1
|
Lee S, Ko Y, Lee HW, Oh WJ, Hong HG, Ariyaratne D, Im SJ, Kim TJ. Two distinct subpopulations of marginal zone B cells exhibit differential antibody-producing capacities and radioresistance. Cell Mol Immunol 2024; 21:393-408. [PMID: 38424169 PMCID: PMC10978899 DOI: 10.1038/s41423-024-01126-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/27/2023] [Indexed: 03/02/2024] Open
Abstract
Marginal zone (MZ) B cells, which are splenic innate-like B cells that rapidly secrete antibodies (Abs) against blood-borne pathogens, are composed of heterogeneous subpopulations. Here, we showed that MZ B cells can be divided into two distinct subpopulations according to their CD80 expression levels. CD80high MZ B cells exhibited greater Ab-producing, proliferative, and IL-10-secreting capacities than did CD80low MZ B cells. Notably, CD80high MZ B cells survived 2-Gy whole-body irradiation, whereas CD80low MZ B cells were depleted by irradiation and then repleted with one month after irradiation. Depletion of CD80low MZ B cells led to accelerated development of type II collagen (CII)-induced arthritis upon immunization with bovine CII. CD80high MZ B cells exhibited higher expression of genes involved in proliferation, plasma cell differentiation, and the antioxidant response. CD80high MZ B cells expressed more autoreactive B cell receptors (BCRs) that recognized double-stranded DNA or CII, expressed more immunoglobulin heavy chain sequences with shorter complementarity-determining region 3 sequences, and included more clonotypes with no N-nucleotides or with B-1a BCR sequences than CD80low MZ B cells. Adoptive transfer experiments showed that CD21+CD23+ transitional 2 MZ precursors preferentially generated CD80low MZ B cells and that a proportion of CD80low MZ B cells were converted into CD80high MZ B cells; in contrast, CD80high MZ B cells stably remained CD80high MZ B cells. In summary, MZ B cells can be divided into two subpopulations according to their CD80 expression levels, Ab-producing capacity, radioresistance, and autoreactivity, and these findings may suggest a hierarchical composition of MZ B cells with differential stability and BCR specificity.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yeunjung Ko
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hyun Woo Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Won Joon Oh
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Hun Gi Hong
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Dinuka Ariyaratne
- Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Tae Jin Kim
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Ottens K, Schneider J, Satterthwaite AB. B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice. Immunohorizons 2024; 8:47-56. [PMID: 38189742 PMCID: PMC10835670 DOI: 10.4049/immunohorizons.2300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Mice deficient in Lyn, a tyrosine kinase that limits B cell activation, develop a lupus-like autoimmune disease characterized by the accumulation of splenic plasma cells and the production of autoantibodies. Lyn-/- mice have reduced numbers of marginal zone (MZ) B cells, a B cell subset that is enriched in autoreactivity and prone to plasma cell differentiation. We hypothesized that this is due to unchecked terminal differentiation of this potentially pathogenic B cell subpopulation. However, impairing MZ B cell development in Lyn-/- mice did not reduce plasma cell accumulation or autoantibodies, and preventing plasma cell differentiation did not restore MZ B cell numbers. Instead, Lyn-/- mice accumulated B-1a cells when plasma cell differentiation was impaired. Similar to MZ B cells, B-1a cells tend to be polyreactive or weakly autoreactive and are primed for terminal differentiation. Our results implicate B-1a cells, but not MZ B cells, as contributors to the autoreactive plasma cell pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Hsu ML, Zouali M. Inflammasome is a central player in B cell development and homing. Life Sci Alliance 2023; 6:6/2/e202201700. [PMID: 36450446 PMCID: PMC9713303 DOI: 10.26508/lsa.202201700] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Whereas the role of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein (NLRP) 3 pathway in innate immunity has been extensively studied, little attention has been paid to its contribution to adaptive immunity. Studies in animal models and human subjects have shown the contribution of NLRP3 to the T cell compartment, and its role in B lymphocyte functions has been proposed. Here, we report that ablation of nlrp3 in mice led to altered B cell development in the bone marrow, and distorted expression of B cell subsets that play innate-like functions, that is, marginal zone B cells in the spleen and B-1a cells in the peritoneal cavity. Mechanistically, in the absence of NLRP3 expression, the transcription factor IRF4, previously found to interact with NLRP3 in the nucleus of lymphocytes, was up-regulated. NLRP3 ablation reduced the expression of the chemokine receptors CXCR4 and CCR7 in an IRF4-dependent manner, indicating that the presence of NLRP3 is critical for optimal expression of chemokine receptors on B cells. We conclude that activation of the NLRP3 inflammasome plays a role in B cell development, homing, and retention in lymphoid organs.
Collapse
Affiliation(s)
- Man Lun Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Barlev AN, Malkiel S, Kurata-Sato I, Dorjée AL, Suurmond J, Diamond B. FcɣRIIB regulates autoantibody responses by limiting marginal zone B cell activation. J Clin Invest 2022; 132:157250. [PMID: 35819855 PMCID: PMC9435648 DOI: 10.1172/jci157250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
FcɣRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell differentiation. Here, we analysed the effect of B cell-intrinsic FcɣRIIB expression on B cell activation and plasma cell differentiation. Loss of FcɣRIIB on B cells (Fcgr2b cKO mice) led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) B cells had the highest expression of FcɣRIIB in both mouse and human. This high expression of FcɣRIIB was linked to increased MZ B cell activation, Erk phosphorylation, and calcium fluxin the absence of FcɣRIIB triggering. Marked increases in IgG3+ plasma cells and B cells were observed during extrafollicular plasma cell responses in Fcgr2b cKO mice. The increased IgG3 response following immunization of Fcgr2b cKO mice was lost in MZ-deficient Notch2/Fcgr2b cKO mice. Importantly, SLE patients exhibited decreased expression of FcɣRIIB, most strongly in MZ B cells. Thus, we present a model where high FcɣRIIB expression in MZ B cells prevents their hyperactivation and ensuing autoimmunity.
Collapse
Affiliation(s)
- Ashley N Barlev
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Izumi Kurata-Sato
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Annemarie L Dorjée
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
5
|
Oscier D, Stamatopoulos K, Mirandari A, Strefford J. The Genomics of Hairy Cell Leukaemia and Splenic Diffuse Red Pulp Lymphoma. Cancers (Basel) 2022; 14:697. [PMID: 35158965 PMCID: PMC8833447 DOI: 10.3390/cancers14030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Classical hairy cell leukaemia (HCLc), its variant form (HCLv), and splenic diffuse red pulp lymphoma (SDRPL) constitute a subset of relatively indolent B cell tumours, with low incidence rates of high-grade transformations, which primarily involve the spleen and bone marrow and are usually associated with circulating tumour cells characterised by villous or irregular cytoplasmic borders. The primary aim of this review is to summarise their cytogenetic, genomic, immunogenetic, and epigenetic features, with a particular focus on the clonal BRAFV600E mutation, present in most cases currently diagnosed with HCLc. We then reflect on their cell of origin and pathogenesis as well as present the clinical implications of improved biological understanding, extending from diagnosis to prognosis assessment and therapy response.
Collapse
Affiliation(s)
- David Oscier
- Department of Haematology, Royal Bournemouth and Christchurch NHS Trust, Bournemouth BH7 7DW, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Amatta Mirandari
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| | - Jonathan Strefford
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| |
Collapse
|
6
|
Jenks SA, Wei C, Bugrovsky R, Hill A, Wang X, Rossi FM, Cashman K, Woodruff MC, Aspey LD, Lim SS, Bao G, Drenkard C, Sanz I. B cell subset composition segments clinically and serologically distinct groups in chronic cutaneous lupus erythematosus. Ann Rheum Dis 2021; 80:1190-1200. [PMID: 34083207 PMCID: PMC8906255 DOI: 10.1136/annrheumdis-2021-220349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE While the contribution of B-cells to SLE is well established, its role in chronic cutaneous lupus erythematosus (CCLE) remains unclear. Here, we compare B-cell and serum auto-antibody profiles between patients with systemic lupus erythematosus (SLE), CCLE, and overlap conditions. METHODS B-cells were compared by flow cytometry amongst healthy controls, CCLE without systemic lupus (CCLE+/SLE-) and SLE patients with (SLE+/CCLE+) or without CCLE (SLE+/CCLE-). Serum was analyed for autoreactive 9G4+, anti-double-stranded DNA, anti-chromatin and anti-RNA antibodies by ELISA and for anti-RNA binding proteins (RBP) by luciferase immunoprecipitation. RESULTS Patients with CCLE+/SLE- share B-cell abnormalities with SLE including decreased unswitched memory and increased effector B-cells albeit at a lower level than SLE patients. Similarly, both SLE and CCLE+/SLE- patients have elevated 9G4+ IgG autoantibodies despite lower levels of anti-nucleic acid and anti-RBP antibodies in CCLE+/SLE-. CCLE+/SLE- patients could be stratified into those with SLE-like B-cell profiles and a separate group with normal B-cell profiles. The former group was more serologically active and more likely to have disseminated skin lesions. CONCLUSION CCLE displays perturbations in B-cell homeostasis and partial B-cell tolerance breakdown. Our study demonstrates that this entity is immunologically heterogeneous and includes a disease segment whose B-cell compartment resembles SLE and is clinically associated with enhanced serological activity and more extensive skin disease. This picture suggests that SLE-like B-cell changes in primary CCLE may help identify patients at risk for subsequent development of SLE. B-cell profiling in CCLE might also indentify candidates who would benefit from B-cell targeted therapies.
Collapse
Affiliation(s)
- Scott A Jenks
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Chungwen Wei
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Aisha Hill
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Xiaoqian Wang
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Francesca M Rossi
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Kevin Cashman
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Laura D Aspey
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - S Sam Lim
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gaobin Bao
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cristina Drenkard
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Palm AKE, Kleinau S. Marginal zone B cells: From housekeeping function to autoimmunity? J Autoimmun 2021; 119:102627. [PMID: 33640662 DOI: 10.1016/j.jaut.2021.102627] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells comprise a subset of innate-like B cells found predominantly in the spleen, but also in lymph nodes and blood. Their principal functions are participation in quick responses to blood-borne pathogens and secretion of natural antibodies. The latter is important for housekeeping functions such as clearance of apoptotic cell debris. MZ B cells have B cell receptors with low poly-/self-reactivity, but they are not pathogenic at steady state. However, if simultaneously stimulated with self-antigen and pathogen- and/or damage-associated molecular patterns (PAMPs/DAMPs), MZ B cells may participate in the initial steps towards breakage of immunological tolerance. This review summarizes what is known about the role of MZ B cells in autoimmunity, both in mouse models and human disease. We cover factors important for shaping the MZ B cell compartment, how the functional properties of MZ B cells may contribute to breaking tolerance, and how MZ B cells are being regulated.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Reading the B-cell receptor immunome in chronic lymphocytic leukemia: revelations and applications. Exp Hematol 2020; 93:14-24. [PMID: 32976948 DOI: 10.1016/j.exphem.2020.09.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
Abstract
B-Cell receptor (BCR) sequencing has been the force driving many recent advances in chronic lymphocytic leukemia (CLL) research. Here, we discuss the general principles, revelations, and applications of reading the BCR immunome in the context of CLL. First, IGHV mutational status, obtained by measuring the mutational imprint on the IGHV gene of the CLL clonotype, is the cornerstone of CLL risk stratification. Furthermore, the discovery of "BCR-stereotyped" groups of unrelated patients that share not only a highly similar BCR on their leukemic clone, but also certain clinical characteristics has provided insights key to understanding disease ontogeny. Additionally, whereas the BCR repertoire of most CLL patients is characterized by a single dominant rearrangement, next-generation sequencing (NGS) has revealed a rich subclonal landscape in a larger than previously expected proportion of CLL patients. We review the mechanisms underlying these "multiple dominant" cases, including V(D)J-recombination errors, failure of allelic exclusion, intraclonal diversification, and "true" bi- or oligoclonality, and their implications, in detail. Finally, BCR repertoire sequencing can be used for sensitive quantification of minimal residual disease to potentially unprecedented depth. To surmount pitfalls inherent to this approach and develop internationally harmonized protocols, the EuroClonality-NGS Working Group has been established.
Collapse
|
9
|
Agazio A, Cimons J, Shotts KM, Guo K, Santiago ML, Pelanda R, Torres RM. Histone H2A-Reactive B Cells Are Functionally Anergic in Healthy Mice With Potential to Provide Humoral Protection Against HIV-1. Front Immunol 2020; 11:1565. [PMID: 32849530 PMCID: PMC7396680 DOI: 10.3389/fimmu.2020.01565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Peripheral tolerance is essential for silencing weakly autoreactive B cells that have escaped central tolerance, but it is unclear why these potentially pathogenic B cells are retained rather than being eliminated entirely. Release from peripheral tolerance restraint can occur under certain circumstances (i.e., strong TLR stimulus), that are present during infection. In this regard, we hypothesized that autoreactive B cells could function as a reserve population that can be activated to contribute to the humoral immune response, particularly with pathogens, such as HIV-1, that exploit immune tolerance to avoid host defense. In this study, we identify a population of autoreactive B cells with the potential to neutralize HIV-1 and experimentally release them from the functional restrictions of peripheral tolerance. We have previously identified murine monoclonal antibodies that displayed autoreactivity against histone H2A and neutralized HIV-1 in vitro. Here, we identify additional H2A-reactive IgM monoclonal antibodies and demonstrate that they are both autoreactive and polyreactive with self and foreign antigens and are able to neutralize multiple clades of tier 2 HIV-1. Flow cytometric analysis of H2A-reactive B cells in naïve wildtype mice revealed that these B cells are present in peripheral B cell populations and we further document that murine H2A-reactive B cells are restrained by peripheral tolerance mechanisms. Specifically, we show endogenous H2A-reactive B cells display increased expression of the inhibitory mediators CD5 and phosphatase and tensin homolog (PTEN) phosphatase and fail to mobilize calcium upon immunoreceptor stimulation; all characterized markers of anergy. Moreover, we show that toll-like receptor stimulation or provision of CD4 T cell help induces the in vitro production of H2A-reactive antibodies, breaking tolerance. Thus, we have identified a novel poly/autoreactive B cell population that has the potential to neutralize HIV-1 but is silenced by immune tolerance.
Collapse
Affiliation(s)
- Amanda Agazio
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO, United States
| | - Jennifer Cimons
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO, United States
| | - Kristin M. Shotts
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO, United States
| | - Kejun Guo
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Mario L. Santiago
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
10
|
Cashman KS, Jenks SA, Woodruff MC, Tomar D, Tipton CM, Scharer CD, Lee EH, Boss JM, Sanz I. Understanding and measuring human B-cell tolerance and its breakdown in autoimmune disease. Immunol Rev 2019; 292:76-89. [PMID: 31755562 PMCID: PMC6935423 DOI: 10.1111/imr.12820] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The maintenance of immunological tolerance of B lymphocytes is a complex and critical process that must be implemented as to avoid the detrimental development of autoreactivity and possible autoimmunity. Murine models have been invaluable to elucidate many of the key components in B-cell tolerance; however, translation to human homeostatic and pathogenic immune states can be difficult to assess. Functional autoreactive, flow cytometric, and single-cell cloning assays have proven to be critical in deciphering breaks in B-cell tolerance within autoimmunity; however, newer approaches to assess human B-cell tolerance may prove to be vital in the further exploration of underlying tolerance defects. In this review, we supply a comprehensive overview of human immune tolerance checkpoints with associated mechanisms of enforcement, and highlight current and future methodologies which are likely to benefit future studies into the mechanisms that become defective in human autoimmune conditions.
Collapse
Affiliation(s)
- Kevin S. Cashman
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Scott A. Jenks
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Matthew C. Woodruff
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Deepak Tomar
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Eun-Hyung Lee
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia, USA
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Usefulness of Bcl-2 Expression and the Expression of Cytoplasmic Immunoglobulin Light Chains in the Differentiation Between B-Cell Lymphoma and Reactive Lymphocytic Proliferations in FNA. Int J Mol Sci 2019; 20:ijms20112648. [PMID: 31146399 PMCID: PMC6601031 DOI: 10.3390/ijms20112648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 11/16/2022] Open
Abstract
Flow cytometry is helpful in differentiating between B-cell lymphoma (BCL) and reactive lymphocytic proliferation (RLP) in FNA biopsies. However; the presence of inconclusive surface immunoglobulin light chains (sIg LC) poses a problem. We investigated the usefulness of additional tests; namely Bcl-2 expression and expression of cytoplasmic Ig LC (cIg LC), mainly on samples with inconclusive sIg LC. Both tests were performed on 232 FNA samples from lymph nodes. Bcl-2 alone was determined qualitatively and quantitatively on 315 samples. The quantitative test was correctly positive in 76% of cases and falsely negative in 24%. The correctly positive results of the qualitative test were 11% points lower. cIg LC correctly identified 65% of BCL with dual positive sIg LC; 36% of BCL with difficult to interpret sIg LC and only 7% of BCL with negative sIg LC. The best results in differentiating between BCL and RLP were obtained when all three tests were used together. In samples with inconclusive sIg LC and additional monoclonal or polyclonal populations the κ:λ ratios did not differentiate between RLP and BCL. We propose that in case of inconclusive sIg LC Bcl-2 test is used first. The addition of cIg LC test is sensible only in cases with dual positive and difficult to interpret sIg LC.
Collapse
|
12
|
Greaves SA, Peterson JN, Strauch P, Torres RM, Pelanda R. Active PI3K abrogates central tolerance in high-avidity autoreactive B cells. J Exp Med 2019; 216:1135-1153. [PMID: 30948496 PMCID: PMC6504226 DOI: 10.1084/jem.20181652] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/23/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023] Open
Abstract
High-avidity autoreactive B cells are typically removed by central tolerance mechanisms in the bone marrow. Greaves et al. demonstrate that B cell–intrinsic expression of active PI3Kα prevents central tolerance and effectively promotes differentiation and activation of high-avidity autoreactive B cells in the periphery. Autoreactive B cells that bind self-antigen with high avidity in the bone marrow undergo mechanisms of central tolerance that prevent their entry into the peripheral B cell population. These mechanisms are breached in many autoimmune patients, increasing their risk of B cell–mediated autoimmune diseases. Resolving the molecular pathways that can break central B cell tolerance could therefore provide avenues to diminish autoimmunity. Here, we show that B cell–intrinsic expression of a constitutively active form of PI3K-P110α by high-avidity autoreactive B cells of mice completely abrogates central B cell tolerance and further promotes these cells to escape from the bone marrow, differentiate in peripheral tissue, and undergo activation in response to self-antigen. Upon stimulation with T cell help factors, these B cells secrete antibodies in vitro but remain unable to secrete autoantibodies in vivo. Overall, our data demonstrate that activation of the PI3K pathway leads high-avidity autoreactive B cells to breach central, but not late, stages of peripheral tolerance.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO
| | - Jacob N Peterson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO
| | - Pamela Strauch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO.,Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO .,Department of Biomedical Research, National Jewish Health, Denver, CO
| |
Collapse
|
13
|
Innate and adaptive signals enhance differentiation and expansion of dual-antibody autoreactive B cells in lupus. Nat Commun 2018; 9:3973. [PMID: 30266981 PMCID: PMC6162205 DOI: 10.1038/s41467-018-06293-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Autoreactive B cells have a major function in autoimmunity. A small subset of B cells expressing two distinct B-cell-antigen-receptors (B2R cells) is elevated in many patients with systematic lupus erythematosus (SLE) and in the MRL(/lpr) mouse model of lupus, and is often autoreactive. Here we show, using RNAseq and in vitro and in vivo analyses, signals that are required for promoting B2R cell numbers and effector function in autoimmune mice. Compared with conventional B cells, B2R cells are more responsive to Toll-like receptor 7/9 and type I/II interferon treatment, display higher levels of MHCII and co-receptors, and depend on IL-21 for their homeostasis; moreover they expand better upon T cell-dependent antigen stimulation, and mount a more robust memory response, which are characteristics essential for enhanced (auto)immune responses. Our findings thus provide insights on the stimuli for the expansion of an autoreactive B cell subset that may contribute to the etiology of SLE.
Collapse
|
14
|
Malkiel S, Barlev AN, Atisha-Fregoso Y, Suurmond J, Diamond B. Plasma Cell Differentiation Pathways in Systemic Lupus Erythematosus. Front Immunol 2018; 9:427. [PMID: 29556239 PMCID: PMC5845388 DOI: 10.3389/fimmu.2018.00427] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
Plasma cells (PCs) are responsible for the production of protective antibodies against infectious agents but they also produce pathogenic antibodies in autoimmune diseases, such as systemic lupus erythematosus (SLE). Traditionally, high affinity IgG autoantibodies are thought to arise through germinal center (GC) responses. However, class switching and somatic hypermutation can occur in extrafollicular (EF) locations, and this pathway has also been implicated in SLE. The pathway from which PCs originate may determine several characteristics, such as PC lifespan and sensitivity to therapeutics. Although both GC and EF responses have been implicated in SLE, we hypothesize that one of these pathways dominates in each individual patient and genetic risk factors may drive this predominance. While it will be important to distinguish polymorphisms that contribute to a GC-driven or EF B cell response to develop targeted treatments, the challenge will be not only to identify the differentiation pathway but the molecular mechanisms involved. In B cells, this task is complicated by the cross-talk between the B cell receptor, toll-like receptors (TLR), and cytokine signaling molecules, which contribute to both GC and EF responses. While risk variants that affect the function of dendritic cells and T follicular helper cells are likely to primarily influence GC responses, it will be important to discover whether some risk variants in the interferon and TLR pathways preferentially influence EF responses. Identifying the pathways of autoreactive PC differentiation in SLE may help us to understand patient heterogeneity and thereby guide precision therapy.
Collapse
Affiliation(s)
- Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ashley N Barlev
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Yemil Atisha-Fregoso
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Tecnologico de Monterrey, Monterrey, Mexico
| | - Jolien Suurmond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
15
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Ádori M, Pedersen GK, Ádori C, Erikson E, Khoenkhoen S, Stark JM, Choi JH, Dosenovic P, Karlsson MCI, Beutler B, Karlsson Hedestam GB. Altered Marginal Zone B Cell Selection in the Absence of IκBNS. THE JOURNAL OF IMMUNOLOGY 2018; 200:775-787. [PMID: 29222168 DOI: 10.4049/jimmunol.1700791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Marginal zone (MZ) B cells reside in the splenic MZ and play important roles in T cell-independent humoral immune responses against blood-borne pathogens. IκBNS-deficient bumble mice exhibit a severe reduction in the MZ B compartment but regain an MZ B population with age and, thus, represent a valuable model to examine the biology of MZ B cells. In this article, we characterized the MZ B cell defect in further detail and investigated the nature of the B cells that appear in the MZ of aged bumble mice. Flow cytometry analysis of the splenic transitional B cell subsets demonstrated that MZ B cell development was blocked at the transitional-1 to transitional-2-MZ precursor stage in the absence of functional IκBNS. Immunohistochemical analysis of spleen sections from wild-type and bumble mice revealed no alteration in the cellular MZ microenvironment, and analysis of bone marrow chimeras indicated that the MZ B cell development defect in bumble mice was B cell intrinsic. Further, we demonstrate that the B cells that repopulate the MZ in aged bumble mice were distinct from age-matched wild-type MZ B cells. Specifically, the expression of surface markers characteristic for MZ B cells was altered and the L chain Igλ+ repertoire was reduced in bumble mice. Finally, plasma cell differentiation of sorted LPS-stimulated MZ B cells was impaired, and aged bumble mice were unable to respond to NP-Ficoll immunization. These results demonstrate that IκBNS is required for an intact MZ B cell compartment in C57BL/6 mice.
Collapse
Affiliation(s)
- Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Csaba Ádori
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | - Pia Dosenovic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Bruce Beutler
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | | |
Collapse
|
17
|
Ghia P, Nadel B, Sander B, Stamatopoulos K, Stevenson FK. Early stages in the ontogeny of small B-cell lymphomas: genetics and microenvironment. J Intern Med 2017; 282:395-414. [PMID: 28393412 DOI: 10.1111/joim.12608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review, we focus on the mechanisms underlying lymphomagenesis in chronic lymphocytic leukaemia, follicular lymphoma, mantle cell lymphoma and splenic marginal zone lymphoma. The cells of origin of these small B-cell lymphomas are distinct, as are the characteristic chromosomal lesions and clinical courses. One shared feature is retention of expression of surface immunoglobulin. Analysis of this critical receptor reveals the point of differentiation reached by the cell of origin. Additionally, the sequence patterns of the immunoglobulin-variable domains can indicate a role for stimulants of the B-cell receptor before, during and after malignant transformation. The pathways driven via the B-cell receptor are now being targeted by specific kinase inhibitors with exciting clinical effects. To consider routes to pathogenesis, potentially offering earlier intervention, or to identify causative factors, genetic tools are being used to track pretransformation events and the early phases in lymphomagenesis. These methods are revealing that chromosomal changes are only one of the many steps involved, and that the influence of surrounding cells, probably multiple and variable according to tissue location, is required, both to establish tumours and to maintain growth and survival. Similarly, the influence of the tumour microenvironment may protect malignant cells from eradication by treatment, and the resulting minimal residual disease will eventually give rise to relapse. The common and different features of the four lymphomas will be summarized to show how normal B lymphocytes can be subverted to generate tumours, how these tumours evolve and how their weaknesses can be attacked by targeted therapies.
Collapse
Affiliation(s)
- P Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - B Nadel
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - B Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - K Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - F K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
18
|
Phenotyping of autoreactive B cells with labeled nucleosomes in 56R transgenic mice. Sci Rep 2017; 7:13232. [PMID: 29038433 PMCID: PMC5643551 DOI: 10.1038/s41598-017-13422-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023] Open
Abstract
The phenotypic characterization of self-reactive B cells producing autoantibodies is one of the challenges to get further insight in the physiopathology of autoimmune diseases. We took advantage of our previously developed flow cytometry method, using labeled nucleosomes, prominent autoantigens in systemic lupus erythematosus, to analyze the phenotype of self-reactive B cells in the anti-DNA B6.56R mouse model. We showed that splenic anti-nucleosome B cells express mostly kappa light chains and harbor a marginal zone phenotype. Moreover, these autoreactive B cells fail to acquire a germinal center phenotype and are less abundant in the transitional T3 compartment. In conclusion, the direct detection of autoreactive B cells helped determine their phenotypic characteristics and provided a more direct insight into the B cell tolerance process in B6.56R mice. This method constitutes an interesting new tool to study the mechanisms of B cell tolerance breakdown in B6.56R mice crossed with autoimmune prone models.
Collapse
|
19
|
Verkoczy L, Alt FW, Tian M. Human Ig knockin mice to study the development and regulation of HIV-1 broadly neutralizing antibodies. Immunol Rev 2017; 275:89-107. [PMID: 28133799 DOI: 10.1111/imr.12505] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major challenge for HIV-1 vaccine research is developing a successful immunization approach for inducing broadly neutralizing antibodies (bnAbs). A key shortcoming in meeting this challenge has been the lack of animal models capable of identifying impediments limiting bnAb induction and ranking vaccine strategies for their ability to promote bnAb development. Since 2010, immunoglobulin knockin (KI) technology, involving inserting functional rearranged human variable exons into the mouse IgH and IgL loci has been used to express bnAbs in mice. This approach has allowed immune tolerance mechanisms limiting bnAb production to be elucidated and strategies to overcome such limitations to be evaluated. From these studies, along with the wealth of knowledge afforded by analyses of recombinant Ig-based bnAb structures, it became apparent that key functional features of bnAbs often are problematic for their elicitation in mice by classic vaccine paradigms, necessitating more iterative testing of new vaccine concepts. In this regard, bnAb KI models expressing deduced precursor V(D)J rearrangements of mature bnAbs or unrearranged germline V, D, J segments (that can be assembled into variable region exons that encode bnAb precursors), have been engineered to evaluate novel immunogens/regimens for effectiveness in driving bnAb responses. One promising approach emerging from such studies is the ability of sequentially administered, modified immunogens (designed to bind progressively more mature bnAb precursors) to initiate affinity maturation. Here, we review insights gained from bnAb KI studies regarding the regulation and induction of bnAbs, and discuss new Ig KI methodologies to manipulate the production and/or expression of bnAbs in vivo, to further facilitate vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Departments of Medicine and Pathology, Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Identification of autoreactive B cells with labeled nucleosomes. Sci Rep 2017; 7:602. [PMID: 28377609 PMCID: PMC5428865 DOI: 10.1038/s41598-017-00664-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of autoimmune diseases has not been completely elucidated yet, and only a few specific treatments have been developed so far. In autoimmune diseases mediated by pathogenic autoantibodies, such as systemic lupus erythematosus, the specific detection and analysis of autoreactive B cells is crucial for a better understanding of the physiopathology. Biological characterization of these cells may help to define new therapeutic targets. Very few techniques allowing the precise detection of autoreactive B cells have been described so far. Herein we propose a new flow cytometry technique for specific detection of anti-nucleosome B cells, which secrete autoantibodies in systemic lupus erythematosus, using labeled nucleosomes. We produced different fluorochrome-labeled nucleosomes, characterized them, and finally tested them in flow cytometry. Nucleosomes labeled via the cysteines present in H3 histone specifically bind to autoreactive B cells in the anti-DNA transgenic B6.56R mice model. The present work validates the use of fluorochrome-labeled nucleosomes via cysteines to identify anti-nucleosome B cells and offers new opportunities for the description of autoreactive B cell phenotype.
Collapse
|
21
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|
22
|
Abstract
Self-reactive B cells are tolerized at various stages of B-cell development and differentiation, including the immature B-cell stage (central tolerance) and the germinal center (GC) B-cell stage, and B-cell tolerance involves various mechanisms such as deletion, anergy, and receptor editing. Self-reactive B cells generated by random immunoglobulin variable gene rearrangements are tolerized by central tolerance and anergy in the periphery, and these processes involve apoptosis regulated by Bim, a pro-apoptotic member of the Bcl-2 family, and regulation of B-cell signaling by various phosphatases, including SHIP-1 and SHP-1. Self-reactive B cells generated by somatic mutations during GC reaction are also eliminated. Fas is not directly involved in this process but prevents persistence of GC reaction that allows generation of less stringently regulated B cells, including self-reactive B cells. Defects in self-tolerance preferentially cause lupus-like disease with production of anti-nuclear antibodies, probably due to the presence of a large potential B-cell repertoire reactive to nucleic acids and the presence of nucleic acid-induced activation mechanisms in various immune cells, including B cells and dendritic cells. A feed-forward loop composed of anti-nuclear antibodies produced by B cells and type 1 interferons secreted from nucleic acid-activated dendritic cells plays a crucial role in the development of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| |
Collapse
|
23
|
Verkoczy L. Humanized Immunoglobulin Mice: Models for HIV Vaccine Testing and Studying the Broadly Neutralizing Antibody Problem. Adv Immunol 2017; 134:235-352. [PMID: 28413022 PMCID: PMC5914178 DOI: 10.1016/bs.ai.2017.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vaccine that can effectively prevent HIV-1 transmission remains paramount to ending the HIV pandemic, but to do so, will likely need to induce broadly neutralizing antibody (bnAb) responses. A major technical hurdle toward achieving this goal has been a shortage of animal models with the ability to systematically pinpoint roadblocks to bnAb induction and to rank vaccine strategies based on their ability to stimulate bnAb development. Over the past 6 years, immunoglobulin (Ig) knock-in (KI) technology has been leveraged to express bnAbs in mice, an approach that has enabled elucidation of various B-cell tolerance mechanisms limiting bnAb production and evaluation of strategies to circumvent such processes. From these studies, in conjunction with the wealth of information recently obtained regarding the evolutionary pathways and paratopes/epitopes of multiple bnAbs, it has become clear that the very features of bnAbs desired for their function will be problematic to elicit by traditional vaccine paradigms, necessitating more iterative testing of new vaccine concepts. To meet this need, novel bnAb KI models have now been engineered to express either inferred prerearranged V(D)J exons (or unrearranged germline V, D, or J segments that can be assembled into functional rearranged V(D)J exons) encoding predecessors of mature bnAbs. One encouraging approach that has materialized from studies using such newer models is sequential administration of immunogens designed to bind progressively more mature bnAb predecessors. In this review, insights into the regulation and induction of bnAbs based on the use of KI models will be discussed, as will new Ig KI approaches for higher-throughput production and/or altering expression of bnAbs in vivo, so as to further enable vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
24
|
Increased Kappa/Lambda Hybrid Antibody in Serum Is a Novel Biomarker Related to Disease Activity and Inflammation in Rheumatoid Arthritis. Mediators Inflamm 2016; 2016:2953072. [PMID: 27143816 PMCID: PMC4837281 DOI: 10.1155/2016/2953072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 12/03/2022] Open
Abstract
The κ/λ hybrid antibodies in normal human serum were reported recently, but their clinical relevance has not yet been explored. Rheumatoid arthritis (RA) is one of the major joint diseases, and the early diagnosis and treatment of RA remain a challenge. Here, we developed a double-sandwich enzyme-linked immunosorbent assay system to quantify relative serum κ/λ hybrid antibody levels in RA patients, osteoarthritis (OA) patients, and healthy controls (HC) in order to assess their potential use as a serological biomarker of early disease and clinical activity and to preliminarily investigate their immunomodulatory roles in RA. Surprisingly, we found that κ/λ hybrid antibody was markedly increased in both early and established RA. Serum κ/λ hybrid antibody levels were significantly correlated with clinical indexes and inflammatory markers in RA. Further analysis showed a positive correlation between κ/λ hybrid antibody levels and the 28-joint disease activity score (DAS28). In conclusion, serum κ/λ hybrid antibodies in RA were identified for the first time. High levels of κ/λ hybrid antibody may be a useful tool in distinguishing early RA from OA and HC. We suggest κ/λ hybrid antibody as a marker for disease activity. The increased κ/λ hybrid antibodies were associated with inflammatory conditions in RA.
Collapse
|
25
|
Pathak S, Kumar KR, Kanta H, Carr-Johnson F, Han J, Bashmakov A, Faure L, Ding H, Vanarsa K, Khan S, Li QZ, Chapman K, Wakeland EK, Mohan C. Fatty Acid Amide Hydrolase Regulates Peripheral B Cell Receptor Revision, Polyreactivity, and B1 Cells in Lupus. THE JOURNAL OF IMMUNOLOGY 2016; 196:1507-16. [DOI: 10.4049/jimmunol.1500291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 12/07/2015] [Indexed: 01/26/2023]
|
26
|
Bonami RH, Thomas JW. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:4730-41. [PMID: 26432895 DOI: 10.4049/jimmunol.1500438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Abstract
Autoreactive B lymphocytes that commonly arise in the developing repertoire can be salvaged by receptor editing, a central tolerance mechanism that alters BCR specificity through continued L chain rearrangement. It is unknown whether autoantigens with weak cross-linking potential, such as insulin, elicit receptor editing, or whether this process is dysregulated in related autoimmunity. To resolve these issues, we developed an editing-competent model in which anti-insulin Vκ125 was targeted to the Igκ locus and paired with anti-insulin VH125Tg. Physiologic, circulating insulin increased RAG-2 expression and was associated with BCR replacement that eliminated autoantigen recognition in a proportion of developing anti-insulin B lymphocytes. The proportion of anti-insulin B cells that underwent receptor editing was reduced in the type 1 diabetes-prone NOD strain relative to a nonautoimmune strain. Resistance to editing was associated with increased surface IgM expression on immature (but not transitional or mature) anti-insulin B cells in the NOD strain. The actions of mAb123 on central tolerance were also investigated, because selective targeting of insulin-occupied BCR by mAb123 eliminates anti-insulin B lymphocytes and prevents type 1 diabetes. Autoantigen targeting by mAb123 increased RAG-2 expression and dramatically enhanced BCR replacement in newly developed B lymphocytes. Administering F(ab')2123 induced IgM downregulation and reduced the frequency of anti-insulin B lymphocytes within the polyclonal repertoire of VH125Tg/NOD mice, suggesting enhanced central tolerance by direct BCR interaction. These findings indicate that weak or faulty checkpoints for central tolerance can be overcome by autoantigen-specific immunomodulatory therapy.
Collapse
Affiliation(s)
- Rachel H Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
| | - James W Thomas
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN 37232
| |
Collapse
|
27
|
Kolhatkar NS, Brahmandam A, Thouvenel CD, Becker-Herman S, Jacobs HM, Schwartz MA, Allenspach EJ, Khim S, Panigrahi AK, Luning Prak ET, Thrasher AJ, Notarangelo LD, Candotti F, Torgerson TR, Sanz I, Rawlings DJ. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott-Aldrich syndrome. ACTA ACUST UNITED AC 2015; 212:1663-77. [PMID: 26371186 PMCID: PMC4577851 DOI: 10.1084/jem.20150585] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/11/2015] [Indexed: 12/29/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder frequently associated with systemic autoimmunity, including autoantibody-mediated cytopenias. WAS protein (WASp)-deficient B cells have increased B cell receptor (BCR) and Toll-like receptor (TLR) signaling, suggesting that these pathways might impact establishment of the mature, naive BCR repertoire. To directly investigate this possibility, we evaluated naive B cell specificity and composition in WASp-deficient mice and WAS subjects (n = 12). High-throughput sequencing and single-cell cloning analysis of the BCR repertoire revealed altered heavy chain usage and enrichment for low-affinity self-reactive specificities in murine marginal zone and human naive B cells. Although negative selection mechanisms including deletion, anergy, and receptor editing were relatively unperturbed, WASp-deficient transitional B cells showed enhanced proliferation in vivo mediated by antigen- and Myd88-dependent signals. Finally, using both BCR sequencing and cell surface analysis with a monoclonal antibody recognizing an intrinsically autoreactive heavy chain, we show enrichment in self-reactive cells specifically at the transitional to naive mature B cell stage in WAS subjects. Our combined data support a model wherein modest alterations in B cell-intrinsic, BCR, and TLR signals in WAS, and likely other autoimmune disorders, are sufficient to alter B cell tolerance via positive selection of self-reactive transitional B cells.
Collapse
Affiliation(s)
- Nikita S Kolhatkar
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Archana Brahmandam
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Christopher D Thouvenel
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Shirly Becker-Herman
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Holly M Jacobs
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Marc A Schwartz
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Eric J Allenspach
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Socheath Khim
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Anil K Panigrahi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Adrian J Thrasher
- Molecular Immunology Unit, Section of Molecular and Cellular Immunology, Centre for Immunodeficiency, University College London Institute of Child Health, London WC1N 1EH, England, UK
| | | | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Troy R Torgerson
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Ignacio Sanz
- Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322 Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322
| | - David J Rawlings
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| |
Collapse
|
28
|
Palmer VL, Aziz-Seible R, Kassmeier MD, Rothermund M, Perry GA, Swanson PC. VprBP Is Required for Efficient Editing and Selection of Igκ+ B Cells, but Is Dispensable for Igλ+ and Marginal Zone B Cell Maturation and Selection. THE JOURNAL OF IMMUNOLOGY 2015; 195:1524-37. [PMID: 26150531 DOI: 10.4049/jimmunol.1500952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/02/2015] [Indexed: 01/01/2023]
Abstract
B cell development past the pro-B cell stage in mice requires the Cul4-Roc1-DDB1 E3 ubiquitin ligase substrate recognition subunit VprBP. Enforced Bcl2 expression overcomes defects in distal VH-DJH and secondary Vκ-Jκ rearrangement associated with VprBP insufficiency in B cells and substantially rescues maturation of marginal zone and Igλ(+) B cells, but not Igκ(+) B cells. In this background, expression of a site-directed Igκ L chain transgene increases Igκ(+) B cell frequency, suggesting VprBP does not regulate L chain expression from a productively rearranged Igk allele. In site-directed anti-dsDNA H chain transgenic mice, loss of VprBP function in B cells impairs selection of Igκ editor L chains typically arising through secondary Igk rearrangement, but not selection of Igλ editor L chains. Both H and L chain site-directed transgenic mice show increased B cell anergy when VprBP is inactivated in B cells. Taken together, these data argue that VprBP is required for the efficient receptor editing and selection of Igκ(+) B cells, but is largely dispensable for Igλ(+) B cell development and selection, and that VprBP is necessary to rescue autoreactive B cells from anergy induction.
Collapse
Affiliation(s)
- Victoria L Palmer
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Razia Aziz-Seible
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Michele D Kassmeier
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Mary Rothermund
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Greg A Perry
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| |
Collapse
|
29
|
Roles of B Cell-Intrinsic TLR Signals in Systemic Lupus Erythematosus. Int J Mol Sci 2015; 16:13084-105. [PMID: 26068236 PMCID: PMC4490487 DOI: 10.3390/ijms160613084] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/31/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are a large family of pattern recognition receptors. TLR signals are involved in the pathogenesis of systemic lupus erythematosus. Mouse and human B cells constitutively express most TLRs. Many B cell subpopulations are highly responsive to certain TLR ligation, including B-1 B cells, transitional B cells, marginal zone B cells, germinal center B cell and memory B cells. The B cell-intrinsic TLR signals play critical roles during lupus process. In this review, roles of B cell-intrinsic TLR2, 4, 7, 8 and 9 signals are discussed during lupus pathogenesis in both mouse model and patients. Moreover, mechanisms underlying TLR ligation-triggered B cell activation and signaling pathways are highlighted.
Collapse
|
30
|
Xing Y, Ji Q, Lin Y, Fu M, Gao J, Zhang P, Hu X, Feng L, Liu Y, Han H, Li W. Positive selection of natural poly-reactive B cells in the periphery occurs independent of heavy chain allelic inclusion. PLoS One 2015; 10:e0125747. [PMID: 25993514 PMCID: PMC4437983 DOI: 10.1371/journal.pone.0125747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/25/2015] [Indexed: 11/28/2022] Open
Abstract
Natural autoreactive B cells are important mediators of autoimmune diseases. Receptor editing is known to play an important role in both central and peripheral B cell tolerance. However, the role of allelic inclusion in the development of natural autoreactive B cells is not clear. Previously, we generated μ chain (TgVH3B4I) and μ/κ chains (TgVH/L3B4) transgenic mice using transgene derived from the 3B4 hybridoma, which produce poly-reactive natural autoantibodies. In this study, we demonstrate that a considerable population of B cells edited their B cells receptors (BCRs) via light chain or heavy chain allelic inclusion during their development in TgVH3B4I mice. Additionally, allelic inclusion occurred more frequently in the periphery and promoted the differentiation of B cells into marginal zone or B-1a cells in TgVH3B4I mice. B cells from TgVH/L3B4 mice expressing the intact transgenic 3B4 BCR without receptor editing secreted poly-reactive 3B4 antibody. Interestingly, however, B cell that underwent allelic inclusion in TgVH3B4I mice also produced poly-reactive autoantibodies in vivo and in vitro. Our findings suggest that receptor editing plays a minor role in the positive selection of B cells expressing natural poly-reactive BCRs, which can be positively selected through heavy chain allelic inclusion to retain their poly-reactivity in the periphery.
Collapse
Affiliation(s)
- Ying Xing
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Endocrinology and Metabolism Disease, Xijing Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Qiuhe Ji
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Lin
- Department of Otolaryngology Head and Neck surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Zhang
- Department of Otolaryngology Head and Neck surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingbin Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Lei Feng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Kil LP, Corneth OB, de Bruijn MJ, Asmawidjaja PS, Krause A, Lubberts E, van Loo PF, Hendriks RW. Surrogate light chain expression beyond the pre-B cell stage promotes tolerance in a dose-dependent fashion. J Autoimmun 2015; 57:30-41. [DOI: 10.1016/j.jaut.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
|
32
|
Detanico T, Guo W, Wysocki LJ. Predominant role for activation-induced cytidine deaminase in generating IgG anti-nucleosomal antibodies of murine SLE. J Autoimmun 2015; 58:67-77. [PMID: 25634361 DOI: 10.1016/j.jaut.2015.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
Serum IgG anti-nuclear antibodies (ANA) directed to complexes of DNA and histones are a hallmark of systemic lupus erythematosus (SLE) and reflect a failure in lymphocyte self-tolerance. A prior study utilizing spontaneously autoimmune B6.Nba2 mice deficient in terminal deoxynucleotidyl transferase (TdT) and with heterozygous deficiencies in Jh and Igk loci underscored the importance of somatic hypermutation (SHM) as a major generator of SLE-associated ANA. This interpretation had to be qualified because of severely limited opportunities for receptor editing and restricted VHCDR3 diversity. Therefore, we performed the converse study using mice that carried functional Tdt genes and wild type Jh and Igk loci but that could not undergo SHM. Analyses of ANA and ANA-producing hybridomas from B6.Nba2 Aicda(-/-) mice revealed that few animals produced high titers of the prototypical ANA directed to complexes of histones and DNA, that this response was delayed and that those cells that did produce such antibody exhibited limited clonal expansion, unusual Jk use and only infrequent dual receptor expression. This, together with the additional finding of an intrinsic propensity for SHM to generate Arg codons selectively in CDRs, reinforce the view that most IgG autoimmune clones producing prototypical anti-nucleosome antibodies in wild type mice are created by SHM.
Collapse
Affiliation(s)
- Thiago Detanico
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | - Wenzhong Guo
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | - Lawrence J Wysocki
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA.
| |
Collapse
|
33
|
Schwartz MA, Kolhatkar NS, Thouvenel C, Khim S, Rawlings DJ. CD4+ T cells and CD40 participate in selection and homeostasis of peripheral B cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:3492-502. [PMID: 25172502 DOI: 10.4049/jimmunol.1400798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Control of peripheral B cell development and homeostasis depends critically on coordinate signals received through the BAFFRs and BCRs. The extent to which other signals contribute to this process, however, remains undefined. We present data indicating that CD4(+) T cells directly influence naive B cell development via CD40 signaling. Loss of CD4(+) T cells or CD40-CD40L interaction leads to reduced B cell homeostatic proliferation and hindered B cell reconstitution posttransplantation. Furthermore, we demonstrate that in the absence of CD40 signals, these events are modulated by BCR self-reactivity. Strikingly, murine models lacking CD40 reveal a broadly altered BCR specificity and limited diversity by both single-cell cloning and high-throughput sequencing techniques. Collectively, our results imply that any setting of T cell lymphopenia or reduced CD40 function, including B cell recovery following transplantation, will impact the naive B cell repertoire.
Collapse
Affiliation(s)
- Marc A Schwartz
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Nikita S Kolhatkar
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Chris Thouvenel
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195; and Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Socheath Khim
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195; and Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195; and Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| |
Collapse
|
34
|
Puri KD, Di Paolo JA, Gold MR. B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int Rev Immunol 2014; 32:397-427. [PMID: 23886342 DOI: 10.3109/08830185.2013.818140] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell receptor (BCR) signaling is essential for normal B-cell development, selection, survival, proliferation, and differentiation into antibody-secreting cells. Similarly, this pathway plays a key role in the pathogenesis of multiple B-cell malignancies. Genetic and pharmacological approaches have established an important role for the Spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk), and phosphatidylinositol 3-kinase isoform p110delta (PI3Kδ) in coupling the BCR and other BCRs to B-cell survival, migration, and activation. In the past few years, several small-molecule inhibitory drugs that target PI3Kδ, Btk, and Syk have been developed and shown to have efficacy in clinical trials for the treatment of several types of B-cell malignancies. Emerging preclinical data have also shown a critical role of BCR signaling in the activation and function of self-reactive B cells that contribute to autoimmune diseases. Because BCR signaling plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, inhibition of this pathway may represent a promising new strategy for treating these diseases. This review summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity of these BCR signaling inhibitors, with a focus on their emerging role in treating lymphoid malignancies and autoimmune disorders.
Collapse
|
35
|
Pelanda R. Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity? Curr Opin Immunol 2014; 27:53-9. [PMID: 24549093 DOI: 10.1016/j.coi.2014.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Receptor editing, a major mechanism of B cell tolerance, can also lead to allelic inclusion at the immunoglobulin light chain loci and the development of B cells that coexpress two different immunoglobulin light chains and, therefore, two antibody specificities. Most allelically included B cells express two κ chains, although rare dual-λ cells are also observed. Moreover, these cells typically coexpress an autoreactive and a nonautoreactive antibody. Thus, allelically included B cells could operate like 'Trojan horses': expression and function of the nonautoreactive antigen receptors might promote their maturation, activation, and terminal differentiation into effector cells that also express and secrete autoantibodies. Indeed, dual-κ B cells are greatly expanded into effector B cell subsets in some autoimmune mice, thus indicating they might play an important role in disease.
Collapse
Affiliation(s)
- Roberta Pelanda
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206, USA.
| |
Collapse
|
36
|
Pathak S, Ma S, Shukla V, Lu R. A role for IRF8 in B cell anergy. THE JOURNAL OF IMMUNOLOGY 2013; 191:6222-30. [PMID: 24218455 DOI: 10.4049/jimmunol.1301169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
B cell central tolerance is a process through which self-reactive B cells are removed from the B cell repertoire. Self-reactive B cells are generally removed by receptor editing in the bone marrow and by anergy induction in the periphery. IRF8 is a critical transcriptional regulator of immune system development and function. A recent study showed that marginal zone B cell and B1 B cell populations are dramatically increased in IRF8-deficient mice, indicating that there are B cell-developmental defects in the absence of IRF8. In this article, we report that mice deficient for IRF8 produced anti-dsDNA Abs. Using a hen egg lysozyme double-transgenic model, we further demonstrate that B cell anergy was breached in IRF8-deficient mice. Although anergic B cells in the IRF8-proficient background were blocked at the transitional stage of development, anergic B cells in the IRF8-deficient background were able to mature further, which allowed them to regain responses to Ag stimulation. Interestingly, our results show that IRF8-deficient B cells were more sensitive to Ag stimulation and were resistant to Ag-induced cell death. Moreover, our results show that IRF8 was expressed at a high level in the anergic B cells, and an elevated level of IRF8 promoted apoptosis in the transitional B cells. Thus, our findings reveal a previously unrecognized function of IRF8 in B cell anergy induction.
Collapse
Affiliation(s)
- Simanta Pathak
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
| | | | | | | |
Collapse
|
37
|
Peng C, Eckhardt LA. Role of the Igh intronic enhancer Eμ in clonal selection at the pre-B to immature B cell transition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:4399-411. [PMID: 24058175 PMCID: PMC3810302 DOI: 10.4049/jimmunol.1301858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously described a checkpoint for allelic exclusion that occurs at the pre-B cell to immature B cell transition and is dependent upon the IgH intronic enhancer, Eμ. We now provide evidence that the breach in allelic exclusion associated with Eμ deletion results from decreased Igμ levels that make it difficult for emerging BCRs to reach the signaling threshold required for positive selection into the immature B cell compartment. We show that this compartment is smaller in mice carrying an Eμ-deficient, but functional, IgH allele (VHΔ(a)). Pre-B cells in such mice produce ≈ 50% wild-type levels of Igμ (mRNA and protein), and this is associated with diminished signals, as measured by phosphorylation of pre-BCR/BCR downstream signaling proteins. Providing Eμ-deficient mice with a preassembled VL gene led not only to a larger immature B cell compartment but also to a decrease in "double-producers," suggesting that H chain/L chain combinations with superior signaling properties can overcome the signaling defect associated with low Igμ-chain and can eliminate the selective advantage of "double-producers" that achieve higher Igμ-chain levels through expression of a second IgH allele. Finally, we found that "double-producers" in Eμ-deficient mice include a subpopulation with autoreactive BCRs. We infer that BCRs with IgH chain from the Eμ-deficient allele are ignored during negative selection owing to their comparatively low density. In summary, these studies show that Eμ's effect on IgH levels at the pre-B cell to immature B cell transition strongly influences allelic exclusion, the breadth of the mature BCR repertoire, and the emergence of autoimmune B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- Cell Differentiation
- Cells, Cultured
- Clonal Selection, Antigen-Mediated
- Enhancer Elements, Genetic
- Genes, Immunoglobulin Heavy Chain
- Immunoglobulin Fragments/genetics
- Immunoglobulin Fragments/immunology
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- Precursor Cells, B-Lymphoid/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Regulatory Sequences, Nucleic Acid
Collapse
Affiliation(s)
- Cheng Peng
- Department of Biological Sciences, Hunter College and The Graduate Center of The City University of New York, 695 Park Avenue, New York, NY, 10065
| | - Laurel A. Eckhardt
- Department of Biological Sciences, Hunter College and The Graduate Center of The City University of New York, 695 Park Avenue, New York, NY, 10065
| |
Collapse
|
38
|
de Yébenes VG, Bartolomé-Izquierdo N, Ramiro AR. Regulation of B-cell development and function by microRNAs. Immunol Rev 2013; 253:25-39. [PMID: 23550636 DOI: 10.1111/imr.12046] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a new class of gene expression regulators whose functions influence a myriad of biological processes, from developmental decisions through immune responses and numerous pathologies, including cancer and autoimmunity. miRNAs are small RNA molecules that drive post-transcriptional negative regulation of gene expression by promoting the degradation or translational block of their target mRNAs. Here, we review some of the data relating to the role of miRNAs in the regulation of the B-cell lineage, with a special focus on results obtained in vivo. We start by giving a general overview of miRNA activity, including the issue of target specificity and the experimental approaches more widely used to analyze the function of these molecules. We then go on to discuss the function of miRNAs during B-cell differentiation in the bone marrow and in the periphery as well as during the humoral immune response. Finally, we describe a few examples of the contribution of miRNAs, both as oncogenes and tumor suppressors, to the development of B-cell neoplasias.
Collapse
Affiliation(s)
- Virginia G de Yébenes
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | |
Collapse
|
39
|
Figgett WA, Fairfax K, Vincent FB, Le Page MA, Katik I, Deliyanti D, Quah PS, Verma P, Grumont R, Gerondakis S, Hertzog P, O'Reilly LA, Strasser A, Mackay F. The TACI receptor regulates T-cell-independent marginal zone B cell responses through innate activation-induced cell death. Immunity 2013; 39:573-83. [PMID: 24012421 DOI: 10.1016/j.immuni.2013.05.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 05/20/2013] [Indexed: 11/30/2022]
Abstract
Activation-induced cell death (AICD) plays a critical role in immune homeostasis and tolerance. In T-cell-dependent humoral responses, AICD of B cells is initiated by Fas ligand (FasL) on T cells, stimulating the Fas receptor on B cells. In contrast, T-cell-independent B cell responses involve innate-type B lymphocytes, such as marginal zone (MZ) B cells, and little is known about the mechanisms that control AICD during innate B cell responses to Toll-like receptor (TLR) activation. Here, we show that MZ B cells undergo AICD in response to TLR4 activation in vivo. The transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI) receptor and TLR4 cooperate to upregulate expression of both FasL and Fas on MZ B cells and also to repress inhibitors of Fas-induced apoptosis signaling. These findings demonstrate an unappreciated role for TACI and its ligands in the regulation of AICD during T-cell-independent B cell responses.
Collapse
Affiliation(s)
- William A Figgett
- Department of Immunology, Monash University, Melbourne, VIC 3004, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen Y, Zhang J, Hwang KK, Bouton-Verville H, Xia SM, Newman A, Ouyang YB, Haynes BF, Verkoczy L. Common tolerance mechanisms, but distinct cross-reactivities associated with gp41 and lipids, limit production of HIV-1 broad neutralizing antibodies 2F5 and 4E10. THE JOURNAL OF IMMUNOLOGY 2013; 191:1260-75. [PMID: 23825311 DOI: 10.4049/jimmunol.1300770] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Developing an HIV-1 vaccine has been hampered by the inability of immunogens to induce broadly neutralizing Abs (BnAbs) that protect against infection. Previously, we used knockin (KI) mice expressing a prototypical gp41-specific BnAb, 2F5, to demonstrate that immunological tolerance triggered by self-reactivity of the 2F5 H chain impedes BnAb induction. In this study, we generate KI models expressing H chains from two other HIV-1 Abs, 4E10 (another self-/polyreactive, anti-gp41 BnAb) and 48d (an anti-CD4 inducible, nonpolyreactive Ab), and find a similar developmental blockade consistent with central B cell deletion in 4E10, but not in 48d VH KI mice. Furthermore, in KI strains expressing the complete 2F5 and 4E10 Abs as BCRs, we find that residual splenic B cells arrest at distinct developmental stages, yet exhibit uniformly low BCR densities, elevated basal activation, and profoundly muted responses to BCR ligation and, when captured as hybridoma mAb lines, maintain their dual (gp41/lipid) affinities and capacities to neutralize HIV-1, establishing a key role for anergy in suppressing residual 2F5- or 4E10-expressing B cells. Importantly, serum IgGs from naive 2F5 and 4E10 KI strains selectively eliminate gp41 and lipid binding, respectively, suggesting B cells expressing 2F5 or 4E10 as BCRs exhibit specificity for a distinct spectrum of host Ags, including selective interactions by 2F5 BCR(+) B cells (i.e., and not 4E10 BCR(+) B cells) with those mimicked by its gp41 neutralization epitope.
Collapse
Affiliation(s)
- Yao Chen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Antibodies that bind complex glycosaminoglycans accumulate in the Golgi. Proc Natl Acad Sci U S A 2013; 110:11958-63. [PMID: 23818632 DOI: 10.1073/pnas.1308620110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Light (L) chains that edit anti-DNA heavy (H) chains rescue B-cell development by suppressing DNA binding. However, exceptional editor L chains allow B cells to reach splenic compartments even though their B-cell receptors remain autoreactive. Such incompletely edited B cells express multireactive antibodies that accumulate in the Golgi and are released as insoluble, amyloid-like immune complexes. Here, we examine examples of incomplete editing from the analysis of variable to joining (VJ) gene junction of the variable (Vλx) editor L chain. When paired with the anti-DNA heavy chain, VH56R, the Vλx variants yield antibodies with differing specificities, including glycosaminoglycan reactivity. Our results implicate these specificities in the evasion of receptor editing through intracellular sequestration of IgM and the release of insoluble IgM complexes. Our findings can be extrapolated to human L chains and have implications for understanding a latent component of the Ig repertoire that could exert pathogenic and protective functions.
Collapse
|
42
|
Kil LP, Hendriks RW. Aberrant B cell selection and activation in systemic lupus erythematosus. Int Rev Immunol 2013; 32:445-70. [PMID: 23768157 DOI: 10.3109/08830185.2013.786712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detrimental role of B lymphocytes in systemic lupus erythematosus (SLE) is evident from the high levels of pathogenic antinuclear autoantibodies (ANAs) found in SLE patients. Affirming this causative role, additional antibody-independent roles of B cells in SLE were appreciated. In recent years, many defects in B cell selection and activation have been identified in murine lupus models and SLE patients that explain the increased emergence and persistence of autoreactive B cells and their lowered activation threshold. Therefore, clinical trials with B cell depletion regimens in SLE patients were initiated but disappointingly the efficacy of B cell depleting agents proved to be limited. Remarkably however, a major breakthrough in SLE therapy was accomplished by blocking B cell survival factors rather then eliminating B cells. This surprising finding indicates that although SLE is a B cell-driven disease, the amplifying crosstalk between B cells and other cells of the immune system likely evokes the observed tolerance breakdown in B cells. Moreover, this implies that intelligent interception of pro-inflammatory loops rather then selectively silencing B cells will be key to the development of new SLE therapies. In this review, we will not only highlight the intrinsic B cell defects that facilitate the persistence of autoreactive B cells and their activation, but in addition we will focus on B cell extrinsic signals derived from T cells and innate immune cells that lower the activation threshold for B cells.
Collapse
Affiliation(s)
- Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MC, NL 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
43
|
Rowland SL, Tuttle K, Torres RM, Pelanda R. Antigen and cytokine receptor signals guide the development of the naïve mature B cell repertoire. Immunol Res 2013; 55:231-40. [PMID: 22941591 DOI: 10.1007/s12026-012-8366-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immature B cells are generated daily in the bone marrow tissue. More than half of the newly generated immature B cells are autoreactive and bind a self-antigen, while the others are nonautoreactive. A selection process has evolved on the one hand to thwart development of autoreactive immature B cells and, on the other hand, to promote further differentiation of nonautoreactive immature B cells into transitional and mature B cells. These negative and positive selection events are carefully regulated by signals that emanate from the antigen receptor, whether antigen-mediated or tonic, and are influenced by signals that are generated by receptors that bind cytokines, chemokines, and other factors produced in the bone marrow tissue. These signals, therefore, are the predominant driving forces for the generation of a B cell population that is capable of protecting the body from infections while maintaining self-tolerance. Here, we review recent findings from our group and others that describe how tonic antigen receptor signaling and bone marrow cytokines regulate the selection of immature B cells.
Collapse
Affiliation(s)
- Sarah L Rowland
- Integrated Department of Immunology, University of Colorado School of Medicine, National Jewish Health, Denver, CO, USA
| | | | | | | |
Collapse
|
44
|
Stolp J, Mariño E, Batten M, Sierro F, Cox SL, Grey ST, Silveira PA. Intrinsic molecular factors cause aberrant expansion of the splenic marginal zone B cell population in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:97-109. [PMID: 23740954 DOI: 10.4049/jimmunol.1203252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Marginal zone (MZ) B cells are an innate-like population that oscillates between MZ and follicular areas of the splenic white pulp. Differentiation of B cells into the MZ subset is governed by BCR signal strength and specificity, NF-κB activation through the B cell-activating factor belonging to the TNF family (BAFF) receptor, Notch2 signaling, and migration signals mediated by chemokine, integrin, and sphingosine-1-phosphate receptors. An imbalance in splenic B cell development resulting in expansion of the MZ subset has been associated with autoimmune pathogenesis in various murine models. One example is the NOD inbred mouse strain, in which MZ B cell expansion has been linked to development of type 1 diabetes and Sjögren's syndrome. However, the cause of MZ B cell expansion in this strain remains poorly understood. We have determined that increased MZ B cell development in NOD mice is independent of T cell autoimmunity, BCR specificity, BCR signal strength, and increased exposure to BAFF. Rather, mixed bone marrow chimeras showed that the factor(s) responsible for expansion of the NOD MZ subset is B cell intrinsic. Analysis of microarray expression data indicated that NOD MZ and precursor transitional 2-MZ subsets were particularly dysregulated for genes controlling cellular trafficking, including Apoe, Ccbp2, Cxcr7, Lgals1, Pla2g7, Rgs13, S1pr3, Spn, Bid, Cd55, Prf1, and Tlr3. Furthermore, these B cell subsets exhibited an increased steady state dwell time within splenic MZ areas. Our data therefore reveal that precursors of mature B cells in NOD mice exhibit an altered migration set point, allowing increased occupation of the MZ, a niche favoring MZ B cell differentiation.
Collapse
Affiliation(s)
- Jessica Stolp
- Garvan Institute of Medical Research, Immunology Program, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Immunogenetics shows that not all MBL are equal: the larger the clone, the more similar to CLL. Blood 2013; 121:4521-8. [DOI: 10.1182/blood-2012-12-471698] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Low-count and high-count monoclonal B-cell lymphocytosis (MBL) have distinct immunogenetic signatures, with only the latter resembling CLL. Rather than a true premalignant condition, low-count MBL may merely reflect immune senescence or result from persistent antigen stimulation.
Collapse
|
46
|
Minato N. Rap G protein signal in normal and disordered lymphohematopoiesis. Exp Cell Res 2013; 319:2323-8. [PMID: 23603280 DOI: 10.1016/j.yexcr.2013.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan. :
| |
Collapse
|
47
|
Makdasi E, Eilat D. L chain allelic inclusion does not increase autoreactivity in lupus-prone New Zealand Black/New Zealand White mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:1472-80. [PMID: 23319731 DOI: 10.4049/jimmunol.1202331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
L chain allelic inclusion has been proposed as a B cell tolerance mechanism in addition to clonal deletion, clonal anergy, and receptor editing. It is said to rescue autoreactive B cells from elimination by diluting out the self-reactive BCR through the expression of a second innocuous L chain. In autoimmune animals, such as lupus-prone mice, allelically included B cells could be activated and produce pathogenic autoantibodies. We have previously shown that anti-DNA hybridomas from diseased New Zealand Black/New Zealand White F1 mice exhibit nearly perfect allelic exclusion. In the current study, we have analyzed single B cells from these and from nonautoimmune mice. In addition, we have cloned and expressed the Ig variable regions of several L chain-included B cells in cell culture. We find that although the number of L chain-included B cells increases as a result of receptor editing, the majority of such cells do not retain an autoreactive HxL chain combination and, therefore, allelic inclusion in itself does not serve as a B cell tolerance mechanism in these autoimmune mice.
Collapse
Affiliation(s)
- Efi Makdasi
- Department of Medicine, Hadassah University Hospital, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | | |
Collapse
|
48
|
Andrews SF, Zhang Q, Lim S, Li L, Lee JH, Zheng NY, Huang M, Taylor WM, Farris AD, Ni D, Meng W, Luning Prak ET, Wilson PC. Global analysis of B cell selection using an immunoglobulin light chain-mediated model of autoreactivity. ACTA ACUST UNITED AC 2012; 210:125-42. [PMID: 23267014 PMCID: PMC3549719 DOI: 10.1084/jem.20120525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The nature of the immunoglobulin light chain affects peripheral B cell tolerance and autoreactivity. The important subtleties of B cell tolerance are best understood in a diverse immunoglobulin (Ig) repertoire context encoding a full spectrum of autoreactivity. To achieve this, we used mice expressing Igκ transgenes that confer varying degrees of autoreactivity within a diverse heavy chain (HC) repertoire. These transgenes, coupled with a biomarker to identify receptor-edited cells and combined with expression cloning of B cell receptors, allowed us to analyze tolerance throughout B cell development. We found that both the nature of the autoantigen and the Ig HC versus light chain (LC) contribution to autoreactivity dictate the developmental stage and mechanism of tolerance. Furthermore, although selection begins in the bone marrow, over one third of primary tolerance occurs in the periphery at the late transitional developmental stage. Notably, we demonstrate that the LC has profound effects on tolerance and can lead to exacerbated autoantibody production.
Collapse
Affiliation(s)
- Sarah F Andrews
- Section of Rheumatology, Department of Medicine, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Johnson AC, Davison LM, Giltiay NV, Vareechon C, Li X, Jørgensen TN. Lack of T cells in Act1-deficient mice results in elevated IgM-specific autoantibodies but reduced lupus-like disease. Eur J Immunol 2012; 42:1695-705. [PMID: 22585710 DOI: 10.1002/eji.201142238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Act1 is a negative regulator of B-cell activation factor of the TNF family (BAFF) and CD40L-induced signaling. BALB/C mice lacking Act1 develop systemic autoimmunity resembling systemic lupus erythematosus (SLE) and Sjögren's syndrome (SjS). SLE and SjS are characterized by anti-nuclear IgG autoantibody (ANA-IgG) production and inflammation of peripheral tissues. As autoantibody production can occur in a T-cell dependent or T-cell independent manner, we investigated the role of T-cell help during Act1-mediated autoimmunity. Act1-deficiency was bred onto C57Bl/6 (B6.Act1(-/-) ) mice and B6.TCRβ(-/-) TCRδ(-/-) Act1(-/-) (TKO) mice were generated. While TCRβ/δ-sufficient B6.Act1(-/-) mice developed splenomegaly and lymphadenopathy, hypergammaglobulinemia, elevated levels of ANA-IgG, and kidney pathology, TKO mice failed to develop any such signs of disease. Neither B6.Act1(-/-) nor TKO mice developed SjS-like disease, suggesting that epigenetic interactions on the BALB/C background are responsible for this phenotype in BALB/C.Act1(-/-) mice. Interestingly, BAFF-driven transitional B-cell abnormalities, previously reported in BALB/C.Act1(-/-) mice, were intact in B6.Act1(-/-) mice and largely independent of T cells. In conclusion, T cells are necessary for the development of SLE-like disease in B6.Act1(-/-) mice, but not BAFF-driven transitional B-cell differentiation.
Collapse
Affiliation(s)
- Angela C Johnson
- Department of Immunology NE40, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Receptor editing is the process that replaces the heavy chain or light chain variable region genes in a B cell immunoglobulin receptor that is already productively rearranged. It is a major mechanism in the bone marrow for maintaining B cell tolerance to autoantigens. We propose that a pathological autoimmune process can use receptor editing to induce the de novo creation and activation of B cells with autoreactive receptors in the peripheral immune system.
Collapse
Affiliation(s)
- Robert A Eisenberg
- Division of Rheumatology, University of Pennsylvania, Philadelphia, PA 19104-6160, United States.
| |
Collapse
|