1
|
Liu B, Kang N, Yang F, Zhang W, Yan X, Wang H, Bai S, Cheng CC, Xu J, Hu W, Zhang Y. Discovery of FLT3-ITD Inhibitor Clifutinib: A Novel Biphenylacetylene Urea Derivative in Clinical Trials for the Treatment of Relapsed/Refractory FLT3-ITD + Acute Myeloid Leukemia. J Med Chem 2025; 68:7955-7972. [PMID: 40213868 DOI: 10.1021/acs.jmedchem.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Internal tandem duplication (ITD) mutations of FLT3 (FLT3-ITD) are a promising target for patients with acute myeloid leukemia (AML), given that they have been identified in the majority of AML patients and are associated with poor prognosis. Here, a series of biphenylacetylene derivatives was developed as selective FLT3-ITD inhibitors. Representative compound 9e exhibited excellent potency against FLT3-ITD kinase, with an IC50 value of 15.1 nM, and potently suppressed the proliferation of MV-4-11 and MOLM-13 AML cells harboring FLT3-ITD, with IC50 values of 1.5 and 1.4 nM, respectively. Moreover, compound 9e displayed favorable drug-like properties and significantly suppressed tumor growth in MV-4-11 (1.5 mg/kg, qd, tumor growth inhibition (TGI) = 193.5%) and MOLM-13 (4.5 mg/kg, qd, TGI = 94%) xenograft tumor models in mice without significant weight loss. Compound 9e (named Clifutinib) is currently being evaluated in a phase III clinical trial (NCT05586074) for the treatment of relapsed/refractory FLT3-ITD-positive AML.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Ning Kang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Fang Yang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - WeiHong Zhang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - XingGuo Yan
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Heng Wang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Shun Bai
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Cliff C Cheng
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Juan Xu
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - WenHao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - YingJun Zhang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| |
Collapse
|
2
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
3
|
Li J, Tang B, Miao Y, Li G, Sun Z. Targeting of STAT5 using the small molecule topotecan hydrochloride suppresses acute myeloid leukemia progression. Oncol Rep 2023; 50:208. [PMID: 37830151 PMCID: PMC10603551 DOI: 10.3892/or.2023.8645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a common type of acute leukemia in adults and relapse is one of the main reasons for treatment failure. FLT3‑ITD mutations are associated with poor prognosis, short disease‑free progression survival and high relapse rates in patients with AML. STAT5 is activated by FLT3‑ITD and drives the pathogenesis of AML. STAT5 activation is usually a hallmark of hematologic malignancies and occurs in ~70% of patients with AML. Moreover, STAT5 is a key molecule which regulates hematopoiesis, and its high expression is closely associated with drug resistance, thus direct targeting of STAT5 for AML is of great clinical value. The present study introduces a new small‑molecule inhibitor that targets STAT5, presenting a promising approach for AML therapy. A high throughput fluorescence polarization (FP) screening system for STAT5 was designed and established, and used to screen an existing compound library to obtain the highly active small molecule inhibitor, topotecan hydrochloride. Topotecan hydrochloride was demonstrated to be an effective inhibitor of STAT5 by molecular docking prediction and cellular thermal shift assay. Topotecan hydrochloride bound to STAT5, inhibiting its dimerization, phosphorylation and transcription of specific target genes. The compound exhibits cellular activity at the nanomolar level and significantly inhibits the proliferation of human AML cell lines and FLT3‑ITD+ AML cells. Furthermore, topotecan hydrochloride has the potential to exert an anti‑tumor effect in vivo. Overall, topotecan hydrochloride offers a new opportunity for the treatment of AML and other hematologic malignancies by directly targeting STAT5.
Collapse
Affiliation(s)
- Jiahui Li
- Fengxian Hospital Affiliated to Anhui University of Science and Technology, Shanghai 201499, P.R. China
| | - Bin Tang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, Anhui 241000, P.R. China
| | - Ying Miao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 201100, P.R. China
| | - Guihong Li
- Fengxian Hospital Affiliated to The Southern Medical University, Shanghai 201499, P.R. China
| | - Zhenliang Sun
- Fengxian Hospital Affiliated to Anhui University of Science and Technology, Shanghai 201499, P.R. China
| |
Collapse
|
4
|
Liang WW, Lu RJH, Jayasinghe RG, Foltz SM, Porta-Pardo E, Geffen Y, Wendl MC, Lazcano R, Kolodziejczak I, Song Y, Govindan A, Demicco EG, Li X, Li Y, Sethuraman S, Payne SH, Fenyö D, Rodriguez H, Wiznerowicz M, Shen H, Mani DR, Rodland KD, Lazar AJ, Robles AI, Ding L. Integrative multi-omic cancer profiling reveals DNA methylation patterns associated with therapeutic vulnerability and cell-of-origin. Cancer Cell 2023; 41:1567-1585.e7. [PMID: 37582362 PMCID: PMC11613269 DOI: 10.1016/j.ccell.2023.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
DNA methylation plays a critical role in establishing and maintaining cellular identity. However, it is frequently dysregulated during tumor development and is closely intertwined with other genetic alterations. Here, we leveraged multi-omic profiling of 687 tumors and matched non-involved adjacent tissues from the kidney, brain, pancreas, lung, head and neck, and endometrium to identify aberrant methylation associated with RNA and protein abundance changes and build a Pan-Cancer catalog. We uncovered lineage-specific epigenetic drivers including hypomethylated FGFR2 in endometrial cancer. We showed that hypermethylated STAT5A is associated with pervasive regulon downregulation and immune cell depletion, suggesting that epigenetic regulation of STAT5A expression constitutes a molecular switch for immunosuppression in squamous tumors. We further demonstrated that methylation subtype-enrichment information can explain cell-of-origin, intra-tumor heterogeneity, and tumor phenotypes. Overall, we identified cis-acting DNA methylation events that drive transcriptional and translational changes, shedding light on the tumor's epigenetic landscape and the role of its cell-of-origin.
Collapse
Affiliation(s)
- Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Steven M Foltz
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Eduard Porta-Pardo
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rossana Lazcano
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iga Kolodziejczak
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Yizhe Song
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Akshay Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Sunantha Sethuraman
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Heliodor Swiecicki Clinical Hospital in Poznań, Ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
5
|
Bartolo ND, Mortimer N, Manter MA, Sanchez N, Riley M, O'Malley TT, Hooker JM. Identification and Prioritization of PET Neuroimaging Targets for Microglial Phenotypes Associated with Microglial Activity in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3641-3660. [PMID: 36473177 DOI: 10.1021/acschemneuro.2c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Niall Mortimer
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mariah A Manter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Nicholas Sanchez
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Misha Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Tiernan T O'Malley
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
6
|
Tecik M, Adan A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. Onco Targets Ther 2022; 15:1449-1478. [PMID: 36474506 PMCID: PMC9719701 DOI: 10.2147/ott.s384293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
7
|
Blackmon A, Aldoss I, Ball BJ. FLT3 Inhibitors as Maintenance Therapy after Allogeneic Stem-Cell Transplantation. Blood Lymphat Cancer 2022; 12:137-147. [PMID: 36097605 PMCID: PMC9464008 DOI: 10.2147/blctt.s281252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the FLT3 gene are associated with poor prognosis in patients with AML, even after consolidation with allogeneic hematopoietic cell transplantation (alloHCT) in first remission. Treatment failure in FLT3-mutated AML is largely driven by excessive risk of relapse compared to other genetic subtypes, including in patients post-alloHCT. As a result, there is substantial interest in studying posttransplant maintenance therapy in FLT3-mutated AML as an approach to optimize disease control and improve long-term outcomes. Clinical trials utilizing posttransplant FLT3 inhibitors, such as sorafenib and midostaurin, have shown feasibility, safety, and encouraging posttransplant outcomes, and there are ongoing studies using newer-generation tyrosine-kinase inhibitors as posttransplant maintenance therapy. Here, we review the toxicities and efficacy of FLT3 inhibitors as posttransplant maintenance, recommendations on the use of FLT3 inhibitors by international consensus guidelines, and highlight key remaining questions.
Collapse
Affiliation(s)
- Amanda Blackmon
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Brian J Ball
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
8
|
Cilibrasi V, Spanò V, Bortolozzi R, Barreca M, Raimondi MV, Rocca R, Maruca A, Montalbano A, Alcaro S, Ronca R, Viola G, Barraja P. Synthesis of 2H-Imidazo[2',1':2,3] [1,3]thiazolo[4,5-e]isoindol-8-yl-phenylureas with promising therapeutic features for the treatment of acute myeloid leukemia (AML) with FLT3/ITD mutations. Eur J Med Chem 2022; 235:114292. [PMID: 35339838 DOI: 10.1016/j.ejmech.2022.114292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
Despite progressive advances in understanding the molecular biology of acute myeloid leukemia (AML), the conventional therapeutic approach has not changed substantially, and the outcome for most patients is poor. Thus, continuous efforts on the discovery of new compounds with improved features are required. Following a multistep sequence, we have identified a new tetracyclic ring system with strong antiproliferative activity towards several haematological cell lines. The new compounds possess structural properties typical of inactive-state-binding kinase inhibitors and are structurally related to quizartinib which is known as type-II tyrosine kinase inhibitor. In particular, the high activity found in two cell lines MOLM-13 and MV4-11, expressing the constitutively activated mutant FLT3/ITD, indicates inhibition of FLT3 kinase and on the basis of structure-activity relationship (SAR) the presence of an ureido moiety demonstrates to play a key role in driving the antiproliferative activity towards these cell lines. Molecular modelling studies supported the mechanism of recognition of the most active compounds within the FLT3 pocket where quizartinib binds. Moreover, Molecular Dynamics simulation (MDs) revealed the formation of a recurrent H-bond with Asp829, which more stabilizes the complex of 9c and the FLT3 inactive state. In MV4-11 cell line compound 9c reduces the phosphorylation of FLT3 (Y591) and some of its downstream targets leading to cell cycle arrest at G1 phase and induction of apoptosis. In an MV4-11 xenograft mouse model, 9c significantly reduces the tumor growth at the dose of 1-3 mg/kg without apparent toxicity.
Collapse
Affiliation(s)
- Vincenzo Cilibrasi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bortolozzi
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Rocca
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Medicina Sperimentale e Clinica, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Stefano Alcaro
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Giampietro Viola
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy; Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia Università di Padova, Via Giustiniani 2, 35131, Padova, Italy.
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
9
|
Im D, Jun J, Baek J, Kim H, Kang D, Bae H, Cho H, Hah JM. Rational design and synthesis of 2-(1H-indazol-6-yl)-1H-benzo[d]imidazole derivatives as inhibitors targeting FMS-like tyrosine kinase 3 (FLT3) and its mutants. J Enzyme Inhib Med Chem 2022; 37:472-486. [PMID: 35067150 PMCID: PMC8788362 DOI: 10.1080/14756366.2021.2020772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) has been verified as a therapeutic target for acute myeloid leukaemia (AML). In this study, we report a series of 2-(1H-indazol-6-yl)-1H-benzo[d]imidazol-5-yl benzamide and phenyl urea derivatives as potent FLT3 inhibitors based on the structural optimisation of previous FLT3 inhibitors. Derivatives were synthesised as benzamide 8a–k, 8n–z, and phenyl urea 8l–m, with various substituents. The most potent inhibitor, 8r, demonstrated strong inhibitory activity against FLT3 and FLT3 mutants with a nanomolar IC50 and high selectivity profiles over 42 protein kinases. In addition, these type II FLT3 inhibitors were more potent against FLT3 mutants correlated with drug resistance. Overall, we provide a theoretical basis for the structural optimisation of novel benzimidazole analogues to develop strong inhibitors against FLT3 mutants for AML therapeutics.
Collapse
Affiliation(s)
- Daseul Im
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Joonhong Jun
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Jihyun Baek
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Haejin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Dahyun Kang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Hyunah Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Hyunwook Cho
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Jung-Mi Hah
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| |
Collapse
|
10
|
Cueto FJ, Sancho D. The Flt3L/Flt3 Axis in Dendritic Cell Biology and Cancer Immunotherapy. Cancers (Basel) 2021; 13:1525. [PMID: 33810248 PMCID: PMC8037622 DOI: 10.3390/cancers13071525] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) prime anti-tumor T cell responses in tumor-draining lymph nodes and can restimulate T effector responses in the tumor site. Thus, in addition to unleashing T cell effector activity, current immunotherapies should be directed to boost DC function. Herein, we review the potential function of Flt3L as a tool for cancer immunotherapy. Flt3L is a growth factor that acts in Flt3-expressing multipotent progenitors and common lymphoid progenitors. Despite the broad expression of Flt3 in the hematopoietic progenitors, the main effect of the Flt3/Flt3L axis, revealed by the characterization of mice deficient in these genes, is the generation of conventional DCs (cDCs) and plasmacytoid DCs (pDCs). However, Flt3 signaling through PI3K and mTOR may also affect the function of mature DCs. We recapitulate the use of Flt3L in preclinical studies either as a single agent or in combination with other cancer therapies. We also analyze the use of Flt3L in clinical trials. The strong correlation between type 1 cDC (cDC1) infiltration of human cancers with overall survival in many cancer types suggests the potential use of Flt3L to boost expansion of this DC subset. However, this may need the combination of Flt3L with other immunomodulatory agents to boost cancer immunotherapy.
Collapse
Affiliation(s)
- Francisco J. Cueto
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
11
|
Wang Z, Cai J, Cheng J, Yang W, Zhu Y, Li H, Lu T, Chen Y, Lu S. FLT3 Inhibitors in Acute Myeloid Leukemia: Challenges and Recent Developments in Overcoming Resistance. J Med Chem 2021; 64:2878-2900. [PMID: 33719439 DOI: 10.1021/acs.jmedchem.0c01851] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene are often present in newly diagnosed acute myeloid leukemia (AML) patients with an incidence rate of approximately 30%. Recently, many FLT3 inhibitors have been developed and exhibit positive preclinical and clinical effects against AML. However, patients develop resistance soon after undergoing FLT3 inhibitor treatment, resulting in short durable responses and poor clinical effects. This review will discuss the main mechanisms of resistance to clinical FLT3 inhibitors and summarize the emerging strategies that are utilized to overcome drug resistance. Basically, medicinal chemistry efforts to develop new small-molecule FLT3 inhibitors offer a direct solution to this problem. Other potential strategies include the combination of FLT3 inhibitors with other therapies and the development of multitarget inhibitors. It is hoped that this review will provide inspiring insights into the discovery of new AML therapies that can eventually overcome the resistance to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiongheng Cai
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Wenqianzi Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yifan Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
12
|
Bjelosevic S, Gruber E, Newbold A, Shembrey C, Devlin JR, Hogg SJ, Kats L, Todorovski I, Fan Z, Abrehart TC, Pomilio G, Wei A, Gregory GP, Vervoort SJ, Brown KK, Johnstone RW. Serine Biosynthesis Is a Metabolic Vulnerability in FLT3-ITD-Driven Acute Myeloid Leukemia. Cancer Discov 2021; 11:1582-1599. [PMID: 33436370 DOI: 10.1158/2159-8290.cd-20-0738] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Internal tandem duplication of the FMS-like tyrosine kinase 3 gene (FLT3-ITD) occurs in 30% of all acute myeloid leukemias (AML). Limited clinical efficacy of FLT3 inhibitors highlights the need for alternative therapeutic modalities in this subset of disease. Using human and murine models of FLT3-ITD-driven AML, we demonstrate that FLT3-ITD promotes serine synthesis and uptake via ATF4-dependent transcriptional regulation of genes in the de novo serine biosynthesis pathway and neutral amino acid transport. Genetic or pharmacologic inhibition of PHGDH, the rate-limiting enzyme of de novo serine biosynthesis, selectively inhibited proliferation of FLT3-ITD AMLs in vitro and in vivo. Moreover, pharmacologic inhibition of PHGDH sensitized FLT3-ITD AMLs to the standard-of-care chemotherapeutic cytarabine. Collectively, these data reveal novel insights into FLT3-ITD-induced metabolic reprogramming and reveal a targetable vulnerability in FLT3-ITD AML. SIGNIFICANCE: FLT3-ITD mutations are common in AML and are associated with poor prognosis. We show that FLT3-ITD stimulates serine biosynthesis, thereby rendering FLT3-ITD-driven leukemias dependent upon serine for proliferation and survival. This metabolic dependency can be exploited pharmacologically to sensitize FLT3-ITD-driven AMLs to chemotherapy.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Stefan Bjelosevic
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Emily Gruber
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Andrea Newbold
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Carolyn Shembrey
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jennifer R Devlin
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lev Kats
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Izabela Todorovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Zheng Fan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Thomas C Abrehart
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.,Department of Clinical Haematology, The Alfred Hospital, Melbourne, Australia
| | - Andrew Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.,Department of Clinical Haematology, The Alfred Hospital, Melbourne, Australia.,Department of Pathology, The Alfred Hospital, Melbourne, Australia
| | - Gareth P Gregory
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Stephin J Vervoort
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Kristin K Brown
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia. .,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Australia
| | - Ricky W Johnstone
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia. .,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Im D, Moon H, Kim J, Oh Y, Jang M, Hah JM. Discovery of 5-methyl- N-(2-arylquinazolin-7-yl)isoxazole-4-carboxamide analogues as highly selective FLT3 inhibitors. J Enzyme Inhib Med Chem 2020; 35:1110-1115. [PMID: 32338093 PMCID: PMC7241567 DOI: 10.1080/14756366.2020.1758689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A series of 4-arylamido 5-methylisoxazole derivatives with quinazoline core was designed and synthesised based on conformational rigidification of a previous type II FMS inhibitor. Most of quinazoline analogues displayed activity against FLT3 and FLT3-ITD. Compound 7d, 5-methyl-N-(2-(3-(4-methylpiperazin-1-yl)-5-(trifluoromethyl)phenyl)quinazolin-7-yl)isoxazole-4-carboxamide, exhibited the most potent inhibitory activity against FLT3 (IC50= 106 nM) with excellent selectivity profiles over 36 other protein kinases including cKit and FMS kinase. Compound 7d was also active in FLT-ITD, with an IC50 value of 301 nM, and other FLT3 mutants showing potential as an AML therapeutics.
Collapse
Affiliation(s)
- Daseul Im
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Hyungwoo Moon
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Jinwoong Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Youri Oh
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Miyoung Jang
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Jung-Mi Hah
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| |
Collapse
|
14
|
Jeong P, Moon Y, Lee JH, Lee SD, Park J, Lee J, Kim J, Lee HJ, Kim NY, Choi J, Heo JD, Shin JE, Park HW, Kim YG, Han SY, Kim YC. Discovery of orally active indirubin-3'-oxime derivatives as potent type 1 FLT3 inhibitors for acute myeloid leukemia. Eur J Med Chem 2020; 195:112205. [PMID: 32272419 DOI: 10.1016/j.ejmech.2020.112205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/13/2023]
Abstract
FMS-like receptor tyrosine kinase-3 (FLT3) is expressed on acute leukemia cells and is implicated in the survival, proliferation and differentiation of hematopoietic cells in most acute myeloid leukemia (AML) patients. Despite recent achievements in the development of FLT3-targeted small-molecule drugs, there are still unmet medical needs related to kinase selectivity and the progression of some mutant forms of FLT3. Herein, we describe the discovery of novel orally available type 1 FLT3 inhibitors from structure-activity relationship (SAR) studies for the optimization of indirubin derivatives with biological and pharmacokinetic profiles as potential therapeutic agents for AML. The SAR exploration provided important structural insights into the key substituents for potent inhibitory activities of FLT3 and in MV4-11 cells. The profile of the most optimized inhibitor (36) showed IC50 values of 0.87 and 0.32 nM against FLT3 and FLT3/D835Y, respectively, along with potent inhibition against MV4-11 and FLT3/D835Y expressed MOLM14 cells with a GI50 value of 1.0 and 1.87 nM, respectively. With the high oral bioavailability of 42.6%, compound 36 displayed significant in vivo antitumor activity by oral administration of 20 mg/kg once daily dosing schedule for 21 days in a mouse xenograft model. The molecular docking study of 36 in the homology model of the DFG-in conformation of FLT3 resulted in a reasonable binding mode in type 1 kinases similar to the reported type 1 FLT3 inhibitors Crenolanib and Gilteritinib.
Collapse
Affiliation(s)
- Pyeonghwa Jeong
- Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yeongyu Moon
- Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do, 52834, Republic of Korea
| | - Je-Heon Lee
- School of Life Sciences and Center for AI-applied High Efficiency Drug Discovery, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - So-Deok Lee
- School of Life Sciences and Center for AI-applied High Efficiency Drug Discovery, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jiyeon Park
- School of Life Sciences and Center for AI-applied High Efficiency Drug Discovery, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jungeun Lee
- School of Life Sciences and Center for AI-applied High Efficiency Drug Discovery, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jiheon Kim
- School of Life Sciences and Center for AI-applied High Efficiency Drug Discovery, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Na Yoon Kim
- College of Pharmacy, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Jungil Choi
- Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do, 52834, Republic of Korea
| | - Jeong Doo Heo
- Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do, 52834, Republic of Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon-Gyoon Kim
- College of Pharmacy, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea.
| | - Yong-Chul Kim
- Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea; School of Life Sciences and Center for AI-applied High Efficiency Drug Discovery, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
15
|
Im D, Moon H, Kim J, Oh Y, Jang M, Hah JM. Conformational restriction of a type II FMS inhibitor leading to discovery of 5-methyl- N-(2-aryl-1 H-benzo[d]imidazo-5-yl)isoxazole-4-carboxamide analogues as selective FLT3 inhibitors. J Enzyme Inhib Med Chem 2019; 34:1716-1721. [PMID: 31571509 PMCID: PMC6781469 DOI: 10.1080/14756366.2019.1671837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A series of 4-arylamido 5-methylisoxazole derivatives incorporating benzimidazole was designed and synthesised by conformational restriction of an in-house type II FMS inhibitor. Kinase profiling of one compound revealed interesting features, with increased inhibitory potency towards FLT3 and concomitant loss of potency towards FMS. Several benzimidazole derivatives 5a–5g and 6a–6c containing various hydrophobic moieties were synthesised, and their inhibitory activity against FLT3 was evaluated. Specifically, 5a, 5-methyl-N-(2-(3-(4-methylpiperazin-1-yl)-5-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole-5-yl) isoxazole-4-carboxamide, exhibited the most potent inhibitory activity against FLT3 (IC50 = 495 nM), with excellent selectivity profiles.
Collapse
Affiliation(s)
- Daseul Im
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Hyungwoo Moon
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Jingwoong Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Youri Oh
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Miyoung Jang
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Jung-Mi Hah
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| |
Collapse
|
16
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
17
|
Signalling circuits that direct early B-cell development. Biochem J 2019; 476:769-778. [PMID: 30842310 DOI: 10.1042/bcj20180565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 12/23/2022]
Abstract
In mammals, the B-cell lineage arises from pluripotent progenitors in the bone marrow. During their development, B-cells undergo lineage specification and commitment, followed by expansion and selection. These processes are mediated by regulated changes in gene expression programmes, rearrangements of immunoglobulin (Ig) genes, and well-timed rounds of proliferation and apoptosis. Many of these processes are initiated by environmental factors including cytokines, chemokines, and cell-cell contacts. Developing B-cells process these environmental cues into stage-specific functions via signalling pathways including the PI3K, MAPK, or JAK-STAT pathway. The cytokines FLT3-Ligand and c-Kit-Ligand are important for the early expansion of the B-cell precursors at different developmental stages and conditions. Interleukin 7 is essential for commitment to the B-cell lineage and for orchestrating the Ig recombination machinery. After rearrangement of the immunoglobulin heavy chain, proliferation and apoptosis, and thus selection, are mediated by the clonal pre-B-cell receptor, and, following light chain rearrangement, by the B-cell receptor.
Collapse
|
18
|
Liang X, Wang B, Chen C, Wang A, Hu C, Zou F, Yu K, Liu Q, Li F, Hu Z, Lu T, Wang J, Wang L, Weisberg EL, Li L, Xia R, Wang W, Ren T, Ge J, Liu J, Liu Q. Discovery of N-(4-(6-Acetamidopyrimidin-4-yloxy)phenyl)-2-(2-(trifluoromethyl)phenyl)acetamide (CHMFL-FLT3-335) as a Potent FMS-like Tyrosine Kinase 3 Internal Tandem Duplication (FLT3-ITD) Mutant Selective Inhibitor for Acute Myeloid Leukemia. J Med Chem 2019; 62:875-892. [PMID: 30565931 DOI: 10.1021/acs.jmedchem.8b01594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most of the current FMS-like tyrosine kinase 3 (FLT3) inhibitors lack selectivity between FLT3 kinase and cKIT kinase as well as the FLT3 wt and internal tandem duplication (ITD) mutants. We report a new compound 27, which displays GI50 values of 30-80 nM against different ITD mutants and achieves selectivity over both FLT3 wt (8-fold) and cKIT kinase in the transformed BaF3 cells (>300-fold). 27 potently inhibits the proliferation of the FLT3-ITD-positive acute myeloid leukemia cancer lines through suppression of the phosphorylation of FLT3 kinase and downstream signaling pathways, induction of apoptosis, and arresting the cell cycle into the G0/G1 phase. 27 also displays potent antiproliferative effect against FLT3-ITD-positive patient primary cells, whereas it does not apparently affect FLT3 wt primary cells. In addition, it also exhibits a good therapeutic window to PBMC compared to PKC412. In the in vivo studies, 27 demonstrates favorable PK profiles and suppresses the tumor growth in the MV4-11 cell inoculated mouse xenograft model.
Collapse
Affiliation(s)
- Xiaofei Liang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Beilei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Cheng Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Aoli Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Chen Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Fengming Zou
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Kailin Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Qingwang Liu
- Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China.,Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230088 , P. R. China
| | - Feng Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Tingting Lu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Junjie Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Li Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana Farber Cancer Institute , Harvard Medical School , 450 Brookline Avenue , Boston , Massachusetts 02115 , United States
| | - Lili Li
- Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , P. R. China
| | - Ruixiang Xia
- Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , P. R. China
| | - Wenchao Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Tao Ren
- Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China.,Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230088 , P. R. China
| | - Jian Ge
- Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , P. R. China
| | - Jing Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China.,Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230088 , P. R. China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China.,Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230088 , P. R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| |
Collapse
|
19
|
Staudt D, Murray HC, McLachlan T, Alvaro F, Enjeti AK, Verrills NM, Dun MD. Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance. Int J Mol Sci 2018; 19:ijms19103198. [PMID: 30332834 PMCID: PMC6214138 DOI: 10.3390/ijms19103198] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The identification of recurrent driver mutations in genes encoding tyrosine kinases has resulted in the development of molecularly-targeted treatment strategies designed to improve outcomes for patients diagnosed with acute myeloid leukemia (AML). The receptor tyrosine kinase FLT3 is the most commonly mutated gene in AML, with internal tandem duplications within the juxtamembrane domain (FLT3-ITD) or missense mutations in the tyrosine kinase domain (FLT3-TKD) present in 30–35% of AML patients at diagnosis. An established driver mutation and marker of poor prognosis, the FLT3 tyrosine kinase has emerged as an attractive therapeutic target, and thus, encouraged the development of FLT3 tyrosine kinase inhibitors (TKIs). However, the therapeutic benefit of FLT3 inhibition, particularly as a monotherapy, frequently results in the development of treatment resistance and disease relapse. Commonly, FLT3 inhibitor resistance occurs by the emergence of secondary lesions in the FLT3 gene, particularly in the second tyrosine kinase domain (TKD) at residue Asp835 (D835) to form a ‘dual mutation’ (ITD-D835). Individual FLT3-ITD and FLT3-TKD mutations influence independent signaling cascades; however, little is known about which divergent signaling pathways are controlled by each of the FLT3 specific mutations, particularly in the context of patients harboring dual ITD-D835 mutations. This review provides a comprehensive analysis of the known discrete and cooperative signaling pathways deregulated by each of the FLT3 specific mutations, as well as the therapeutic approaches that hold the most promise of more durable and personalized therapeutic approaches to improve treatments of FLT3 mutant AML.
Collapse
Affiliation(s)
- Dilana Staudt
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Tabitha McLachlan
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Frank Alvaro
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
- John Hunter Children's Hospital, Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, NSW 2305, Australia.
| | - Anoop K Enjeti
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
- Calvary Mater Hospital, Hematology Department, Waratah, NSW 2298, Australia.
- NSW Health Pathology North, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
20
|
Gallipoli P, Giotopoulos G, Tzelepis K, Costa AS, Vohra S, Medina-Perez P, Basheer F, Marando L, Di Lisio L, Dias JML, Yun H, Sasca D, Horton SJ, Vassiliou G, Frezza C, Huntly BJ. Glutaminolysis is a metabolic dependency in FLT3 ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. Blood 2018; 131:1639-1653. [PMID: 29463564 PMCID: PMC6061932 DOI: 10.1182/blood-2017-12-820035] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
FLT3 internal tandem duplication (FLT3ITD) mutations are common in acute myeloid leukemia (AML) associated with poor patient prognosis. Although new-generation FLT3 tyrosine kinase inhibitors (TKI) have shown promising results, the outcome of FLT3ITD AML patients remains poor and demands the identification of novel, specific, and validated therapeutic targets for this highly aggressive AML subtype. Utilizing an unbiased genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screen, we identify GLS, the first enzyme in glutamine metabolism, as synthetically lethal with FLT3-TKI treatment. Using complementary metabolomic and gene-expression analysis, we demonstrate that glutamine metabolism, through its ability to support both mitochondrial function and cellular redox metabolism, becomes a metabolic dependency of FLT3ITD AML, specifically unmasked by FLT3-TKI treatment. We extend these findings to AML subtypes driven by other tyrosine kinase (TK) activating mutations and validate the role of GLS as a clinically actionable therapeutic target in both primary AML and in vivo models. Our work highlights the role of metabolic adaptations as a resistance mechanism to several TKI and suggests glutaminolysis as a therapeutically targetable vulnerability when combined with specific TKI in FLT3ITD and other TK activating mutation-driven leukemias.
Collapse
Affiliation(s)
- Paolo Gallipoli
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - George Giotopoulos
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Konstantinos Tzelepis
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Ana S.H. Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Shabana Vohra
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Paula Medina-Perez
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Faisal Basheer
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ludovica Marando
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lorena Di Lisio
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Joao M. L. Dias
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Haiyang Yun
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Daniel Sasca
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Sarah J. Horton
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - George Vassiliou
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Brian J.P. Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
21
|
Abstract
Internal tandem duplications (ITD) and tyrosine-kinase domain (TKD) mutations of the FMS-like tyrosine-kinase 3 (FLT3) can be found in up to one third of patients with acute myeloid leukemia (AML) and confer a poor prognosis. First discovered 20 years ago, these mutations were identified as viable therapeutic targets, and FLT3 tyrosine-kinase inhibitors (TKIs) have been in development for the last decade with steadily increasing potency. However, FLT3-mutated AML often acquires resistance to the growing armamentarium of FLT3 inhibitors through a variety of mechanisms. In this review, we discuss the distinct clinical phenotype of FLT3-mutated AML, historically and currently available therapeutics, mechanisms of resistance, ongoing trials, and future outlook at treatment strategies.
Collapse
Affiliation(s)
- Mark B Leick
- Department of Medicine, Johns Hopkins University, 600 North Wolfe Street, Harvey 805, Baltimore, MD, 21287, USA
| | - Mark J Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Cancer Research Building 1, Room 2M44, Baltimore, MD, 21287, USA.
| |
Collapse
|
22
|
Tamai M, Furuichi Y, Kasai S, Ando N, Harama D, Goi K, Inukai T, Kagami K, Abe M, Ichikawa H, Sugita K. TGFβ1 synergizes with FLT3 ligand to induce chemoresistant quiescence in acute lymphoblastic leukemia with MLL gene rearrangements. Leuk Res 2017; 61:68-76. [DOI: 10.1016/j.leukres.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/24/2022]
|
23
|
Qiu QC, Wang C, Bao XB, Yang J, Shen HJ, Ding ZX, Liu H, He J, Yao H, Chen SN, Li Z, Xue SL, Liu SB. The impact of FLT3 mutations on treatment response and survival in Chinese de novo AML patients. ACTA ACUST UNITED AC 2017; 23:131-138. [PMID: 28876197 DOI: 10.1080/10245332.2017.1372248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Two distinct forms of FMS-like tyrosine kinase 3 (FLT3) mutations, internal tandem duplication (ITD) in the juxtamembrane domain and point mutation within the activation loop of the tyrosine kinase domain (TKD), have been identified in considerable number of patients with AML. This study was aimed to analyze the impacts of these mutations on clinical outcomes, and assess the efficacy of different therapeutic regimens (allo-HSCT, sorafenib, or conventional chemotherapy) for AML patients with FLT3 mutations after the standard induction therapy. MATERIALS AND METHODS We analyzed DNA samples from 158 consecutive de novo AML patients (18-60 years, excluding APL) with FLT3 mutations between July 2010 and October 2015. RESULTS We found that AML patients with FLT3-TKD mutations have more favorable clinical outcomes than those with FLT3-ITD mutations. We also found that allo-HSCT therapy subgroup achieved longer OS and RFS than non-allo-HSCT therapy subgroup for FLT3-ITD positive patients (p < 0.001, p = 0.071). However, compared with the clinical outcomes in non-primary refractory patients, sorafenib did not show an obvious beneficial effect for the primary refractory patients. Further study on a large scale is still recommended. CONCLUSIONS FLT3-TKD-mutated AML patients have more favorable clinical outcomes than those with FLT3-ITD mutations. Allo-HSCT therapy subgroup achieved longer OS and RFS than non-allo-HSCT therapy subgroup for FLT3-ITD positive patients. Compared with the clinical outcomes in non-primary refractory patients, sorafenib did not show an obvious beneficial effect for the primary refractory patients.
Collapse
Affiliation(s)
- Qiao-Cheng Qiu
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Chao Wang
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Xie-Bing Bao
- b Department of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Jing Yang
- c Department of Clinical Nutrition , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Hong-Jie Shen
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Zi-Xuan Ding
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Hong Liu
- d Biobank of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Jun He
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Hong Yao
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China.,e Collaborative Innovation Center of Hematology , Soochow University , Suzhou , China
| | - Su-Ning Chen
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Zheng Li
- b Department of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Sheng-Li Xue
- a Jiangsu Institute of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China.,b Department of Hematology , The First Affiliated Hospital of Soochow University , Suzhou , China.,e Collaborative Innovation Center of Hematology , Soochow University , Suzhou , China
| | - Song-Bai Liu
- f Institute of Medical Biotechnology , Suzhou Vocational Health College , Suzhou , China
| |
Collapse
|
24
|
Gallogly MM, Lazarus HM, Cooper BW. Midostaurin: a novel therapeutic agent for patients with FLT3-mutated acute myeloid leukemia and systemic mastocytosis. Ther Adv Hematol 2017; 8:245-261. [PMID: 29051803 DOI: 10.1177/2040620717721459] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
The development of FLT3-targeted inhibitors represents an important paradigm shift in the management of patients with highly aggressive fms-like tyrosine kinase 3-mutated (FLT3-mut) acute myeloid leukemia (AML). Midostaurin is an orally administered type III tyrosine kinase inhibitor which in addition to FLT3 inhibits c-kit, platelet-derived growth factor receptors, src, and vascular endothelial growth factor receptor. Midostaurin is the first FLT3 inhibitor that has been shown to significantly improve survival in younger patients with FLT3-mut AML when given in combination with standard cytotoxic chemotherapy based on the recently completed RATIFY study. Its role for maintenance therapy after allogeneic transplantation and use in combination with hypomethylating agents for older patients with FLT3-mut has not yet been defined. Midostaurin also has recently been shown to have significant activity in systemic mastocytosis and related disorders due to its inhibitory effect on c-kit bearing a D816V mutation. Activation of downstream pathways in both of these myeloid malignancies likely plays an important role in the development of resistance, and strategies to inhibit these downstream targets may be synergistic. Incorporating patient factors and tumor characteristics, such as FLT3 mutant to wild-type allele ratios and resistance mutations, likely will be important in the optimization of midostaurin and other FLT3 inhibitors in the treatment of myeloid neoplasms.
Collapse
Affiliation(s)
- Molly M Gallogly
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hillard M Lazarus
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Brenda W Cooper
- Department of Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
25
|
Chen Y, Pan Y, Guo Y, Zhao W, Ho WT, Wang J, Xu M, Yang FC, Zhao ZJ. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investig 2017; 4:48. [PMID: 28607922 DOI: 10.21037/sci.2017.05.04] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/25/2017] [Indexed: 12/25/2022]
Abstract
Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells. Although significant progress has been made in treating many types of cancers during recent years, AML remains a deadly disease with survival rate lagging behind other blood cancers. A combination of toxic chemotherapies has been the standard AML treatment for more than 40 years. With intensive efforts to define the pathogenesis of AML, novel therapeutic drugs targeting key molecular defects in AML are being developed. Mutated in nearly 30% of AML, FMS-like tyrosine kinase 3 (FLT3) represents one of the most attractive targets. FLT3 mutants resulted from either internal tandem duplication (ITD) or point mutations possess enhanced kinase activity and cause constitutive activation of signaling. To date, several small molecule inhibitors of FLT3 have been developed but their clinical efficacy is limited due to a lack of potency and the generation of drug resistance. Therefore, next-generation FLT3 inhibitors overcoming these limitations are urgently in need. This review focuses on the pathological role of mutant FLT3 in the development of AML, the current status of FLT3 inhibitor development, and mechanisms underlining the development of resistance to existing FLT3 inhibitors.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yihang Pan
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yao Guo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wanke Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wanting Tina Ho
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
26
|
Tsapogas P, Mooney CJ, Brown G, Rolink A. The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017; 18:E1115. [PMID: 28538663 PMCID: PMC5485939 DOI: 10.3390/ijms18061115] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
The cytokine Fms-like tyrosine kinase 3 ligand (FL) is an important regulator of hematopoiesis. Its receptor, Flt3, is expressed on myeloid, lymphoid and dendritic cell progenitors and is considered an important growth and differentiation factor for several hematopoietic lineages. Activating mutations of Flt3 are frequently found in acute myeloid leukemia (AML) patients and associated with a poor clinical prognosis. In the present review we provide an overview of our current knowledge on the role of FL in the generation of blood cell lineages. We examine recent studies on Flt3 expression by hematopoietic stem cells and its potential instructive action at early stages of hematopoiesis. In addition, we review current findings on the role of mutated FLT3 in leukemia and the development of FLT3 inhibitors for therapeutic use to treat AML. The importance of mouse models in elucidating the role of Flt3-ligand in normal and malignant hematopoiesis is discussed.
Collapse
Affiliation(s)
- Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| | - Ciaran James Mooney
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Geoffrey Brown
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| |
Collapse
|
27
|
Wang LN, Tang YL, Zhang YC, Zhang ZH, Liu XJ, Ke ZY, Li Y, Tan HZ, Huang LB, Luo XQ. Arsenic trioxide and all-trans-retinoic acid selectively exert synergistic cytotoxicity against FLT3-ITD AML cells via co-inhibition of FLT3 signaling pathways. Leuk Lymphoma 2017; 58:2426-2438. [PMID: 28276286 DOI: 10.1080/10428194.2017.1289522] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
FLT3-ITD mutations occur in approximately 30% of acute myeloid leukemia (AML) and are associated with a poor outcome. Currently available FLT3 inhibitors have in vitro but limited clinical activity in FLT3-ITD AML. Reports have shown that an arsenic trioxide (ATO)/all-trans-retinoic acid (ATRA) combination improves prognosis in acute promyelocytic leukemia, especially with FLT3-ITD, and ATO or ATRA alone enhances apoptosis in FLT3-ITD AML cells treated with FLT3 inhibitors, providing a rationale to investigate the role of ATO/ATRA in FLT3-ITD AML. Here, we demonstrate that an ATO/ATRA combination selectively exerts synergistic cytotoxicity against FLT3-ITD AML cell lines (MV4;11/MOLM-13). The signaling pathways affected by ATO/ATRA include FLT3/STAT5/MYC, FLT3/STAT5/E2F1, FLT3/ERK/ATF5 and FLT3/AKT/ATF5.ATF5 may function as an oncogene in FLT3-ITD AML. Our findings provide experimental evidence that supports further exploration of ATO/ATRA in FLT3-ITD AML in vivo and warrants a clinical evaluation of regimens comprising an ATO/ATRA combination.
Collapse
Affiliation(s)
- Li-Na Wang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yan-Lai Tang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yin-Chuan Zhang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zu-Han Zhang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xiao-Jian Liu
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zhi-Yong Ke
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yu Li
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Hui-Zhen Tan
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Li-Bin Huang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xue-Qun Luo
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
28
|
RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leuk Res 2017; 54:47-54. [PMID: 28107692 DOI: 10.1016/j.leukres.2017.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 11/24/2022]
Abstract
FLT3 is frequently mutated and overexpressed in acute myelogenous leukemia (AML) and other hematologic malignancies. Although signaling events downstream of FLT3 receptor tyrosine kinase have been studied in depth, molecular mechanisms of how FLT3 expression is regulated at the post-transcriptional level in particular remain elusive. In this study, we investigated the roles of an RNA binding protein MSI2 as a regulator of FLT3 expression. MSI2 and FLT3 are significantly co-regulated in human AML and chronic myelogenous leukemia in blast crisis (BC-CML). Genetic loss of MSI2 leads to down-regulation of the FLT3 receptor in both AML and BC-CML cells and concomitant impairment of clonogenic growth potential. Furthermore, we demonstrate that MSI2 protein is physically bound to FLT3 mRNA transcripts, suggesting post-transcriptional control of FLT3 expression. Collectively, these results reveal a novel mode of FLT3 regulation essential for leukemia growth, which may aid in designing a targeted therapy to treat human myeloid leukemia.
Collapse
|
29
|
Abstract
FLT3-mutated acute myeloid leukemia (AML), despite not being recognized as a distinct entity in the World Health Organization (WHO) classification system, is readily recognized as a particular challenge by clinical specialists who treat acute leukemia. This is especially true with regards to the patients harboring the most common type of FLT3 mutation, the internal tandem duplication (FLT3-ITD) mutation. Here we present 4 patient cases from our institution and discuss how our management reflects what we have learned about this subtype of the disease. We also reflect on how we anticipate the management might change in the near future, with the emergence of clinically useful tyrosine kinase inhibitors.
Collapse
|
30
|
Villarino A, Laurence A, Robinson GW, Bonelli M, Dema B, Afzali B, Shih HY, Sun HW, Brooks SR, Hennighausen L, Kanno Y, O'Shea JJ. Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. eLife 2016; 5. [PMID: 26999798 PMCID: PMC4856466 DOI: 10.7554/elife.08384] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/18/2016] [Indexed: 12/13/2022] Open
Abstract
The transcription factor STAT5 is fundamental to the mammalian immune system. However, the relationship between its two paralogs, STAT5A and STAT5B, and the extent to which they are functionally distinct, remain uncertain. Using mouse models of paralog deficiency, we demonstrate that they are not equivalent for CD4+ 'helper' T cells, the principal orchestrators of adaptive immunity. Instead, we find that STAT5B is dominant for both effector and regulatory (Treg) responses and, therefore, uniquely necessary for immunological tolerance. Comparative analysis of genomic distribution and transcriptomic output confirm that STAT5B has fargreater impact but, surprisingly, the data point towards asymmetric expression (i.e. paralog dose), rather than distinct functional properties, as the key distinguishing feature. Thus, we propose a quantitative model of STAT5 paralog activity whereby relative abundance imposes functional specificity (or dominance) in the face of widespread structural homology. DOI:http://dx.doi.org/10.7554/eLife.08384.001 The immune system in mammals is one of the most complex networks in the animal kingdom. One way that its many components communicate is via proteins called cytokines, which are released by cells and detected by receptors on the surface of other cells. This leads to the activation of signals inside the responding cells that alter the activity of genes and, ultimately, direct how they behave. STAT5 is a signal protein that is activated when certain cytokines bind to receptors on the cell surface. Consequently, it is an attractive target for drug therapies that seek to alter immune responses and there is keen interest in understanding how it works. It is an unusual protein in that there are two versions – termed STAT5A and STAT5B – that are produced by two separate genes. Together, STAT5A and STAT5B are fundamental to the immune system but there is considerable debate about whether they perform the same job or have distinct roles. Villarino et al. used a combination of genetic and genomic approaches to investigate how both versions of STAT5 work in mice. The experiments show that STAT5B plays a much bigger role in immune cells than STAT5A. Unexpectedly, the experiments indicate that the disparity is not due to differences in protein activity, but is caused by differences in the amount of these proteins in cells. Villarino et al.’s findings resolve longstanding questions about the relationship between STAT5A and STAT5B within the immune system. A logical next step is to find the molecular mechanisms responsible for causing different amounts of STAT5A and STAT5B to be produced in immune cells. Future work will also compare the roles of STAT5A and STAT5B in non-immune cells and explore whether it might be possible to develop therapies that specifically target one version and not the other. DOI:http://dx.doi.org/10.7554/eLife.08384.002
Collapse
Affiliation(s)
- Alejandro Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Michael Bonelli
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Barbara Dema
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Behdad Afzali
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Hong-Wei Sun
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Stephen R Brooks
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
31
|
Integrating Immunologic Signaling Networks: The JAK/STAT Pathway in Colitis and Colitis-Associated Cancer. Vaccines (Basel) 2016; 4:vaccines4010005. [PMID: 26938566 PMCID: PMC4810057 DOI: 10.3390/vaccines4010005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cytokines are believed to be crucial mediators of chronic intestinal inflammation in inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC). Many of these cytokines trigger cellular effects and functions through signaling via janus kinase (JAK) and signal transducer and activator of transcription (STAT) molecules. In this way, JAK/STAT signaling controls important events like cell differentiation, secretion of cytokines or proliferation and apoptosis in IBD in both adaptive and innate immune cells. Moreover, JAK/STAT signaling, especially via the IL-6/STAT3 axis, is believed to be involved in the transition of inflammatory lesions to tumors leading to colitis-associated cancer (CAC). In this review, we will introduce the main cellular players and cytokines that contribute to pathogenesis of IBD by JAK/STAT signaling, and will highlight the integrative function that JAK/STATs exert in this context as well as their divergent role in different cells and processes. Moreover, we will explain current concepts of the implication of JAK/STAT signaling in CAC and finally discuss present and future therapies for IBD that interfere with JAK/STAT signaling.
Collapse
|
32
|
Villarino AV, Kanno Y, Ferdinand JR, O'Shea JJ. Mechanisms of Jak/STAT signaling in immunity and disease. THE JOURNAL OF IMMUNOLOGY 2016; 194:21-7. [PMID: 25527793 DOI: 10.4049/jimmunol.1401867] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
More than two decades ago, experiments on the antiviral mechanisms of IFNs led to the discovery of JAKs and their downstream effectors, the STAT proteins. This pathway has since become a paradigm for membrane-to-nucleus signaling and explains how a broad range of soluble factors, including cytokines and hormones, mediate their diverse functions. Jak/STAT research has not only impacted basic science, particularly in the context of intercellular communication and cell-extrinsic control of gene expression, it also has become a prototype for transition from bench to bedside, culminating in the development and clinical implementation of pathway-specific therapeutics. This brief review synthesizes our current understanding of Jak/STAT biology while taking stock of the lessons learned and the challenges that lie ahead.
Collapse
Affiliation(s)
- Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John R Ferdinand
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
33
|
Viny AD, Ott CJ, Spitzer B, Rivas M, Meydan C, Papalexi E, Yelin D, Shank K, Reyes J, Chiu A, Romin Y, Boyko V, Thota S, Maciejewski JP, Melnick A, Bradner JE, Levine RL. Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J Exp Med 2015; 212:1819-32. [PMID: 26438361 PMCID: PMC4612085 DOI: 10.1084/jem.20151317] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/04/2015] [Indexed: 01/18/2023] Open
Abstract
Cohesin complex members have recently been identified as putative tumor suppressors in hematologic and epithelial malignancies. The cohesin complex guides chromosome segregation; however, cohesin mutant leukemias do not show genomic instability. We hypothesized that reduced cohesin function alters chromatin structure and disrupts cis-regulatory architecture of hematopoietic progenitors. We investigated the consequences of Smc3 deletion in normal and malignant hematopoiesis. Biallelic Smc3 loss induced bone marrow aplasia with premature sister chromatid separation and revealed an absolute requirement for cohesin in hematopoietic stem cell (HSC) function. In contrast, Smc3 haploinsufficiency increased self-renewal in vitro and in vivo, including competitive transplantation. Smc3 haploinsufficiency reduced coordinated transcriptional output, including reduced expression of transcription factors and other genes associated with lineage commitment. Smc3 haploinsufficiency cooperated with Flt3-ITD to induce acute leukemia in vivo, with potentiated Stat5 signaling and altered nucleolar topology. These data establish a dose dependency for cohesin in regulating chromatin structure and HSC function.
Collapse
Affiliation(s)
- Aaron D Viny
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Barbara Spitzer
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Martin Rivas
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Cem Meydan
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Efthymia Papalexi
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dana Yelin
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Department of Medicine, Rabin Medical Center, Beilinson Campus, Petah Tikvah 49100, Israel
| | - Kaitlyn Shank
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jaime Reyes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - April Chiu
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yevgeniy Romin
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Vitaly Boyko
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Swapna Thota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
34
|
Ziai JM, Siddon AJ. Pathology Consultation on Gene Mutations in Acute Myeloid Leukemia. Am J Clin Pathol 2015; 144:539-54. [PMID: 26386075 DOI: 10.1309/ajcp77zfpuqgygwy] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is a rapidly fatal disease without the use of aggressive chemotherapy regimens. Cytogenetic and molecular studies are commonly used to classify types of AML based on prognosis, as well as to determine therapeutic regimens. METHODS Although there are several AML classifications determined by particular translocations, cytogenetically normal AML represents a molecularly, as well as clinically, heterogeneous group of diseases. Laboratory evaluation of AML will become increasingly important as new mutations with both prognostic and therapeutic implications are being recognized. Moreover, because many patients with AML are being treated more effectively, these mutations may become increasingly useful as markers of minimal residual disease, which can be interpreted in an individualized approach. RESULTS Current laboratory studies of gene mutations in AML include analysis of NPM1, FLT3, CEBPA, and KIT. In addition to these genes, many other genes are emerging as potentially useful in determining patients' prognosis, therapy, and disease course. CONCLUSIONS This article briefly reviews the current most clinically relevant gene mutations and their clinical and immunophenotypic features, prognostic information, and methods used for detection.
Collapse
Affiliation(s)
| | - Alexa J. Siddon
- Departments of Pathology, Yale School of Medicine, New Haven, CT
- Laboratory Medicine, Yale School of Medicine, New Haven, CT
- VA Connecticut Healthcare, West Haven, CT
| | | |
Collapse
|
35
|
Cauchy P, James SR, Zacarias-Cabeza J, Ptasinska A, Imperato MR, Assi SA, Piper J, Canestraro M, Hoogenkamp M, Raghavan M, Loke J, Akiki S, Clokie SJ, Richards SJ, Westhead DR, Griffiths MJ, Ott S, Bonifer C, Cockerill PN. Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature. Cell Rep 2015; 12:821-36. [PMID: 26212328 PMCID: PMC4726916 DOI: 10.1016/j.celrep.2015.06.069] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/20/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML.
Collapse
Affiliation(s)
- Pierre Cauchy
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Sally R James
- Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Joaquin Zacarias-Cabeza
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Anetta Ptasinska
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Maria Rosaria Imperato
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Salam A Assi
- Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Jason Piper
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Martina Canestraro
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Manoj Raghavan
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK; Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
| | - Justin Loke
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Susanna Akiki
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Samuel J Clokie
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Stephen J Richards
- Haematological Malignancy Diagnostic Service, St. James's University Hospital, Leeds LS9 7TF, UK
| | - David R Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael J Griffiths
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK; West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Constanze Bonifer
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK.
| | - Peter N Cockerill
- School of Immunity and Infection, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
36
|
Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis. Cell Rep 2014; 9:1333-48. [PMID: 25456130 DOI: 10.1016/j.celrep.2014.10.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/09/2014] [Accepted: 10/15/2014] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.
Collapse
|
37
|
Annesley CE, Brown P. The Biology and Targeting of FLT3 in Pediatric Leukemia. Front Oncol 2014; 4:263. [PMID: 25295230 PMCID: PMC4172015 DOI: 10.3389/fonc.2014.00263] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022] Open
Abstract
Despite remarkable improvement in treatment outcomes in pediatric leukemia over the past several decades, the prognosis for high-risk groups of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), as well as for relapsed leukemia, remains poor. Intensification of chemotherapy regimens for those at highest risk has improved success rates, but at the cost of significantly increased morbidity and long-term adverse effects. With the success of imatinib in Philadelphia-chromosome-positive leukemia and all-trans retinoic acid in acute promyelocytic leukemia, the quest to find additional molecularly targeted therapies has generated much excitement over recent years. Another such possible target in pediatric acute leukemia is FMS-like tyrosine kinase 3 (FLT3). FLT3 aberrations are among the most frequently identified transforming events in AML, and have significant clinical implications in both high-risk pediatric AML and in certain high-risk groups of pediatric ALL. Therefore, the successful targeting of FLT3 has tremendous potential to improve outcomes in these subsets of patients. This article will give an overview of the molecular function and signaling of the FLT3 receptor, as well as its pathogenic role in leukemia. We review the discovery of targeting FLT3, discuss currently available FLT3 inhibitors in pediatric leukemia and results of clinical trials to date, and finally, consider the future promise and challenges of FLT3 inhibitor therapy.
Collapse
Affiliation(s)
- Colleen E. Annesley
- Oncology and Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Brown
- Oncology and Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Al-Hussaini M, DiPersio JF. Small molecule inhibitors in acute myeloid leukemia: from the bench to the clinic. Expert Rev Hematol 2014; 7:439-64. [PMID: 25025370 PMCID: PMC4283573 DOI: 10.1586/17474086.2014.932687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many patients with acute myeloid leukemia will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in acute myeloid leukemia. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials.
Collapse
Affiliation(s)
- Muneera Al-Hussaini
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis Missouri
| | - John F. DiPersio
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis Missouri
- Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St Louis Missouri
| |
Collapse
|
39
|
TTT-3002 is a novel FLT3 tyrosine kinase inhibitor with activity against FLT3-associated leukemias in vitro and in vivo. Blood 2014; 123:1525-34. [PMID: 24408321 DOI: 10.1182/blood-2013-08-523035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
More than 35% of acute myeloid leukemia (AML) patients harbor a constitutively activating mutation in FMS-like tyrosine kinase-3 (FLT3). The most common type, internal tandem duplication (ITD), confers poor prognosis. We report for the first time on TTT-3002, a tyrosine kinase inhibitor (TKI) that is one of the most potent FLT3 inhibitors discovered to date. Studies using human FLT3/ITD mutant leukemia cell lines revealed the half maximal inhibitory concentration (IC50) for inhibiting FLT3 autophosphorylation is from 100 to 250 pM. The proliferation IC50 for TTT-3002 in these same cells was from 490 to 920 pM. TTT-3002 also showed potent activity when tested against the most frequently occurring FLT3-activating point mutation, FLT3/D835Y, against which many current TKIs are ineffective. These findings were validated in vivo by using mouse models of FLT3-associated AML. Survival and tumor burden of mice in several FLT3/ITD transplantation models is significantly improved by administration of TTT-3002 via oral dosing. Finally, we demonstrated that TTT-3002 is cytotoxic to leukemic blasts isolated from FLT3/ITD-expressing AML patients, while displaying minimal toxicity to normal hematopoietic stem/progenitor cells from healthy blood and bone marrow donors. Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI in the treatment of FLT3-mutant AML.
Collapse
|
40
|
FMS-related tyrosine kinase 3. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
41
|
Yamaki K, Yoshino S. Remission of food allergy by the Janus kinase inhibitor ruxolitinib in mice. Int Immunopharmacol 2013; 18:217-24. [PMID: 24332884 DOI: 10.1016/j.intimp.2013.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022]
Abstract
To clarify the role of Janus kinase (JAK) in and the efficacy of JAK inhibitors on food allergy, we investigated the effect of the clinically available JAK inhibitor ruxolitinib on mouse food allergy and the functions of cultured mast cells in vitro. Anaphylactic symptoms including diarrhea and decreases in body temperature pursuant to oral ovalbumin (OVA) challenges in food allergy mice were attenuated by the daily oral administration of ruxolitinib. This drug inhibited increases in mouse mast cell protease-1 concentrations in the serum and mast cell numbers in the intestines of these mice as well as degranulation, IL-13 production, and the spontaneous and IL-9-dependent survival of mouse bone marrow-derived mast cells in spite of the absence of an effect of ruxolitinib on passive systemic anaphylaxis. Anti-OVA IgG2a, IgE, and IgG1 serum levels and the release of IFN-γ, IL-4, IL-9, and IL-10 from the OVA-restimulated splenocytes of food allergy mice were also decreased by the treatment. Moreover, ruxolitinib administration to mice that had already exhibited anaphylactic responses to previous challenges reduced anaphylactic responses to further oral OVA challenges, which suggested that ruxolitinib has a therapeutic potential on food allergy. Our results showed that ruxolitinib remitted food allergy in mice mainly through immunosuppression and the prevention of mast cell hyperplasia, and partially through the inhibition of mast cell activation. We consider JAK inhibition to be a promising strategy for the prevention of food allergy, and ruxolitinib along with its derivatives inhibiting JAK as good candidates for therapeutic drugs to treat food allergy.
Collapse
Affiliation(s)
- Kouya Yamaki
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan.
| | - Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan.
| |
Collapse
|
42
|
FLT3/D835Y mutation knock-in mice display less aggressive disease compared with FLT3/internal tandem duplication (ITD) mice. Proc Natl Acad Sci U S A 2013; 110:21113-8. [PMID: 24255108 DOI: 10.1073/pnas.1310559110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately one third of acute myeloid leukemia cases. The most common FLT3 mutations in acute myeloid leukemia are internal tandem duplication (ITD) mutations in the juxtamembrane domain (23%) and point mutations in the tyrosine kinase domain (10%). The mutation substituting the aspartic acid at position 838 (equivalent to the human aspartic acid residue at position 835) with a tyrosine (referred to as FLT3/D835Y hereafter) is the most frequent kinase domain mutation, converting aspartic acid to tyrosine. Although both of these mutations constitutively activate FLT3, patients with an ITD mutation have a significantly poorer prognosis. To elucidate the mechanisms behind this prognostic difference, we have generated a knock-in mouse model with a D838Y point mutation in FLT3 that corresponds to the FLT3/D835Y mutation described in humans. Compared with FLT3/ITD knock-in mice, the FLT3/D835Y knock-in mice survive significantly longer. The majority of these mice develop myeloproliferative neoplasms with a less-aggressive phenotype. In addition, FLT3/D835Y mice have distinct hematopoietic development patterns. Unlike the tremendous depletion of the hematopoietic stem cell compartment we have observed in FLT3/ITD mice, FLT3/D835Y mutant mice are not depleted in hematopoietic stem cells. Further comparisons of these FLT3/D835Y knock-in mice with FLT3/ITD mice should provide an ideal platform for dissecting the molecular mechanisms that underlie the prognostic differences between the two different types of FLT3 mutations.
Collapse
|
43
|
Bailey EJ, Duffield AS, Greenblatt SM, Aplan PD, Small D. Effect of FLT3 ligand on survival and disease phenotype in murine models harboring a FLT3 internal tandem duplication mutation. Comp Med 2013; 63:218-226. [PMID: 23759524 PMCID: PMC3690427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/14/2012] [Accepted: 12/09/2012] [Indexed: 06/02/2023]
Abstract
Many of the mutations contributing to leukemogenesis in acute myeloid leukemia have been identified. A common activating mutation is an internal tandem duplication (ITD) mutation in the FLT3 gene that is found in approximately 25% of patients and confers a poor prognosis. FLT3 inhibitors have been developed and have some efficacy, but patients often relapse. Levels of FLT3 ligand (FL) are significantly elevated in patients during chemotherapy and may be an important component contributing to relapse. We used a mouse model to investigate the possible effect of FL expression on leukemogenesis involving FLT3-ITD mutations in an in vivo system. FLT3(ITD/ITD) FL(-/-) (knockout) mice had a statistically significant increase in survival compared with FLT3(ITD/ITD) FL(+/+) (wildtype) mice, most of which developed a fatal myeloproliferative neoplasm. These findings suggest that FL levels may have prognostic significance in human patients. We also studied the effect of FL expression on survival in a FLT3-ITD NUP98-HOX13 (NHD13) fusion mouse model. These mice develop an aggressive leukemia with short latency. We asked whether FL expression played a similar role in this context. The NUP98-HOX13 FLT3(ITD/wt) FL(-/-) mice did not have a survival advantage, compared with NUP98-HOX13 FLT3(ITD/wt) FL(+/+) mice (normal FL levels). The loss of the survival advantage of the FL knockout group in the NUP98-HOX13 model suggests that adding a second mutation changes the effect of FL expression in the context of more aggressive disease.
Collapse
Affiliation(s)
| | - Amy S Duffield
- Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Peter D Aplan
- Genetics Branch, National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | | |
Collapse
|
44
|
Cesano A, Putta S, Rosen DB, Cohen AC, Gayko U, Mathi K, Woronicz J, Hawtin RE, Cripe L, Sun Z, Tallman MS, Paietta E. Functional pathway analysis using SCNP of FLT3 receptor pathway deregulation in AML provides prognostic information independent from mutational status. PLoS One 2013; 8:e56714. [PMID: 23431389 PMCID: PMC3576376 DOI: 10.1371/journal.pone.0056714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/14/2013] [Indexed: 11/21/2022] Open
Abstract
FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML as a basis for the development of highly predictive tests for guidance of post-remission therapy.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Apoptosis
- Cells, Cultured
- Disease-Free Survival
- Female
- Humans
- Induction Chemotherapy
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Multivariate Analysis
- Mutagenesis
- Mutation
- Nucleophosmin
- Principal Component Analysis
- Prognosis
- Signal Transduction
- Single-Cell Analysis
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Alessandra Cesano
- Nodality, Inc., South San Francisco, California, United States of America
- * E-mail:
| | - Santosh Putta
- Nodality, Inc., South San Francisco, California, United States of America
| | - David B. Rosen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Aileen C. Cohen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Urte Gayko
- Nodality, Inc., South San Francisco, California, United States of America
| | - Kavita Mathi
- Nodality, Inc., South San Francisco, California, United States of America
| | - John Woronicz
- Nodality, Inc., South San Francisco, California, United States of America
| | - Rachael E. Hawtin
- Nodality, Inc., South San Francisco, California, United States of America
| | - Larry Cripe
- Eastern Cooperative Oncology Group (ECOG), Boston, Massachusetts, United States of America
- Indiana University Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Zhuoxin Sun
- Eastern Cooperative Oncology Group (ECOG), Boston, Massachusetts, United States of America
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Martin S. Tallman
- Eastern Cooperative Oncology Group (ECOG), Boston, Massachusetts, United States of America
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Elisabeth Paietta
- Eastern Cooperative Oncology Group (ECOG), Boston, Massachusetts, United States of America
- Montefiore Medical Center North Division, Bronx, New York, United States of America
| |
Collapse
|
45
|
Tam WF, Hähnel PS, Schüler A, Lee BH, Okabe R, Zhu N, Pante SV, Raffel G, Mercher T, Wernig G, Bockamp E, Sasca D, Kreft A, Robinson GW, Hennighausen L, Gilliland DG, Kindler T. STAT5 is crucial to maintain leukemic stem cells in acute myelogenous leukemias induced by MOZ-TIF2. Cancer Res 2012; 73:373-84. [PMID: 23149921 DOI: 10.1158/0008-5472.can-12-0255] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MOZ-TIF2 is a leukemogenic fusion oncoprotein that confers self-renewal capability to hematopoietic progenitor cells and induces acute myelogenous leukemia (AML) with long latency in bone marrow transplantation assays. Here, we report that FLT3-ITD transforms hematopoietic cells in cooperation with MOZ-TIF2 in vitro and in vivo. Coexpression of FLT3-ITD confers growth factor independent survival/proliferation, shortens disease latency, and results in an increase in the number of leukemic stem cells (LSC). We show that STAT5, a major effector of aberrant FLT3-ITD signal transduction, is both necessary and sufficient for this cooperative effect. In addition, STAT5 signaling is essential for MOZ-TIF2-induced leukemic transformation itself. Lack of STAT5 in fetal liver cells caused rapid differentiation and loss of replating capacity of MOZ-TIF2-transduced cells enriched for LSCs. Furthermore, mice serially transplanted with Stat5(-/-) MOZ-TIF2 leukemic cells develop AML with longer disease latency and finally incomplete penetrance when compared with mice transplanted with Stat5(+/+) MOZ-TIF2 leukemic cells. These data suggest that STAT5AB is required for the self-renewal of LSCs and represents a combined signaling node of FLT3-ITD and MOZ-TIF2 driven leukemogenesis. Therefore, targeting aberrantly activated STAT5 or rewired downstream signaling pathways may be a promising therapeutic option.
Collapse
Affiliation(s)
- Winnie F Tam
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Blau O, Berenstein R, Sindram A, Blau IW. Molecular analysis of different FLT3-ITD mutations in acute myeloid leukemia. Leuk Lymphoma 2012; 54:145-52. [PMID: 22721497 DOI: 10.3109/10428194.2012.704999] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutation of the FMS-like tyrosine kinase-3 (FLT3) gene occurs with a frequency of 20-25% in acute myeloid leukemia (AML). Different studies have reported conflicting results, stating the importance of the length, position and number of internal tandem duplications (ITDs) for prognostic significance. In the present study, FLT3-ITD mutations were found in 51 (23%) of 218 patients with AML. Using sequence analysis we categorized ITD integration sites according to functional regions of the FLT3 receptor. Median ITD size was 61 bp. The insertion site was strongly correlated with ITD size: more C-terminal located inserted fragments were significantly bigger. Our data confirm that FLT3-ITD mutations identify a subset of young patients with AML with normal cytogenetics but with inferior outcome. Patients with AML with mutation localization outside the juxtamembrane domain showed no correlation with worse prognosis. A high mutant/wild-type ratio appears to have a major impact on the prognostic relevance.
Collapse
Affiliation(s)
- Olga Blau
- Department of Hematology and Oncology, Charité University School of Medicine, Berlin, Germany.
| | | | | | | |
Collapse
|
47
|
Abstract
DCs have a vital role in the immune system by recognizing exogenous or self-antigens and eliciting appropriate stimulatory or tolerogenic adaptive immune responses. DCs also contribute to human autoimmune disease and, when depleted, to immunodeficiency. Moreover, DCs are being explored for potential use in clinical therapies including cancer treatment. Thus, understanding the molecular mechanisms that regulate DCs is crucial to improving treatments for human immune disease and cancer. DCs constitute a heterogeneous population including plasmacytoid (pDC) and classic (cDC) subsets; however, the majority of DCs residing in lymphoid organs and peripheral tissues in steady state share common progenitor populations, originating with hematopoietic stem cells. Like other hematopoietic lineages, DCs require extracellular factors including cytokines, as well as intrinsic transcription factors, to control lineage specification, commitment, and maturation. Here, we review recent findings on the roles for cytokines and cytokine-activated STAT transcription factors in DC subset development. We also discuss how cytokines and STATs intersect with lineage-regulatory transcription factors and how insight into the molecular basis of human disease has revealed transcriptional regulators of DCs. Whereas this is an emerging area with much work remaining, we anticipate that knowledge gained by delineating cytokine and transcription factor mechanisms will enable a better understanding of DC subset diversity, and the potential to manipulate these important immune cells for human benefit.
Collapse
Affiliation(s)
- Haiyan S Li
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
48
|
Dong L, He HL, Lu XM, Yang Y, Qiu HB. Modulation of FLT3 signaling targets conventional dendritic cells to attenuate acute lung injury. APMIS 2012; 120:808-18. [PMID: 22958289 DOI: 10.1111/j.1600-0463.2012.02906.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/12/2012] [Indexed: 12/31/2022]
Abstract
Conventional dendritic cells (cDCs) have been reported to participate in the pathophysiology of acute lung injury (ALI). Fms-like tyrosine kinase 3 (FLT3) signaling represents a highly specific pathway for the manipulation of cDCs in vivo. The purpose of this study was to clarify the effect of FLT3 signaling on the accumulation and maturation of pulmonary cDCs, and whether inhibition of FLT3 signaling may attenuate acute lung inflammation and lung injury. C57BL/6 mice were pretreated with FLT3-ligand (FLT3L) and lestaurtinib separately for five consecutive days. A murine model of ALI was subsequently generated by intra-tracheal instillation of lipopolysaccharide (LPS) and lung specimens were harvested 24 h later. Flow cytometry was conducted to measure the accumulation and maturation of pulmonary cDCs. IL-6, IFN-γ, IL-4, MPO activity and transcription factor T-bet/GATA-3 mRNA ratio were quantified to evaluate lung inflammation. Lung injury was estimated by lung wet weight/body weight ratio (LWW/BW) and histopathological analysis. LPS challenge resulted in rapid accumulation and maturation of pulmonary cDCs. FLT3L pretreatment further stimulated the accumulation and maturation of pulmonary cDCs, leading to a markedly increased LWW/BW and aggravated lung histopathology. Meanwhile, lung MPO activity, T-bet/GATA-3 mRNA ratio and concentrations of IL-6 and IFN-γ were elevated by FLT3L administration. In contrast, lestaurtinib pretreatment inhibited the accumulation and maturation of pulmonary cDCs, leading to a significantly decreased LWW/BW and improved lung histopathology. Lestaurtinib administration also suppressed lung MPO activity, T-bet/GATA-3 mRNA ratio and production of IL-6 and IFN-γ. Our findings show that FLT3 signaling ameliorates ALI by regulating the accumulation and maturation of pulmonary cDCs, suggesting an innovative pharmacotherapy for ALI.
Collapse
Affiliation(s)
- Liang Dong
- Department of Critical Care Medicine, Zhong-Da Hospital, Southeast University, Nanjing, China
| | | | | | | | | |
Collapse
|
49
|
Abstract
Phosphorylation is one of the most important processes in cell signal transduction. Detection of phosphorylated proteins in cancer tissue is useful for prognosis and diagnosis, and it might be very helpful in monitoring treatment using targeted therapy. For these reasons, the in situ quantitative measurement and subcellular localization of phosphoproteins will likely be important. However, phosphoproteins are extremely labile, a likely explanation for inconsistent or contradictory reports. Thus, the development of new paradigms for tissue handling, immunostaining, and quality control are needed.
Collapse
Affiliation(s)
- J Bodo
- Department of Clinical Pathology, Cleveland Clinic, OH 44195, USA
| | | |
Collapse
|
50
|
Abstract
Acute myeloid leukemia with a FLT3 internal tandem duplication (FLT3/ITD) mutation is an aggressive hematologic malignancy with a generally poor prognosis. It can be successfully treated into remission with intensive chemotherapy, but it routinely relapses. At relapse, the blasts tend to have higher mutant allelic ratios and, in vitro, are more addicted to the aberrant signaling from the FLT3/ITD oncoprotein. They remain highly responsive to FLT3 ligand, the levels of which rise several-fold during the course of chemotherapy. The question now arises as to whether these high levels of FLT3 ligand are actually promoting relapse, and, if so, how we can use this information to adjust our therapeutic approach and improve the cure rate for acute myeloid leukemia with FLT3/ITD.
Collapse
|