1
|
Weidinger S, Blauvelt A, Papp KA, Reich A, Lee CH, Worm M, Lynde C, Kataoka Y, Foley P, Wei X, Wong W, Solente AC, Weber C, Adelman S, Davey S, Hurbin F, Rynkiewicz N, Yen K, O'Malley JT, Bernigaud C. Phase 2b randomized clinical trial of amlitelimab, an anti-OX40 ligand antibody, in patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol 2025; 155:1264-1275. [PMID: 39522654 DOI: 10.1016/j.jaci.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Amlitelimab, a fully human nondepleting mAb targeting OX40 ligand on antigen-presenting cells, could prevent T-cell-driven inflammation seen in atopic dermatitis (AD). OBJECTIVE This trial evaluated the efficacy and safety of amlitelimab in adults with AD. METHODS In this 2-part, phase 2b, randomized, double-blinded placebo-controlled trial (ClinicalTrials.gov identifier NCT05131477), patients received subcutaneous amlitelimab every 4 weeks at doses of 250 mg plus a 500-mg loading dose, 250 mg, 125 mg, or 62.5 mg or placebo for 24 weeks in Part 1 (1:1:1:1:1 randomization). In Part 2, clinical responders were reallocated 3:1 to stop taking amlitelimab or continue the previous dose regimen for 28 weeks. The primary end point was percentage of change in Eczema Area and Severity Index (EASI) from baseline to week 16. RESULTS In all, 390 and 190 patients enrolled in Part 1 and Part 2, respectively. A significant percentage of change decrease in EASI was observed with amlitelimab doses versus with placebo (P < .001). Clinical responses at week 24 (Investigator Global Assessment 0/1 and/or a 75% reduction in EASI) were maintained at week 52 in patients continuing or stopping amlitelimab. Of the patients maintaining clinical response at week 52 after no longer receiving treatment, more than 80% had serum amlitelimab concentrations less than the 4-μg/mL threshold for several weeks before week 52. Reductions in AD-related biomarkers during Part 1 were maintained through Part 2. Amlitelimab was well tolerated over 52 weeks. CONCLUSIONS Amlitelimab treatment significantly reduced clinical and biomarker responses, and was well tolerated in adults with AD through week 52. Sustained responses were observed in the majority of patients for 28 weeks after they had stopped taking amlitelimab.
Collapse
Affiliation(s)
- Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | | - Kim A Papp
- Alliance Clinical Trials and Probity Medical Research, Waterloo, Ontario, Canada; Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venereology and Allergy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Charles Lynde
- Probity Medical Research, and University of Toronto, Markham, Ontario, Canada
| | - Yoko Kataoka
- Department of Dermatology, Osaka Habikino Medical Center, Habikino, Japan
| | - Peter Foley
- Skin Health Institute, and Probity Medical Research, Carlton, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Kim J, Park S, Kim J, Kim Y, Yoon HM, Rayhan BR, Jeong J, Bothwell ALM, Shin JH. Trogocytosis-mediated immune evasion in the tumor microenvironment. Exp Mol Med 2025; 57:1-12. [PMID: 39741180 PMCID: PMC11799389 DOI: 10.1038/s12276-024-01364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/02/2025] Open
Abstract
Trogocytosis is a dynamic cellular process characterized by the exchange of the plasma membrane and associated cytosol during cell-to-cell interactions. Unlike phagocytosis, this transfer maintains the surface localization of transferred membrane molecules. For example, CD4 T cells engaging with antigen-presenting cells undergo trogocytosis, which facilitates the transfer of antigen-loaded major histocompatibility complex (MHC) class II molecules from antigen-presenting cells to CD4 T cells. This transfer results in the formation of antigen-loaded MHC class II molecule-dressed CD4 T cells. These "dressed" CD4 T cells subsequently participate in antigen presentation to other CD4 T cells. Additionally, trogocytosis enables the acquisition of immune-regulatory molecules, such as CTLA-4 and Tim3, in recipient cells, thereby modulating their anti-tumor immunity. Concurrently, donor cells undergo plasma membrane loss, and substantial loss can trigger trogocytosis-mediated cell death, termed trogoptosis. This review aims to explore the trogocytosis-mediated transfer of immune regulatory molecules and their implications within the tumor microenvironment to elucidate the underlying mechanisms of immune evasion in cancers.
Collapse
Affiliation(s)
- Jeonghyun Kim
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Soyeon Park
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Jungseo Kim
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Yewon Kim
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Hong Min Yoon
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Bima Rexa Rayhan
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Jaekwang Jeong
- Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alfred L M Bothwell
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, 505 S. 45th Street, Omaha, NE, 68198, USA.
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Jae Hun Shin
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea.
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea.
| |
Collapse
|
3
|
Barbera S, Schuiling MJA, Sanjaya NA, Pietilä I, Sarén T, Essand M, Dimberg A. Trogocytosis of chimeric antigen receptors between T cells is regulated by their transmembrane domains. Sci Immunol 2025; 10:eado2054. [PMID: 39888980 DOI: 10.1126/sciimmunol.ado2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/05/2024] [Accepted: 12/19/2024] [Indexed: 02/02/2025]
Abstract
Trogocytosis is an exchange of membrane-associated molecules between cells that can either halt or boost immune responses. However, the mechanism that regulates trogocytosis in T cells and its consequences are not yet clear. Here, we demonstrate that T cells can exchange chimeric antigen receptors (CARs) by trogocytosis, thereby arming recipient T cells with the capacity to respond to tumor antigens by up-regulating proteins associated with a cytotoxic response and killing of target cells. We demonstrate that although trogocytosis is dependent on cell-cell contact, the exchange of a specific cell membrane protein does not require a cognate binding partner on the surface of recipient cells. Instead, the probability that a protein is exchanged by trogocytosis is determined by its transmembrane domain. This finding opens new avenues for modulating this process in CAR-T cells.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthijs J A Schuiling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nathaniel A Sanjaya
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tina Sarén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Lotze MT, Olejniczak SH, Skokos D. CD28 co-stimulation: novel insights and applications in cancer immunotherapy. Nat Rev Immunol 2024; 24:878-895. [PMID: 39054343 PMCID: PMC11598642 DOI: 10.1038/s41577-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Substantial progress in understanding T cell signalling, particularly with respect to T cell co-receptors such as the co-stimulatory receptor CD28, has been made in recent years. This knowledge has been instrumental in the development of innovative immunotherapies for patients with cancer, including immune checkpoint blockade antibodies, adoptive cell therapies, tumour-targeted immunostimulatory antibodies, and immunostimulatory small-molecule drugs that regulate T cell activation. Following the failed clinical trial of a CD28 superagonist antibody in 2006, targeted CD28 agonism has re-emerged as a technologically viable and clinically promising strategy for cancer immunotherapy. In this Review, we explore recent insights into the molecular functions and regulation of CD28. We describe how CD28 is central to the success of current cancer immunotherapies and examine how new questions arising from studies of CD28 as a clinical target have enhanced our understanding of its biological role and may guide the development of future therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Michael T Lotze
- Department of Surgery, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | | |
Collapse
|
5
|
You Y, Dunst J, Ye K, Sandoz PA, Reinhardt A, Sandrock I, Comet NR, Sarkar RD, Yang E, Duprez E, Agudo J, Brown BD, Utz PJ, Kastenmüller W, Gerlach C, Prinz I, Önfelt B, Kreslavsky T. Direct presentation of inflammation-associated self-antigens by thymic innate-like T cells induces elimination of autoreactive CD8 + thymocytes. Nat Immunol 2024; 25:1367-1382. [PMID: 38992254 PMCID: PMC11291280 DOI: 10.1038/s41590-024-01899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Upregulation of diverse self-antigens that constitute components of the inflammatory response overlaps spatially and temporally with the emergence of pathogen-derived foreign antigens. Therefore, discrimination between these inflammation-associated self-antigens and pathogen-derived molecules represents a unique challenge for the adaptive immune system. Here, we demonstrate that CD8+ T cell tolerance to T cell-derived inflammation-associated self-antigens is efficiently induced in the thymus and supported by redundancy in cell types expressing these molecules. In addition to thymic epithelial cells, this included thymic eosinophils and innate-like T cells, a population that expressed molecules characteristic for all major activated T cell subsets. We show that direct T cell-to-T cell antigen presentation by minute numbers of innate-like T cells was sufficient to eliminate autoreactive CD8+ thymocytes. Tolerance to such effector molecules was of critical importance, as its breach caused by decreased thymic abundance of a single model inflammation-associated self-antigen resulted in autoimmune elimination of an entire class of effector T cells.
Collapse
Affiliation(s)
- Yuanyuan You
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Dunst
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kewei Ye
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrick A Sandoz
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Natalia R Comet
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rupak Dey Sarkar
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Emily Yang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab, CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Brian D Brown
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Wolfgang Kastenmüller
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Carmen Gerlach
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Taras Kreslavsky
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Mazerolles F. New expression of PD-L1 on activated CD4 + T cells opens up new opportunities for cell interactions and signaling. Hum Immunol 2024; 85:110831. [PMID: 38870593 DOI: 10.1016/j.humimm.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Surface expression of programmed death-ligand 1 (PD-L1) is mainly observed on antigen presenting cells (APC) such as monocytes or dendritic cells (DCs). Our results showing a high expression of PD-L1 on human naïve CD4+ effector T-cells (TEFFs) and CD4+ regulatory T cells (TREGs) after activation with human DCs, allow us to propose a new role for PD-L1 and its ligands and their potential impact on new signaling pathways. Indeed, expression of PD-L1 on activated CD4+T cells could allow cis interaction with its ligands such as PD-1 and CD80, thus disrupting interactions with other signaling receptors, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) or CD28, which interact with CD80. The ability to compete with hypothetical configuration modifications that may cause a change in affinity/avidity for the trans and cis interactions between these proteins expressed on T cells and/or DCs is discussed. As the study of cancer is strongly influenced by the role of the PD-L1/PD-1 pathway and CD4+T cells, new interactions, cis and/or trans, between TEFFs, TREGs and tumor cells are also proposed. The presence of PD-L1 on activated CD4+ T cells could influence the quality of the cytotoxic T lymphocyte response during priming to provide other help signals.
Collapse
Affiliation(s)
- Fabienne Mazerolles
- Laboratory of Immunogenetics of Paediatric Autoimmunity, Mixed Research Unit 1163, Institut National de la Santé et de la Recherche Médicale, Paris, France; Imagine Institute Paris, Paris Descartes -Sorbonne Paris Cité University, Paris, France.
| |
Collapse
|
7
|
Oya Y, Tanaka Y, Nakazawa T, Matsumura R, Glass DD, Nakajima H, Shevach EM. Polyclonally Derived Alloantigen-Specific T Regulatory Cells Exhibit Target-Specific Suppression and Capture MHC Class II from Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1891-1903. [PMID: 38683146 DOI: 10.4049/jimmunol.2300780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Foxp3+ T regulatory (Treg) cells prevent allograft rejection and graft-versus-host disease. Although polyclonal Tregs have been used both in animal models and in humans, the fine specificity of their suppressive function is poorly defined. We have generated mouse recipient-derived alloantigen-specific Tregs in vitro and explored the fine specificity of their suppressive function and their mechanism of action in vitro and in vivo. In vitro, when alloantigen and peptide Ag were both presented on the same dendritic cell, both responses were suppressed by iTregs specific either for the alloantigen or for the peptide Ag. In vivo, iTreg suppression was limited to the cognate Ag, and no bystander suppression was observed when both allo-antigen and peptide Ag were present on the same dendritic cell. In vitro, alloantigen-specific Tregs captured cognate MHC but failed to capture noncognate MHC. Our results demonstrate that a polyclonal population of iTregs generated from naive T cells can mediate highly specific function in vivo and support the view that Treg therapy, even with unselected polyclonal populations, is likely to be target antigen-specific and that bystander responses to self-antigens or to infectious agents are unlikely.
Collapse
Affiliation(s)
- Yoshihiro Oya
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Yasuyo Tanaka
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Takuya Nakazawa
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Ryutaro Matsumura
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Deborah D Glass
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University Hospital, Chiba City, Chiba, Japan
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Agbakwuru D, Wetzel SA. The Biological Significance of Trogocytosis. Results Probl Cell Differ 2024; 73:87-129. [PMID: 39242376 PMCID: PMC11784324 DOI: 10.1007/978-3-031-62036-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.
Collapse
Affiliation(s)
- Deborah Agbakwuru
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Scott A Wetzel
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
9
|
Park S, Kim J, Shin JH. Intercellular Transfer of Immune Regulatory Molecules Via Trogocytosis. Results Probl Cell Differ 2024; 73:131-146. [PMID: 39242377 DOI: 10.1007/978-3-031-62036-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis, an active cellular process involving the transfer of plasma membrane and attached cytosol during cell-to-cell contact, has been observed prominently in CD4 T cells interacting with antigen-presenting cells carrying antigen-loaded major histocompatibility complex (MHC) class II molecules. Despite the inherent absence of MHC class II molecules in CD4 T cells, they actively acquire these molecules from encountered antigen-presenting cells, leading to the formation of antigen-loaded MHC class II molecules-dressed CD4 T cells. Subsequently, these dressed CD4 T cells engage in antigen presentation to other CD4 T cells, revealing a dynamic mechanism of immune communication. The transferred membrane proteins through trogocytosis retain their surface localization, thereby altering cellular functions. Concurrently, the donor cells experience a loss of membrane proteins, resulting in functional changes due to the altered membrane properties. This chapter provides a focused exploration into trogocytosis-mediated transfer of immune regulatory molecules and its consequential impact on diverse immune responses.
Collapse
Affiliation(s)
- Soyeon Park
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea
| | - Jeonghyun Kim
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea
| | - Jae Hun Shin
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea.
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, South Korea.
| |
Collapse
|
10
|
Liu S, Wei S, Sun Y, Xu G, Zhang S, Li J. Molecular Characteristics, Functional Definitions, and Regulatory Mechanisms for Cross-Presentation Mediated by the Major Histocompatibility Complex: A Comprehensive Review. Int J Mol Sci 2023; 25:196. [PMID: 38203367 PMCID: PMC10778590 DOI: 10.3390/ijms25010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The major histocompatibility complexes of vertebrates play a key role in the immune response. Antigen-presenting cells are loaded on MHC I molecules, which mainly present endogenous antigens; when MHC I presents exogenous antigens, this is called cross-presentation. The discovery of cross-presentation provides an important theoretical basis for the study of exogenous antigens. Cross-presentation is a complex process in which MHC I molecules present antigens to the cell surface to activate CD8+ T lymphocytes. The process of cross-representation includes many components, and this article briefly outlines the origins and development of MHC molecules, gene structures, functions, and their classical presentation pathways. The cross-presentation pathways of MHC I molecules, the cell lines that support cross-presentation, and the mechanisms of MHC I molecular transporting are all reviewed. After more than 40 years of research, the specific mechanism of cross-presentation is still unclear. In this paper, we summarize cross-presentation and anticipate the research and development prospects for cross-presentation.
Collapse
Affiliation(s)
| | | | | | | | - Shidong Zhang
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| | - Jianxi Li
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| |
Collapse
|
11
|
Li Z, Guo W, Bai O. Mechanism of action and therapeutic targeting of CD30 molecule in lymphomas. Front Oncol 2023; 13:1301437. [PMID: 38188299 PMCID: PMC10767573 DOI: 10.3389/fonc.2023.1301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
At present, the treatment of lymphoma has entered the era of precision medicine, and CD30, as a transmembrane protein, has become an important marker to help the diagnosis and formulation of treatment plans for lymphomas. This protein is widely expressed in various types of lymphomas and can play a role through nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and other pathways, and ultimately lead to the up-regulation of CD30 expression to give tumor cells a survival advantage. Brentuximab vedotin (BV), as an antibody-drug conjugate (ADC) targeting CD30, is one of the first new drugs to significantly improve survival in patients with CD30+lymphomas. However, the biological function of CD30 has not been fully elucidated. Therefore, this review highlights the CD30-mediated tumor-promoting mechanisms and the molecular factors that regulate CD30 expression. We hope that a better understanding of CD30 biology will provide new insights into clinical treatment and improve the survival and quality of life of lymphoma patients.
Collapse
Affiliation(s)
| | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Hioki KA, Ryan DJ, Thesmar I, Lynch AC, Pobezinsky LA, Pobezinskaya EL. The mosquito effect: regulatory and effector T cells acquire cytoplasmic material from tumor cells through intercellular transfer. Front Immunol 2023; 14:1272918. [PMID: 38179041 PMCID: PMC10765531 DOI: 10.3389/fimmu.2023.1272918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
The phenomenon of intercellular transfer of cellular material, including membranes, cytoplasm, and even organelles, has been observed for decades. The functional impact and molecular mechanisms of such transfer in the immune system remain largely elusive due to the absence of a robust in vivo model. Here, we introduce a new tumor mouse model, where tumor cells express the soluble ultra-bright fluorescent protein ZsGreen, which allows detection and measurement of intercellular transfer of cytoplasm from tumor cells to infiltrating immune cells. We found that in addition to various types of myeloid lineage cells, a large fraction of T regulatory cells and effector CD8 T cells acquire tumor material. Based on the distribution of tumor-derived ZsGreen, the majority of T cells integrate captured cytoplasm into their own, while most myeloid cells store tumor material in granules. Furthermore, scRNA-seq analysis revealed significant alterations in transcriptomes of T cells that acquired tumor cell cytoplasm, suggesting potential impact on T cell function. We identified that the participation of T cells in intercellular transfer requires cell-cell contact and is strictly dependent on the activation status of T lymphocytes. Finally, we propose to name the described phenomenon of intercellular transfer for tumor infiltrating T cells the "mosquito effect".
Collapse
Affiliation(s)
- Kaito A. Hioki
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
- UMass Biotech Training Program (BTP), University of Massachusetts, Amherst, MA, United States
| | - Daniel J. Ryan
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Iris Thesmar
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Adam C. Lynch
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Leonid A. Pobezinsky
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Elena L. Pobezinskaya
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
13
|
Ramezani F, Panahi Meymandi AR, Akbari B, Tamtaji OR, Mirzaei H, Brown CE, Mirzaei HR. Outsmarting trogocytosis to boost CAR NK/T cell therapy. Mol Cancer 2023; 22:183. [PMID: 37974170 PMCID: PMC10652537 DOI: 10.1186/s12943-023-01894-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Chimeric antigen receptor (CAR) NK and T cell therapy are promising immunotherapeutic approaches for the treatment of cancer. However, the efficacy of CAR NK/T cell therapy is often hindered by various factors, including the phenomenon of trogocytosis, which involves the bidirectional exchange of membrane fragments between cells. In this review, we explore the role of trogocytosis in CAR NK/T cell therapy and highlight potential strategies for its modulation to improve therapeutic efficacy. We provide an in-depth analysis of trogocytosis as it relates to the fate and function of NK and T cells, focusing on its effects on cell activation, cytotoxicity, and antigen presentation. We discuss how trogocytosis can mediate transient antigen loss on cancer cells, thereby negatively affecting the effector function of CAR NK/T cells. Additionally, we address the phenomenon of fratricide and trogocytosis-associated exhaustion, which can limit the persistence and effectiveness of CAR-expressing cells. Furthermore, we explore how trogocytosis can impact CAR NK/T cell functionality, including the acquisition of target molecules and the modulation of signaling pathways. To overcome the negative effects of trogocytosis on cellular immunotherapy, we propose innovative approaches to modulate trogocytosis and augment CAR NK/T cell therapy. These strategies encompass targeting trogocytosis-related molecules, engineering CAR NK/T cells to resist trogocytosis-induced exhaustion and leveraging trogocytosis to enhance the function of CAR-expressing cells. By overcoming the limitations imposed by trogocytosis, it may be possible to unleash the full potential of CAR NK/T therapy against cancer. The knowledge and strategies presented in this review will guide future research and development, leading to improved therapeutic outcomes in the field of immunotherapy.
Collapse
Affiliation(s)
- Faezeh Ramezani
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, USA
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
14
|
MacNabb BW, Kline J. MHC cross-dressing in antigen presentation. Adv Immunol 2023; 159:115-147. [PMID: 37996206 DOI: 10.1016/bs.ai.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) orchestrate T cell responses by presenting antigenic peptides on major histocompatibility complex (MHC) and providing costimulation and other instructive signals. Professional antigen presenting cells (APCs), including DCs, are uniquely capable of generating and presenting peptide antigens derived from exogenous proteins. In addition to these canonical cross-presentation and MHC-II presentation pathways, APCs can also display exogenous peptide/MHC (p/MHC) acquired from neighboring cells and extracellular vesicles (EVs). This process, known as MHC cross-dressing, has been implicated in the regulation of T cell responses in a variety of in vivo contexts, including allogeneic solid organ transplantation, tumors, and viral infection. Although the occurrence of MHC cross-dressing has been clearly demonstrated, the importance of this antigen presentation mechanism continues to be elucidated. The contribution of MHC cross-dressing to overall antigen presentation has been obfuscated by the fact that DCs express the same MHC alleles as all other cells in the host, making it difficult to distinguish p/MHC generated within the DC from p/MHC acquired from another cell. As a result, much of what is known about MHC cross-dressing comes from studies using allogeneic organ transplantation and bone marrow chimeric mice, though recent development of mice bearing conditional knockout MHC and β2-microglobulin alleles should facilitate substantial progress in the coming years. In this review, we highlight recent advances in our understanding of MHC cross-dressing and its role in activating T cell responses in various contexts, as well as the experimental insights into the mechanism by which it occurs.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Justin Kline
- Department of Medicine, Committee on Immunology, and Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
15
|
Hu D, Irving AT. Massively-multiplexed epitope mapping techniques for viral antigen discovery. Front Immunol 2023; 14:1192385. [PMID: 37818363 PMCID: PMC10561112 DOI: 10.3389/fimmu.2023.1192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Following viral infection, viral antigens bind specifically to receptors on the surface of lymphocytes thereby activating adaptive immunity in the host. An epitope, the smallest structural and functional unit of an antigen, binds specifically to an antibody or antigen receptor, to serve as key sites for the activation of adaptive immunity. The complexity and diverse range of epitopes are essential to study and map for the diagnosis of disease, the design of vaccines and for immunotherapy. Mapping the location of these specific epitopes has become a hot topic in immunology and immune therapy. Recently, epitope mapping techniques have evolved to become multiplexed, with the advent of high-throughput sequencing and techniques such as bacteriophage-display libraries and deep mutational scanning. Here, we briefly introduce the principles, advantages, and disadvantages of the latest epitope mapping techniques with examples for viral antigen discovery.
Collapse
Affiliation(s)
- Diya Hu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Aaron T. Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Infection, Immunity & Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
- Biomedical and Health Translational Research Centre of Zhejiang Province (BIMET), Haining, China
- College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Paillon N, Hivroz C. CTLA4 prohibits T cells from cross-dressing. J Exp Med 2023; 220:e20230419. [PMID: 37071124 PMCID: PMC10120349 DOI: 10.1084/jem.20230419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
In this issue of JEM, Xiaozheng Xu et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20221391) report that the inhibitory protein CTLA4 internalizes in cis the B7 stimulatory molecules previously "gnawed" by T cells from antigen-presenting cells (APCs) and in doing so prevents stimulatory T-T interactions.
Collapse
Affiliation(s)
- Noémie Paillon
- Institut Curie, Paris Sciences et Lettres University, Inserm U932, Immunity and Cancer, Paris, France
- Team Integrative Analysis of T Cell Activation, Paris, France
- Université Paris Cité, Paris, France
| | - Claire Hivroz
- Institut Curie, Paris Sciences et Lettres University, Inserm U932, Immunity and Cancer, Paris, France
- Team Integrative Analysis of T Cell Activation, Paris, France
| |
Collapse
|
17
|
Xu X, Dennett P, Zhang J, Sherrard A, Zhao Y, Masubuchi T, Bui JD, Chen X, Hui E. CTLA4 depletes T cell endogenous and trogocytosed B7 ligands via cis-endocytosis. J Exp Med 2023; 220:e20221391. [PMID: 37042938 PMCID: PMC10103642 DOI: 10.1084/jem.20221391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
CD28 and CTLA4 are T cell coreceptors that competitively engage B7 ligands CD80 and CD86 to control adaptive immune responses. While the role of CTLA4 in restraining CD28 costimulatory signaling is well-established, the mechanism has remained unclear. Here, we report that human T cells acquire antigen-presenting-cell (APC)-derived B7 ligands and major histocompatibility complex (MHC) via trogocytosis through CD28:B7 binding. Acquired MHC and B7 enabled T cells to autostimulate, and this process was limited cell-intrinsically by CTLA4, which depletes B7 ligands trogocytosed or endogenously expressed by T cells through cis-endocytosis. Extending this model to the previously proposed extrinsic function of CTLA4 in human regulatory T cells (Treg), we show that blockade of either CD28 or CTLA4 attenuates Treg-mediated depletion of APC B7, indicating that trogocytosis and CTLA4-mediated cis-endocytosis work together to deplete B7 from APCs. Our study establishes CTLA4 as a cell-intrinsic molecular sink that limits B7 availability on the surface of T cells, with implications for CTLA4-targeted therapy.
Collapse
Affiliation(s)
- Xiaozheng Xu
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Preston Dennett
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jibin Zhang
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Alice Sherrard
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Zhao
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Takeya Masubuchi
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Jack D. Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Xu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Enfu Hui
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Zhao Y, Caron C, Chan YY, Lee CK, Xu X, Zhang J, Masubuchi T, Wu C, Bui JD, Hui E. cis-B7:CD28 interactions at invaginated synaptic membranes provide CD28 co-stimulation and promote CD8 + T cell function and anti-tumor immunity. Immunity 2023; 56:1187-1203.e12. [PMID: 37160118 PMCID: PMC10330546 DOI: 10.1016/j.immuni.2023.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Christine Caron
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ya-Yuan Chan
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Calvin K Lee
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaozheng Xu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jibin Zhang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Takeya Masubuchi
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.
| | - Enfu Hui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Nakashima M, Uchimaru K. CD30 Expression and Its Functions during the Disease Progression of Adult T-Cell Leukemia/Lymphoma. Int J Mol Sci 2023; 24:ijms24108731. [PMID: 37240076 DOI: 10.3390/ijms24108731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
CD30, a member of the tumor necrosis factor receptor superfamily, plays roles in pro-survival signal induction and cell proliferation in peripheral T-cell lymphoma (PTCL) and adult T-cell leukemia/lymphoma (ATL). Previous studies have identified the functional roles of CD30 in CD30-expressing malignant lymphomas, not only PTCL and ATL, but also Hodgkin lymphoma (HL), anaplastic large cell lymphoma (ALCL), and a portion of diffuse large B-cell lymphoma (DLBCL). CD30 expression is often observed in virus-infected cells such as human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 is capable of immortalizing lymphocytes and producing malignancy. Some ATL cases caused by HTLV-1 infection overexpress CD30. However, the molecular mechanism-based relationship between CD30 expression and HTLV-1 infection or ATL progression is unclear. Recent findings have revealed super-enhancer-mediated overexpression at the CD30 locus, CD30 signaling via trogocytosis, and CD30 signaling-induced lymphomagenesis in vivo. Successful anti-CD30 antibody-drug conjugate (ADC) therapy for HL, ALCL, and PTCL supports the biological significance of CD30 in these lymphomas. In this review, we discuss the roles of CD30 overexpression and its functions during ATL progression.
Collapse
Affiliation(s)
- Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 1088639, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
20
|
MHC-dressing on dendritic cells: Boosting anti-tumor immunity via unconventional tumor antigen presentation. Semin Immunol 2023; 66:101710. [PMID: 36640616 DOI: 10.1016/j.smim.2023.101710] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Dendritic cells are crucial for anti-tumor immune responses due to their ability to activate cytotoxic effector CD8+ T cells. Canonically, in anti-tumor immunity, dendritic cells activate CD8+ T cells in a process termed cross-presentation. Recent studies have demonstrated that another type of antigen presentation, MHC-dressing, also serves to activate CD8+ T cells against tumor cell-derived antigens. Understanding MHC-dressing's specific contributions to anti-tumor immunity can open up novel therapeutic avenues. In this review, we summarize the early studies that identified MHC-dressing as a relevant antigen presentation pathway before diving into a deeper discussion of the biology of MHC-dressing, focusing in particular on which dendritic cell subsets are most capable of performing MHC-dressing and how MHC-dressing compares to other forms of antigen presentation. We conclude by discussing the implications MHC-dressing has for anti-tumor immunity.
Collapse
|
21
|
Möbs C, Salheiser M, Bleise F, Witt M, Mayer JU. Basophils control T cell priming through soluble mediators rather than antigen presentation. Front Immunol 2023; 13:1032379. [PMID: 36846020 PMCID: PMC9950813 DOI: 10.3389/fimmu.2022.1032379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 02/12/2023] Open
Abstract
Basophils play an important role in the development of type 2 immunity and have been linked to protective immunity against parasites but also inflammatory responses in allergic diseases. While typically classified as degranulating effector cells, different modes of cellular activation have been identified, which together with the observation that different populations of basophils exist in the context of disease suggest a multifunctional role. In this review we aim to highlight the role of basophils play in antigen presentation of type 2 immunity and focus on the contribution basophils play in the context of antigen presentation and T cell priming. We will discuss evidence suggesting that basophils perform a direct role in antigen presentation and relate it to findings that indicate cellular cooperation with professional antigen-presenting cells, such as dendritic cells. We will also highlight tissue-specific differences in basophil phenotypes that might lead to distinct roles in cellular cooperation and how these distinct interactions might influence immunological and clinical outcomes of disease. This review thus aims to consolidate the seemingly conflicting literature on the involvement of basophils in antigen presentation and tries to find a resolution to the discussion whether basophils influence antigen presentation through direct or indirect mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Johannes U. Mayer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
22
|
Antigen-presenting T cells provide critical B7 co-stimulation for thymic iNKT cell development via CD28-dependent trogocytosis. Cell Rep 2022; 41:111731. [PMID: 36450247 PMCID: PMC9805342 DOI: 10.1016/j.celrep.2022.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
Invariant natural killer T (iNKT) cell development in the thymus depends on T cell receptor recognition of CD1d ligand on CD4/CD8 double-positive thymocytes. We previously reported that B7-CD28 co-stimulation is required for thymic iNKT cell development, but the cellular and molecular mechanisms underlying this co-stimulatory requirement are not understood. Here we report that CD28 expression on CD1d-expressing antigen-presenting T cells is required for thymic iNKT cell development. Mechanistically, antigen-presenting T cells provide co-stimulation through an unconventional mechanism, acquiring B7 molecules via CD28-dependent trogocytosis from B7-expressing thymic epithelial cells, dendritic cells, and B cells and providing critical B7 co-stimulation to developing iNKT cells. Thus, the present study demonstrates a mechanism of B7 co-stimulation in thymic T cell development by antigen-presenting T cells.
Collapse
|
23
|
Differential trafficking of ligands trogocytosed via CD28 versus CTLA4 promotes collective cellular control of co-stimulation. Nat Commun 2022; 13:6459. [PMID: 36309492 PMCID: PMC9617924 DOI: 10.1038/s41467-022-34156-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
Intercellular communication is crucial for collective regulation of cellular behaviors. While clustering T cells have been shown to mutually control the production of key communication signals, it is unclear whether they also jointly regulate their availability and degradation. Here we use newly developed reporter systems, bioinformatic analyses, protein structure modeling and genetic perturbations to assess this. We find that T cells utilize trogocytosis by competing antagonistic receptors to differentially control the abundance of immunoregulatory ligands. Specifically, ligands trogocytosed via CD28 are shuttled to the T cell surface, enabling them to co-stimulate neighboring T cells. In contrast, CTLA4-mediated trogocytosis targets ligands for degradation. Mechanistically, this fate separation is controlled by different acid-sensitivities of receptor-ligand interactions and by the receptor intracellular domains. The ability of CD28 and CTLA4 to confer different fates to trogocytosed ligands reveals an additional layer of collective regulation of cellular behaviors and promotes the robustness of population dynamics.
Collapse
|
24
|
Fox TA, Houghton BC, Petersone L, Waters E, Edner NM, McKenna A, Preham O, Hinze C, Williams C, de Albuquerque AS, Kennedy A, Pesenacker AM, Genovese P, Walker LSK, Burns SO, Sansom DM, Booth C, Morris EC. Therapeutic gene editing of T cells to correct CTLA-4 insufficiency. Sci Transl Med 2022; 14:eabn5811. [PMID: 36288278 DOI: 10.1126/scitranslmed.abn5811] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heterozygous mutations in CTLA-4 result in an inborn error of immunity with an autoimmune and frequently severe clinical phenotype. Autologous T cell gene therapy may offer a cure without the immunological complications of allogeneic hematopoietic stem cell transplantation. Here, we designed a homology-directed repair (HDR) gene editing strategy that inserts the CTLA-4 cDNA into the first intron of the CTLA-4 genomic locus in primary human T cells. This resulted in regulated expression of CTLA-4 in CD4+ T cells, and functional studies demonstrated CD80 and CD86 transendocytosis. Gene editing of T cells isolated from three patients with CTLA-4 insufficiency also restored CTLA-4 protein expression and rescued transendocytosis of CD80 and CD86 in vitro. Last, gene-corrected T cells from CTLA-4-/- mice engrafted and prevented lymphoproliferation in an in vivo murine model of CTLA-4 insufficiency. These results demonstrate the feasibility of a therapeutic approach using T cell gene therapy for CTLA-4 insufficiency.
Collapse
Affiliation(s)
- Thomas Andrew Fox
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Haematology, University College London NHS Foundation Trust, London, NW1 2BU UK
- UCL Great Ormond Street Institute of Child Health, UCL, London WC1N 1EH, UK
| | | | - Lina Petersone
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Erin Waters
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Natalie Mona Edner
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Alex McKenna
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Olivier Preham
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Claudia Hinze
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Cayman Williams
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Adriana Silva de Albuquerque
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- University College London Hospital, National Institute for Health and Care Research Biomedical Research Centre, London W1T 7DN, UK
| | - Alan Kennedy
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Anne Maria Pesenacker
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Pietro Genovese
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Lucy Sarah Kate Walker
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Siobhan Oisin Burns
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, NW3 2QG, UK
| | - David Michael Sansom
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, UCL, London WC1N 1EH, UK
- Department of Paediatric Immunology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Emma Catherine Morris
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Haematology, University College London NHS Foundation Trust, London, NW1 2BU UK
- University College London Hospital, National Institute for Health and Care Research Biomedical Research Centre, London W1T 7DN, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, NW3 2QG, UK
| |
Collapse
|
25
|
Hasim MS, Marotel M, Hodgins JJ, Vulpis E, Makinson OJ, Asif S, Shih HY, Scheer AK, MacMillan O, Alonso FG, Burke KP, Cook DP, Li R, Petrucci MT, Santoni A, Fallon PG, Sharpe AH, Sciumè G, Veillette A, Zingoni A, Gray DA, McCurdy A, Ardolino M. When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. SCIENCE ADVANCES 2022; 8:eabj3286. [PMID: 35417234 PMCID: PMC9007500 DOI: 10.1126/sciadv.abj3286] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/23/2022] [Indexed: 05/12/2023]
Abstract
Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8+ T cells acquire the checkpoint receptor PD-1 from leukemia cells. In vitro and in vivo investigation revealed that PD-1 on the surface of NK cells, rather than being endogenously expressed, was derived entirely from leukemia cells in a SLAM receptor-dependent fashion. PD-1 acquired via trogocytosis actively suppressed NK cell antitumor immunity. PD-1 trogocytosis was corroborated in patients with clonal plasma cell disorders, where NK cells that stained for PD-1 also stained for tumor cell markers. Our results, in addition to shedding light on a previously unappreciated mechanism underlying the presence of PD-1 on NK and cytotoxic T cells, reveal the immunoregulatory effect of membrane transfer occurring when immune cells contact tumor cells.
Collapse
Affiliation(s)
- Mohamed S. Hasim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
| | - Marie Marotel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan J. Hodgins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Elisabetta Vulpis
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - Olivia J. Makinson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sara Asif
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Han-Yun Shih
- Neuro-Immune Regulome Unit, National Eye Institute, NIH, Bethesda, MD, USA
| | - Amit K. Scheer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Olivia MacMillan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Felipe G. Alonso
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kelly P. Burke
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rui Li
- Department of Medicine, McGill University, Montréal, QC, Canada
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnology and Hematology, “Sapienza” University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - André Veillette
- Department of Medicine, McGill University, Montréal, QC, Canada
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Department of Medicine, University of Montréal, Montréal, QC, Canada
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - Douglas A. Gray
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Arleigh McCurdy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
26
|
Zhao S, Zhang L, Xiang S, Hu Y, Wu Z, Shen J. Gnawing Between Cells and Cells in the Immune System: Friend or Foe? A Review of Trogocytosis. Front Immunol 2022; 13:791006. [PMID: 35185886 PMCID: PMC8850298 DOI: 10.3389/fimmu.2022.791006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Trogocytosis occurs when one cell contacts and quickly nibbles another cell and is characterized by contact between living cells and rapid transfer of membrane fragments with functional integrity. Many immune cells are involved in this process, such as T cells, B cells, NK cells, APCs. The transferred membrane molecules including MHC molecules, costimulatory molecules, receptors, antigens, etc. An increasing number of studies have shown that trogocytosis plays an important role in the immune system and the occurrence of relevant diseases. Thus, whether trogocytosis is a friend or foe of the immune system is puzzling, and the precise mechanism underlying it has not yet been fully elucidated. Here, we provide an integrated view of the acquired findings on the connections between trogocytosis and the immune system.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
27
|
Ochs J, Nissimov N, Torke S, Freier M, Grondey K, Koch J, Klein M, Feldmann L, Gudd C, Bopp T, Häusser-Kinzel S, Weber MS. Proinflammatory CD20 + T cells contribute to CNS-directed autoimmunity. Sci Transl Med 2022; 14:eabi4632. [PMID: 35353539 DOI: 10.1126/scitranslmed.abi4632] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The origin and function of CD20+ T cells are poorly understood. Here, we characterized CD20+ T cells in mice and humans and investigated how they are affected by anti-CD20 antibody treatment. We report that murine CD20+ T cells are unable to endogenously express the B cell lineage marker CD20; the development of CD20+ T cells in rodents requires the presence of CD20-expressing B cells. Our results demonstrated that both murine and human T cells acquire CD20 from B cells via trogocytosis while being activated by an antigen-presenting B cell. In patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE), expression of CD20 on T cells is associated with an up-regulation of activation markers, proinflammatory cytokines, and adhesion molecules, suggesting high pathogenic potential. Supporting this hypothesis, CD20+ T cells expand during active EAE in rodents; furthermore, adoptive transfer of CD20+ T cells into EAE-diseased mice worsened histological and clinical severity. Of direct therapeutic relevance, we demonstrate that the exclusive therapeutic elimination of CD20+ T cells effectively ameliorates EAE, independent of B cells. The results support the hypothesis that CD20+ T cells arise upon B cell-T cell interaction and that depletion of CD20+ T cells might contribute to the success of anti-CD20 antibody therapies in MS and other inflammatory disorders.
Collapse
Affiliation(s)
- Jasmin Ochs
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Nitzan Nissimov
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Sebastian Torke
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Marie Freier
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Katja Grondey
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Julian Koch
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Matthias Klein
- Paul-Klein-Center for Immunintervention, University Medical Center, 55131 Mainz, Germany
| | - Linda Feldmann
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Cathrin Gudd
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Tobias Bopp
- Paul-Klein-Center for Immunintervention, University Medical Center, 55131 Mainz, Germany
| | - Silke Häusser-Kinzel
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany.,Department of Neurology, University Medical Center, 37075 Göttingen, Germany.,Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, 37075 Göttingen, Germany
| |
Collapse
|
28
|
Peripheral tolerance by Treg via constraining OX40 signal in autoreactive T cells against desmoglein 3, a target antigen in pemphigus. Proc Natl Acad Sci U S A 2021; 118:2026763118. [PMID: 34848535 PMCID: PMC8670434 DOI: 10.1073/pnas.2026763118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Immune tolerance is crucial to prevent harmful immune reactions against self-antigens and well operated by central thymic tolerance and peripheral tissue tolerance. However, peripheral tolerance had been investigated under influence from thymic tolerance. We successfully decoupled peripheral tolerance from thymic tolerance by utilizing autoantigen-deficient thymus. Experiments revealed that self-antigen presentation in steady state initiated proliferation but subsequent disappearance of autoreactive CD4+ T cells in draining lymph nodes. After screening of representative candidates, including Ctla4, autoimmune regulator, and Pd-1, the mechanism was found to depend on regulatory T cell (Treg) function that constrained OX40 signaling of the T cells. This study presented fundamental, but potent, Treg-mediated tolerance mechanisms of peripheral tissues to prevent autoimmunity as compensatory roles for central tolerance. Antigen-specific peripheral tolerance is crucial to prevent the development of organ-specific autoimmunity. However, its function decoupled from thymic tolerance remains unclear. We used desmoglein 3 (Dsg3), a pemphigus antigen expressed in keratinocytes, to analyze peripheral tolerance under physiological antigen-expression conditions. Dsg3-deficient thymi were transplanted into athymic mice to create a unique condition in which Dsg3 was expressed only in peripheral tissue but not in the thymus. When bone marrow transfer was conducted from high-avidity Dsg3-specific T cell receptor–transgenic mice to thymus-transplanted mice, Dsg3-specific CD4+ T cells developed in the transplanted thymus but subsequently disappeared in the periphery. Additionally, when Dsg3-specific T cells developed in Dsg3−/− mice were adoptively transferred into Dsg3-sufficient recipients, the T cells disappeared in an antigen-specific manner without inducing autoimmune dermatitis. However, Dsg3-specific T cells overcame this disappearance and thus induced autoimmune dermatitis in Treg-ablated recipients but not in Foxp3-mutant recipients with dysfunctional Tregs. The molecules involved in disappearance were sought by screening the transcriptomes of wild-type and Foxp3-mutant Tregs. OX40 of Tregs was suggested to be responsible. Consistently, when OX40 expression of Tregs was constrained, Dsg3-specific T cells did not disappear. Furthermore, Tregs obtained OX40L from dendritic cells in an OX40-dependent manner in vitro and then suppressed OX40L expression in dendritic cells and Birc5 expression in Dsg3-specific T cells in vivo. Lastly, CRISPR/Cas9-mediated knockout of OX40 signaling in Dsg3-specific T cells restored their disappearance in Treg-ablated recipients. Thus, Treg-mediated peripheral deletion of autoreactive T cells operates as an OX40-dependent regulatory mechanism to avoid undesired autoimmunity besides thymic tolerance.
Collapse
|
29
|
The Multiple Roles of Trogocytosis in Immunity, the Nervous System, and Development. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1601565. [PMID: 34604381 PMCID: PMC8483919 DOI: 10.1155/2021/1601565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
Trogocytosis is a general biological process that involves one cell physically taking small parts of the membrane and other components from another cell. In trogocytosis, one cell seems to take little “bites” from another cell resulting in multiple outcomes from these cell-cell interactions. Trogocytosis was first described in protozoan parasites, which by taking pieces of host cells, kill them and cause tissue damage. Now, it is known that this process is also performed by cells of the immune system with important consequences such as cell communication and activation, elimination of microbial pathogens, and even control of cancer cells. More recently, trogocytosis has also been reported to occur in cells of the central nervous system and in various cells during development. Some of the molecules involved in phagocytosis also participate in trogocytosis. However, the molecular mechanisms that regulate trogocytosis are still a mystery. Elucidating these mechanisms is becoming a research area of much interest. For example, why neutrophils can engage trogocytosis to kill Trichomonas vaginalis parasites, but neutrophils use phagocytosis to eliminate already death parasites? Thus, trogocytosis is a significant process in normal physiology that multiple cells from different organisms use in various scenarios of health and disease. In this review, we present the basic principles known on the process of trogocytosis and discuss the importance in this process to host-pathogen interactions and to normal functions in the immune and nervous systems.
Collapse
|
30
|
Reed J, Reichelt M, Wetzel SA. Lymphocytes and Trogocytosis-Mediated Signaling. Cells 2021; 10:1478. [PMID: 34204661 PMCID: PMC8231098 DOI: 10.3390/cells10061478] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated molecules. This underappreciated process has been described in a variety of biological settings including neuronal remodeling, fertilization, viral and bacterial spread, and cancer, but has been most widely studied in cells of the immune system. Trogocytosis is performed by multiple immune cell types, including basophils, macrophages, dendritic cells, neutrophils, natural killer cells, B cells, γδ T cells, and CD4+ and CD8+ αβ T cells. Although not expressed endogenously, the presence of trogocytosed molecules on cells has the potential to significantly impact an immune response and the biology of the individual trogocytosis-positive cell. Many studies have focused on the ability of the trogocytosis-positive cells to interact with other immune cells and modulate the function of responders. Less understood and arguably equally important is the impact of these molecules on the individual trogocytosis-positive cell. Molecules that have been reported to be trogocytosed by cells include cognate ligands for receptors on the individual cell, such as activating NK cell ligands and MHC:peptide. These trogocytosed molecules have been shown to interact with receptors on the trogocytosis-positive cell and mediate intracellular signaling. In this review, we discuss the impact of this trogocytosis-mediated signaling on the biology of the individual trogocytosis-positive cell by focusing on natural killer cells and CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Jim Reed
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Madison Reichelt
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Scott A. Wetzel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
31
|
Freger S, Leonardi M, Foster WG. Exosomes and their cargo are important regulators of cell function in endometriosis. Reprod Biomed Online 2021; 43:370-378. [PMID: 34272164 DOI: 10.1016/j.rbmo.2021.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Endometriosis is a chronic oestrogen-dependent gynaecological disorder characterized by non-menstrual pelvic pain, infertility and the extrauterine growth of endometrial-like glands and stroma. It has been noted that the eutopic endometrium of women with endometriosis is functionally distinct from that of women without endometriosis. Moreover, ectopic endometrial implants are functionally different from the eutopic endometrium of women with endometriosis. However, the mechanisms directing these differences are ill-defined. It is proposed here that small membrane-bound extracellular vesicles called exosomes are important vehicles in the protection and transport of signalling molecules central to the dysregulation of endometrial function in women with endometriosis. Therefore, a critical review of the literature linking exosomes and their cargo to the pathobiology of endometriosis was conducted. Circulating peritoneal fluid and endometrial cell exosomes contained long non-coding RNA, miRNA and proteins involved in histone modification, angiogenesis and immune modulation that differed significantly in women with endometriosis compared with controls. Moreover, experimental evidence supports a role for exosomes and their cargo in angiogenesis, neurogenesis, immune modulation and endometrial stromal cell invasion. It is therefore suggested that exosomes play an important role in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Shay Freger
- Department of Obstetrics and Gynecology, McMaster University, Hamilton Ontario L8N 3Z5, Canada
| | - Mathew Leonardi
- Department of Obstetrics and Gynecology, McMaster University, Hamilton Ontario L8N 3Z5, Canada; Sydney Medical School Nepean, University of Sydney, Sydney, Australia
| | - Warren George Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton Ontario L8N 3Z5, Canada.
| |
Collapse
|
32
|
Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021; 10:cells10051255. [PMID: 34069602 PMCID: PMC8161413 DOI: 10.3390/cells10051255] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor–ligand interactions, including TCR–MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.
Collapse
|
33
|
Boccasavia VL, Bovolenta ER, Villanueva A, Borroto A, Oeste CL, van Santen HM, Prieto C, Alonso-López D, Diaz-Muñoz MD, Batista FD, Alarcón B. Antigen presentation between T cells drives Th17 polarization under conditions of limiting antigen. Cell Rep 2021; 34:108861. [PMID: 33730591 PMCID: PMC7972993 DOI: 10.1016/j.celrep.2021.108861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
T cells form immunological synapses with professional antigen-presenting cells (APCs) resulting in T cell activation and the acquisition of peptide antigen-MHC (pMHC) complexes from the plasma membrane of the APC. They thus become APCs themselves. We investigate the functional outcome of T-T cell antigen presentation by CD4 T cells and find that the antigen-presenting T cells (Tpres) predominantly differentiate into regulatory T cells (Treg), whereas T cells that have been stimulated by Tpres cells predominantly differentiate into Th17 pro-inflammatory cells. Using mice deficient in pMHC uptake by T cells, we show that T-T antigen presentation is important for the development of experimental autoimmune encephalitis and Th17 cell differentiation in vivo. By varying the professional APC:T cell ratio, we can modulate Treg versus Th17 differentiation in vitro and in vivo, suggesting that T-T antigen presentation underlies proinflammatory responses in conditions of antigen scarcity.
Collapse
Affiliation(s)
- Viola L Boccasavia
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Elena R Bovolenta
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Villanueva
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aldo Borroto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara L Oeste
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hisse M van Santen
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Prieto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Alonso-López
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cancer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Manuel D Diaz-Muñoz
- Center for Physiopathology Toulouse-Purpan, INSERM UMR1043/CNRS UMR5282, CHU Purpan, BP3028, 31024 Toulouse, France
| | | | - Balbino Alarcón
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
34
|
Trogocytosis between Non-Immune Cells for Cell Clearance, and among Immune-Related Cells for Modulating Immune Responses and Autoimmunity. Int J Mol Sci 2021; 22:ijms22052236. [PMID: 33668117 PMCID: PMC7956485 DOI: 10.3390/ijms22052236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
The term trogocytosis refers to a rapid bidirectional and active transfer of surface membrane fragment and associated proteins between cells. The trogocytosis requires cell-cell contact, and exhibits fast kinetics and the limited lifetime of the transferred molecules on the surface of the acceptor cells. The biological actions of trogocytosis include information exchange, cell clearance of unwanted tissues in embryonic development, immunoregulation, cancer surveillance/evasion, allogeneic cell survival and infectious pathogen killing or intercellular transmission. In the present review, we will extensively review all these aspects. In addition to its biological significance, aberrant trogocytosis in the immune system leading to autoimmunity and immune-mediated inflammatory diseases will also be discussed. Finally, the prospective investigations for further understanding the molecular basis of trogocytosis and its clinical applications will also be proposed.
Collapse
|
35
|
Aragoneses-Fenoll L, Montes-Casado M, Ojeda G, García-Paredes L, Arimura Y, Yagi J, Dianzani U, Portolés P, Rojo JM. Role of endocytosis and trans-endocytosis in ICOS costimulator-induced downmodulation of the ICOS Ligand. J Leukoc Biol 2021; 110:867-884. [PMID: 33527556 PMCID: PMC8597029 DOI: 10.1002/jlb.2a0220-127r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/16/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
The interaction between the T-lymphocyte costimulatory molecule ICOS and its ligand (ICOS-L) is needed for efficient immune responses, but expression levels are tightly controlled, as altered expression of ICOS or ICOS-L may lead to immunodeficiency, or favor autoimmune diseases and tumor growth. Using cells of mouse B cell lymphoma (M12.C3) and melanoma (B16), or hamster CHO cells transfected with various forms of mouse ICOS-L, and ICOS+ T cell lines, we show that, within minutes, ICOS induces significant downmodulation of surface ICOS-L that is largely mediated by endocytosis and trans-endocytosis. So, after interaction with ICOS+ cells, ICOS-L was found inside permeabilized cells, or in cell lysates, with significant transfer of ICOS from ICOS+ T cells to ICOS-L-expressing cells, and simultaneous loss of surface ICOS by the T cells. Data from cells expressing ICOS-L mutants show that conserved, functionally important residues in the cytoplasmic domain of mouse ICOS-L (Arg300 , Ser307 and Tyr308 ), or removal of ICOS-L cytoplasmic tail have minor effect on its internalization. Internalization was dependent on temperature, and was partially dependent on actin polymerization, the GTPase dynamin, protein kinase C, or the integrity of lipid rafts. In fact, a fraction of ICOS-L was detected in lipid rafts. On the other hand, proteinase inhibitors had negligible effects on early modulation of ICOS-L from the cell surface. Our data add a new mechanism of control of ICOS-L expression to the regulation of ICOS-dependent responses.
Collapse
Affiliation(s)
- Laura Aragoneses-Fenoll
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
| | - María Montes-Casado
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
| | - Gloria Ojeda
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
| | - Lucía García-Paredes
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain.,Current address: Hospital 12 de Octubre, Departamento de Oncología Médica, Av. de Córdoba, s/n, Madrid, 28041, Spain
| | - Yutaka Arimura
- Host Defense for Animals, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo, 180-8602, Japan
| | - Junji Yagi
- Department of Microbiology and Immunology, Tokyo Women's Medical University, Tokyo, 108-8639, Japan
| | - Umberto Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) and Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, 28100, Italy
| | - Pilar Portolés
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain.,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
| | - José M Rojo
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| |
Collapse
|
36
|
Wong C, Darby JM, Murphy PR, Pinfold TL, Lennard PR, Woods GM, Lyons AB, Flies AS. Tasmanian devil CD28 and CTLA4 capture CD80 and CD86 from adjacent cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103882. [PMID: 33039410 DOI: 10.1016/j.dci.2020.103882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Immune checkpoint immunotherapy is a pillar of human oncology treatment with potential for non-human species. The first checkpoint immunotherapy approved for human cancers targeted the CTLA4 protein. CTLA4 can inhibit T cell activation by capturing and internalizing CD80 and CD86 from antigen presenting cells, a process called trans-endocytosis. Similarly, CD28 can capture CD80 and CD86 via trogocytosis and retain the captured ligands on the surface of the CD28-expressing cells. The wild Tasmanian devil (Sarcophilus harrisii) population has declined by 77% due to transmissible cancers that evade immune defenses despite genetic mismatches between the host and tumors. We used a live cell-based assay to demonstrate that devil CTLA4 and CD28 can capture CD80 and CD86. Mutation of evolutionarily conserved motifs in CTLA4 altered functional interactions with CD80 and CD86 in accordance with patterns observed in other species. These results suggest that checkpoint immunotherapies can be translated to evolutionarily divergent species.
Collapse
Affiliation(s)
- Candida Wong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Peter R Murphy
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Terry L Pinfold
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Patrick R Lennard
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia.
| |
Collapse
|
37
|
Soskic B, Jeffery LE, Kennedy A, Gardner DH, Hou TZ, Halliday N, Williams C, Janman D, Rowshanravan B, Hirschfield GM, Sansom DM. CD80 on Human T Cells Is Associated With FoxP3 Expression and Supports Treg Homeostasis. Front Immunol 2021; 11:577655. [PMID: 33488578 PMCID: PMC7820758 DOI: 10.3389/fimmu.2020.577655] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
CD80 and CD86 are expressed on antigen presenting cells (APCs) and their role in providing costimulation to T cells is well established. However, it has been shown that these molecules can also be expressed by T cells, but the significance of this observation remains unknown. We have investigated stimuli that control CD80 and CD86 expression on T cells and show that in APC-free conditions around 40% of activated, proliferating CD4+ T cells express either CD80, CD86 or both. Expression of CD80 and CD86 was strongly dependent upon provision of CD28 costimulation as ligands were not expressed following TCR stimulation alone. Furthermore, we observed that CD80+ T cells possessed the hallmarks of induced regulatory T cells (iTreg), expressing Foxp3 and high levels of CTLA-4 whilst proliferating less extensively. In contrast, CD86 was preferentially expressed on INF-γ producing cells, which proliferated more extensively and had characteristics of effector T cells. Finally, we demonstrated that CD80 expressed on T cells inhibits CTLA-4 function and facilitates the growth of iTreg. Together these data establish endogenous expression of CD80 and CD86 by activated T cells is not due to ligand capture by transendocytosis and highlight clear differences in their expression patterns and associated functions.
Collapse
Affiliation(s)
- Blagoje Soskic
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Louisa E Jeffery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Alan Kennedy
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - David H Gardner
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Tie Zheng Hou
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Daniel Janman
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Behzad Rowshanravan
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | | | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
38
|
Abstract
Trogocytosis is part of an emerging, exciting theme of cell-cell interactions both within and between species, and it is relevant to host-pathogen interactions in many different contexts. Trogocytosis is a process in which one cell physically extracts and ingests "bites" of cellular material from another cell. It was first described in eukaryotic microbes, where it was uncovered as a mechanism by which amoebae kill cells. Trogocytosis is potentially a fundamental form of eukaryotic cell-cell interaction, since it also occurs in multicellular organisms, where it has functions in the immune system, in the central nervous system, and during development. There are numerous scenarios in which trogocytosis occurs and an ever-evolving list of functions associated with this process. Many aspects of trogocytosis are relevant to microbial pathogenesis. It was recently discovered that immune cells perform trogocytosis to kill Trichomonas vaginalis parasites. Additionally, through trogocytosis, Entamoeba histolytica acquires and displays human cell membrane proteins, enabling immune evasion. Intracellular bacteria seem to exploit host cell trogocytosis, since they can use it to spread from cell to cell. Thus, a picture is emerging in which trogocytosis plays critical roles in normal physiology, infection, and disease.
Collapse
|
39
|
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication in normal cellular process and pathological conditions by facilitating the transport of cellular content from one cell to another. EVs as conveyors of various biological molecules with their ability to redirect effects on a target cell physiological function in cell type-specific manner makes EVs an excellent candidate for drug delivery vehicle in disease therapy. Moreover, unique characteristics and contents of EVs which differ depends on cellular origin and physiological state make them a valuable source of diagnostic biomarker. Herein, we review the current progress in extracellular vesicle (EV) analysis, its transition from biomedical research to advancing therapy, and recent pioneered approaches to characterize and quantify EVs' subclasses with an emphasis on the integration of advanced technologies for both qualitative and quantitative analysis of EVs in different clinical tissue/body fluid samples.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
40
|
Matson CA, Singh NJ. Manipulating the TCR signaling network for cellular immunotherapy: Challenges & opportunities. Mol Immunol 2020; 123:64-73. [PMID: 32422416 DOI: 10.1016/j.molimm.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
T cells can help confer protective immunity by eliminating infections and tumors or drive immunopathology by damaging host cells. Both outcomes require a series of steps from the activation of naïve T cells to their clonal expansion, differentiation and migration to tissue sites. In addition to specific recognition of the antigen via the T cell receptor (TCR), multiple accessory signals from costimulatory molecules, cytokines and metabolites also influence each step along the progression of the T cell response. Current efforts to modify effector T cell function in many clinical contexts focus on the latter - which encompass antigen-independent and broad, contextual regulators. Not surprisingly, such approaches are often accompanied by adverse events, as they also affect T cells not relevant to the specific treatment. In contrast, fine tuning T cell responses by precisely targeting antigen-specific TCR signals has the potential to radically alter therapeutic strategies in a focused manner. Development of such approaches, however, requires a better understanding of functioning of the TCR and the biochemical signaling network coupled to it. In this article, we review some of the recent advances which highlight important roles of TCR signals throughout the activation and differentiation of T cells during an immune response. We discuss how, an appreciation of specific signaling modalities and variant ligands that influence the function of the TCR has the potential to influence design principles for the next generation of pharmacologic and cellular therapies, especially in the context of tumor immunotherapies involving adoptive cell transfers.
Collapse
Affiliation(s)
- Courtney A Matson
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States.
| |
Collapse
|
41
|
Quorum Regulation via Nested Antagonistic Feedback Circuits Mediated by the Receptors CD28 and CTLA-4 Confers Robustness to T Cell Population Dynamics. Immunity 2020; 52:313-327.e7. [DOI: 10.1016/j.immuni.2020.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/22/2019] [Accepted: 01/24/2020] [Indexed: 01/03/2023]
|
42
|
Double negative T cells mediate Lag3-dependent antigen-specific protection in allergic asthma. Nat Commun 2019; 10:4246. [PMID: 31534137 PMCID: PMC6751182 DOI: 10.1038/s41467-019-12243-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Allergic asthma is an inflammatory disorder of the airway without satisfactory traditional therapies capable of controlling the underlying pathology. New approaches that can overcome the detrimental effects of immune dysregulation are thus desirable. Here we adoptively transfer ovalbumin (OVA) peptide-primed CD4−CD8− double negative T (DNT) cells intravenously into a mouse model of OVA-induced allergic asthma to find that OVA-induced airway hyperresponsiveness, lung inflammation, mucus production and OVA-specific IgG/IgE production are significantly suppressed. The immunosuppressive function of the OVA-specific DNT cells is dependent on the inhibition of CD11b+ dendritic cell function, T follicular helper cell proliferation, and IL-21 production. Mechanistically, Lag3 contributes to MHC-II antigen recognition and trogocytosis, thereby modulating the antigen-specific immune regulation by DNT cells. The effectiveness of ex vivo-generated allergen-specific DNT cells in alleviating airway inflammation thus supports the potential utilization of DNT cell-based therapy for the treatment of allergic asthma. Allergic asthma symptoms may be controlled, but currently no effective therapy exist to address the underlying pathology. Here the authors show, using mouse model of adoptive cell transfer, that CD4-CD8- T cells can suppress the function of dendritic cells and T follicular helper cells via Lag3 to provide allergen-specific protection from asthma.
Collapse
|
43
|
Abstract
Communication between cells is essential for multicellular life. During cognate immune interactions, T cells communicate with antigen-presenting cells (APC) via direct cell-cell contact or the release of molecules and vesicles containing T cell messages. A wide variety of mechanisms have been reported and among them a process called "trogocytosis" has traditionally been thought to be the fastest way to directly transfer membrane portions containing intact proteins from one cell to another; however, the mechanism is unverified. Trogocytosis has been distinguished from the generation of extracellular vesicles (EVs), a term that encompasses exosomes and microvesicles, as EVs are released via a contact-independent manner and are suggested to potentially send molecular messages over a distance. However, some previous reports regarding EVs in T cells may be misleading in terms of explaining their cellular origins. In addition, there is little evidence on how EVs are generated from T cells in vivo and function to regulate complex immune responses. A recent work demonstrated that T cell microvilli-thin and finger-like membrane protrusions-are highly fragile and easily separated as membrane particles by trogocytosis, forming a new class of EVs. Surprisingly, released T cell microvilli-derived particles act as vectors, transmitting T cell messages to cognate APCs. This review focuses on how T cell microvilli vesicles are connected with immune regulation mechanisms discovered previously.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
44
|
Reed J, Wetzel SA. Trogocytosis-Mediated Intracellular Signaling in CD4 + T Cells Drives T H2-Associated Effector Cytokine Production and Differentiation. THE JOURNAL OF IMMUNOLOGY 2019; 202:2873-2887. [PMID: 30962293 DOI: 10.4049/jimmunol.1801577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 12/24/2022]
Abstract
CD4+ T cells have been observed to acquire APC-derived membrane and membrane-associated molecules through trogocytosis in diverse immune settings. Despite this, the consequences of trogocytosis on the recipient T cell remain largely unknown. We previously reported that trogocytosed molecules on CD4+ T cells engage their respective surface receptors, leading to sustained TCR signaling and survival after APC removal. Using peptide-pulsed bone marrow-derived dendritic cells and transfected murine fibroblasts expressing antigenic MHC:peptide complexes as APC, we show that trogocytosis-positive CD4+ T cells display effector cytokines and transcription factor expression consistent with a TH2 phenotype. In vitro-polarized TH2 cells were found to be more efficient at performing trogocytosis than TH1 or nonpolarized CD4+ cells, whereas subsequent trogocytosis-mediated signaling induced TH2 differentiation in polarized TH1 and nonpolarized cells. Trogocytosis-positive CD4+ T cells generated in vivo also display a TH2 phenotype in both TCR-transgenic and wild-type models. These findings suggest that trogocytosis-mediated signaling impacts CD4+ T cell differentiation and effector cytokine production and may play a role in augmenting or shaping a TH2-dominant immune response.
Collapse
Affiliation(s)
- Jim Reed
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT 59812; and
| | - Scott A Wetzel
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT 59812; and .,Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812
| |
Collapse
|
45
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
46
|
Li G, Bethune MT, Wong S, Joglekar AV, Leonard MT, Wang JK, Kim JT, Cheng D, Peng S, Zaretsky JM, Su Y, Luo Y, Heath JR, Ribas A, Witte ON, Baltimore D. T cell antigen discovery via trogocytosis. Nat Methods 2019; 16:183-190. [PMID: 30700903 DOI: 10.1038/s41592-018-0305-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023]
Abstract
T cell receptor (TCR) ligand discovery is essential for understanding and manipulating immune responses to tumors. We developed a cell-based selection platform for TCR ligand discovery that exploits a membrane transfer phenomenon called trogocytosis. We discovered that T cell membrane proteins are transferred specifically to target cells that present cognate peptide-major histocompatibility complex (MHC) molecules. Co-incubation of T cells expressing an orphan TCR with target cells collectively presenting a library of peptide-MHCs led to specific labeling of cognate target cells, enabling isolation of these target cells and sequencing of the cognate TCR ligand. We validated this method for two clinically employed TCRs and further used the platform to identify the cognate neoepitope for a subject-derived neoantigen-specific TCR. Thus, target cell trogocytosis is a robust tool for TCR ligand discovery that will be useful for studying basic tumor immunology and identifying new targets for immunotherapy.
Collapse
Affiliation(s)
- Guideng Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. .,Suzhou Institute of Systems Medicine, Suzhou, China.
| | - Michael T Bethune
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Stephanie Wong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alok V Joglekar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael T Leonard
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jessica K Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jocelyn T Kim
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donghui Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Songming Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jesse M Zaretsky
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yapeng Su
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Parker Institute for Cancer Immunotherapy (PICI) Center, California Institute of Technology, Pasadena, CA, USA
| | - Antoni Ribas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Division of Hematology & Oncology, Department of Medicine, and Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.,Parker Institute for Cancer Immunotherapy (PICI) Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Parker Institute for Cancer Immunotherapy (PICI) Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Parker Institute for Cancer Immunotherapy (PICI) Center, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
47
|
Akkaya B, Oya Y, Akkaya M, Al Souz J, Holstein AH, Kamenyeva O, Kabat J, Matsumura R, Dorward DW, Glass DD, Shevach EM. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat Immunol 2019; 20:218-231. [PMID: 30643268 PMCID: PMC6402611 DOI: 10.1038/s41590-018-0280-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/08/2018] [Indexed: 01/22/2023]
Abstract
T regulatory cells (Tregs) can activate multiple suppressive mechanisms in vitro upon activation via the T cell receptor resulting in antigen-independent suppression. However, it remains unclear whether similar pathways operate in vivo. Here, we found that antigen-specific Tregs activated by dendritic cells (DCs) pulsed with two antigens suppressed Tnaive specific for both cognate and non-cognate antigens in vitro, but only suppressed Tnaive specific for cognate antigen in vivo. Antigen-specific Tregs formed strong interactions with DC resulting in selective inhibition of the binding of Tnaive to cognate antigen, yet allowing bystander Tnaive access. Strong binding resulted in removal of the cognate peptide-MHCII (pMHCII) from the DC surface reducing the capacity of the DC to present antigen. The enhanced binding of Tregs to DC coupled with their capacity to deplete pMHCII represents a novel pathway for Treg-mediated suppression and may be a mechanism by which Tregs maintain immune homeostasis.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Yoshihiro Oya
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Rheumatology, Allergy & Clinical Immunology, National Hospital Organization Chiba-East National Hospital, Chiba, Japan
| | - Munir Akkaya
- Laboratory of Immunogenetics National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jafar Al Souz
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amanda H Holstein
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Olena Kamenyeva
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ryutaro Matsumura
- Department of Rheumatology, Allergy & Clinical Immunology, National Hospital Organization Chiba-East National Hospital, Chiba, Japan
| | - David W Dorward
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Labs, Hamilton, MT, USA
| | - Deborah D Glass
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Rapa Therapeutics, Rockville, MD, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
48
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
49
|
Osuna CE, Lim SY, Kublin JL, Apps R, Chen E, Mota TM, Huang SH, Ren Y, Bachtel ND, Tsibris AM, Ackerman ME, Jones RB, Nixon DF, Whitney JB. Evidence that CD32a does not mark the HIV-1 latent reservoir. Nature 2018; 561:E20-E28. [PMID: 30232424 DOI: 10.1038/s41586-018-0495-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 05/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Christa E Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica L Kublin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard Apps
- Center for Human Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Elsa Chen
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Szu-Han Huang
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yanqin Ren
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nathaniel D Bachtel
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Athe M Tsibris
- Brigham and Women's Hospital, Boston, Massachusetts Harvard Medical School, Boston, MA, USA
| | | | - R Brad Jones
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. .,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
50
|
T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun 2018; 9:3630. [PMID: 30194420 PMCID: PMC6128830 DOI: 10.1038/s41467-018-06090-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022] Open
Abstract
Microvilli on T cells have been proposed to survey surfaces of antigen-presenting cells (APC) or facilitate adhesion under flow; however, whether they serve essential functions during T cell activation remains unclear. Here we show that antigen-specific T cells deposit membrane particles derived from microvilli onto the surface of cognate antigen-bearing APCs. Microvilli carry T cell receptors (TCR) at all stages of T cell activation and are released as large TCR-enriched, T cell microvilli particles (TMP) in a process of trogocytosis. These microvilli exclusively contain protein arrestin-domain-containing protein 1, which is directly involved in membrane budding and, in combination with vacuolar protein-sorting-associated protein 4, transforms large TMPs into smaller, exosome-sized TMPs. Notably, TMPs from CD4+ T cells are enriched with LFA-2/CD2 and various cytokines involved in activating dendritic cells. Collectively, these results demonstrate that T cell microvilli constitute “immunological synaptosomes” that carry T cell messages to APCs. Microvilli can participate in adhesion or migration of T cells, but whether they are involved in function regulation is unclear. Here the authors show that T cell microvilli form budding vesicles containing T cell signalling components for deposition onto antigen presenting cells (APC) and modulation of APC functions.
Collapse
|