1
|
Zhou X, Li R, Lai M, Lai C. Exploring molecular and cellular mechanisms of Pre-Metastatic niche in renal cell carcinoma. Mol Cancer 2025; 24:121. [PMID: 40264130 PMCID: PMC12012986 DOI: 10.1186/s12943-025-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Renal cell carcinoma (RCC) is among the most frequently occurring types of cancer, and its metastasis is a major contributor to its elevated mortality. Before the primary tumor metastasizes to secondary or distant organs, it remodels the microenvironment of these sites, creating a pre-metastatic niche (PMN) conducive to the colonization and growth of metastatic tumors. RCC releases a variety of biomolecules that induce angiogenesis, alter vascular permeability, modulate immune cells to create an immunosuppressive microenvironment, affect extracellular matrix remodeling and metabolic reprogramming, and determine the organotropism of metastasis through different signaling pathways. This review summarizes the principal processes and mechanisms underlying the formation of the premetastatic niche in RCC. Additionally, we emphasize the significance and potential of targeting PMNs for the prevention and treatment of tumor metastasis in future therapeutic approaches. Finally, we summarized the currently potential targeted strategies for detecting and treating PMN in RCC and provide a roadmap for further in-depth studies on PMN in RCC.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Pathology, and Department of Pathology Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ruirui Li
- Institute of Immunology, Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Maode Lai
- Department of Pathology, and Department of Pathology Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Chong Lai
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Chiad Z, Chojecki A. Graft versus Leukemia in 2023. Best Pract Res Clin Haematol 2023; 36:101476. [PMID: 37611995 DOI: 10.1016/j.beha.2023.101476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 08/25/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is commonly utilized in the management of leukemia across multiple subtypes. Graft versus leukemia (GVL) is a critical component of successful transplantation and involves donor cells eradicating residual leukemia within the recipient. Graft versus host disease (GVHD) by contrast is a common complication of the transplantation process in which donor cells identify the recipient's various organ systems as foreign, thereby leading to a multitude of organ toxicities that can be described as autoimmune in nature. As both GVL and GVHD are mediated by a similar mechanism, these processes are felt to occur in tandem with one another. Here, we review the allogeneic HCT process in the context of GVL.
Collapse
Affiliation(s)
- Zane Chiad
- 1021 Morehead Medical Drive, Building 2, Charlotte, NC, 28204, USA.
| | | |
Collapse
|
3
|
Chen L, Jiang X, Zhang Q, Li Q, Zhang X, Zhang M, Yu Q, Gao D. How to overcome tumor resistance to anti-PD-1/PD-L1 therapy by immunotherapy modifying the tumor microenvironment in MSS CRC. Clin Immunol 2022; 237:108962. [DOI: 10.1016/j.clim.2022.108962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
|
4
|
Imam S, Dar P, Aziz SW, Zahid ZA, Sarwar H, Karim T, Faisal S, Haseeb I, Naqvi AS, Shah R, Haque A, Salim N, Jaume JC. Immune Cell Plasticity Allows for Resetting of Phenotype From Effector to Regulator With Combined Inhibition of Notch/eIF5A Pathways. Front Cell Dev Biol 2021; 9:777805. [PMID: 34881246 PMCID: PMC8645838 DOI: 10.3389/fcell.2021.777805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023] Open
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic β-cells caused by an altered immune balance in the pancreatic microenvironment. In humans as well as in mouse models, T cells are well recognized as key orchestrators of T1D, which is characterized by T helper (Th) 1 and Th17 cell bias and/or low/defective T-regulatory cells (Treg), and culminates in cytotoxic T-cell (CTL)-mediated destruction of β-cells. Refitting of immune cells toward the non-inflammatory phenotype in the pancreas may represent a way to prevent/treat T1D. Recently we developed a unique spontaneous humanized mouse model of type 1 diabetes, wherein mouse MHC-II molecules were replaced by human DQ8, and β-cells were made to express human glutamic acid decarboxylase (GAD) 65 auto-antigen. The mice spontaneously developed T1D resembling the human disease. Humanized T1D mice showed hyperglycemic (250-300 mg/dl) symptoms by the 4th week of life. The diabetogenic T cells (CD4, CD8) present in our model are GAD65 antigen-specific in nature. Intermolecular antigen spreading recorded during 3rd-6th week of age is like that observed in the human preclinical period of T1D. In this paper, we tested our hypothesis in our spontaneous humanized T1D mouse model. We targeted two cell-signaling pathways and their inhibitions: eIF5A pathway inhibition influences T helper cell dynamics toward the non-inflammatory phenotype and Notch signaling inhibition enrich Tregs and targets auto-reactive CTLs, rescues the pancreatic islet structure, and increases the functionality of β-cells in terms of insulin production. We report that inhibition of (eIF5A + Notch) signaling mediates suppression of diabetogenic T cells by inducing plasticity in CD4 + T cells co-expressing IL-17 and IFNγ (IL-17 + IFNγ +) toward the Treg cells phenotype.
Collapse
Affiliation(s)
- Shahnawaz Imam
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Center for Diabetes and Endocrine Research (CeDER), University of Toledo, Toledo, OH, United States
| | - Pervaiz Dar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Center for Diabetes and Endocrine Research (CeDER), University of Toledo, Toledo, OH, United States.,Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Saba Wasim Aziz
- Department of Internal Medicine, Division of Endocrinology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zeeshan A Zahid
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Center for Diabetes and Endocrine Research (CeDER), University of Toledo, Toledo, OH, United States
| | - Haider Sarwar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Center for Diabetes and Endocrine Research (CeDER), University of Toledo, Toledo, OH, United States.,Windsor University School of Medicine, Cayon, West Indies
| | - Tamanna Karim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Center for Diabetes and Endocrine Research (CeDER), University of Toledo, Toledo, OH, United States
| | - Sarah Faisal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,College of Art and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Ibrahim Haseeb
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Ahmed S Naqvi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Ottawa Hills High School, Ottawa, OH, United States
| | - Rayyan Shah
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Sylvania Northview High School, Toledo, OH, United States
| | - Amna Haque
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Austin College, Sherman, TX, United States
| | - Nancy Salim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Center for Diabetes and Endocrine Research (CeDER), University of Toledo, Toledo, OH, United States
| | - Juan C Jaume
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.,Center for Diabetes and Endocrine Research (CeDER), University of Toledo, Toledo, OH, United States
| |
Collapse
|
5
|
Searching for Peptide Inhibitors of T Regulatory Cell Activity by Targeting Specific Domains of FOXP3 Transcription Factor. Biomedicines 2021; 9:biomedicines9020197. [PMID: 33671179 PMCID: PMC7922534 DOI: 10.3390/biomedicines9020197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/03/2022] Open
Abstract
(1) Background: The ability of cancer cells to evade the immune system is due in part to their capacity to induce and recruit T regulatory cells (Tregs) to the tumor microenvironment. Strategies proposed to improve antitumor immunity by depleting Tregs generally lack specificity and raise the possibility of autoimmunity. Therefore, we propose to control Tregs by their functional inactivation rather than depletion. Tregs are characterized by the expression of the Forkhead box protein 3 (FOXP3) transcription factor, which is considered their “master regulator”. Its interaction with DNA is assisted primarily by its interaction with other proteins in the so-called “Foxp3 interactome”, which elicits much of the characteristic Treg cell transcriptional signature. We speculated that the disruption of such a protein complex by using synthetic peptides able to bind Foxp3 might have an impact on the functionality of Treg cells and thus have a therapeutic potential in cancer treatment. (2) Methods: By using a phage-displayed peptide library, or short synthetic peptides encompassing Foxp3 fragments, or by studying the crystal structure of the Foxp3:NFAT complex, we have identified a series of peptides that are able to bind Foxp3 and inhibit Treg activity. (3) Results: We identified some peptides encompassing fragments of the leuzin zipper or the C terminal domain of Foxp3 with the capacity to inhibit Treg activity in vitro. The acetylation/amidation of linear peptides, head-to-tail cyclization, the incorporation of non-natural aminoacids, or the incorporation of cell-penetrating peptide motifs increased in some cases the Foxp3 binding capacity and Treg inhibitory activity of the identified peptides. Some of them have shown antitumoral activity in vivo. (4) Conclusions: Synthetic peptides constitute an alternative to inhibit Foxp3 protein–protein interactions intracellularly and impair Treg immunosuppressive activity. These peptides might be considered as potential hit compounds on the design of new immunotherapeutic approaches against cancer.
Collapse
|
6
|
Interleukin 35 Regulatory B Cells. J Mol Biol 2020; 433:166607. [PMID: 32755620 DOI: 10.1016/j.jmb.2020.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.
Collapse
|
7
|
The Role of IL-33 in Experimental Heart Transplantation. Cardiol Res Pract 2020; 2020:6108362. [PMID: 32257426 PMCID: PMC7106886 DOI: 10.1155/2020/6108362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of proteins that are produced by a variety of cell types in multiple tissues. Under conditions of cell injury or death, IL-33 is passively released from the nucleus and acts as an "alarmin" upon binding to its specific receptor ST2, which leads to proinflammatory or anti-inflammatory effects depending on the pathological environment. To date, numerous studies have investigated the roles of IL-33 in human and murine models of diseases of the nervous system, digestive system, pulmonary system, as well as other organs and systems, including solid organ transplantation. With graft rejection and ischemia-reperfusion injury being the most common causes of grafted organ failure or dysfunction, researchers have begun to investigate the role of IL-33 in the immune-related mechanisms of graft tolerance and rejection using heart transplantation models. In the present review, we summarize the identified roles of IL-33 as well as the corresponding mechanisms by which IL-33 acts within the progression of graft rejection after heart transplantation in animal models.
Collapse
|
8
|
Erkan K, Bozkurt MK, Artaç H, Özdemir H, Ünlü A, Korucu EN, Elsürer Ç. The role of regulatory T cells in allergic rhinitis and their correlation with IL-10, IL-17 and neopterin levels in serum and nasal lavage fluid. Eur Arch Otorhinolaryngol 2020; 277:1109-1114. [PMID: 31993765 DOI: 10.1007/s00405-020-05811-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/18/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Allergic rhinitis (AR), is an IgE-mediated inflammation of the nose. Regulatory T cells (Tregs) and inflammatory cytokines have been shown to play a critical role in allergic airway inflammation. The aim of the study was to compare the levels of blood T lymphocyte subsets and IL-10, IL-17 and neopterin concentrations in serum and nasal lavage of patients with AR compared to healthy subjects. METHODS The study included 38 subjects with moderate-severe AR and 36 sex- and age-matched controls. Peripheral blood CD3+, CD3+CD4+ and CD4+CD25+Foxp3 percentages were evaluated using flow cytometry. Levels of IL-10, IL-17 and neopterin were measured both in serum and nasal lavage fluid with ELISA and HPLC, respectively. RESULTS No difference was found in the percentages of T lymphocyte subsets between the two groups (p > 0.05). Serum IL-10 levels were similar (p > 0.05), whereas nasal IL-10 was lower in AR subjects compared to control group (2.22 ± 0.91 and 3.12 ± 1.45 pg/ml, respectively) (p < 0.05). Mean serum and nasal IL-17 were higher in AR (107.7 ± 79.61 and 527.36 ± 738.7 pg/ml) than the control group (76.29 ± 28.94 and 328.9 ± 430.8 pg/ml) (p < 0.05 and p > 0.05). There were no significant differences in serum and nasal neopterin levels (p > 0.05). CONCLUSIONS Although there were no differences in the distribution of lymphocyte subsets between the AR and control groups, the finding of higher levels of serum and nasal IL-17 and lower levels of nasal IL-10 support the cytokine imbalance in the pathogenesis of AR.
Collapse
Affiliation(s)
- Kadriye Erkan
- Otolaryngology Department, Konya Egitim ve Arastirma Hastanesi, Konya, Turkey
| | - Mete K Bozkurt
- Otolaryngology Department, Selcuk University School of Medicine, Konya, Turkey.
| | - Hasibe Artaç
- Selcuk University School of Medicine, Pediatric Allergy and Immunology Dept, Konya, Turkey
| | - Hülya Özdemir
- Selcuk University School of Medicine, Pediatric Allergy and Immunology Dept, Konya, Turkey
| | - Ali Ünlü
- Selcuk University School of Medicine, Biochemistry Dept, Konya, Turkey
| | - Emine N Korucu
- Necmettin Erbakan University, Molecular Biology and Genetics, Konya, Turkey
| | - Çağdaş Elsürer
- Otolaryngology Department, Selcuk University School of Medicine, Konya, Turkey
| |
Collapse
|
9
|
Arul D, Rao S. Isolation of Naturally Induced T-regulatory Cells in Gingival Tissues of Healthy Human Subjects and Subjects with Gingivitis and Chronic Periodontitis. Cureus 2019; 11:e4283. [PMID: 31183266 PMCID: PMC6538230 DOI: 10.7759/cureus.4283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: The immune mechanism depends on CD4+ T cells for its regular function, and altered T cell function leads to microbial disease progression. Aim: The present study aimed to determine the role of naturally induced T-regulatory (nTreg) cells (CD4+ CD25+ Fox P3+) in periodontal disease pathogenesis. Materials and methods: A total of 30 patients attending the out-patient clinic of the Department of Periodontology and Implantology, Faculty of Dental Sciences, Sri Ramachandra University (SRU), Chennai, India were recruited for the study. They were categorized in three groups as healthy individuals, individuals with chronic gingivitis, and individuals with chronic periodontitis gingival tissues. nTreg (CD4+ CD25+ Fox P3+) cells were isolated using flow cytometry. Different conjugated, isolated cells were then gated in the order of CD4+, CD25+, and Fox P3+ cells. Results: The results of our study showed an increase in the proportions of Treg cells in individuals with chronic periodontitis compared to individuals with gingivitis and healthy individuals. Conclusion: Further elucidation of cellular and molecular processes underlying Treg cells will help unravel the complexity behind periodontal disease pathogenesis besides paving the way in developing newer treatment strategies.
Collapse
Affiliation(s)
- Devi Arul
- Periodontics, Sri Ramachandra Medical College and Research Institute, Chennai, IND
| | - Suresh Rao
- Periodontics, Sri Ramachandra Medical College and Research Institute, Chennai, IND
| |
Collapse
|
10
|
Maślanka T, Otrocka-Domagała I, Zuśka-Prot M, Gesek M. Beneficial effects of rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, in a mouse allergic asthma model is not associated with the recruitment or generation of Foxp3-expressing CD4 + regulatory T cells. Eur J Pharmacol 2019; 848:30-38. [PMID: 30710547 DOI: 10.1016/j.ejphar.2019.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
The activation of peroxisome proliferator-activated receptor γ (PPAR-γ) has been shown to attenuate allergic airway inflammation (AAI). To gain better understanding of mechanisms underlying this effect, the impact of rosiglitazone (RSG), a PPAR-γ agonist, on CD4+ effector (Teff) and Foxp3-expressing regulatory (Treg) T cells in a mouse model of allergic asthma was studied. Furthermore, we investigated whether the activation of PPAR-γ may directly affect IL-4, IL-10 and IL-17 production by CD4+ T cells. RSG attenuated but did not prevent ovalbumin (OVA)-induced AAI, and this effect was PPAR-γ-dependent. RSG reduced but did not abolish the OVA-induced increase in the count of CD4+ Teff cells in the mediastinal lymph nodes (MLNs) and lungs, and this effect was PPAR-γ-dependent. RSG did not affect the absolute number of Treg cells in the MLNs and lungs of OVA-immunized mice. In vitro exposure of lung lymphocytes to RSG did not influence the percentage of IL-4-, IL-10- and IL-17-producing CD4+ T cells. Our results indicate that the impairment of clonal expansion of CD4+ Teff cells in the MLNs is involved in the anti-asthmatic properties of PPAR-γ agonists. Activation of PPAR-γ did not affect the recruitment of Treg cells to the MLNs and lungs nor did it induce their local generation. This indicates that Treg cells are not involved in producing the anti-asthmatic effect of PPAR-γ agonists. The results suggest that beneficial effects of PPAR-γ agonists in asthma treatment are not mediated through a direct inhibitory effect on IL-4, IL-10 and IL-17 production by CD4+ Teff cells.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland.
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| | - Monika Zuśka-Prot
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| | - Michał Gesek
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| |
Collapse
|
11
|
Alexandre-Silva GM, Brito-Souza PA, Oliveira AC, Cerni FA, Zottich U, Pucca MB. The hygiene hypothesis at a glance: Early exposures, immune mechanism and novel therapies. Acta Trop 2018; 188:16-26. [PMID: 30165069 DOI: 10.1016/j.actatropica.2018.08.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023]
Abstract
The hygiene hypothesis was proposed almost three decades ago. Nevertheless, its mechanism still remains with relevant controversies. Some studies defend that early exposures during childhood to microbes and parasites are key determinants to prevent allergies and autoimmune diseases; however, other studies demonstrated that these early exposures can even potentiate the clinical scenario of the diseases. Based on several studies covering the influences of microbiome, parasites, related theories and others, this review focuses on recent advances in the hygiene hypothesis field. In addition, the main immunological mechanisms underlying the hygiene hypothesis are also discussed. We also strongly encourage that researchers do not consider the hygiene hypothesis as a theory based strictly on hygiene habits, but a theory combining diverse influences, as illustrated in this review as the hygiene hypothesis net.
Collapse
|
12
|
Ono S, Tsujimoto H, Hiraki S, Aosasa S. Mechanisms of sepsis-induced immunosuppression and immunological modification therapies for sepsis. Ann Gastroenterol Surg 2018; 2:351-358. [PMID: 30238076 PMCID: PMC6139715 DOI: 10.1002/ags3.12194] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Surgical injury can be a life-threatening complication, not only due to the injury itself, but also due to immune responses to the injury and subsequent development of infections, which readily result in sepsis. Sepsis remains the leading cause of death in most intensive care units. Unfavorable outcomes of several high-profile trials in the treatment of sepsis have led researchers to state that sepsis studies need a new direction. The immune response that occurs during sepsis is characterized by a cytokine-mediated hyper-inflammatory phase, which most patients survive, and a subsequent immunosuppressive phase. Therefore, therapies that improve host immunity might increase the survival of patients with sepsis. Many mechanisms are responsible for sepsis-induced immunosuppression, including apoptosis of immune cells, increased regulatory T cells and expression of programmed cell death 1 on CD4+ T cells, and cellular exhaustion. Immunomodulatory molecules that were recently identified include interleukin-7, interleukin-15, and anti-programmed cell death 1. Recent studies suggest that immunoadjuvant therapy is the next major advance in sepsis treatment.
Collapse
Affiliation(s)
- Satoshi Ono
- Division of Critical Care MedicineTokyo Medical University Hachioji Medical CenterTokyoJapan
| | | | - Shuichi Hiraki
- Department of SurgeryNational Defense Medical CollegeSaitamaJapan
| | - Suefumi Aosasa
- Department of SurgeryNational Defense Medical CollegeSaitamaJapan
| |
Collapse
|
13
|
Schmidt A, Rieger CC, Venigalla RK, Éliás S, Max R, Lorenz HM, Gröne HJ, Krammer PH, Kuhn A. Analysis of FOXP3 + regulatory T cell subpopulations in peripheral blood and tissue of patients with systemic lupus erythematosus. Immunol Res 2018; 65:551-563. [PMID: 28224362 DOI: 10.1007/s12026-017-8904-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regulatory T cells (Tregs) are critical mediators of immune tolerance, yet their involvement in the autoimmune disease systemic lupus erythematosus (SLE) is incompletely understood. We analyzed CD4+ T cell subpopulations with Treg-related phenotypes and their association with disease activity in peripheral blood (PB) and tissues of patients with SLE. In detail, we quantified subpopulations regarding CD25, FOXP3, CD62L, CCR6, CD27, CD45RA, and CD45RO expression in PB from 31 patients with SLE divided into two disease activity groups and 32 healthy controls using flow cytometry. CD4+ and FOXP3+ T cells in skin and kidney biopsies of patients with SLE were quantified by immunohistochemistry. CD4+CD25+/++FOXP3+ and CD4+CD25+CD45RA-/CD45RO+ T cell frequencies were significantly higher in PB from patients with active compared to inactive SLE. The fraction of CD4+CD25++FOXP3+ Tregs and CD4+CD25+CD45RA+/CD45RO- naïve Tregs was not significantly different between these groups. CD4+CD25++ Tregs from active SLE patients comprised significantly less CD27+ cells and more CCR6+ cells compared to patients with inactive SLE. The percentage of CD4+FOXP3+ T cells among inflammatory infiltrates in skin and kidney biopsies of SLE patients was not different from other inflammatory skin/kidney diseases. In conclusion, although CD4+FOXP3+ T cell frequencies in the inflamed tissues of SLE patients were comparable to other inflammatory diseases, distinct T cell subpopulations appeared misbalanced in PB of patients with active SLE. Here, cells phenotypically resembling activated T cells, but not Tregs, were increased compared to patients with inactive SLE. Within Tregs of patients with active SLE, markers related to Treg function and homing were altered.
Collapse
Affiliation(s)
- Angelika Schmidt
- Division of Immunogenetics (D030), Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, & Science for Life Laboratory, Stockholm, Sweden
| | - Cosima C Rieger
- Division of Immunogenetics (D030), Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Roche Diabetes Care GmbH, Global Medical & Scientific Affairs, Mannheim, Germany
| | - Ram Kumar Venigalla
- Internal Medicine V, Division of Rheumatology, University of Heidelberg, Heidelberg, Germany.,Babraham Institute, Cambridge, UK
| | - Szabolcs Éliás
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, & Science for Life Laboratory, Stockholm, Sweden
| | - Regina Max
- Internal Medicine V, Division of Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Internal Medicine V, Division of Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics (D030), Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annegret Kuhn
- Division of Immunogenetics (D030), Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Interdisciplinary Center for Clinical Trials (IZKS), University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
14
|
|
15
|
Frydrychowicz M, Boruczkowski M, Kolecka-Bednarczyk A, Dworacki G. The Dual Role of Treg in Cancer. Scand J Immunol 2017; 86:436-443. [PMID: 28941312 DOI: 10.1111/sji.12615] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) represent a small subpopulation of CD4+ cells. Tregs are characterized by the expression of transcription factor Forkhead box protein 3 (FoxP3), also known as scurfin. Tregs are modulators of adaptive immune responses and play an important role in maintaining tolerance to self-antigens, providing the suppression associated with tumour microenvironment as well. These immunomodulatory properties are the main reason for the development of numerous therapeutic strategies, designed to inhibit the activity of cancer cells. However, due to Treg subpopulation diversity and its many functional pathways, the role of these cells in the cancer development and progression is still not fully understood.
Collapse
Affiliation(s)
- M Frydrychowicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - M Boruczkowski
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - A Kolecka-Bednarczyk
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - G Dworacki
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
16
|
Nomura M, Hodgkinson SJ, Tran GT, Verma ND, Robinson C, Plain KM, Boyd R, Hall BM. Cytokines affecting CD4 +T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4 +T regulatory cells. Transpl Immunol 2017; 42:24-33. [PMID: 28487237 DOI: 10.1016/j.trim.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/21/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
CD4+T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4+T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4+T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4+T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4+T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4+T cells. Tolerant CD4+CD25+T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4+CD25+T cells to third-party Lewis. Tolerant CD4+CD25+T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4+CD25+T cells.
Collapse
Affiliation(s)
- Masaru Nomura
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Catherine Robinson
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Karren M Plain
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Rochelle Boyd
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia.
| |
Collapse
|
17
|
Tselios K, Sarantopoulos A, Gkougkourelas I, Boura P. T Regulatory Cells in Systemic Lupus Erythematosus: Current Knowledge and Future Prospects. Lupus 2017. [DOI: 10.5772/intechopen.68479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Lozano T, Gorraiz M, Lasarte-Cía A, Ruiz M, Rabal O, Oyarzabal J, Hervás-Stubbs S, Llopiz D, Sarobe P, Prieto J, Casares N, Lasarte JJ. Blockage of FOXP3 transcription factor dimerization and FOXP3/AML1 interaction inhibits T regulatory cell activity: sequence optimization of a peptide inhibitor. Oncotarget 2017; 8:71709-71724. [PMID: 29069740 PMCID: PMC5641083 DOI: 10.18632/oncotarget.17845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/27/2017] [Indexed: 12/04/2022] Open
Abstract
Although T regulatory cells (Treg) are essential for the prevention of autoimmune diseases, their immunoregulatory function restrains the induction of immune responses against cancer. Thus, development of inhibitors of FOXP3, a key transcription factor for the immunosuppressive activity of Treg, might give new therapeutic opportunities. In a previous work we identified a peptide (named P60) able to enter into the cells, bind to FOXP3, and impair Treg activity in vitro and in vivo. Here we show that P60 binds to the intermediate region of FOXP3 and inhibits its homodimerization as well as its interaction with the transcription factor AML1. Alanine-scanning of P60 revealed the relevance of each position on FOXP3 binding, homodimerization, association with AML1 and inhibition of Treg activity. Introduction of alanine at positions 2, 5 and 11 improved the activity of the original P60, whereas alanine mutations at positions 1, 7, 8, 9, 10 and 12 were detrimental. Multiple mutation experiments allowed us to identify peptides with higher FOXP3 binding affinity and stronger biological activity than the original P60. Head to tail macrocyclization of peptide P60-D2A-S5A improved Treg inhibition and enhanced anti-tumor activity of anti-PD1 antibodies in a model of hepatocellular carcinoma. Introduction of a D-aminoacid at position 2 augmented significantly microsomal stability while maintained FOXP3 binding capacity and Treg inhibition in vitro. In vivo, when combined with the cytotoxic T-cell epitope AH1, it induced protection against CT26 tumor implantation. This study provides important structure–function relationships essential for further drug design to inhibit Treg cells in cancer.
Collapse
Affiliation(s)
- Teresa Lozano
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Marta Gorraiz
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Aritz Lasarte-Cía
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Marta Ruiz
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Diana Llopiz
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Pablo Sarobe
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Jesús Prieto
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| |
Collapse
|
19
|
Feng X, Feng J. Clinical significance of Tim3-positive T cell subsets in patients with multiple sclerosis. J Clin Neurosci 2016; 34:193-197. [DOI: 10.1016/j.jocn.2016.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 07/03/2016] [Indexed: 01/15/2023]
|
20
|
|
21
|
Chhabra A, Mukherji B. Suppression of inducible CD4 regulatory cells by MHC class I-restricted human tumor epitope specific TCR engineered multifunctional CD4 T cells. Hum Immunol 2016; 77:905-911. [PMID: 27320826 DOI: 10.1016/j.humimm.2016.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/07/2016] [Accepted: 06/15/2016] [Indexed: 11/25/2022]
Abstract
Regulatory T cells (Treg) can interfere with the generation and function of anti-tumor immune effectors. Accordingly, ways that could block Treg function would be useful in cancer immunotherapy. We have previously shown that incorporation of CD4+CD25-ve T cells in an in vitro cytolytic T lymphocyte (CTL) generation assay leads to generation of induced regulatory T cells (iTregs), and that these iTreg block the generation of productive CTL response (Chattopadhyay et al., 2006). We here show that human CD4 T cells engineered to express MHC class I-restricted human melanoma associated epitope, MART-127-35, specific T cell receptor (TCR), that can simultaneously exhibit helper as well as cytolytic effector functions (Chhabra et al., 2008, Ray et al., 2010), can interfere with the generation of inducible Treg, block iTreg-mediated suppression, and allow the activation and expansion of MART-127-35 specific CTL responses, in vitro. We also show that mitigation of Treg generation by TCR engineered CD4 T cells is not mediated by a soluble factor and may involve "licensing/conditioning" of the dendritic cells (DC). Our data offer novel insights on the biology of MHC class I restricted TCReng CD4 T cells and have translational implications.
Collapse
Affiliation(s)
- Arvind Chhabra
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States.
| | - Bijay Mukherji
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
22
|
Wei P, Yang Y, Guo X, Hei N, Lai S, Assassi S, Liu M, Tan F, Zhou X. Identification of an Association of TNFAIP3 Polymorphisms With Matrix Metalloproteinase Expression in Fibroblasts in an Integrative Study of Systemic Sclerosis-Associated Genetic and Environmental Factors. Arthritis Rheumatol 2016; 68:749-60. [PMID: 26474180 PMCID: PMC4767670 DOI: 10.1002/art.39476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a fibrotic disease attributed to both genetic susceptibility and environmental factors. This study was undertaken to investigate the associations between SSc-associated genetic variants and the expression of extracellular matrix (ECM) genes in human fibroblasts stimulated with silica particles in time-course and dose-response experiments. METHODS A total of 200 fibroblast strains were examined for ECM gene expression after stimulation with silica particles. The fibroblasts were genetically profiled using Immunochip assays and then subjected to whole-genome genotype imputation. Associations of genotypes and gene expression were first analyzed in a Caucasian cohort and then validated in a meta-analysis combining the results from Caucasian, African American, and Hispanic subjects. A linear mixed model for longitudinal data analysis was used to identify genetic variants associated with the expression of ECM genes, and the associations were validated by using a haplotype-based longitudinal association test on regions that included the loci identified. RESULTS The single-nucleotide polymorphism rs58905141 in TNFAIP3 was consistently associated with time-course and/or dose-response expression of MMP3 and MMP1 in the fibroblasts stimulated with silica particles in both the analysis of Caucasian subjects only and the meta-analysis. Results of the haplotype-based analysis validated the association signals. CONCLUSION Our findings indicate that a genetic variant of TNFAIP3 is strongly associated with the silica-induced profibrotic response of fibroblasts. In silico functional analysis based on the ENCODE database revealed that rs58905141 might affect the binding activities of the transcription factors for TNFAIP3. This is the first genome-wide study of interactions between genetic and environmental factors in a complex SSc fibroblast model.
Collapse
Affiliation(s)
- Peng Wei
- Human Genetics Center and Department of Biostatistics, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yang Yang
- Human Genetics Center and Department of Biostatistics, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030
- Division of Rheumatology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Xinjian Guo
- Division of Rheumatology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nainan Hei
- Human Genetics Center and Department of Biostatistics, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Syeling Lai
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030
| | - Shervin Assassi
- Division of Rheumatology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Mengyuan Liu
- Division of Rheumatology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Filemon Tan
- Division of Rheumatology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Xiaodong Zhou
- Division of Rheumatology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
23
|
Ryan JM, Wasser JS, Adler AJ, Vella AT. Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: Can we have our cake and eat it too? Expert Opin Biol Ther 2016; 16:655-74. [PMID: 26855028 DOI: 10.1517/14712598.2016.1152256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) targeting checkpoint inhibitors have demonstrated clinical benefit in treating patients with cancer and have paved the way for additional immune-modulating mAbs such as those targeting costimulatory receptors. The full clinical utility of these agents, however, is hampered by immune-related adverse events (irAEs) that can occur during therapy. AREAS COVERED We first provide a general overview of tumor immunity, followed by a review of the two major classes of immunomodulatory mAbs being developed as cancer therapeutics: checkpoint inhibitors and costimulatory receptor agonists. We then discuss therapy-associated adverse events. Finally, we describe in detail the mechanisms driving their therapeutic activity, with an emphasis on interactions between antibody fragment crystallizable (Fc) domains and Fc receptors (FcR). EXPERT OPINION Given that Fc-FcR interactions appear critical in facilitating the ability of immunomodulatory mAbs to elicit both therapeutically useful as well as adverse effects, the engineering of mAbs that can effectively engage their targets while limiting interaction with FcRs might represent a promising future avenue for developing the next generation of immune-enhancing tumoricidal agents with increased safety and retention of efficacy.
Collapse
Affiliation(s)
- Joseph M Ryan
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | | | - Adam J Adler
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | - Anthony T Vella
- a Department of Immunology , UConn Health , Farmington , CT , USA
| |
Collapse
|
24
|
Immunological Aspects of Fulminant Type 1 Diabetes in Chinese. J Immunol Res 2016; 2016:1858202. [PMID: 26981545 PMCID: PMC4769748 DOI: 10.1155/2016/1858202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 11/17/2022] Open
Abstract
Background. Fulminant type 1 diabetes (FT1D) is a novel subtype of type 1 diabetes characterized by extremely rapid onset and complete deficiency of insulin due to the destruction of pancreatic β cells. However, the precise mechanisms underlying the etiology of this disease remain unclear. Methods. A total of 22 patients with FT1D and 10 healthy subjects were recruited. Serum antibodies to GAD, IA2, and ZnT8 in patients were tested. And peripheral T cell responses to GAD65, insulin B9–23 peptide, or C peptide were determined in 10 FT1D patients and 10 healthy controls. The mRNA levels of several related cytokines and molecules, such as IFN-γ, IL-4, RORC, and IL-17 in PBMCs from FT1D patients were analyzed by qRT-PCR. Result. We found that a certain proportion of Chinese FT1D patients actually have developed islet-related autoantibodies after onset of the disease. The GAD, insulin, or C peptide-reactive T cells were found in some FT1D patients. We also detected a significant increase for IFN-γ expression in FT1D PBMCs as compared with that of healthy controls. Conclusion. Autoimmune responses might be involved in the pathogenesis of Chinese FT1D.
Collapse
|
25
|
Bhome R, Al Saihati H, Goh R, Bullock M, Primrose J, Thomas G, Sayan A, Mirnezami A. Translational aspects in targeting the stromal tumour microenvironment: from bench to bedside. NEW HORIZONS IN TRANSLATIONAL MEDICINE 2016; 3:9-21. [PMID: 27275004 PMCID: PMC4888939 DOI: 10.1016/j.nhtm.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Solid tumours comprise, not only malignant cells but also a variety of stromal cells and extracellular matrix proteins. These components interact via an array of signalling pathways to create an adaptable network that may act to promote or suppress cancer progression. To date, the majority of anti-tumour chemotherapeutic agents have principally sought to target the cancer cell. Consequently, resistance develops because of clonal evolution, as a result of selection pressure during tumour expansion. The concept of activating or inhibiting other cell types within the tumour microenvironment is relatively novel and has the advantage of targeting cells which are genetically stable and less likely to develop resistance. This review outlines key players in the stromal tumour microenvironment and discusses potential targeting strategies that may offer therapeutic benefit.
Collapse
Affiliation(s)
- R. Bhome
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- University Surgery, South Academic Block, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - H.A. Al Saihati
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - R.W. Goh
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- School of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - M.D. Bullock
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- University Surgery, South Academic Block, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - J.N. Primrose
- University Surgery, South Academic Block, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - G.J. Thomas
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - A.E. Sayan
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - A.H. Mirnezami
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- University Surgery, South Academic Block, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
26
|
Lozano T, Villanueva L, Durántez M, Gorraiz M, Ruiz M, Belsúe V, Riezu-Boj JI, Hervás-Stubbs S, Oyarzábal J, Bandukwala H, Lourenço AR, Coffer PJ, Sarobe P, Prieto J, Casares N, Lasarte JJ. Inhibition of FOXP3/NFAT Interaction Enhances T Cell Function after TCR Stimulation. THE JOURNAL OF IMMUNOLOGY 2015; 195:3180-9. [DOI: 10.4049/jimmunol.1402997] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/27/2015] [Indexed: 01/13/2023]
|
27
|
Freier CP, Kuhn C, Rapp M, Endres S, Mayr D, Friese K, Anz D, Jeschke U. Expression of CCL22 and Infiltration by Regulatory T Cells are Increased in the Decidua of Human Miscarriage Placentas. Am J Reprod Immunol 2015; 74:216-27. [PMID: 25922986 DOI: 10.1111/aji.12399] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/05/2015] [Indexed: 01/08/2023] Open
Abstract
PROBLEM Regulatory T cells (Treg) are a T-cell subpopulation with suppressive capacities, specifically attracted by CCL22. We aimed to investigate whether CCL22 is expressed in human placentas and whether its presence, together with Treg infiltration, is associated with miscarriage conditions. METHOD OF STUDY Paraffin samples were stained for CCL22 and for the Treg-specific transcription factor FoxP3. Expression levels were evaluated in a semi-quantitative manner. Double immunofluorescence was used for the identification of CCL22-producing cells. RESULTS In all placentas, trophoblasts expressed CCL22. Interestingly, expression in the decidua was only observed in miscarriage conditions. Maternal stromal cells expressed CCL22. Correlation with a higher presence of Treg in the decidua of abortive tissues was observed. CONCLUSION Our results demonstrate that CCL22 is expressed in human placenta. Decidual expression was only observed in miscarriage conditions and correlates with Treg infiltration. Thus, CCL22 plays a role in human pregnancy and may occur as a negative feedback response to pro-inflammatory events during miscarriage conditions.
Collapse
Affiliation(s)
- Christoph P Freier
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Klinikum der Universität München, München, Germany.,Abteilung für Klinische Pharmakologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Christina Kuhn
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Klinikum der Universität München, München, Germany
| | - Moritz Rapp
- Abteilung für Klinische Pharmakologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Stefan Endres
- Abteilung für Klinische Pharmakologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Doris Mayr
- Pathologisches Institut, Medizinische Fakultät der Universität München, München, Germany
| | - Klaus Friese
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Klinikum der Universität München, München, Germany
| | - David Anz
- Abteilung für Klinische Pharmakologie, Medizinische Klinik und Poliklinik IV Bereich Gastroenterologie, Klinikum der Universität München, München, Germany
| | - Udo Jeschke
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Klinikum der Universität München, München, Germany
| |
Collapse
|
28
|
B-lymphocytes support and regulate indirect T-cell alloreactivity in individual patients with chronic antibody-mediated rejection. Kidney Int 2015; 88:560-8. [PMID: 25830760 DOI: 10.1038/ki.2015.100] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/30/2015] [Accepted: 02/19/2015] [Indexed: 12/27/2022]
Abstract
We explored how B-lymphocytes influence in vitro T-cell alloresponses in patients with antibody-mediated rejection (AMR), testing whether B-cells would be preferentially involved in this group of patients. Peripheral blood mononuclear cells were collected from 65 patients having biopsy: 14 patients with AMR and 5 with no pathology on protocol; 38 with AMR and 8 with nonimmunologic damage on 'for cause'. Using enzyme-linked immunosorbent spot assays, we found interferon-γ production by indirect allorecognition in 45 of 119 total samples from the 65 patients. B-cells preferentially processed and presented donor alloantigens in samples from AMR patients. In a further 25 samples, B-cell-dependent allo-specific reactivity was shown by depletion of CD25(+) cells and these individuals had higher percentages of CD4CD25hi cells. In 21 samples, reactivity was shown by depletion of CD19(+) cells, associated with polarized cytokine production toward IL-10 after polyclonal activation by IgG/IgM. Overall, this shows a significant contribution by B-cells to indirect donor-specific T-cell reactivity in vitro in patients with AMR. Active suppression by distinct phenotypes of T- or B-cells in approximately half of the patients indicates that chronic AMR is not characterized by a universal loss of immune regulation. Thus, stratified approaches that accommodate the heterogeneity of cell-mediated immunity might be beneficial to treat graft dysfunction.
Collapse
|
29
|
Liu Y, Yun X, Gao M, Yu Y, Li X. Analysis of regulatory T cells frequency in peripheral blood and tumor tissues in papillary thyroid carcinoma with and without Hashimoto's thyroiditis. Clin Transl Oncol 2014; 17:274-80. [PMID: 25387566 DOI: 10.1007/s12094-014-1222-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 08/24/2014] [Indexed: 01/15/2023]
Abstract
PURPOSE Regulatory T cells (Treg) suppress the immune reaction. The aim of the present study was to investigate the clinicopathologic significance and roles of Treg in papillary thyroid carcinoma (PTC) patients with and without Hashimoto's thyroiditis. METHODS Flow cytometry was used to detect the percentage of CD4+CD25+CD127low/- Treg among CD4+ T cells in peripheral blood. FoxP3+ Treg were detected by immunohistochemistry in the tumor tissues. RESULTS The percentage of CD4+CD25+CD127low/- Treg among CD4+ T cells was significantly higher in PTC patients than that in multinodular goiter (MNG) patients. There were large numbers of tumor-infiltrating FoxP3+ Treg in primary PTC and metastatic lymph nodes tissues; however, there was no FoxP3 expression in the MNG tissues. Higher percentage of Treg both in peripheral blood and tumor tissues was associated with extrathyroidal extension and lymph nodes metastasis. The percentage of CD4+CD25+CD127low/- Treg among CD4+ T cells in peripheral blood of PTC patients with Hashimoto's thyroiditis (HT) was significantly lower, whereas the infiltration of FoxP3+ Treg in tissues of PTC with HT tended to be increased. CONCLUSIONS We concluded that the percentage of Treg increased in peripheral blood as well as in the tumor tissues of PTC patients compared with that of MNG patients. The high percentage of Treg was associated with aggressiveness. There may be a compensatory expansion of Treg at the sites of inflammation in tissues of PTC with HT contributing to the immune response suppression.
Collapse
Affiliation(s)
- Y Liu
- Department of Head and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Adler AJ, Vella AT. Betting on improved cancer immunotherapy by doubling down on CD134 and CD137 co-stimulation. Oncoimmunology 2014; 2:e22837. [PMID: 23482891 PMCID: PMC3583935 DOI: 10.4161/onci.22837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability of T cells to recognize a vast array of antigens enables them to destroy tumor cells while inflicting minimal collateral damage. Nevertheless, tumor antigens often are a form of self-antigen, and thus tumor immunity can be dampened by tolerance mechanisms that evolved to prevent autoimmunity. Since tolerance can be induced by steady-state antigen-presenting cells that provide insufficient co-stimulation, the exogenous administration of co-stimulatory agonists can favor the expansion and tumoricidal functions of tumor-specific T cells. Agonists of the co-stimulatory tumor necrosis factor receptor (TNFR) family members CD134 and CD137 exert antitumor activity in mice, and as monotherapies have exhibited encouraging results in clinical trials. This review focuses on how the dual administration of CD134 and CD137 agonists synergistically boosts T-cell priming and elaborates a multi-pronged antitumor immune response, as well as how such dual co-stimulation might be translated into effective anticancer therapies.
Collapse
Affiliation(s)
- Adam J Adler
- Department of Immunology; University of Connecticut Health Center; Farmington, CT USA
| | | |
Collapse
|
31
|
Regulatory T-cell therapy in the induction of transplant tolerance: the issue of subpopulations. Transplantation 2014; 98:370-9. [PMID: 24933458 DOI: 10.1097/tp.0000000000000243] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clinical tolerance induction to permit minimization or cessation of immunosuppressive drugs is one of the key research goals in solid organ transplantation. The use of ex vivo expanded or manipulated immunologic cells, including CD4CD25FOXP3 regulatory T cells (Tregs), to achieve this aim is already a reality, with several trials currently recruiting patients. Tregs are a highly suppressive, nonredundant, population of regulatory cells that prevent the development of autoimmune diseases in mammals. Data from transplanted humans and animal models support the notion that Tregs can mediate both induction and adoptive transfer of transplantation tolerance. However, human Tregs are highly heterogeneous and include subpopulations with the potential to produce the proinflammatory cytokine interleukin-17, which has been linked to transplant rejection. Tregs are also small in number in the peripheral circulation, thus they require ex vivo expansion before infusion into man. Selection of the most appropriate Treg population for cell therapy is, therefore, a critical step in ensuring successful clinical outcomes. In this review, we discuss Treg subpopulations, their subdivision based on nonmutually exclusive criteria of origin, expression of immunologic markers and function, availability in the peripheral blood of patients awaiting transplantation, and their suitability for programs of cell-based therapy.
Collapse
|
32
|
Jin J, Chou C, Lima M, Zhou D, Zhou X. Systemic Sclerosis is a Complex Disease Associated Mainly with Immune Regulatory and Inflammatory Genes. Open Rheumatol J 2014; 8:29-42. [PMID: 25328554 PMCID: PMC4200700 DOI: 10.2174/1874312901408010029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022] Open
Abstract
Systemic sclerosis (SSc) is a fibrotic and autoimmune disease characterized clinically by skin and internal organ fibrosis and vascular damage, and serologically by the presence of circulating autoantibodies. Although etiopathogenesis is not yet well understood, the results of numerous genetic association studies support genetic contributions as an important factor to SSc. In this paper, the major genes of SSc are reviewed. The most recent genome-wide association studies (GWAS) are taken into account along with robust candidate gene studies. The literature search was performed on genetic association studies of SSc in PubMed between January 2000 and March 2014 while eligible studies generally had over 600 total participants with replication. A few genetic association studies with related functional changes in SSc patients were also included. A total of forty seven genes or specific genetic regions were reported to be associated with SSc, although some are controversial. These genes include HLA genes, STAT4, CD247, TBX21, PTPN22, TNFSF4, IL23R, IL2RA, IL-21, SCHIP1/IL12A, CD226, BANK1, C8orf13-BLK, PLD4, TLR-2, NLRP1, ATG5, IRF5, IRF8, TNFAIP3, IRAK1, NFKB1, TNIP1, FAS, MIF, HGF, OPN, IL-6, CXCL8, CCR6, CTGF, ITGAM, CAV1, MECP2, SOX5, JAZF1, DNASEIL3, XRCC1, XRCC4, PXK, CSK, GRB10, NOTCH4, RHOB, KIAA0319, PSD3 and PSOR1C1. These genes encode proteins mainly involved in immune regulation and inflammation, and some of them function in transcription, kinase activity, DNA cleavage and repair. The discovery of various SSc-associated genes is important in understanding the genetics of SSc and potential pathogenesis that contribute to the development of this disease.
Collapse
Affiliation(s)
- Jingxiao Jin
- University of Texas Medical School at Houston, USA ; Duke University, USA
| | - Chou Chou
- University of Texas Medical School at Houston, USA
| | - Maria Lima
- University of Texas Medical School at Houston, USA ; Rice University, USA
| | - Danielle Zhou
- University of Texas Medical School at Houston, USA ; Washington University, USA
| | | |
Collapse
|
33
|
Kuo CL, Chen TS, Liou SY, Hsieh CC. Immunomodulatory effects of EGCG fraction of green tea extract in innate and adaptive immunity via T regulatory cells in murine model. Immunopharmacol Immunotoxicol 2014; 36:364-70. [PMID: 25151997 DOI: 10.3109/08923973.2014.953637] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Green tea is a widely consumed beverage known for its beneficial anti-inflammatory, anti-oxidative, anti-mutagenic, anti-carcinogenic, and cardioprotective properties. Here, we administered epigallocatechin gallate fraction of green tea extract (EGTE) to mice for 6 weeks and examined the effects on the innate and adaptive immune responses by measuring phagocytic and natural killer (NK) cell activity, as well as antigen-specific proliferation, cytolysis, cytokine secretion, and antibody production. Our data show that EGTE administration increased NK cell cytolysis and peritoneal cell phagocytosis, as well as splenocyte proliferation and secretion of IL-2 and IFN-γ. Of note, EGTE treatment decreased the production antigen-specific IgE via increased the proportion of CD4+ CD25+ regulatory T lymphocytes in the spleen, suggesting that EGTE may play a role in regulating the allergic response.
Collapse
Affiliation(s)
- Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University , Taichung, Taiwan , ROC
| | | | | | | |
Collapse
|
34
|
Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front Immunol 2014; 5:68. [PMID: 24605111 PMCID: PMC3932655 DOI: 10.3389/fimmu.2014.00068] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/07/2014] [Indexed: 12/31/2022] Open
Abstract
Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSC) for allogeneic transplantation when HLA-matched sibling and unrelated donors (MUD) are unavailable. Although the overall survival results for UCB transplantation are comparable to the results with MUD, UCB transplants are associated with slow engraftment, delayed immune reconstitution, and increased opportunistic infections. While this may be a consequence of the lower cell dose in UCB grafts, it also reflects the relative immaturity of cord blood. Furthermore, limited cell numbers and the non-availability of donor lymphocyte infusions currently prevent the use of post-transplant cellular immunotherapy to boost donor-derived immunity to treat infections, mixed chimerism, and disease relapse. To further develop UCB transplantation, many strategies to enhance engraftment and immune reconstitution are currently under investigation. This review summarizes our current understanding of engraftment and immune recovery following UCB transplantation and why this differs from allogeneic transplants using other sources of HSC. It also provides a comprehensive overview of promising techniques being used to improve myeloid and lymphoid recovery, including expansion, homing, and delivery of UCB HSC; combined use of UCB with third-party donors; isolation and expansion of natural killer cells, pathogen-specific T cells, and regulatory T cells; methods to protect and/or improve thymopoiesis. As many of these strategies are now in clinical trials, it is anticipated that UCB transplantation will continue to advance, further expanding our understanding of UCB biology and HSC transplantation.
Collapse
Affiliation(s)
- Robert Danby
- Department of Haematology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK ; NHS Blood and Transplant, John Radcliffe Hospital , Oxford , UK ; Eurocord, Hôpital Saint Louis APHP, University Paris VII IUH , Paris , France
| | - Vanderson Rocha
- Department of Haematology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK ; NHS Blood and Transplant, John Radcliffe Hospital , Oxford , UK ; Eurocord, Hôpital Saint Louis APHP, University Paris VII IUH , Paris , France
| |
Collapse
|
35
|
Larkin J, Ahmed CM, Wilson TD, Johnson HM. Regulation of interferon gamma signaling by suppressors of cytokine signaling and regulatory T cells. Front Immunol 2013; 4:469. [PMID: 24391643 PMCID: PMC3866655 DOI: 10.3389/fimmu.2013.00469] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/04/2013] [Indexed: 01/17/2023] Open
Abstract
Regulatory T cells (Tregs) play an indispensable role in the prevention of autoimmune disease, as interferon gamma (IFNγ) mediated, lethal auto-immunity occurs (in both mice and humans) in their absence. In addition, Tregs have been implicated in preventing the onset of autoimmune and auto-inflammatory conditions associated with aberrant IFNγ signaling such as type 1 diabetes, lupus, and lipopolysaccharide (LPS) mediated endotoxemia. Notably, suppressor of cytokine signaling-1 deficient (SOCS1−/−) mice also succumb to a lethal auto-inflammatory disease, dominated by excessive IFNγ signaling and bearing similar disease course kinetics to Treg deficient mice. Moreover SOCS1 deficiency has been implicated in lupus progression, and increased susceptibility to LPS mediated endotoxemia. Although it has been established that Tregs and SOCS1 play a critical role in the regulation of IFNγ signaling, and the prevention of lethal auto-inflammatory disease, the role of Treg/SOCS1 cross-talk in the regulation of IFNγ signaling has been essentially unexplored. This is especially pertinent as recent publications have implicated a role of SOCS1 in the stability of peripheral Tregs. This review will examine the emerging research findings implicating a critical role of the intersection of the SOCS1 and Treg regulatory pathways in the control of IFN gamma signaling and immune system function.
Collapse
Affiliation(s)
- Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | - Chulbul M Ahmed
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | - Tenisha D Wilson
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | - Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| |
Collapse
|
36
|
Li R, Hu H, Ma H, Chen L, Zhou S, Liu B, Liu Y, Liang C. The anti-tumor effect and increased tregs infiltration mediated by rAAV-SLC vector. Mol Biol Rep 2013; 40:5615-23. [PMID: 24078089 PMCID: PMC3824217 DOI: 10.1007/s11033-013-2663-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 09/14/2013] [Indexed: 11/05/2022]
Abstract
To explore the anti-tumor effect and immune mechanism mediated by a new recombinant adeno-associated virus (rAAV) encoding secondary lymphoid tissue chemokine (SLC) mature peptide gene. AAV Helper-Free system was used for rAAV-SLC package. The anti-tumor effect of SLC was detected by bearing tumor established from Hepal-6 cells both in C57BL/6J and nude mice. Flow cytometry analysis and IHC for Tumor-infiltrating T cells and CD11c+DCs were also investigated to explore the immunological mechanism. rAAV-SLC was successfully packaged in AAV293 cells and transfected Hepal-6 tumor cells at high efficiency. The anti-tumor effect was demonstrated by less tumor weight and longer survival outcome. Coincident with the anti-tumor response, local elaboration of SLC within the tumor bed elicited a heavy infiltration of CD4+, CD8+T cells and CD11c+ dendritic cells into the tumor sites. More importantly, there was higher infiltration of Foxp3+ regulatory T cells (Tregs). Local elaboration of SLC mediated by rAAV-SLC has strong T cell mediated anti-tumor effect. The study also suggested that Tregs in the tumor microenvironment tampered the anti-tumor effect.
Collapse
Affiliation(s)
- Rilun Li
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Heng Hu
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Huiying Ma
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Long Chen
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Shuang Zhou
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| | - Binbin Liu
- Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yinkun Liu
- Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Chunmin Liang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
37
|
Wu H, Chen P, Liao R, Li YW, Yi Y, Wang JX, Cai XY, He HW, Jin JJ, Cheng YF, Fan J, Sun J, Qiu SJ. Intratumoral regulatory T cells with higher prevalence and more suppressive activity in hepatocellular carcinoma patients. J Gastroenterol Hepatol 2013; 28:1555-1564. [PMID: 23517245 DOI: 10.1111/jgh.12202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2013] [Indexed: 12/26/2022]
Abstract
Regulatory T cells (Treg) play a vital role in immunosuppressive crosstalk; however, Tregs from different locations lead to different clinical outcomes. Our aim was, therefore, to compare the prevalences and suppressive phenotypes of Tregs in the peripheral blood, peritumor, and intratumor of patients with hepatocellular carcinoma (HCC). METHODS : The frequencies and phenotypes of CD4(+) CD25(+) CD127(low/-) CD49d(-) Tregs in the periphery, peritumor, and intratumor of 78 HCC patients and 12 healthy controls were evaluated by flow cytometry. Treg-cell suppressive activity was determined using an in vitro CD154 expression assay. Tregs from tumor and paired peritumor were then hybridized using an Agilent whole genome oligo microarray, and selected genes were validated by real-time polymerase chain reaction. Functional analysis of the microarray data was performed using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses. RESULTS : Intratumoral Tregs exhibited higher frequencies and more suppressive phenotypic functions than those in peritumor and periphery, whereas there was no difference between the latter two. Functional analysis showed that complement cascades, p53, and glycosylphosphatidylinositol-anchor biosynthesis pathways were significantly upregulated in intratumoral Tregs; the salivary secretion pathway was significantly downregulated in intratumoral Tregs, and immune cells and tumor-immuno-related Gene Ontology terms were significantly affected. CONCLUSIONS : Tregs in different locations exhibited different functional statuses. A higher prevalence and more suppressive phenotype suggested a critical role for intratumoral Tregs in the formation of multicellular immunosuppressive networks. HCC immunotherapy may be improved, therefore, by specific locational Tregs elimination or suppression.
Collapse
Affiliation(s)
- Han Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Affiliated Hospital, Nantong University, Nantong, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang P, Maruyama T, Konkel JE, Abbatiello B, Zamarron B, Wang ZQ, Chen W. PARP-1 controls immunosuppressive function of regulatory T cells by destabilizing Foxp3. PLoS One 2013; 8:e71590. [PMID: 23977081 PMCID: PMC3747222 DOI: 10.1371/journal.pone.0071590] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/01/2013] [Indexed: 01/08/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme and transcription factor that is involved in inflammatory response, but its role in T cell response remains largely unknown. We show here that PARP-1 regulates the suppressive function of CD4+CD25+Foxp3+ regulatory T cells (Tregs). Specifically, Tregs in mice with a null mutation of the PARP-1 gene (PARP-1–/–) showed significantly stronger suppressive activity than did wild-type Tregs in culture. We elucidate that this enhanced suppressive function is attributed to sustained higher expression of Foxp3 and CD25 in PARP-1−/− Tregs. Furthermore, in PARP-1−/− Tregs, Foxp3 protein shows substantially higher levels of binding to the conserved non-coding DNA sequence 2 (CNS2) at the foxp3 gene, a region important in maintaining Foxp3 gene expression in Tregs. Thus, our data reveal a role for PARP-1 in controlling the function of Tregs through modulation of the stable expression of Foxp3.
Collapse
Affiliation(s)
- Pin Zhang
- Mucosal Immunology Unit, OIIB, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, United States of America
| | - Takashi Maruyama
- Mucosal Immunology Unit, OIIB, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, United States of America
| | - Joanne E. Konkel
- Mucosal Immunology Unit, OIIB, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, United States of America
| | - Brittany Abbatiello
- Mucosal Immunology Unit, OIIB, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, United States of America
| | - Brian Zamarron
- Mucosal Immunology Unit, OIIB, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, United States of America
| | - Zhao-qi Wang
- Leibniz Institute for Age Research – Fritz Lipmann Institute e.V. 07745, Jena, Germany
| | - WanJun Chen
- Mucosal Immunology Unit, OIIB, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Vent-Schmidt J, Han JM, MacDonald KG, Levings MK. The Role of FOXP3 in Regulating Immune Responses. Int Rev Immunol 2013; 33:110-28. [DOI: 10.3109/08830185.2013.811657] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Li YN, Huang F, Liu XL, Shu SN, Huang YJ, Cheng HJ, Fang F. Allium sativum-derived allitridin inhibits Treg amplification in cytomegalovirus infection. J Med Virol 2013; 85:493-500. [PMID: 23341371 DOI: 10.1002/jmv.23480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 01/11/2023]
Abstract
This study investigated the effects of allitridin compound on murine cytomegalovirus (MCMV)-induced regulatory T cell (Treg; CD4(+) CD25(+) Foxp3(+) ) amplification in vivo and in vitro. One hundred twenty MCMV-infected mice were allocated at random into two groups for treatment with allitridin or placebo. Another 120 mock-infected mice were randomly allocated as controls for the allitridin treatment and placebo treatment groups. The mice were euthanized at various time points after infection (out to 120 days) to evaluate the effects of treatment on Treg presence and function, as well as MCMV infective load. Co-culture with mouse embryo fibroblasts (MEF) and MCMV was performed to evaluate allitridin-mediated Treg and anti-CMV effects. The maximum tolerance concentration (MTC) of allitridin was used to treat cells for 3 days. Changes in Foxp3 mRNA and protein levels, percentages of T cell subsets, and Treg-related cytokines (IL-10 and TGF-β) were measured. Allitridin treatment did not influence Foxp3 expression and Treg proportion in uninfected mice, but did down-regulate each in infected mice during the chronic infection period. Additionally, allitridin treatment reduced the MCMV load in salivary glands. MTC allitridin treatment of co-cultures partially blocked MCMV induction of Foxp3 mRNA and protein expression. In vitro treatment with allitridin also increased significantly the percentages of Tc1, Tc2, and Th1, reduced the secreted levels of IL-10 and TGF-β1, and significantly suppressed viral loads. In conclusion, allitridin can promote MCMV-induced Treg expansion and Treg-mediated anti-MCMV immunosuppression. Therefore, allitridin may be useful as a therapeutic agent to enhance the specific cellular immune responses against CMV.
Collapse
Affiliation(s)
- Ya-nan Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Amedei A, Niccolai E, Benagiano M, Della Bella C, Cianchi F, Bechi P, Taddei A, Bencini L, Farsi M, Cappello P, Prisco D, Novelli F, D'Elios MM. Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol Immunother 2013; 62:1249-1260. [PMID: 23640603 PMCID: PMC11028529 DOI: 10.1007/s00262-013-1429-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/24/2013] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is an aggressive disease with dismal prognosis. Surgical resection is the recommended treatment for long-term survival, but patients with resectable PC are in the minority (with a 5-year survival rate of 20 %). Therefore, development of novel therapeutic strategies, such as anti-PC immunotherapy, is crucial. α-Enolase (ENO1) is an enzyme expressed on the surface of pancreatic cancer cells and is able to promote cell migration and cancer metastasis. The capacity of ENO1 to induce an immune response in PC patients renders it a true tumor-associated antigen. In this study, we characterized the effector functions of ENO1-specific T cells isolated from PC patients, and we specifically evaluated the successful role of intra-tumoral T helper 17 (Th17) cells and the inhibitory role of regulatory T (Tregs) cells in respectively promoting or reducing the cancer-specific immune response. In this ex vivo study, we have demonstrated, for the first time, that ENO1-specific Th17 cells have a specific anti-cancer effector function in PC patients, and that there are decreased levels of these cells in cancer compared to healthy mucosa. Conversely, there are elevated levels of ENO1-specific Tregs in PC patients which lead to inhibition of the antigen-specific effector T cells, thus highlighting a possible role in promoting PC progression. These results may be relevant for the design of novel immunotherapeutic strategies in pancreatic cancer.
Collapse
Affiliation(s)
- Amedeo Amedei
- Division of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Safinia N, Leech J, Hernandez-Fuentes M, Lechler R, Lombardi G. Promoting transplantation tolerance; adoptive regulatory T cell therapy. Clin Exp Immunol 2013; 172:158-68. [PMID: 23574313 DOI: 10.1111/cei.12052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/09/2023] Open
Abstract
Transplantation is a successful treatment for end-stage organ failure. Despite improvements in short-term outcome, long-term survival remains suboptimal because of the morbidity and mortality associated with long-term use of immunosuppression. There is, therefore, a pressing need to devise protocols that induce tolerance in order to minimize or completely withdraw immunosuppression in transplant recipients. In this review we will discuss how regulatory T cells (T(regs)) came to be recognized as an attractive way to promote transplantation tolerance. We will summarize the preclinical data, supporting the importance of these cells in the induction and maintenance of immune tolerance and that provide the rationale for the isolation and expansion of these cells for cellular therapy. We will also describe the data from the first clinical trials, using T(regs) to inhibit graft-versus-host disease (GVHD) after haematopoietic stem cell transplantation and will address both the challenges and opportunities in human T(reg) cell therapy.
Collapse
Affiliation(s)
- N Safinia
- MRC Centre for Transplantation, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | | |
Collapse
|
43
|
Wang Z, Zheng Y, Hou C, Yang L, Li X, Lin J, Huang G, Lu Q, Wang CY, Zhou Z. DNA methylation impairs TLR9 induced Foxp3 expression by attenuating IRF-7 binding activity in fulminant type 1 diabetes. J Autoimmun 2013; 41:50-9. [PMID: 23490285 DOI: 10.1016/j.jaut.2013.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
Fulminant type 1 diabetes (FT1D) is an extremely aggressive disease characterized by the abrupt onset of insulin-deficient hyperglycemia. However, the precise mechanisms underlying disease etiology almost remain unclear. As mice deficient in regulatory T cells (Tregs) are prone to the development of an FT1D-like phenotype, we thus investigated whether FT1D patients manifest Treg deficiency and explored the related mechanisms. We first noted a significant reduction for Foxp3 and CTLA4 expression levels in PBMCs of FT1D patients. IRF-7 was found to selectively bind to the Foxp3 promoter, and by which it promotes Foxp3 transcription. Therefore, ectopic IRF-7 expression significantly promoted Foxp3 and CTLA4 expression in PBMCs, while knockdown of IRF-7 manifested opposite effect. Importantly, stimulation of PBMCs with CpG ODN, a ligand for TLR9, significantly induced Foxp3 expression, demonstrating that TLR9 signaling positively regulates Treg development. However, knockdown of IRF-7 expression almost completely diminished the enhancing effect of TLR9 signaling on Foxp3 expression, suggesting that IRF-7 is a downstream molecule of TLR9 signaling and is essential for TLR9 induced Treg generation. Of interestingly note, the Foxp3 promoter in FT1D patients was hypermethylated, indicating that DNA methylation could be a causative factor responsible for the reduced Foxp3 expression in FT1D patients. Indeed, our mechanistic studies revealed that DNA methylation blocked IRF-7 binding to the Foxp3 promoter. Together, our data support the notion that environmental insults in genetic predisposed subjects trigger Foxp3 promoter hypermethylation, which then prevents IRF-7 binding to the Foxp3 promoter and impairs Treg development/functionality contributing to the pathogenesis of FT1D.
Collapse
Affiliation(s)
- Zhen Wang
- Diabetes Center, 2nd Xiangya Hospital, and Institute of Metabolism and Endocrinology, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, 139 Renmin Middle Rd, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Induction of antigen-specific human T suppressor cells by membrane and soluble ILT3. Exp Mol Pathol 2012; 93:294-301. [PMID: 23018130 DOI: 10.1016/j.yexmp.2012.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
Abstract
Antigen-specific CD8 suppressor T cells (CD8(+) Ts) are adaptive regulatory T cells that are induced in vivo and in vitro by chronic antigenic stimulation of human T cells. CD8(+) Ts induce the upregulation of the inhibitory receptors ILT3 and ILT4 on monocytes and dendritic cells rendering these antigen presenting cells (APCs) tolerogenic. Tolerogenic APCs induce CD4(+) T helper anergy and elicit the differentiation of CD4(+) and CD8(+) T regulatory/suppressor cells. Overexpression of membrane ILT3 in APC results in inhibition of NF-κB activation, transcription of inflammatory cytokines and costimulatory molecules. Soluble ILT3-Fc which contains only the extracellular, Ig-like domain linked to mutated IgG1 Fc, is strongly immunosuppressive. ILT3-Fc, induces the differentiation of human CD8(+) Ts which inhibit CD4(+) Th and CD8(+) CTL effector function both in vitro and in vivo. The acquisition of Ts' function by primed CD8(+) T cells treated with ILT3-Fc was demonstrated to be the effect of the significant upregulation of BCL6, a transcriptional repressor of IL-2, IFN-gamma, IL-5 and granzyme B. The upregulated expression of BCL6, SOCS1 and DUSP10 is integral to the signature of ILT3-Fc-induced CD8(+) Ts. These genes are known inhibitors of cytokine production and TCR signaling and are targeted by miRNAs which are suppressed by ILT3-Fc. ILT3-Fc induces tolerance to allogeneic human islets and reverses rejection after its onset in a humanized NOD/SCID mouse model. Based on these findings we postulate that ILT3-Fc may become an important new agent for treatment of autoimmunity and transplant rejection.
Collapse
|
46
|
Ono S, Kimura A, Hiraki S, Takahata R, Tsujimoto H, Kinoshita M, Miyazaki H, Yamamoto J, Hase K, Saitoh D. Removal of increased circulating CD4+CD25+Foxp3+ regulatory T cells in patients with septic shock using hemoperfusion with polymyxin B-immobilized fibers. Surgery 2012; 153:262-71. [PMID: 22884251 DOI: 10.1016/j.surg.2012.06.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/08/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Although sepsis-induced immunosuppression has long been considered to be a factor in the late mortality of patients with sepsis, little is known about regulatory T cell (Treg)-mediated immunosuppression and the effect of polymyxin B-immobilized fiber (PMX-F) on sepsis-induced immunosuppression. We sought to investigate the role of CD4(+)CD25(+)Foxp3(+) Tregs in septic patients, and to evaluate the effect of hemoperfusion with PMX-F on the recovery from immunosuppression owing to septic shock. METHODS Thirty-two septic patients who had an identified focus of infection in the abdominal cavity were enrolled in this study. Peripheral blood mononuclear cells in the septic patients were examined to evaluate the roles of Tregs and the serum cytokine levels. We also examined the effects of PMX-F therapy on CD4(+) T cells, especially Tregs and serum cytokine levels in patients with septic shock. RESULTS The percentage of Tregs in the CD4(+) T-cell population, and the serum IL-6 and IL-10 levels, were significantly higher among patients with septic shock compared with those without septic shock, and PMX-F therapy significantly decreased the number of Tregs, as well as the serum IL-6 and IL-10 levels. Furthermore, a significant increase in the number of CD4(+) T cells, a significant decrease in the percentage of Tregs in the CD4(+) T-cell population, and a significant decrease in the serum IL-6 and IL-10 levels 24 hours after PMX-F therapy were observed in septic shock survivors compared with nonsurvivors. CONCLUSION We found a major increase in the percentage of Tregs in peripheral blood circulating CD4(+) T cells from patients with septic shock, and observed that the removal of Tregs by hemoperfusion with PMX-F might represent a novel strategy for inducing recovery from the immunosuppression associated with sepsis.
Collapse
Affiliation(s)
- Satoshi Ono
- Division of Traumatology, National Defense Medical College Research Institute, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shigematsu Y, Hanagiri T, Shiota H, Kuroda K, Baba T, Ichiki Y, Yasuda M, Uramoto H, Takenoyama M, Yasumoto K, Tanaka F. Immunosuppressive effect of regulatory T lymphocytes in lung cancer, with special reference to their effects on the induction of autologous tumor-specific cytotoxic T lymphocytes. Oncol Lett 2012. [PMID: 23205074 DOI: 10.3892/ol.2012.815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is not easy to induce cytotoxic T lymphocytes (CTLs) against cancer in in vitro culture. Regulatory T cells (Tregs) are considered to play a pivotal role in tumor immune escape. In this study, we analyzed the distribution of Tregs among tumor-infiltrating lymphocytes (TILs), regional lymph node lymphocytes (RLNLs) and peripheral blood lymphocytes (PBLs) in patients with lung cancer, and analyzed the effect of Tregs on the induction of CTLs in vitro. A total of 84 patients with non-small cell lung cancer underwent surgery between January 2003 and December 2004. The TILs, RLNLs and PBLs from these patients were subjected to a comparison analysis. The proportion of CD4(+)CD25(+)Foxp3(+) cells in these lymphocytes was determined by flow cytometry. The effects of Tregs on the induction of CTLs was analyzed by the depletion of Tregs in mixed lymphocyte-tumor cell culture (MLTC). The average proportions of Tregs in the TILs, RLNLs and PBLs were 10.4±9.5, 4.4±2.4 and 2.8±2.1%, respectively. The proportion of Tregs in the RLNLs was significantly higher than that in the PBLs (P<0.001); furthermore, TILs contained a larger number of Tregs than RLNLs (P=0.034). These Tregs substantially suppressed the induction of CTLs against autologous tumor cells. The depletion of Tregs in the MLTC resulted in the successful induction of CTLs. Tregs were found at a higher frequency in the TILs and RLNLs than in the PBLs in lung cancer patients. Since Tregs inhibited the induction of CTLs, the depletion of Tregs may represent a new therapeutic strategy for lung cancer patients.
Collapse
Affiliation(s)
- Yoshiki Shigematsu
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Yahatanishi 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Erfani N, Mehrabadi SM, Ghayumi MA, Haghshenas MR, Mojtahedi Z, Ghaderi A, Amani D. Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer 2012; 77:306-11. [PMID: 22608141 DOI: 10.1016/j.lungcan.2012.04.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 04/10/2012] [Accepted: 04/18/2012] [Indexed: 01/21/2023]
Abstract
We hypothesized that the increased percentages of Regulatory T (Treg) cells, as well as over expression of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) by lymphocyte subsets might be associated with lung cancer. Accordingly, peripheral blood of 23 new cases with non-small cell lung cancer (NSCLC) and 16 healthy volunteers were investigated, by follow cytometry, for the prevalence of CD4+CD25+FoxP3+ Treg cells as well as surface (sur-) and intracellular (In-) expression of CTLA-4 by the main lymphocyte subsets (CD4+, CD8+ and CD19+). Results indicated that NSCLC patients had an increased percentage of Treg cells than controls (7.9±4.1 versus 3.8±1.8, P=0.001). The proportion of Treg cells was observed to be increased by stage increase in patients (stage II=5.2±2.4, stage III=7.9±4.4, stage IV=12.0±2.2), and also significantly higher in metastatic than non-metastatic stages (12.0±2.2 versus 6.8±3.9, P=0.023). Increase of SurCTLA-4- as well as InCTLA-4-expressing lymphocytes in patients were observed in nearly all investigated subsets, but significant differences between patients and controls were observed about InCTLA-4+CD4+ lymphocytes (8.6±7.1 and 3.8±5.3 respectively, P=0.006) as well as SurCTLA-4+CD8+ lymphocytes (0.3±0.2 and 0.2±0.1 respectively, P=0.047). In conclusion, the results suggest that immunotherapy regimen targeting CTLA-4 and Treg cells might be beneficial in lung cancer patients.
Collapse
Affiliation(s)
- Nasrollah Erfani
- Cancer Immunology Group, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | | | |
Collapse
|
49
|
Sorafenib prevents escape from host immunity in liver cirrhosis patients with advanced hepatocellular carcinoma. Clin Dev Immunol 2012; 2012:607851. [PMID: 22666283 PMCID: PMC3359796 DOI: 10.1155/2012/607851] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 12/11/2022]
Abstract
Purpose. It has been reported that Th2 cytokines downregulate antitumor immunity, while activation of type T cells promotes antitumor immunity. The aim of this paper was to evaluate host immunity in liver cirrhosis (LC) patients with advanced hepatocellular carcinoma (aHCC) receiving sorafenib therapy. Methods. Forty-five adult Japanese LC patients received sorafenib for aHCC between 2009 and 2011 at our hospital. Sorafenib was administered at a dose of 200–800 mg/day for 4 weeks. Blood samples were collected before and after treatment. Results. Eleven patients were treated with sorafenib at 200 mg/day (200 group), 27 patients received sorafenib at 400 mg/day (400 group), and 7 patients were given sorafenib at 800 mg/day (800 group). There was no significant change in the percentage of Th1 cells after treatment in any group. However, the percentages of Th2 cells and regulatory T cells were significantly decreased after treatment in the 400 group and 800 group compared with before treatment, although there was no significant change after treatment in the 200 group. Conclusions. These results indicate that treatment with sorafenib might induce Th1 dominance and prevent the escape of tumor cells from the host immune system in LC patients with aHCC.
Collapse
|
50
|
Gocke AR, Lebson LA, Grishkan IV, Hu L, Nguyen HM, Whartenby KA, Chandy KG, Calabresi PA. Kv1.3 deletion biases T cells toward an immunoregulatory phenotype and renders mice resistant to autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2012; 188:5877-86. [PMID: 22581856 DOI: 10.4049/jimmunol.1103095] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing evidence suggests ion channels have critical functions in the differentiation and plasticity of T cells. Kv1.3, a voltage-gated K(+) channel, is a functional marker and a pharmacological target for activated effector memory T cells. Selective Kv1.3 blockers have been shown to inhibit proliferation and cytokine production by human and rat effector memory T cells. We used Kv1.3 knockout (KO) mice to investigate the mechanism by which Kv1.3 blockade affects CD4(+) T cell differentiation during an inflammatory immune-mediated disease. Kv1.3 KO animals displayed significantly lower incidence and severity of myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis. Kv1.3 was the only K(V) channel expressed in MOG 35-55-specific CD4(+) T cell blasts, and no K(V) current was present in MOG-specific CD4(+) T cell-blasts from Kv1.3 KO mice. Fewer CD4(+) T cells migrated to the CNS in Kv1.3 KO mice following disease induction, and Ag-specific proliferation of CD4(+) T cells from these mice was impaired with a corresponding cell-cycle delay. Kv1.3 was required for optimal expression of IFN-γ and IL-17, whereas its absence led to increased IL-10 production. Dendritic cells from Kv1.3 KO mice fully activated wild-type CD4(+) T cells, indicating a T cell-intrinsic defect in Kv1.3 KO mice. The loss of Kv1.3 led to a suppressive phenotype, which may contribute to the mechanism by which deletion of Kv1.3 produces an immunotherapeutic effect. Skewing of CD4(+) T cell differentiation toward Ag-specific regulatory T cells by pharmacological blockade or genetic suppression of Kv1.3 might be beneficial for therapy of immune-mediated diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Anne R Gocke
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | |
Collapse
|