro-homeostatic nature of apoptotic cell interaction with the immune system. We do not review some forms of immunogenic cell death. We summarize the known apoptotic cell signaling events in macrophages and DCs that are related to toll-like receptors, nuclear factor kappa B, inflammasome, the lipid-activated nuclear receptors, Tyro3, Axl, and Mertk receptors, as well as induction of signal transducer and activator of transcription 1 and suppressor of cytokine signaling that lead to immune system silencing and DC tolerance. These properties of apoptotic cells are the mechanisms that enable their successful use as therapeutic modalities in mice and humans in various autoimmune diseases, organ transplantation, graft-versus-host disease, and sepsis.
Collapse
Affiliation(s)
- Uriel Trahtemberg
- General Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
9
|
Souza TM, Kleinjans JCS, Jennen DGJ. Dose and Time Dependencies in Stress Pathway Responses during Chemical Exposure: Novel Insights from Gene Regulatory Networks. Front Genet 2017; 8:142. [PMID: 29085386 PMCID: PMC5649202 DOI: 10.3389/fgene.2017.00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022] Open
Abstract
Perturbation of biological networks is often observed during exposure to xenobiotics, and the identification of disturbed processes, their dynamic traits, and dose–response relationships are some of the current challenges for elucidating the mechanisms determining adverse outcomes. In this scenario, reverse engineering of gene regulatory networks (GRNs) from expression data may provide a system-level snapshot embedded within accurate molecular events. Here, we investigate the composition of GRNs inferred from groups of chemicals with two distinct outcomes, namely carcinogenicity [azathioprine (AZA) and cyclophosphamide (CYC)] and drug-induced liver injury (DILI; diclofenac, nitrofurantoin, and propylthiouracil), and a non-carcinogenic/non-DILI group (aspirin, diazepam, and omeprazole). For this, we analyzed publicly available exposed in vitro human data, taking into account dose and time dependencies. Dose–Time Network Identification (DTNI) was applied to gene sets from exposed primary human hepatocytes using four stress pathways, namely endoplasmic reticulum (ER), NF-κB, NRF2, and TP53. Inferred GRNs suggested case specificity, varying in interactions, starting nodes, and target genes across groups. DILI and carcinogenic compounds were shown to directly affect all pathway-based GRNs, while non-DILI/non-carcinogenic chemicals only affected NF-κB. NF-κB-based GRNs clearly illustrated group-specific disturbances, with the cancer-related casein kinase CSNK2A1 being a target gene only in the carcinogenic group, and opposite regulation of NF-κB subunits being observed in DILI and non-DILI/non-carcinogenic groups. Target genes in NRF2-based GRNs shared by DILI and carcinogenic compounds suggested markers of hepatotoxicity. Finally, we indicate several of these group-specific interactions as potentially novel. In summary, our reversed-engineered GRNs are capable of revealing dose dependent, chemical-specific mechanisms of action in stress-related biological networks.
Collapse
Affiliation(s)
- Terezinha M Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
Gu SM, Yun J, Son DJ, Kim HY, Nam KT, Kim HD, Choi MG, Choi JS, Kim YM, Han SB, Hong JT. Piperlongumine attenuates experimental autoimmune encephalomyelitis through inhibition of NF-kappaB activity. Free Radic Biol Med 2017; 103:133-145. [PMID: 28011150 DOI: 10.1016/j.freeradbiomed.2016.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune and neurodegenerative disease in which demyelination sporadically and repeatedly occurs in the central nervous system (CNS). The activity of nuclear factor kappa B (NF-κB), a family of transcription factors, was increased in the cerebrospinal fluid (CSF) and/or the serum and brain and/or spinal cord of MS patients than in a healthy donors. In our study, we investigated whether piperlongumine (PL), which is known to have inhibitory effect on activity of NF-κB, can alleviate an experimental autoimmune encephalomyelitis (EAE). The mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), and then we injected PL (1.5mg/kg/day or 3.0mg/kg/day) into the mice intraperitoneally on every second day from days 2 to 28. For in vitro study, we treated PL (0.5, 1 and 2.5μM) to RAW 264.7 and Jurkat cells with each stimulator. We observed that the paralytic severity and neuropathology of EAE in PL-treated group were decreased compared with the EAE group. PL showed a suppressed effect on demyelination, immune cells infiltration, astrocytes/microglials activation, level of inflammatory cytokines and proteins as well as NF-κB activity. Production of inflammatory cytokines and proteins as well as translocation of NF-κB into nucleus by treatment stimulators in RAW 264.7 and Jurkat cells were reduced by PL. Moreover, treatment of NF-κB inhibitor further inhibited production of inflammatory cytokines and proteins. These results suggest that PL can mitigate MOG-induced EAE symptoms and activation of macrophages and T cells by inhibiting NF-κB signaling. Therefore, PL could be useful for the treatment for MS.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jaesuk Yun
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Hoi Yeong Kim
- Department of Food Science and Technology Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Jeungpyeong-eup, Chungbuk 27909, Republic of Korea
| | - Kyung Tak Nam
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Hae Deun Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Min Gi Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jeong Soon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Young Min Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| |
Collapse
|
11
|
Kaustio M, Haapaniemi E, Göös H, Hautala T, Park G, Syrjänen J, Einarsdottir E, Sahu B, Kilpinen S, Rounioja S, Fogarty CL, Glumoff V, Kulmala P, Katayama S, Tamene F, Trotta L, Morgunova E, Krjutškov K, Nurmi K, Eklund K, Lagerstedt A, Helminen M, Martelius T, Mustjoki S, Taipale J, Saarela J, Kere J, Varjosalo M, Seppänen M. Damaging heterozygous mutations in NFKB1 lead to diverse immunologic phenotypes. J Allergy Clin Immunol 2017; 140:782-796. [PMID: 28115215 DOI: 10.1016/j.jaci.2016.10.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/02/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The nuclear factor κ light-chain enhancer of activated B cells (NF-κB) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-κB pathway genes cause immunodeficiency. OBJECTIVE We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. METHODS We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. RESULTS In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behçet disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. CONCLUSION Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway.
Collapse
Affiliation(s)
- Meri Kaustio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Emma Haapaniemi
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Helka Göös
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Timo Hautala
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Giljun Park
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Jaana Syrjänen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Research Programs Unit, Genome-scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Sanna Kilpinen
- Department of Internal Medicine, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Samuli Rounioja
- Fimlab Laboratories, Tampere University Hospital, Tampere, Finland; Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Christopher L Fogarty
- Folkhälsan Institute of Genetics, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Petri Kulmala
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO) and MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Fitsum Tamene
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Luca Trotta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ekaterina Morgunova
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Competence Centre on Health Technologies, Tartu, Estonia
| | - Katariina Nurmi
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anssi Lagerstedt
- Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Merja Helminen
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Timi Martelius
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Jussi Taipale
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Janna Saarela
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
PAFR activation of NF-κB p65 or p105 precursor dictates pro- and anti-inflammatory responses during TLR activation in murine macrophages. Sci Rep 2016; 6:32092. [PMID: 27554194 PMCID: PMC4995467 DOI: 10.1038/srep32092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022] Open
Abstract
Platelet-activating factor receptor (PAFR) is a G protein-coupled receptor (GPCR) implicated in many diseases. Toll-like receptors (TLRs) play a critical role in shaping innate and adaptive immune responses. In this study, we investigated whether PAFR signaling changes the macrophages responsiveness to agonists of TLR2 (Pam3Cys), TLR4 (LPS), and TLR3 agonist Poly(I:C). Exogenous PAF inhibited the production of pro-inflammatory cytokines (IL-12p40, IL-6, and TNF-α) and increased anti-inflammatory IL-10 in macrophages challenged with Pam3Cys and LPS, but not with Poly (I:C). PAF did not affect mRNA expression of MyD88, suggesting that PAF acts downstream the adaptor. PAF inhibited LPS-induced phosphorylation of NF-κB p65 and increased NF-κB p105 phosphorylation, which is processed in the proteasome to generate p50 subunit. The PAF potentiation of IL-10 production was dependent on proteasome processing but independent of NF-κB transactivation domain. Inhibition of p50 abolished the PAF-induced IL-10 production. These findings indicate that the impaired transcriptional activity of the p65 subunit and the enhanced p105 phosphorylation induced by PAF are responsible for down regulation of pro-inflammatory cytokines and up regulation of IL-10, respectively, in LPS-challenged macrophages. Together, our data unveil a heretofore unrecognized role for PAFR in modulating activation of NF-κB in macrophages.
Collapse
|
13
|
Schipp C, Nabhani S, Bienemann K, Simanovsky N, Kfir-Erenfeld S, Assayag-Asherie N, Oommen PT, Revel-Vilk S, Hönscheid A, Gombert M, Ginzel S, Schäfer D, Laws HJ, Yefenof E, Fleckenstein B, Borkhardt A, Stepensky P, Fischer U. Specific antibody deficiency and autoinflammatory disease extend the clinical and immunological spectrum of heterozygous NFKB1 loss-of-function mutations in humans. Haematologica 2016; 101:e392-e396. [PMID: 27365489 DOI: 10.3324/haematol.2016.145136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Cyrill Schipp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Schafiq Nabhani
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kirsten Bienemann
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Natalia Simanovsky
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Shlomit Kfir-Erenfeld
- The Lautenberg Research Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Prasad T Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Shoshana Revel-Vilk
- Pediatric Hematology Oncology and Bone Marrow Transplantation Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Andrea Hönscheid
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Gombert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sebastian Ginzel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Daniel Schäfer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Jürgen Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eitan Yefenof
- The Lautenberg Research Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Bernhard Fleckenstein
- Department of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Polina Stepensky
- Pediatric Hematology Oncology and Bone Marrow Transplantation Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
14
|
Cartwright T, Perkins ND, L Wilson C. NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 2016; 283:1812-22. [PMID: 26663363 DOI: 10.1111/febs.13627] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Abstract
The pleiotropic consequences of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) pathway activation result from the combinatorial effects of the five subunits that form the homo- and heterodimeric NF-κB complexes. Although biochemical and gene knockout studies have demonstrated overlapping and distinct functions for these proteins, much is still not known about the mechanisms determining context-dependent functions, the formation of different dimer complexes and transcriptional control in response to diverse stimuli. Here we discuss recent results that reveal that the nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) (p105/p50) subunit is an important regulator of NF-κB activity in vivo. These effects are not restricted to being a dimer partner for other NF-κB subunits. Rather p50 homodimers have a critical role as suppressors of the NF-κB response, while the p105 precursor has a variety of NF-κB-independent functions. The importance of Nfkb1 function can be seen in mouse models, where Nfkb1(-/-) mice display increased inflammation and susceptibility to certain forms of DNA damage, leading to cancer, and a rapid ageing phenotype. In humans, low expression of Kip1 ubiquitination-promoting complex 1 (KPC1), a ubiquitin ligase required for p105 to p50 processing, was shown to correlate with a reduction in p50 and glioblastoma incidence. Therefore, while the majority of research in this field has focused on the upstream signalling pathways leading to NF-κB activation or the function of other NF-κB subunits, such as RelA (p65), these data demonstrate a critical role for NFKB1, potentially revealing new strategies for targeting this pathway in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Tyrell Cartwright
- Fibrosis Laboratory, Institute of Cellular Medicine, Newcastle University, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, UK
| | - Caroline L Wilson
- Fibrosis Laboratory, Institute of Cellular Medicine, Newcastle University, UK
| |
Collapse
|
15
|
Interactions between Myc and Mediators of Inflammation in Chronic Liver Diseases. Mediators Inflamm 2015; 2015:276850. [PMID: 26508814 PMCID: PMC4609837 DOI: 10.1155/2015/276850] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023] Open
Abstract
Most chronic liver diseases (CLDs) are characterized by inflammatory processes with aberrant expressions of various pro- and anti-inflammatory mediators in the liver. These mediators are the driving force of many inflammatory liver disorders, which often result in fibrosis, cirrhosis, and liver tumorigenesis. c-Myc is involved in many cellular events such as cell growth, proliferation, and differentiation. c-Myc upregulates IL-8, IL-10, TNF-α, and TGF-β, while IL-1, IL-2, IL-4, TNF-α, and TGF-β promote c-Myc expression. Their interactions play a central role in fibrosis, cirrhosis, and liver cancer. Molecular interference of their interactions offers possible therapeutic potential for CLDs. In this review, current knowledge of the molecular interactions between c-Myc and various well known inflammatory mediators is discussed.
Collapse
|
16
|
Oh SY, Mead PJ, Sharma BS, Quinton VM, Boermans HJ, Smith TK, Swamy HVLN, Karrow NA. Effect of Penicillium mycotoxins on the cytokine gene expression, reactive oxygen species production, and phagocytosis of bovine macrophage (BoMacs) function. Toxicol In Vitro 2015; 30:446-53. [PMID: 26394380 DOI: 10.1016/j.tiv.2015.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/07/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023]
Abstract
Bovine macrophages (BoMacs) were exposed to the following Penicillium mycotoxins (PM): citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA). PM exposure at the concentration that inhibits proliferation by 25% (IC25) differentially for 24h altered the gene expression of various cytokines. OTA significantly induced IL-1α expression (p<0.05), while the expression of IL-6 was suppressed (p<0.01). MPA significantly induced the expression of IL-1α (p<0.05) and reduced the expression of IL-12α (p<0.01) and IL-10 (p<0.01). PAT significantly suppressed the expression of IL-23 (p<0.01), IL-10 (p<0.05) and TGF-β (p<0.05). Some PMs also affected reactive oxygen species (ROS) and phagocytosis of Mycobacterium avium ssp. Paratuberculosis (MAP) at higher concentrations. PAT and PA for example, significantly decreased the percent phagocytosis of MAP at 5.0 (p<0.01) and 15.6 μM (p<0.01), respectively, but only PA significantly suppressed PAM-3-stimulated ROS production at 62.5 (p<0.05) and 250.0 μM (p<0.01). OTA significantly increased the percent phagocytosis of MAP at 6.3 (p<0.05) and 12.5 μM (p<0.01). These findings suggest that exposure to sub-lethal concentrations of PMs can affect macrophage function, which could affect immunoregulation and innate disease resistance to pathogens.
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Philip J Mead
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bhawani S Sharma
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - V Margaret Quinton
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Herman J Boermans
- Department of Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Trevor K Smith
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - H V L N Swamy
- Devenish Nutrition Ltd, Bengaluru, Karnataka State 560024, India
| | - Niel A Karrow
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
17
|
Ren H, Ferguson BJ, Maluquer de Motes C, Sumner RP, Harman LER, Smith GL. Enhancement of CD8(+) T-cell memory by removal of a vaccinia virus nuclear factor-κB inhibitor. Immunology 2015; 145:34-49. [PMID: 25382035 PMCID: PMC4405322 DOI: 10.1111/imm.12422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022] Open
Abstract
Factors influencing T-cell responses are important for vaccine development but are incompletely understood. Here, vaccinia virus (VACV) protein N1 is shown to impair the development of both effector and memory CD8+ T cells and this correlates with its inhibition of nuclear factor-κB (NF-κB) activation. Infection with VACVs that either have the N1L gene deleted (vΔN1) or contain a I6E mutation (vN1.I6E) that abrogates its inhibition of NF-κB resulted in increased central and memory CD8+ T-cell populations, increased CD8+ T-cell cytotoxicity and lower virus titres after challenge. Furthermore, CD8+ memory T-cell function was increased following infection with vN1.I6E, with more interferon-γ production and greater protection against VACV infection following passive transfer to naive mice, compared with CD8+ T cells from mice infected with wild-type virus (vN1.WT). This demonstrates the importance of NF-κB activation within infected cells for long-term CD8+ T-cell memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to enhance CD8+ T-cell immunogenicity, while simultaneously reducing virulence to improve vaccine safety.
Collapse
Affiliation(s)
- Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
18
|
Tsui R, Kearns JD, Lynch C, Vu D, Ngo K, Basak S, Ghosh G, Hoffmann A. IκBβ enhances the generation of the low-affinity NFκB/RelA homodimer. Nat Commun 2015; 6:7068. [PMID: 25946967 PMCID: PMC4425231 DOI: 10.1038/ncomms8068] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/27/2015] [Indexed: 01/21/2023] Open
Abstract
The NFκB family of dimeric transcription factors regulate inflammatory and immune responses. While the dynamic control of NFκB dimer activity via the IκB-NFκB signalling module is well understood, there is little information on how specific dimer repertoires are generated from Rel family polypeptides. Here we report the iterative construction-guided by in vitro and in vivo experimentation-of a mathematical model of the Rel-NFκB generation module. Our study reveals that IκBβ has essential functions within the Rel-NFκB generation module, specifically for the RelA:RelA homodimer, which controls a subset of NFκB target genes. Our findings revise the current dogma of the three classical, functionally related IκB proteins by distinguishing between a positive 'licensing' factor (IκBβ) that contributes to determining the available NFκB dimer repertoire in a cell's steady state, and negative feedback regulators (IκBα and -ɛ) that determine the duration and dynamics of the cellular response to an inflammatory stimulus.
Collapse
Affiliation(s)
- Rachel Tsui
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Jeffrey D. Kearns
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Candace Lynch
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Don Vu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Kim Ngo
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Soumen Basak
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Alexander Hoffmann
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), and the Institute for Quantitative and Computational Biosciences (QCB), University of California, Los Angeles, CA 90095
| |
Collapse
|
19
|
|
20
|
Vella L, Markworth JF, Peake JM, Snow RJ, Cameron-Smith D, Russell AP. Ibuprofen supplementation and its effects on NF-κB activation in skeletal muscle following resistance exercise. Physiol Rep 2014; 2:2/10/e12172. [PMID: 25344476 PMCID: PMC4254097 DOI: 10.14814/phy2.12172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Resistance exercise triggers a subclinical inflammatory response that plays a pivotal role in skeletal muscle regeneration. Nuclear factor‐κB (NF‐κB) is a stress signalling transcription factor that regulates acute and chronic states of inflammation. The classical NF‐κB pathway regulates the early activation of post‐exercise inflammation; however there remains scope for this complex transcription factor to play a more detailed role in post‐exercise muscle recovery. Sixteen volunteers completed a bout of lower body resistance exercise with the ingestion of three 400 mg doses of ibuprofen or a placebo control. Muscle biopsy samples were obtained prior to exercise and at 0, 3 and 24 h post‐exercise and analysed for key markers of NF‐κB activity. Phosphorylated p65 protein expression and p65 inflammatory target genes were elevated immediately post‐exercise independent of the two treatments. These changes did not translate to an increase in p65 DNA binding activity. NF‐κB p50 protein expression and NF‐κB p50 binding activity were lower than pre‐exercise at 0 and 3 h post‐exercise, but were elevated at 24 h post‐exercise. These findings provide novel evidence that two distinct NF‐κB pathways are active in skeletal muscle after resistance exercise. The initial wave of activity involving p65 resembles the classical pathway and is associated with the onset of an acute inflammatory response. The second wave of NF‐κB activity comprises the p50 subunit, which has been previously shown to resolve an acute inflammatory program. The current study showed no effect of the ibuprofen treatment on markers of the NF‐κB pathway, however examination of the within group effects of the exercise protocol suggests that this pathway warrants further research. The current study aimed to explore the regulation of the NF‐κB pathway following an acute bout of resistance exercise. Findings demonstrated two distinct phases of NF‐κB activity: an initial wave of activity comprising the p65 subunit, and a delayed second wave involving the p50 subunit.
Collapse
Affiliation(s)
- Luke Vella
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Vic., Australia
| | | | - Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Rod J Snow
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Vic., Australia
| | | | - Aaron P Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Vic., Australia
| |
Collapse
|
21
|
Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, Bonini MG, Mason RP, Oh U, Block ML. Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia 2014; 63:423-40. [PMID: 25331559 DOI: 10.1002/glia.22762] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
Redox-signaling is implicated in deleterious microglial activation underlying CNS disease, but how ROS program aberrant microglial function is unknown. Here, the oxidation of NF-κB p50 to a free radical intermediate is identified as a marker of dysfunctional M1 (pro-inflammatory) polarization in microglia. Microglia exposed to steady fluxes of H2 O2 showed altered NF-κB p50 protein-protein interactions, decreased NF-κB p50 DNA binding, and augmented late-stage TNFα expression, indicating that H2 O2 impairs NF-κB p50 function and prolongs amplified M1 activation. NF-κB p50(-/-) mice and cultures exhibited a disrupted M2 (alternative) response and impaired resolution of the M1 response. Persistent neuroinflammation continued 1 week after LPS (1 mg/kg, IP) administration in the NF-κB p50(-/-) mice. However, peripheral inflammation had already resolved in both strains of mice. Treatment with the spin-trap DMPO mildly reduced LPS-induced 22 h TNFα in the brain in NF-κB p50(+/+) mice. Interestingly, DMPO failed to reduce and strongly augmented brain TNFα production in NF-κB p50(-/-) mice, implicating a fundamental role for NF-κB p50 in the regulation of chronic neuroinflammation by free radicals. These data identify NF-κB p50 as a key redox-signaling mechanism regulating the M1/M2 balance in microglia, where loss of function leads to a CNS-specific vulnerability to chronic inflammation.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jacque E, Schweighoffer E, Visekruna A, Papoutsopoulou S, Janzen J, Zillwood R, Tarlinton DM, Tybulewicz VLJ, Ley SC. IKK-induced NF-κB1 p105 proteolysis is critical for B cell antibody responses to T cell-dependent antigen. ACTA ACUST UNITED AC 2014; 211:2085-101. [PMID: 25225457 PMCID: PMC4172221 DOI: 10.1084/jem.20132019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Jacque et al. investigate the functions of NF-κB1 p105 and its associated NF-κB–binding partners in B cells, using a mutant mouse strain that carries a form of the NF-κB1 precursor that is resistant to IKK-induced proteolysis. They identify a critical B cell–intrinsic role for this IKK signaling pathway in the antigen-induced survival and differentiation of follicular mature B cells. The importance of IκB kinase (IKK)–induced proteolysis of NF-κB1 p105 in B cells was investigated using Nfkb1SSAA/SSAA mice, in which this NF-κB signaling pathway is blocked. Nfkb1SSAA mutation had no effect on the development and homeostasis of follicular mature (FM) B cells. However, analysis of mixed bone marrow chimeras revealed that Nfkb1SSAA/SSAA FM B cells were completely unable to mediate T cell–dependent antibody responses. Nfkb1SSAA mutation decreased B cell antigen receptor (BCR) activation of NF-κB in FM B cells, which selectively blocked BCR stimulation of cell survival and antigen-induced differentiation into plasmablasts and germinal center B cells due to reduced expression of Bcl-2 family proteins and IRF4, respectively. In contrast, the antigen-presenting function of FM B cells and their BCR-induced migration to the follicle T cell zone border, as well as their growth and proliferation after BCR stimulation, were not affected. All of the inhibitory effects of Nfkb1SSAA mutation on B cell functions were rescued by normalizing NF-κB activation genetically. Our study identifies critical B cell-intrinsic functions for IKK-induced NF-κB1 p105 proteolysis in the antigen-induced survival and differentiation of FM B cells, which are essential for T-dependent antibody responses.
Collapse
Affiliation(s)
- Emilie Jacque
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, England, UK
| | - Edina Schweighoffer
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, England, UK
| | - Alexander Visekruna
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, England, UK
| | - Stamatia Papoutsopoulou
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, England, UK
| | - Julia Janzen
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, England, UK
| | - Rachel Zillwood
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, England, UK
| | - David M Tarlinton
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria 3052, Australia
| | - Victor L J Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, England, UK
| | - Steven C Ley
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, England, UK
| |
Collapse
|
23
|
|
24
|
Burkitt MD, Williams JM, Duckworth CA, O'Hara A, Hanedi A, Varro A, Caamaño JH, Pritchard DM. Signaling mediated by the NF-κB sub-units NF-κB1, NF-κB2 and c-Rel differentially regulate Helicobacter felis-induced gastric carcinogenesis in C57BL/6 mice. Oncogene 2013; 32:5563-73. [PMID: 23975431 PMCID: PMC3898319 DOI: 10.1038/onc.2013.334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/03/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
Abstract
The classical nuclear factor-kappaB (NF-κB) signaling pathway has been shown to be important in a number of models of inflammation-associated cancer. In a mouse model of Helicobacter-induced gastric cancer, impairment of classical NF-κB signaling in the gastric epithelium led to the development of increased preneoplastic pathology, however the role of specific NF-κB proteins in Helicobacter-associated gastric cancer development remains poorly understood. To investigate this C57BL/6, Nfkb1−/−, Nfkb2−/− and c-Rel−/− mice were infected with Helicobacter felis for 6 weeks or 12 months. Bacterial colonization, gastric atrophy and preneoplastic changes were assessed histologically and cytokine expression was assessed by qPCR. Nfkb1−/− mice developed spontaneous gastric atrophy when maintained for 12 months in conventional animal house conditions. They also developed more pronounced gastric atrophy after short-term H. felis colonization with a similar extent of preneoplasia to wild-type (WT) mice after 12 months. c-Rel−/− mice developed a similar degree of gastric atrophy to WT mice; 3 of 6 of these animals also developed lymphoproliferative lesions after 12 months of infection. Nfkb2−/− mice developed minimal gastric epithelial pathology even 12 months after H. felis infection. These findings demonstrate that NF-κB1- and NF-κB2-mediated signaling pathways differentially regulate the epithelial consequences of H. felis infection in the stomach, while c-Rel-mediated signaling also appears to modulate the risk of lymphomagenesis in gastric mucosa-associated lymphoid tissue.
Collapse
Affiliation(s)
- M D Burkitt
- Department of Gastroenterology, The Henry Wellcome Laboratories, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - J M Williams
- Department of Gastroenterology, The Henry Wellcome Laboratories, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - C A Duckworth
- Department of Gastroenterology, The Henry Wellcome Laboratories, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - A O'Hara
- Department of Gastroenterology, The Henry Wellcome Laboratories, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - A Hanedi
- Department of Gastroenterology, The Henry Wellcome Laboratories, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - A Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - J H Caamaño
- IBR-School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - D M Pritchard
- Department of Gastroenterology, The Henry Wellcome Laboratories, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
25
|
Johnson DJ, Ohashi PS. Molecular programming of steady-state dendritic cells: impact on autoimmunity and tumor immune surveillance. Ann N Y Acad Sci 2013; 1284:46-51. [PMID: 23651192 DOI: 10.1111/nyas.12114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dendritic cells are master regulators of immunity. Immature dendritic cells are essential for maintaining self-tolerance, while mature dendritic cells initiate a variety of specialized immune responses. Dendritic cell quiescence is often viewed as a default state that requires exogenous stimuli to induce maturation. However, recent studies have identified dendritic cell quiescence factors that actively program dendritic cells to an immature state. In the absence of these factors, dendritic cells spontaneously become immunogenic and can induce autoimmune responses. Herein we discuss two such factors, NF-κB1 and A20, that preserve dendritic cell immaturity through their regulation of NF-κB signaling. Loss of either of these factors increases dendritic cell immunogenicity, suggesting that they may be important targets for enhancing dendritic cell-based cancer immunotherapies. Alternatively, defects in molecules critical for maintaining steady-state DCs may provide novel biomarkers that identify patients who have enhanced natural antitumor immunity or that correlate with better responses to various immunotherapies.
Collapse
Affiliation(s)
- Dylan J Johnson
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Goris A, Pauwels I, Dubois B. Progress in multiple sclerosis genetics. Curr Genomics 2013; 13:646-63. [PMID: 23730204 PMCID: PMC3492804 DOI: 10.2174/138920212803759695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 01/06/2023] Open
Abstract
A genetic component in the susceptibility to multiple sclerosis (MS) has long been known, and the first and major genetic risk factor, the HLA region, was identified in the 1970’s. However, only with the advent of genome-wide association studies in the past five years did the list of risk factors for MS grow from 1 to over 50. In this review, we summarize the search for MS risk genes and the latest results. Comparison with data from other autoimmune and neurological diseases and from animal models indicates parallels and differences between diseases. We discuss how these translate into an improved understanding of disease mechanisms, and address current challenges such as genotype-phenotype correlations, functional mechanisms of risk variants and the missing heritability.
Collapse
Affiliation(s)
- An Goris
- Laboratory for Neuroimmunology, Section of Experimental Neurology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
27
|
Abstract
At mucosal surfaces, phagocytes such as macrophages coexist with microbial communities; highly controlled regulation of these interactions is essential for immune homeostasis. Pattern-recognition receptors (PRRs) are critical in recognizing and responding to microbial products, and they are subject to negative regulation through various mechanisms, including downregulation of PRR-activating components or induction of inhibitors. Insights into these regulatory mechanisms have been gained through human genetic disease-association studies, in vivo mouse studies utilizing disease models or targeted gene perturbations, and in vitro and ex vivo human cellular studies examining phagocytic cell functions. Although mouse models provide an important approach to study macrophage regulation, human and mouse macrophages exhibit differences, which must be considered when extrapolating mouse findings to human physiology. This review discusses inhibitory regulation of PRR-induced macrophage functions and the consequences of dysregulation of these functions and highlights mechanisms that have a role in intestinal macrophages and in human macrophage studies.
Collapse
Affiliation(s)
- M Hedl
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
28
|
Liang M, Xu X, Gong Y, Tang Y, Lin L. Risk association between the NF-κB1 -94ins/delATTG promoter polymorphism and inflammatory bowel diseases: a meta-analysis. Dig Dis Sci 2012; 57:2304-9. [PMID: 22828805 DOI: 10.1007/s10620-012-2164-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 04/03/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND Extensive investigation of the NF-κB1 -94ins/delATTG promoter polymorphism for risk association with ulcerative colitis (UC) and Crohn's disease (CD) risk has yielded conflicting results. AIMS The objective of this meta-analysis was to evaluate the risk association between the NF-κB1 -94ins/delATTG promoter polymorphism and UC and CD. METHODS All eligible case-control studies of the association of NF-κB1 -94ins/delATTG promoter polymorphism with UC and CD were identified in the Pubmed and Embase databases. From these data, odds ratios (OR) with 95 % confidence intervals (CI) were calculated. Meta-analysis was performed for alleles (D vs. W) and genotypes (DD + WD vs. WW, DD vs. WW + WD, DD vs. WW, WD vs. WW) in a fixed/random effects model. RESULTS Nine case-control studies that included 4,447 cases (2,631 UC and 1,816 CD) and 2,195 controls were identified. Results indicated increased risk association of D allele carriers with UC (D vs. W: OR = 1.08, 95 % CI = 1.01-1.17, P = 0.03; DD vs. WW + WD: OR = 1.16, 95 % CI = 1.01-1.32, P = 0.04 and DD vs. WW: OR = 1.20, 95 % CI = 1.03-1.39, P = 0.02). No risk association was identified with CD. CONCLUSION This meta-analysis indicated that the NF-κB1 -94ins/delATTG promoter polymorphism is a risk factor for UC but not CD.
Collapse
Affiliation(s)
- Meilan Liang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
29
|
Reinhard K, Huber M, Lohoff M, Visekruna A. The role of NF-κB activation during protection against Leishmania infection. Int J Med Microbiol 2012; 302:230-5. [PMID: 22901377 DOI: 10.1016/j.ijmm.2012.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Members of the nuclear factor-κB (NF-κB) family of transcription factors regulate a variety of molecules involved in host defense against pathogens. A prominent role of NF-κB in innate and adoptive immunity is based on the regulation of inducible transcription of various genes whose products are essential components of the immune response such as cytokines, chemokines, and adhesion molecules. Since the discovery of the five members of the NF-κB transcription factor family, RelA, c-Rel, RelB, p50 and p52, considerable progress has been made toward better understanding how the different NF-κB homo- and heterodimers regulate such distinct subsets of target genes. All of the NF-κB molecules are activated by various infectious stimuli; however, there are still open questions related to the selective functions of individual NF-κB family members during a coordinated immune response to infection. Diverse parasites such as Toxoplasma gondii, Leishmania donovani, Leishmania major, and Trichuris muris have been reported to activate NF-κB signaling cascades, and a number of distinct parasite-derived molecules may actively interfere with the pathways that lead to NF-κB activation. In this review, we provide an overview on the role of NF-κB activation in leishmaniasis and discuss how individual NF-κB family members might perform their distinct and non-overlapping functions in the regulation of protective immunity to Leishmania infection.
Collapse
Affiliation(s)
- Katharina Reinhard
- Institute for Medical Microbiology and Hygiene, University of Marburg, Hans Meerwein Straße 2, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
30
|
Sun Y, Duan Y, Eisenstein AS, Hu W, Quintana A, Lam WK, Wang Y, Wu Z, Ravid K, Huang P. A novel mechanism of control of NFκB activation and inflammation involving A2B adenosine receptors. J Cell Sci 2012; 125:4507-17. [PMID: 22767505 DOI: 10.1242/jcs.105023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor kappa B (NFκB) pathway controls a variety of processes, including inflammation, and thus, the regulation of NFκB has been a continued focus of study. Here, we report a newly identified regulation of this pathway, involving direct binding of the transcription factor NFκB1 (the p105 subunit of NFκB) to the C-terminus of the A(2B) adenosine receptor (A(2B)AR), independent of ligand activation. Intriguingly, binding of A(2B)AR to specific sites on p105 prevents polyubiquitylation and degradation of p105 protein. Ectopic expression of the A(2B)AR increases p105 levels and inhibits NFκB activation, whereas p105 protein levels are reduced in cells from A(2B)AR-knockout mice. In accordance with the known regulation of expression of anti- and pro-inflammatory cytokines by p105, A(2B)AR-null mice generate less interleukin (IL)-10, and more IL-12 and tumor necrosis factor (TNF-α). Taken together, our results show that the A(2B)AR inhibits NFκB activation by physically interacting with p105, thereby blocking its polyubiquitylation and degradation. Our findings unveil a surprising function for the A(2B)AR, and provide a novel mechanistic insight into the control of the NFκB pathway and inflammation.
Collapse
Affiliation(s)
- Ying Sun
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Coordinate regulation of TPL-2 and NF-κB signaling in macrophages by NF-κB1 p105. Mol Cell Biol 2012; 32:3438-51. [PMID: 22733995 DOI: 10.1128/mcb.00564-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The role of IκB kinase (IKK)-induced proteolysis of NF-κB1 p105 in innate immune signaling was investigated using macrophages from Nfkb1(SSAA/SSAA) mice, in which the IKK target serines on p105 are mutated to alanines. We found that the IKK/p105 signaling pathway was essential for TPL-2 kinase activation of extracellular signal-regulated kinase (ERK) mitogen-activate protein (MAP) kinase and modulated the activation of NF-κB. The Nfkb1(SSAA) mutation prevented the agonist-induced release of TPL-2 from its inhibitor p105, which blocked activation of ERK by lipopolysaccharide (LPS), tumor necrosis factor (TNF), CpG, tripalmitoyl-Cys-Ser-Lys (Pam(3)CSK), poly(I · C), flagellin, and R848. The Nfkb1(SSAA) mutation also prevented LPS-induced processing of p105 to p50 and reduced p50 levels, in addition to decreasing the nuclear translocation of RelA and cRel. Reduced p50 in Nfkb1(SSAA/SSAA) macrophages significantly decreased LPS induction of the IκBζ-regulated Il6 and Csf2 genes. LPS upregulation of Il12a and Il12b mRNAs was also impaired although specific blockade of TPL-2 signaling increased expression of these genes at late time points. Activation of TPL-2/ERK signaling by IKK-induced p105 proteolysis, therefore, induced a negative feedback loop to downregulate NF-κB-dependent expression of the proinflammatory cytokine interleukin-12 (IL-12). Unexpectedly, TPL-2 promoted soluble TNF production independently of IKK-induced p105 phosphorylation and its ability to activate ERK, which has important implications for the development of anti-inflammatory drugs targeting TPL-2.
Collapse
|
32
|
Lim S, MacIntyre DA, Lee YS, Khanjani S, Terzidou V, Teoh TG, Bennett PR. Nuclear factor kappa B activation occurs in the amnion prior to labour onset and modulates the expression of numerous labour associated genes. PLoS One 2012; 7:e34707. [PMID: 22485186 PMCID: PMC3317641 DOI: 10.1371/journal.pone.0034707] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Prior to the onset of human labour there is an increase in the synthesis of prostaglandins, cytokines and chemokines in the fetal membranes, particular the amnion. This is associated with activation of the transcription factor nuclear factor kappa B (NFκB). In this study we characterised the level of NFκB activity in amnion epithelial cells as a measure of amnion activation in samples collected from women undergoing caesarean section at 39 weeks gestation prior to the onset of labour. METHODOLOGY/PRINCIPAL FINDINGS We found that a proportion of women exhibit low or moderate NFκB activity while other women exhibit high levels of NFκB activity (n = 12). This activation process does not appear to involve classical pathways of NFκB activation but rather is correlated with an increase in nuclear p65-Rel-B dimers. To identify the full range of genes upregulated in association with amnion activation, microarray analysis was performed on carefully characterised non-activated amnion (n = 3) samples and compared to activated samples (n = 3). A total of 919 genes were upregulated in response to amnion activation including numerous inflammatory genes such cyclooxygenase-2 (COX-2, 44-fold), interleukin 8 (IL-8, 6-fold), IL-1 receptor accessory protein (IL-1RAP, 4.5-fold), thrombospondin 1 (TSP-1, 3-fold) and, unexpectedly, oxytocin receptor (OTR, 24-fold). Ingenuity Pathway Analysis of the microarray data reveal the two main gene networks activated concurrently with amnion activation are i) cell death, cancer and morphology and ii) cell cycle, embryonic development and tissue development. CONCLUSIONS/SIGNIFICANCE Our results indicate that assessment of amnion NFκB activation is critical for accurate sample classification and subsequent interpretation of data. Collectively, our data suggest amnion activation is largely an inflammatory event that occurs in the amnion epithelial layer as a prelude to the onset of labour.
Collapse
Affiliation(s)
- Sheri Lim
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, London, United Kingdom
| | - David A. MacIntyre
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, London, United Kingdom
| | - Yun S. Lee
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, London, United Kingdom
| | - Shirin Khanjani
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, London, United Kingdom
| | - Vasso Terzidou
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, London, United Kingdom
| | - T. G. Teoh
- Department of Obstetrics and Gynaecology, St. Mary's Hospital, London, United Kingdom
| | - Phillip R. Bennett
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Gao M, Wang CH, Sima X, Han XM. NFKB1−94 Insertion/Deletion ATTG Polymorphism Contributes to Risk of Systemic Lupus Erythematosus. DNA Cell Biol 2012; 31:611-5. [PMID: 22013908 DOI: 10.1089/dna.2011.1389] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ming Gao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chun-Hui Wang
- Department of Neurosurgery, Jilin Province Hospital, Changchun, Jilin, People's Republic of China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xue-Mei Han
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
34
|
Abstract
The signaling module that specifies nuclear factor-κΒ (NF-κB) activation is a three-component system: NF-κB, inhibitor of NF-κΒ (IκΒ), and IκΒ kinase complex (IKK). IKK receives upstream signals from the surface or inside the cell and converts itself into a catalytically active form, leading to the destruction of IκB in the inhibited IκB:NF-κB complex, leaving active NF-κB free to regulate target genes. Hidden within this simple module are family members that all can undergo various modifications resulting in expansion of functional spectrum. Three-dimensional structures representing all three components are now available. These structures have allowed us to interpret cellular observations in molecular terms and at the same time helped us to bring forward new concepts focused towards understanding the specificity in the NF-κB activation pathway.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92903, USA.
| | | | | | | |
Collapse
|
35
|
Bosco A, Ehteshami S, Panyala S, Martinez FD. Interferon regulatory factor 7 is a major hub connecting interferon-mediated responses in virus-induced asthma exacerbations in vivo. J Allergy Clin Immunol 2011; 129:88-94. [PMID: 22112518 DOI: 10.1016/j.jaci.2011.10.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/25/2011] [Accepted: 10/19/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Exacerbations are responsible for a substantial burden of morbidity and health care use in children with asthma. Most asthma exacerbations are triggered by viral infections; however, the underlying mechanisms have not been systematically investigated. OBJECTIVE The objective of this study was to elucidate the molecular networks that underpin virus-induced exacerbations in asthmatic children in vivo. METHODS We followed exacerbation-prone asthmatic children prospectively and profiled global patterns of gene expression in nasal lavage samples obtained during an acute, moderate, picornavirus-induced exacerbation and 7 to 14 days later. Coexpression network analysis and prior knowledge was used to reconstruct the underlying gene networks. RESULTS The data showed that an intricate modular program consisting of more than 1000 genes was upregulated during acute exacerbations in comparison with 7 to 14 days later. The modules were enriched for coherent cellular processes, including interferon-induced antiviral responses, innate pathogen sensing, response to wounding, small nucleolar RNAs, and the ubiquitin-proteosome and lysosome degradation pathways. Reconstruction of the wiring diagram of the modules revealed the presence of hyperconnected hub nodes, most notably interferon regulatory factor 7, which was identified as a major hub linking interferon-mediated antiviral responses. CONCLUSIONS This study provides an integrated view of the inflammatory networks that are upregulated during virus-induced asthma exacerbations in vivo. A series of innate signaling hubs were identified that could be novel therapeutic targets for asthma attacks.
Collapse
Affiliation(s)
- Anthony Bosco
- Arizona Respiratory Center, University of Arizona, Tucson, Ariz, USA.
| | | | | | | |
Collapse
|
36
|
The E3 ligase c-Cbl regulates dendritic cell activation. EMBO Rep 2011; 12:971-9. [PMID: 21799517 DOI: 10.1038/embor.2011.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 12/15/2022] Open
Abstract
The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl--known for its roles in regulating lymphocyte signalling--as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50.
Collapse
|
37
|
Dev A, Iyer S, Razani B, Cheng G. NF-κB and innate immunity. Curr Top Microbiol Immunol 2011; 349:115-43. [PMID: 20848362 DOI: 10.1007/82_2010_102] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Members of the NF-κB transcription factor family play a critical role in the development of innate immunity. Upon recognition of pathogen infections or tissue damage, the NF-κB pathway is strongly activated by cellular pattern recognition receptors, including Toll-like receptors and multiple cytosolic receptors such as RIG-I-like helicases and NOD family proteins. NF-κB is required not only for the expression, but also for subsequent signal transduction of numerous downstream cytokines. NF-κB-responsive genes affect a diverse array of cellular processes including apoptosis and cell survival, and often directly control the course of a pathogen infection. In this review, we will examine signaling pathways leading to NF-κB activation during the innate immune response and mechanisms of pathogen-modulation of these pathways; the specifics of NF-κB-dependent gene programs, and the physiological consequences for the immune system caused by the absence of individual NF-κB subunits.
Collapse
Affiliation(s)
- Anurupa Dev
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, 615 Charles Young Dr S., 210A BSRB, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
38
|
NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A 2011; 108:9184-9. [PMID: 21576471 DOI: 10.1073/pnas.1105398108] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNA miR-146a has been implicated as a negative feedback regulator of NF-κB activation. Knockout of the miR-146a gene in C57BL/6 mice leads to histologically and immunophenotypically defined myeloid sarcomas and some lymphomas. The sarcomas are transplantable to immunologically compromised hosts, showing that they are true malignancies. The animals also exhibit chronic myeloproliferation in their bone marrow. Spleen and marrow cells show increased transcription of NF-κB-regulated genes and tumors have higher nuclear p65. Genetic ablation of NF-κB p50 suppresses the myeloproliferation, showing that dysregulation of NF-κB is responsible for the myeloproliferative disease.
Collapse
|
39
|
Zou YF, Wang F, Feng XL, Tao JH, Zhu JM, Pan FM, Su H. Association of NFKB1 -94ins/delATTG promoter polymorphism with susceptibility to autoimmune and inflammatory diseases: a meta-analysis. ACTA ACUST UNITED AC 2010; 77:9-17. [DOI: 10.1111/j.1399-0039.2010.01559.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Elsharkawy AM, Oakley F, Lin F, Packham G, Mann DA, Mann J. The NF-kappaB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J Hepatol 2010; 53:519-27. [PMID: 20579762 PMCID: PMC3098379 DOI: 10.1016/j.jhep.2010.03.025] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/09/2010] [Accepted: 03/21/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The pro-inflammatory functions of NF-kappaB must be tightly regulated to prevent inappropriate tissue damage and remodelling caused by activated inflammatory and wound-healing cells. The p50 subunit of NF-kappaB is emerging as an important repressor of immune and inflammatory responses, but by mechanisms that are poorly defined. This study aims to delineate p50 target genes in activated hepatic stellate cells and to outline mechanisms utilised in their repression. METHODS Hepatic stellate cells were isolated from nfkb1(p50)-deficient or Wt mice and gene expression compared using microarray. Target genes were verified by qRT-PCR and p50-mediated HDAC-1 recruitment to the target genes demonstrated using chromatin immunoprecipitation. RESULTS We identify p50 as transcriptional repressor of multiple pro-inflammatory genes including Ccl2, Cxcl10, Gm-csf, and Mmp-13. These genes are over-expressed in nfkb1(p50)-deficient mice suffering from chronic hepatitis and in fibrogenic/inflammatory hepatic stellate cells isolated from nfkb1(-/-) liver. We identify Mmp-13 as a bona-fide target gene for p50 and demonstrate that p50 is required for recruitment of the transcriptional repressor histone deacetylase (HDAC)-1 to kappaB sites in the Mmp-13 promoter. Chromatin immunoprecipitations identified binding of HDAC-1 to specific regulatory regions of the Ccl2, Cxcl10, Gm-csf genes that contain predicted kappaB binding motifs. Recruitment of HDAC-1 to these genes was not observed in nfkb1(-/-) cells suggesting a requirement for p50 in a manner similar to that described for Mmp-13. CONCLUSIONS Recruitment of HDAC-1 to inflammatory genes provides a widespread mechanism to explain the immunosuppressive properties of p50.
Collapse
Affiliation(s)
- Ahmed M. Elsharkawy
- Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Fiona Oakley
- Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Feng Lin
- Cancer Research UK Centre, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton, UK
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton, UK
| | - Derek A. Mann
- Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Jelena Mann
- Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
- Corresponding author. Address: Liver Group, Institute of Cellular Medicine, Medical School, Framlington Place, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK. Tel.: +44 191 222 5548; fax: +44 191 222 5455.
| |
Collapse
|
41
|
Huxford T, Hoffmann A, Ghosh G. Understanding the logic of IκB:NF-κB regulation in structural terms. Curr Top Microbiol Immunol 2010; 349:1-24. [PMID: 20845107 DOI: 10.1007/82_2010_99] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NF-κB is an inducible transcription factor that controls expression of diverse stress response genes. The entire mammalian NF-κB family is generated from a small cadre of five gene products that assemble with one another in various combinations to form active homo- and heterodimers. The ability of NF-κB to alter target gene expression is regulated at many levels. Chief among these regulatory mechanisms is the noncovalent association in the cell cytoplasm of NF-κB dimers with IκB inhibitor proteins. Removal of IκB leads to accumulation of active NF-κB within the cell nucleus where it binds to specific DNA sequences contained within the promoter regions of target genes and initiates recruitment of general transcription factors and assembly of the basal transcription machinery. Here we provide a detailed description of these fundamental NF-κB regulatory events using as a basis macromolecular structures and experimental data derived from structure-based biochemistry.
Collapse
Affiliation(s)
- Tom Huxford
- Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | | | | |
Collapse
|
42
|
Hoek KL, Carlesso G, Clark ES, Khan WN. Absence of mature peripheral B cell populations in mice with concomitant defects in B cell receptor and BAFF-R signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:5630-43. [PMID: 19843948 DOI: 10.4049/jimmunol.0901100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Generation of mature B lymphocytes from early (T1) and late transitional (T2) precursors requires cooperative signaling through BCR and B cell-activating factor receptor 3 (BR3). Recent studies have shown that BCR signaling positively regulates NF-kappaB2, suggesting BCR regulation of BR3 signaling. To investigate the significance of signal integration from BCR and BR3 in B cell development and function, we crossed Btk-deficient mice (btk(-/-)), which are developmentally blocked between the T2 and the mature follicular B cell stage as a result of a partial defect in BCR signaling, and A/WySnJ mice, which possess a mutant BR3 defective in propagating intracellular signals that results in a severely reduced peripheral B cell compartment, although all B cell subsets are present in relatively normal ratios. A/WySnJ x btk(-/-) mice display a B cell-autonomous defect, resulting in a developmental block at an earlier stage (T1) than either mutation alone, leading to the loss of mature splenic follicular and marginal zone B cells, as well as the loss of peritoneal B1 and B2 cell populations. The competence of the double mutant T1 B cells to respond to TLR4 and CD40 survival and activation signals is further attenuated compared with single mutations as evidenced by severely reduced humoral immune responses in vivo and proliferation in response to anti-IgM, LPS, and anti-CD40 stimulation in vitro. Thus, BCR and BR3 independently and in concert regulate the survival, differentiation, and function of all B cell populations at and beyond T1, earliest transitional stage.
Collapse
Affiliation(s)
- Kristen L Hoek
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
43
|
Yu Y, Wan Y, Huang C. The biological functions of NF-kappaB1 (p50) and its potential as an anti-cancer target. Curr Cancer Drug Targets 2009; 9:566-71. [PMID: 19519322 DOI: 10.2174/156800909788486759] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a key transcriptional factor family that consists of five members in mammalian cells, including NF-kappaB1 (p50), NF-kappaB2 (p52), RelA (p65), RelB and c-Rel. NF-kappaB is implicated in multiple physiological and pathological processes, including cell proliferation and differentiation, inflammatory and immune response, cell survival and apoptosis, cellular stress reactions and tumorigenesis. Recent studies by our group and others have highlighted the novel functions of the p50 protein. In this review, we will focus on the regulation and functions of NF-kappaB p50.
Collapse
Affiliation(s)
- Yonghui Yu
- Open Laboratory for Oversea Scientists, Center for Medical Research, Wuhan University, 115 Donghu Rd., Wuhan, Hubei 430071, China
| | | | | |
Collapse
|
44
|
Savinova OV, Hoffmann A, Ghosh G. The Nfkb1 and Nfkb2 proteins p105 and p100 function as the core of high-molecular-weight heterogeneous complexes. Mol Cell 2009; 34:591-602. [PMID: 19524538 DOI: 10.1016/j.molcel.2009.04.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/12/2009] [Accepted: 04/23/2009] [Indexed: 02/04/2023]
Abstract
Nfkb1 and Nfkb2 proteins p105 and p100 serve both as NF-kappaB precursors and inhibitors of NF-kappaB dimers. In a biochemical characterization of endogenous cytoplasmic and purified recombinant proteins, we found that p105 and p100 assemble into high-molecular-weight complexes that contribute to the regulation of all NF-kappaB isoforms. Unlike the classical inhibitors IkappaBalpha, -beta, and -epsilon, high-molecular-weight complexes of p105 and p100 proteins bind NF-kappaB subunits in two modes: through direct dimerization of Rel homology domain-containing NF-kappaB polypeptides and through interactions of the p105 and p100 ankyrin repeats with preformed NF-kappaB dimers, thereby mediating the bona fide IkappaB activities, IkappaBgamma and IkappaBdelta. Our biochemical evidence suggests an assembly pathway in which kinetic mechanisms control NF-kappaB dimer formation via processing and assembly of large complexes that contain IkappaB activities.
Collapse
Affiliation(s)
- Olga V Savinova
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
45
|
Chang M, Lee AJ, Fitzpatrick L, Zhang M, Sun SC. NF-kappa B1 p105 regulates T cell homeostasis and prevents chronic inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:3131-8. [PMID: 19234210 PMCID: PMC2739978 DOI: 10.4049/jimmunol.0803637] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transcription factor NF-kappaB is regulated by a family of inhibitors, IkappaBs, as well as the NF-kappaB1 and NF-kappaB2 precursor proteins, p105 and p100. Although the different NF-kappaB inhibitors can all inhibit NF-kappaB in vitro, their physiological functions are incompletely understood. In this study, we demonstrate that p105 plays an important role in the regulation of T cell homeostasis and prevention of chronic inflammation. Mice lacking p105, but expressing the mature NF-kappaB1 p50, spontaneously develop intestinal inflammation with features of human inflammatory bowel disease. This inflammatory disorder occurs under specific pathogen-free conditions and critically involves T cells. Consistently, the p105-deficient mice have reduced frequency of naive T cells and increased frequency of memory/effector T cells in the peripheral lymphoid organs. Although p105 is dispensable for the production of immunosuppressive regulatory T cells, p105 deficiency renders CD4 T cells more resistant to Treg-mediated inhibition. We further show that the loss of p105 results in hyperproduction of Th17 subset of inflammatory T cells. Together, these findings suggest a critical role for NF-kappaB1 p105 in the regulation of T cell homeostasis and differentiation and the control of chronic inflammation.
Collapse
Affiliation(s)
- Mikyoung Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030
| | - Andrew J. Lee
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Leo Fitzpatrick
- Departmemnt of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Minying Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030
| |
Collapse
|
46
|
Szamosi T, Lakatos PL, Szilvasi A, Lakatos L, Kovacs A, Molnar T, Altorjay I, Papp M, Szabo O, Satori A, Tulassay Z, Miheller P, Horvath HC, Papp J, Tordai A, Andrikovics H. The 3'UTR NFKBIA variant is associated with extensive colitis in Hungarian IBD patients. Dig Dis Sci 2009; 54:351-359. [PMID: 18716880 DOI: 10.1007/s10620-008-0351-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 05/15/2008] [Indexed: 12/09/2022]
Abstract
PURPOSE In previous studies the NFKBIA 3'UTR (untranslated region) AA genotype was associated with Crohn's disease (CD), while the NFKB1-94ins/delATTG mutation increased the risk for ulcerative colitis (UC). The aim of our study was to investigate these two polymorphisms and patients' response to medical therapy and/or disease phenotype in Hungarian inflammatory bowel disease (IBD) patients. METHODS NFKBIA 3'UTR- and NFKB1-94ins/delATTG polymorphisms were investigated in 415 unrelated IBD patients (CD: 266 patients, mean age 35.2 +/- 12.1 years, duration 8.7 +/- 7.5 years; UC patients: 149, mean age 44.4 +/- 15.4 years, duration 10.7 +/- 8.9 years) and 149 controls by PCR-restriction fragment length polymorphism (RFLP) analysis. Detailed clinical phenotypes were determined by reviewing the medical charts. RESULTS The NFKBIA 3'UTR and NFKB1-94ins/delATTG genotypes and allele frequencies were not significantly different among IBD and controls. In patients with UC, the 3'UTR GG genotype was associated with extensive colitis (55.3 vs. 29.4%, odds ratio 2.97, 95% confidence interval 1.45-6.08). The presence of variant alleles did not predict response to steroids, infliximab, or need for surgery. CONCLUSIONS The NFKBIA 3'UTR GG genotype was associated with an increased risk for extensive colitis in Hungarian patients. In contrast, variant alleles did not predict response to medical therapy or need for surgery.
Collapse
Affiliation(s)
- Tamas Szamosi
- 1st Department of Medicine, Semmelweis University, Koranyi st. 2/A, 1083, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sriskantharajah S, Belich MP, Papoutsopoulou S, Janzen J, Tybulewicz V, Seddon B, Ley SC. Proteolysis of NF-kappaB1 p105 is essential for T cell antigen receptor-induced proliferation. Nat Immunol 2009; 10:38-47. [PMID: 19060899 DOI: 10.1038/ni.1685] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 10/29/2008] [Indexed: 12/11/2022]
Abstract
To investigate the importance of proteolysis of NF-kappaB1 p105 induced by the kinase IKK in activation of the transcription factor NF-kappaB, we generated 'Nfkb1(SSAA/SSAA)' mice, in which the IKK-target serine residues of p105 were substituted with alanine. Nfkb1(SSAA/SSAA) mice had far fewer CD4+ regulatory and memory T cells because of cell-autonomous defects. These T cell subtypes require activation of NF-kappaB by the T cell antigen receptor for their generation, and the Nfkb1(SSAA) mutation resulted in less activation of NF-kappaB in CD4+ T cells and proliferation of CD4+ T cells after stimulation of the T cell antigen receptor. The Nfkb1(SSAA) mutation also blocked the ability of CD4+ T cells to provide help to wild-type B cells during a primary antibody response. IKK-induced p105 proteolysis is therefore essential for optimal T cell antigen receptor-induced activation of NF-kappaB and mature CD4+ T cell function.
Collapse
|
48
|
Al-Saad S, Al-Shibli K, Donnem T, Persson M, Bremnes RM, Busund LT. The prognostic impact of NF-kappaB p105, vimentin, E-cadherin and Par6 expression in epithelial and stromal compartment in non-small-cell lung cancer. Br J Cancer 2008; 99:1476-83. [PMID: 18854838 PMCID: PMC2579693 DOI: 10.1038/sj.bjc.6604713] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vimentin, nuclear factor-κB (NF-κB) p105, fascin, E-cadherin, TGF-β, Par6 and atypical PKC are molecular markers that play an important role in cell differentiation. Herein, we investigate their prognostic impact in primary non-small-cell carcinoma (NSCLC). Tumour tissue samples from 335 resected patients with stage I–IIIA were used. Tissue microarrays were constructed from duplicate cores of both neoplastic cells and stromal cells and were immunohistochemically evaluated. In univariate analyses, high tumour epithelial cell expressions of NF-κB p105 (P=0.02) and E-cadherin (P=0.03) were positive prognostic indicators for disease-specific survival (DSS), whereas high tumour epithelial cell expression of vimentin (P=0.001) was a negative prognostic indicator. High expression of NF-κB p105 (P=0.001) and Par6 (P=0.0001) in the stromal compartment correlated with a good prognosis. In multivariate analyses, the tumour epithelial cell expression of NF-κB p105 (P=0.0001) and vimentin (P=0.005) and the stromal cell expression of NF-κB p105 (P=0.007) and Par6 (P=0.0001) were independent prognostic factors for DSS. High expression of NF-κB p105 and low expression of vimentin in tumour epithelial cells are independent predictors of better survival in primary NSCLC. In stromal cells, high expressions of NF-κB p105 and Par6 are both favourable independent prognostic indicators.
Collapse
Affiliation(s)
- S Al-Saad
- Institute of Medical Biology, University of Tromso-Norway, Tromso, Norway.
| | | | | | | | | | | |
Collapse
|
49
|
van Keulen JK, Timmers L, van Kuijk LP, Retnam L, Hoefer IE, Pasterkamp G, Lim SK, de Kleijn DPV. The Nuclear Factor-kappa B p50 subunit is involved in flow-induced outward arterial remodeling. Atherosclerosis 2008; 202:424-30. [PMID: 18617174 DOI: 10.1016/j.atherosclerosis.2008.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/16/2008] [Accepted: 05/18/2008] [Indexed: 01/10/2023]
Abstract
AIMS Outward arterial remodeling is a structural enlargement of the artery that is associated with unstable inflammatory atherosclerotic lesions. Toll-like receptor (Tlr) activation is known as a key pathway in outward arterial remodeling. Tlr activation results in nuclear translocation of the transcription factor Nuclear Factor-kappa B (NF-kappaB) that controls the transcription of many inflammatory genes. The NF-kappaB subunit p50 is generally considered to be an inhibitory subunit of the NF-kappaB complex. We therefore hypothesize that NF-kappaB p50 inhibits outward arterial remodeling. METHODS AND RESULTS Carotid artery ligation in mice, induced outward remodeling in contralateral arteries of NF-kappaB p50(-/-) (p50(-/-)) and wild type (WT) arteries. p50(-/-) arteries showed more outward arterial remodeling than WT arteries (19894.0+/-3136.7 microm(2) vs. 6120.7+/-2741.2 microm(2), respectively, P=0.006). In vitro, lipopolysaccharide induced higher cytokine expression levels in p50(-/-) cells compared to WT cells. In vivo, more outward remodeling in p50(-/-) arteries was associated with a decrease in collagen density and an increased influx of macrophages. CONCLUSIONS The NF-kappaB p50 subunit is involved in outward arterial remodeling. This is probably due to modulation of macrophage influx and adventitial collagen, leading to enhanced flow-induced outward arterial remodeling after targeted deletion of NF-kappaB subunit p50.
Collapse
Affiliation(s)
- J Karlijn van Keulen
- Department Experimental Cardiology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|