1
|
Manjili MH, Manjili SH. The quantum model of T-cell activation: Revisiting immune response theories. Scand J Immunol 2024; 100:e13375. [PMID: 38750629 PMCID: PMC11250909 DOI: 10.1111/sji.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 07/16/2024]
Abstract
Our understanding of the immune response is far from complete, missing out on more detailed explanations that could be provided by molecular insights. To bridge this gap, we introduce the quantum model of T-cell activation. This model suggests that the transfer of energy during protein phosphorylation within T cells is not a continuous flow but occurs in discrete bursts, or 'quanta', of phosphates. This quantized energy transfer is mediated by oscillating cycles of receptor phosphorylation and dephosphorylation, initiated by dynamic 'catch-slip' pulses in the peptide-major histocompatibility complex-T-cell receptor (pMHC-TcR) interactions. T-cell activation is predicated upon achieving a critical threshold of catch-slip pulses at the pMHC-TcR interface. Costimulation is relegated to a secondary role, becoming crucial only when the frequency of pMHC-TcR catch-slip pulses does not meet the necessary threshold for this quanta-based energy transfer. Therefore, our model posits that it is the quantum nature of energy transfer-not the traditional signal I or signal II-that plays the decisive role in T-cell activation. This paradigm shift highlights the importance of understanding T-cell activation through a quantum lens, offering a potentially transformative perspective on immune response regulation.
Collapse
Affiliation(s)
- Masoud H. Manjili
- Department of Microbiology & Immunology, VCU School of Medicine
- Massey Comprehensive Cancer Center, 401 College Street, Richmond, VA, 23298, USA
| | - Saeed H. Manjili
- AMF Automation Technologies LLC, 2115 W. Laburnum Ave., Richmond, VA 23227
| |
Collapse
|
2
|
Pando A, Schorl C, Fast LD, Reagan JL. Tumor Derived Extracellular Vesicles Modulate Gene Expression in T cells. Gene 2023; 850:146920. [DOI: 10.1016/j.gene.2022.146920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
|
3
|
Neier SC, Ferrer A, Wilton KM, Smith SEP, Kelcher AMH, Pavelko KD, Canfield JM, Davis TR, Stiles RJ, Chen Z, McCluskey J, Burrows SR, Rossjohn J, Hebrink DM, Carmona EM, Limper AH, Kappes DJ, Wettstein PJ, Johnson AJ, Pease LR, Daniels MA, Neuhauser C, Gil D, Schrum AG. The early proximal αβ TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Sci Immunol 2020; 4:4/32/eaal2201. [PMID: 30770409 DOI: 10.1126/sciimmunol.aal2201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
During αβ T cell development, T cell antigen receptor (TCR) engagement transduces biochemical signals through a protein-protein interaction (PPI) network that dictates dichotomous cell fate decisions. It remains unclear how signal specificity is communicated, instructing either positive selection to advance cell differentiation or death by negative selection. Early signal discrimination might occur by PPI signatures differing qualitatively (customized, unique PPI combinations for each signal), quantitatively (graded amounts of a single PPI series), or kinetically (speed of PPI pathway progression). Using a novel PPI network analysis, we found that early TCR-proximal signals distinguishing positive from negative selection appeared to be primarily quantitative in nature. Furthermore, the signal intensity of this PPI network was used to find an antigen dose that caused a classic negative selection ligand to induce positive selection of conventional αβ T cells, suggesting that the quantity of TCR triggering was sufficient to program selection outcome. Because previous work had suggested that positive selection might involve a qualitatively unique signal through CD3δ, we reexamined the block in positive selection observed in CD3δ0 mice. We found that CD3δ0 thymocytes were inhibited but capable of signaling positive selection, generating low numbers of MHC-dependent αβ T cells that expressed diverse TCR repertoires and participated in immune responses against infection. We conclude that the major role for CD3δ in positive selection is to quantitatively boost the signal for maximal generation of αβ T cells. Together, these data indicate that a quantitative network signaling mechanism through the early proximal TCR signalosome determines thymic selection outcome.
Collapse
Affiliation(s)
- Steven C Neier
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alejandro Ferrer
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katelynn M Wilton
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Stephen E P Smith
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - April M H Kelcher
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jenna M Canfield
- Molecular Pathogenesis and Therapeutics PhD Graduate Program, University of Missouri, Columbia, MO, USA
| | - Tessa R Davis
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robert J Stiles
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter J Wettstein
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - Diana Gil
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Adam G Schrum
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Shorter SK, Schnell FJ, McMaster SR, Pinelli DF, Andargachew R, Evavold BD. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses. PLoS One 2016; 11:e0149582. [PMID: 26915099 PMCID: PMC4767940 DOI: 10.1371/journal.pone.0149582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/01/2016] [Indexed: 12/03/2022] Open
Abstract
T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.
Collapse
Affiliation(s)
- Shayla K. Shorter
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Frederick J. Schnell
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Sean R. McMaster
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - David F. Pinelli
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4(+) and CD8(+) cells. The results suggest a degree of programing by early signals for effector differentiation, particularly in the CD8(+) T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4(+) T cell expansion and new avenues toward a molecular understanding of cell cycle regulation in lymphocytes are discussed.
Collapse
Affiliation(s)
- Reinhard Obst
- Institute for Immunology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Dynamin 2-dependent endocytosis sustains T-cell receptor signaling and drives metabolic reprogramming in T lymphocytes. Proc Natl Acad Sci U S A 2015; 112:4423-8. [PMID: 25831514 DOI: 10.1073/pnas.1504279112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prolonged T-cell receptor (TCR) signaling is required for the proliferation of T lymphocytes. Ligation of the TCR activates signaling, but also causes internalization of the TCR from the cell surface. How TCR signaling is sustained for many hours despite lower surface expression is unknown. Using genetic inhibition of endocytosis, we show here that TCR internalization promotes continued TCR signaling and T-lymphocyte proliferation. T-cell-specific deletion of dynamin 2, an essential component of endocytosis, resulted in reduced TCR signaling strength, impaired homeostatic proliferation, and the inability to undergo clonal expansion in vivo. Blocking endocytosis resulted in a failure to maintain mammalian target of rapamycin (mTOR) activity and to stably induce the transcription factor myelocytomatosis oncogene (c-Myc), which led to metabolic stress and a defect in cell growth. Our results support the concept that the TCR can continue to signal after it is internalized from the cell surface, thereby enabling sustained signaling and cell proliferation.
Collapse
|
7
|
Rabenstein H, Behrendt AC, Ellwart JW, Naumann R, Horsch M, Beckers J, Obst R. Differential kinetics of antigen dependency of CD4+ and CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3507-17. [PMID: 24639353 DOI: 10.4049/jimmunol.1302725] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag recognition via the TCR is necessary for the expansion of specific T cells that then contribute to adaptive immunity as effector and memory cells. Because CD4+ and CD8+ T cells differ in terms of their priming APCs and MHC ligands we compared their requirements of Ag persistence during their expansion phase side by side. Proliferation and effector differentiation of TCR transgenic and polyclonal mouse T cells were thus analyzed after transient and continuous TCR signals. Following equally strong stimulation, CD4+ T cell proliferation depended on prolonged Ag presence, whereas CD8+ T cells were able to divide and differentiate into effector cells despite discontinued Ag presentation. CD4+ T cell proliferation was neither affected by Th lineage or memory differentiation nor blocked by coinhibitory signals or missing inflammatory stimuli. Continued CD8+ T cell proliferation was truly independent of self-peptide/MHC-derived signals. The subset divergence was also illustrated by surprisingly broad transcriptional differences supporting a stronger propensity of CD8+ T cells to programmed expansion. These T cell data indicate an intrinsic difference between CD4+ and CD8+ T cells regarding the processing of TCR signals for proliferation. We also found that the presentation of a MHC class II-restricted peptide is more efficiently prolonged by dendritic cell activation in vivo than a class I bound one. In summary, our data demonstrate that CD4+ T cells require continuous stimulation for clonal expansion, whereas CD8+ T cells can divide following a much shorter TCR signal.
Collapse
Affiliation(s)
- Hannah Rabenstein
- Institute for Immunology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Viral antigen density and confinement time regulate the reactivity pattern of CD4 T-cell responses to vaccinia virus infection. Proc Natl Acad Sci U S A 2012; 110:288-93. [PMID: 23248307 DOI: 10.1073/pnas.1208328110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
T-cell recognition of ligands is polyspecific. This translates into antiviral T-cell responses having a range of potency and specificity for viral ligands. How these ligand recognition patterns are established is not fully understood. Here, we show that an activation threshold regulates whether robust CD4 T-cell activation occurs following viral infection. The activation threshold was variable because of its dependence on the density of the viral peptide (p)MHC displayed on infected cells. Furthermore, the activation threshold was not observed to be a specific equilibrium affinity (K(D)) or half-life (t(1/2)) of the TCR-viral pMHC interaction, rather it correlated with the confinement time of TCR-pMHC interactions, i.e., the half-life (t(1/2)) of the interaction accounting for the effects of TCR-pMHC rebinding. One effect of a variable activation threshold is to allow high-density viral pMHC ligands to expand CD4 T cells with a variety of potency and peptide cross-reactivity patterns for the viral pMHC ligand, some of which are only poorly activated by infections that produce a lower density of the viral pMHC ligand. These results argue that antigen concentration is a key component in determining the pattern of K(D), t(1/2) and peptide cross-reactivity of the TCRs expressed on CD4 T cells responding to infection.
Collapse
|
9
|
Valitutti S. The Serial Engagement Model 17 Years After: From TCR Triggering to Immunotherapy. Front Immunol 2012; 3:272. [PMID: 22973273 PMCID: PMC3428561 DOI: 10.3389/fimmu.2012.00272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022] Open
Abstract
More than 15 years ago the serial engagement model was proposed as an attempt to solve the low affinity/high sensitivity paradox of TCR antigen recognition. Since then, the model has undergone ups and downs marked by the technical and conceptual advancements made in the field of T lymphocyte activation. Here, I describe the development of the model and survey recent literature providing evidence either for or against the idea that serial TCR/pMHC engagement might contribute to T lymphocyte activation. I also discuss how the concept of serial TCR engagement might be useful in the design of immunotherapeutic approaches aimed at potentiating T lymphocyte responses in vivo.
Collapse
Affiliation(s)
- Salvatore Valitutti
- INSERM, UMR 1043, Section Dynamique Moléculaire des Interactions Lymphocytaires, Centre de Physiopathologie de Toulouse Purpan Toulouse, France
| |
Collapse
|
10
|
Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol Lett 2012; 147:55-62. [PMID: 22732235 PMCID: PMC3477319 DOI: 10.1016/j.imlet.2012.06.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 02/02/2023]
Abstract
Aluminium adjuvants (alum) have been the only widely approved adjuvants for use in human vaccines since the 1920s, however, the mechanism of action of these adjuvants remains elusive. Due to increasing demand for novel adjuvants, a clearer understanding of the mechanisms that allow these important agents to affect adaptive immune responses will make a significant contribution to the rational design of future vaccines. Using a novel approach to tracking antigen and antigen presentation, we demonstrate that alum induces higher antigen accumulation and increased antigen presentation by dendritic cells (DCs) in vitro. Antigen accumulation was 100-fold higher and antigen presentation 10-fold higher following alum treatment when compared with soluble protein alone. We also observed that alum causes an initial reduction in presentation compared with soluble antigen, but eventually increases the magnitude and duration of antigen presentation. This was associated with reduced protein degradation in DCs following alum treatment. These studies demonstrate the dynamic alterations in antigen processing and presentation induced by alum that underlie enhanced DC function in response to this adjuvant.
Collapse
|
11
|
Lyu SY, Park WB. Gene network analysis on the effect of Viscum album var. coloratum in T cells stimulated with anti-CD3/CD28 antibodies. Arch Pharm Res 2011; 34:1735-49. [DOI: 10.1007/s12272-011-1018-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 04/27/2011] [Accepted: 06/08/2011] [Indexed: 01/15/2023]
|
12
|
Lemaire MM, Dumoutier L, Warnier G, Uyttenhove C, Van Snick J, de Heusch M, Stevens M, Renauld JC. Dual TCR expression biases lung inflammation in DO11.10 transgenic mice and promotes neutrophilia via microbiota-induced Th17 differentiation. THE JOURNAL OF IMMUNOLOGY 2011; 187:3530-7. [PMID: 21859957 DOI: 10.4049/jimmunol.1101720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A commonly used mouse model of asthma is based on i.p. sensitization to OVA together with aluminum hydroxide (alum). In wild-type BALB/c mice, subsequent aerosol challenge using this protein generates an eosinophilic inflammation associated with Th2 cytokine expression. By constrast, in DO11.10 mice, which are transgenic for an OVA-specific TCR, the same treatment fails to induce eosinophilia, but instead promotes lung neutrophilia. In this study, we show that this neutrophilic infiltration results from increased IL-17A and IL-17F production, whereas the eosinophilic response could be restored upon blockade of IFN-γ, independently of the Th17 response. In addition, we identified a CD4(+) cell population specifically present in DO11.10 mice that mediates the same inflammatory response upon transfer into RAG2(-/-) mice. This population contained a significant proportion of cells expressing an additional endogenous TCR α-chain and was not present in RAG2(-/-) DO11.10 mice, suggesting dual antigenic specificities. This particular cell population expressed markers of memory cells, secreted high levels of IL-17A, and other cytokines after short-term restimulation in vitro, and triggered a neutrophilic response in vivo upon OVA aerosol challenge. The relative numbers of these dual TCR lymphocytes increased with the age of the animals, and IL-17 production was abolished if mice were treated with large-spectrum antibiotics, suggesting that their differentiation depends on foreign Ags provided by gut microflora. Taken together, our data indicate that dual TCR expression biases the OVA-specific response in DO11.10 mice by inhibiting eosinophilic responses via IFN-γ and promoting a neutrophilic inflammation via microbiota-induced Th17 differentiation.
Collapse
Affiliation(s)
- Muriel M Lemaire
- Ludwig Institute for Cancer Research, Brussels Branch, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Schrum AG, Gil D, Turka LA, Palmer E. Physical and functional bivalency observed among TCR/CD3 complexes isolated from primary T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:870-8. [PMID: 21666056 PMCID: PMC3131427 DOI: 10.4049/jimmunol.1100538] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unlike BCR and secreted Ig, TCR expression is not thought to occur in a bivalent form. The conventional monovalent model of TCR/CD3 is supported by published studies of complexes solubilized in the detergent digitonin, in which bivalency was not observed. We revisited the issue of TCR valency by examining complexes isolated from primary αβ T cells after solubilization in digitonin. Using immunoprecipitation followed by flow cytometry, we unexpectedly observed TCR/CD3 complexes that contained two TCRs per complex. Standard anti-TCR Abs, being bivalent themselves, tended to bind with double occupancy to bivalent TCRs; this property masked the presence of the second TCR per complex in certain Ab binding assays, which may partially explain why previous data did not reveal these bivalent complexes. We also found that the prevalence of bivalency among fully assembled, mature TCR/CD3 complexes was sufficient to impact the functional performance of immunoprecipitated TCRs in binding antigenic peptide/MHC-Ig fusion proteins. Both TCR positions per bivalent complex required an Ag-specific TCR to effect optimal binding to these soluble ligands. Therefore, we conclude that in primary T cells, TCR/CD3 complexes can be found that are physically and functionally bivalent. The expression of bivalent TCR/CD3 complexes has implications regarding potential mechanisms by which Ag may trigger signaling. It also suggests the possibility that the potential for bivalent expression could represent a general feature of Ag receptors.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Animals
- CD3 Complex/genetics
- CD3 Complex/isolation & purification
- CD3 Complex/physiology
- Flow Cytometry
- Immunoprecipitation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein Multimerization/genetics
- Protein Multimerization/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/isolation & purification
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Adam G. Schrum
- Department of Immunology, 200 First Street SW, Mayo Clinic College of Medicine, Rochester MN, 55905, USA
- Department of Medicine, 415 Curie Blvd, University of Pennsylvania School of Medicine, Philadelphia PA, 19104, USA
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, 4031-Basel, Switzerland
| | - Diana Gil
- Department of Immunology, 200 First Street SW, Mayo Clinic College of Medicine, Rochester MN, 55905, USA
- Inmunología, Departamento de Microbiología I, Facultad de Medicina,Universidad Complutense de Madrid, Madrid 28043, Spain
| | - Laurence A. Turka
- Department of Medicine, 415 Curie Blvd, University of Pennsylvania School of Medicine, Philadelphia PA, 19104, USA
| | - Ed Palmer
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, 4031-Basel, Switzerland
| |
Collapse
|
14
|
Valitutti S, Coombs D, Dupré L. The space and time frames of T cell activation at the immunological synapse. FEBS Lett 2010; 584:4851-7. [PMID: 20940018 DOI: 10.1016/j.febslet.2010.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 01/17/2023]
Abstract
The selective recognition of antigenic peptides by T cells requires the spatio/temporal integration of a panoply of molecular triggers. The space frame of T cell antigen receptors (TCR) interaction with peptide/MHC complexes (pMHC) displayed by antigen presenting cells is delineated by the micrometer-scale area of the immunological synapse. The time frame of T cell stimulation is governed by a series of short TCR-pMHC interactions that are integrated into sustained signaling leading to productive activation. We discuss here how approaching antigen recognition from the time and space angles is key to the comprehension of the puzzling process of T cell activation.
Collapse
Affiliation(s)
- Salvatore Valitutti
- INSERM, U563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.
| | | | | |
Collapse
|
15
|
Askenasy EM, Askenasy N, Askenasy JJ. Does lymphopenia preclude restoration of immune homeostasis? The particular case of type 1 diabetes. Autoimmun Rev 2010; 9:687-90. [DOI: 10.1016/j.autrev.2010.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 05/24/2010] [Indexed: 11/27/2022]
|
16
|
Hugues S. Dynamics of dendritic cell-T cell interactions: a role in T cell outcome. Semin Immunopathol 2010; 32:227-38. [PMID: 20607241 DOI: 10.1007/s00281-010-0211-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/28/2010] [Indexed: 01/19/2023]
Abstract
Antigen-specific dendritic cells (DC)-T cell encounters occur in lymph nodes (LNs) and are essential for the induction of both priming and tolerance. In both cases, T cells are rapidly activated and proliferate. However, the subsequent outcome of T cell activation depends on the modulation of different DC- and T cell-intrinsic signals. Recent advances in two-photon (2P) microscopy have furthered our understanding regarding the complex choreography of DCs and T cells in intact LNs, and established differences in the dynamics of DC-T cell contacts during priming and tolerance induction. The mechanisms that favour DC-T cell encounters, as well as the contribution of the frequency and the duration of such encounters in dictating the T cell response, are discussed in this review.
Collapse
Affiliation(s)
- Stéphanie Hugues
- Department of Pathology, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
17
|
T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol 2009; 8:675-84. [PMID: 19172690 DOI: 10.1038/nri2379] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interactions between T cells and dendritic cells (DCs) in the lymph nodes are crucial for initiating cell-mediated adaptive immune responses. With the help of two-photon imaging, the complexity of these cellular contacts in vivo has recently been captured in time-lapse movies in several immunological contexts. Well beyond the satisfaction of seeing a T-cell response as it happens, these experiments provide fundamental insights into the regulation and the biological meaning of T-cell-DC contact dynamics. This Review focuses on how this emerging field is changing our perception of T-cell activation by DCs.
Collapse
|
18
|
Turner ML, Hawkins ED, Hodgkin PD. Quantitative Regulation of B Cell Division Destiny by Signal Strength. THE JOURNAL OF IMMUNOLOGY 2008; 181:374-82. [DOI: 10.4049/jimmunol.181.1.374] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
|
20
|
Mueller KL, Thomas MS, Burbach BJ, Peterson EJ, Shimizu Y. Adhesion and degranulation-promoting adapter protein (ADAP) positively regulates T cell sensitivity to antigen and T cell survival. THE JOURNAL OF IMMUNOLOGY 2007; 179:3559-69. [PMID: 17785790 DOI: 10.4049/jimmunol.179.6.3559] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hemopoietic specific adapter protein ADAP (adhesion and degranulation-promoting adapter protein) positively regulates TCR-dependent, integrin-mediated adhesion and participates in signaling pathways downstream of the TCR that result in T cell activation. The specific role of ADAP in regulating Ag-dependent T cell interactions with APCs and T cell activation following Ag stimulation is not known. We used ADAP-/- DO11.10 T cells to demonstrate that ADAP promotes T cell conjugation to Ag-laden APCs. Complementary in vitro and in vivo approaches reveal that ADAP controls optimal T cell proliferation, cytokine production, and expression of the prosurvival protein Bcl-xL in response to limiting Ag doses. Furthermore, ADAP is critical for clonal expansion in vivo independent of Ag concentration under conditions of low clonal abundance. These results suggest that ADAP regulates T cell activation by promoting Ag-dependent T cell-APC interactions, resulting in enhanced T cell sensitivity to Ag, and by participating in prosurvival signaling pathways initiated by Ag stimulation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antigen Presentation/immunology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Adhesion/immunology
- Cell Degranulation/immunology
- Cell Proliferation
- Cell Survival/immunology
- Cells, Cultured
- Clone Cells
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte/immunology
- Integrins/physiology
- Interleukin-2/biosynthesis
- Interleukin-2 Receptor alpha Subunit/biosynthesis
- Lectins, C-Type
- Lymphocyte Activation/immunology
- Lymphocyte Function-Associated Antigen-1/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Kristen L Mueller
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
21
|
Celli S, Lemaître F, Bousso P. Real-Time Manipulation of T Cell-Dendritic Cell Interactions In Vivo Reveals the Importance of Prolonged Contacts for CD4+ T Cell Activation. Immunity 2007; 27:625-34. [DOI: 10.1016/j.immuni.2007.08.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/29/2007] [Accepted: 08/17/2007] [Indexed: 11/29/2022]
|
22
|
Muntasell A, Berger AC, Roche PA. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J 2007; 26:4263-72. [PMID: 17805347 PMCID: PMC2230838 DOI: 10.1038/sj.emboj.7601842] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 08/07/2007] [Indexed: 12/15/2022] Open
Abstract
Antigen-specific interactions between B cells and T cells are essential for the generation of an efficient immune response. Since this requires peptide-MHC class II complexes (pMHC-II) on the B cell to interact with TCR on antigen-specific T cells, we have examined the mechanisms regulating the persistence, loss, and secretion of specific pMHC-II complexes on activated B cells. Using a mAb that recognizes specific pMHC-II, we found that activated B cells degrade approximately 50% of pMHC-II every day and release 12% of these pMHC-II from the cell on small membrane vesicles termed exosomes. These exosomes directly stimulate primed, but not naïve, CD4 T cells. Interestingly, engagement of antigen-loaded B cells with specific CD4 T cells stimulates exosome release in a manner that can be mimicked by pMHC-II crosslinking. Biochemical studies revealed that the pMHC-II released on exosomes was previously expressed on the plasma membrane of the B cells, suggesting that regulated exosome release from activated B cells is a mechanism to allow pMHC-II to escape intracellular degradation and decorate secondary lymphoid organs with membrane-associated pMHC-II complexes.
Collapse
Affiliation(s)
- Aura Muntasell
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adam C Berger
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 10, Room 4B36, Bethesda, MD 20892, USA. Tel.: +1 301 594 2595; Fax: +1 301 496 0887; E-mail:
| |
Collapse
|
23
|
Schrum AG, Gil D, Dopfer EP, Wiest DL, Turka LA, Schamel WWA, Palmer E. High-sensitivity detection and quantitative analysis of native protein-protein interactions and multiprotein complexes by flow cytometry. ACTA ACUST UNITED AC 2007; 2007:pl2. [PMID: 17551170 PMCID: PMC3913565 DOI: 10.1126/stke.3892007pl2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most mechanisms of cell development, physiology, and signal transduction are controlled by protein-protein interactions. Immunoprecipitation of multiprotein complexes detected by flow cytometry (IP-FCM) is a means to quantitatively measure these interactions. The high sensitivity of this method makes it useful even when very little biomaterial is available for analysis, as in the case of rare primary cell subsets or patient samples. Detection of the T cell antigen receptor associated with the CD3 multiprotein complex from as few as 300 primary murine T cells is presented as an example. The method is compatible with quantitative flow cytometry techniques, making it possible to estimate the number of coimmunoprecipitated molecules. Both constitutive and inducible protein-protein interactions can be analyzed, as illustrated in related methodology using glutathione S-transferase-fusion protein pull-down experiments. IP-FCM represents a robust, quantitative, biochemical technique to assess native protein-protein interactions, without requiring genetic engineering or large sample sizes.
Collapse
Affiliation(s)
- Adam G Schrum
- Department of Research, University Hospital-Basel, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
24
|
Shklovskaya E, Fazekas de St Groth B. Severely Impaired Clonal Deletion of CD4+T Cells in Low-Dose Irradiated Mice: Role of T Cell Antigen Receptor and IL-7 Receptor Signals. THE JOURNAL OF IMMUNOLOGY 2006; 177:8320-30. [PMID: 17142728 DOI: 10.4049/jimmunol.177.12.8320] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic administration of high doses of soluble Ag induces peripheral CD4+ T cell tolerance in unmanipulated hosts. To test whether tolerance is modified under conditions of transient lymphopenia, we tracked the response of 5C.C7 TCR-transgenic CD4+ T cells to i.v. moth cytochrome c peptide in mice that received low-dose gamma irradiation 10 days previously. This model was chosen because it does not support spontaneous lymphopenia-induced proliferation of 5C.C7 cells, allowing the study of Ag-specific responses without interference from simultaneous spontaneous proliferation. Clonal expansion in response to i.v. peptide was increased in irradiated mice, while clonal deletion was severely impaired in comparison with untreated animals. Amplified TCR triggering was observed in irradiated hosts, consistent with dendritic cell activation leading to enhanced Ag presentation. Failure of deletion was accompanied by persistent T cell activation and accumulation of Th1 effector cells. Up-regulated expression of IL-7R and the prosurvival protein Bcl-x(L) was associated with clonal persistence. Cells with memory and naive phenotypes were both represented within persistent clones, but no Th1 function could be demonstrated within the long-term memory population. Failure of clonal deletion in irradiated hosts represents a novel mechanism limiting TCR diversity in a lymphopenic environment and may contribute to subsequent autoimmunity.
Collapse
Affiliation(s)
- Elena Shklovskaya
- Centenary Institute of Cancer Medicine and Cell Biology, Faculty of Medicine, University of Sydney, Newtown, New South Wales 2042, Australia
| | | |
Collapse
|
25
|
Bonnevier JL, Yarke CA, Mueller DL. Sustained B7/CD28 interactions and resultant phosphatidylinositol 3-kinase activity maintain G1-->S phase transitions at an optimal rate. Eur J Immunol 2006; 36:1583-97. [PMID: 16703564 DOI: 10.1002/eji.200535626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Twenty-four hours of TCR engagement and CD28 costimulation was found sufficient to elicit an optimal rate of cell division over a 72-h period only when a high concentration of IL-2 was produced in the culture and remained readily available to the CD4(+) T cells. The cell division response could be aborted following 24 h of stimulation by the simultaneous abrogation of IL-2R signaling and the blockade of CD28 or TCR ligands. Biochemical and pharmacologic studies indicated that a phosphatidylinositol 3-kinase-Akt signaling cascade costimulated by the TCR and CD28 maintained the blasting cell division rate at a maximal level beyond 24 h even when IL-2 was withdrawn, neutralized, or exhausted. These data show that CD4(+) T cells remain sensitive to antigens (Ag) and costimulatory signals throughout the clonal expansion response. Furthermore, only those T cells that perceive the presence of a continued threat in the form of Ag/MHC complexes and B7 costimulatory ligands or a high concentration of a growth factor are directed to remain in cell cycle.
Collapse
Affiliation(s)
- Jody L Bonnevier
- Rheumatic and Autoimmune Diseases Division and Center for Immunology, University of Minnesota Medical School, Minneapolis, 55455, USA
| | | | | |
Collapse
|
26
|
Abstract
We analyze a simple linear triggering model of the T-cell receptor (TCR) within the framework of queuing theory, in which TCRs enter the queue upon full activation and exit by downregulation. We fit our model to four experimentally characterized threshold activation criteria and analyze their specificity and sensitivity: the initial calcium spike, cytotoxicity, immunological synapse formation, and cytokine secretion. Specificity characteristics improve as the time window for detection increases, saturating for time periods on the timescale of downregulation; thus, the calcium spike (30 s) has low specificity but a sensitivity to single-peptide MHC ligands, while the cytokine threshold (1 h) can distinguish ligands with a 30% variation in the complex lifetime. However, a robustness analysis shows that these properties are degraded when the queue parameters are subject to variation-for example, under stochasticity in the ligand number in the cell-cell interface and population variation in the cellular threshold. A time integration of the queue over a period of hours is shown to be able to control parameter noise efficiently for realistic parameter values when integrated over sufficiently long time periods (hours), the discrimination characteristics being determined by the TCR signal cascade kinetics (a kinetic proofreading scheme). Therefore, through a combination of thresholds and signal integration, a T cell can be responsive to low ligand density and specific to agonist quality. We suggest that multiple threshold mechanisms are employed to establish the conditions for efficient signal integration, i.e., coordinate the formation of a stable contact interface.
Collapse
Affiliation(s)
- J R Wedagedera
- Department of Mathematics, University of Ruhuna, Matara, Sri Lanka
| | | |
Collapse
|
27
|
Lazarski CA, Chaves FA, Sant AJ. The impact of DM on MHC class II-restricted antigen presentation can be altered by manipulation of MHC-peptide kinetic stability. ACTA ACUST UNITED AC 2006; 203:1319-28. [PMID: 16682499 PMCID: PMC2121212 DOI: 10.1084/jem.20060058] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DM edits the peptide repertoire presented by major histocompatibility complex class II molecules by professional antigen-presenting cells (APCs), favoring presentation of some peptides over others. Despite considerable research by many laboratories, there is still significant uncertainty regarding the biochemical attributes of class II–peptide complexes that govern their susceptibility to DM editing. Here, using APCs that either do or do not express DM and a set of unrelated antigens, we found that the intrinsic kinetic stability of class II–peptide complexes is tightly correlated with the effects of DM editing within APCs. Furthermore, through the use of kinetic stability variants of three independent peptides, we demonstrate that increasing or decreasing the kinetic stability of class II–peptide complexes causes a corresponding alteration in DM editing. Finally, we show that the spontaneous kinetic stability of class II complexes correlates directly with the efficiency of presentation by DM+ APCs and the immunodominance of that class II–peptide complex during an immune response. Collectively, these results suggest that the pattern of DM editing in APCs can be intentionally changed by modifying class II–peptide interactions, leading to the desired hierarchy of presentation on APCs, thereby promoting recruitment of CD4 T cells specific for the preferred peptides during an immune response.
Collapse
Affiliation(s)
- Christopher A Lazarski
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
28
|
Eck SC, Zhu P, Pepper M, Bensinger SJ, Freedman BD, Laufer TM. Developmental alterations in thymocyte sensitivity are actively regulated by MHC class II expression in the thymic medulla. THE JOURNAL OF IMMUNOLOGY 2006; 176:2229-37. [PMID: 16455979 DOI: 10.4049/jimmunol.176.4.2229] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Developing thymocytes are positively selected if they respond to self-MHC-peptide complexes, yet mature T cells are not activated by those same self-complexes. To avoid autoimmunity, positive selection must be followed by a period of maturation when the cellular response to TCR signals is altered. The mechanisms that mediate this postselection developmental tuning remain largely unknown. Specifically, it is unknown whether developmental tuning is a preprogrammed outcome of positive selection or if it is sensitive to ongoing interactions between the thymocyte and the thymic stroma. We probed the requirement for MHC class II-TCR interactions in postselection maturation by studying single positive (SP) CD4 thymocytes from K14/A(beta)(b) mice, in which CD4 T cells cannot interact with MHC class II in the thymic medulla. We report here that SP CD4 thymocytes must receive MHC class II signals to avoid hyperactive responses to TCR signals. This hyperactivity correlates with decreased expression of CD5; however, developmental tuning can occur independently of CD5, correlating instead with differences in the distribution of Lck. Thus, the maturation of postselection SP CD4 thymocytes is an active process mediated by ongoing interactions between the T cell and MHC class II molecules. This represents a novel mechanism by which the thymic medulla prevents autoreactivity.
Collapse
Affiliation(s)
- Steven C Eck
- Department of Medicine, University of Pennsylvania, Philadephia, 19104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Colombetti S, Basso V, Mueller DL, Mondino A. Prolonged TCR/CD28 Engagement Drives IL-2-Independent T Cell Clonal Expansion through Signaling Mediated by the Mammalian Target of Rapamycin. THE JOURNAL OF IMMUNOLOGY 2006; 176:2730-8. [PMID: 16493028 DOI: 10.4049/jimmunol.176.5.2730] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proliferation of Ag-specific T cells is central to the development of protective immunity. The concomitant stimulation of the TCR and CD28 programs resting T cells to IL-2-driven clonal expansion. We report that a prolonged occupancy of the TCR and CD28 bypasses the need for autocrine IL-2 secretion and sustains IL-2-independent lymphocyte proliferation. In contrast, a short engagement of the TCR and CD28 only drives the expansion of cells capable of IL-2 production. TCR/CD28- and IL-2-driven proliferation revealed a different requirement for PI3K and for the mammalian target of rapamycin (mTOR). Thus, both PI3K and mTOR activities were needed for T cells to proliferate to TCR/CD28-initiated stimuli and for optimal cyclin E expression. In contrast, either PI3K or mTOR were sufficient for IL-2-driven cell proliferation as they independently mediated cyclin E induction. Interestingly, rapamycin delayed cell cycle entry of IL-2-sufficient T cells, but did not prevent their expansion. Together, our findings indicate that the TCR, CD28, and IL-2 independently control T cell proliferation via distinct signaling pathways involving PI3K and mTOR. These data suggest that Ag persistence and the availability of costimulatory signals and of autocrine and paracrine growth factors individually shape T lymphocyte expansion in vivo.
Collapse
MESH Headings
- Animals
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- Cell Line
- Cell Proliferation
- Clonal Anergy/immunology
- Clone Cells
- Cyclin D
- Cyclin E/biosynthesis
- Cyclin E/genetics
- Cyclins/biosynthesis
- Cyclins/genetics
- Interleukin-2/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphatidylinositol 3-Kinases/physiology
- Protein Kinases/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- TOR Serine-Threonine Kinases
Collapse
Affiliation(s)
- Sara Colombetti
- Cancer Immunotherapy and Gene Therapy Program, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | |
Collapse
|
30
|
Henel G, Singh K, Cui D, Pryshchep S, Lee WW, Weyand CM, Goronzy JJ. Uncoupling of T-cell effector functions by inhibitory killer immunoglobulin-like receptors. Blood 2006; 107:4449-57. [PMID: 16469873 PMCID: PMC1895796 DOI: 10.1182/blood-2005-06-2519] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Killer immunoglobulin-like receptors (KIRs) are a family of regulatory cell-surface molecules expressed on natural killer (NK) cells and memory T-cell subsets. Their ability to prevent the formation of an activation platform and to inhibit NK cell activation is the basis of the missing self model of NK cell function. The benefits of KIR expression for T-cell biology are unclear. We studied how KIR2DL2 regulates T-cell function. Engagement of KIR2DL2 by the ligand human leukocyte antigen (HLA)-Cw3 did not affect conjugate formation between CD4(+)KIR2DL2(+) T cells and superantigen-pulsed target cells or the development of mature immune synapses with lipid rafts. KIR2DL2 and the corresponding HLA-C ligand were initially recruited to the peripheral supramolecular activation cluster (pSMAC). Consequently, KIR2DL2 engagement did not inhibit the phosphorylation of early signaling proteins and T-cell-receptor (TCR)-mediated cytotoxicity or granule exocytosis. After 15-30 minutes, KIR2DL2 moved to the central supramolecular activation cluster (cSMAC), colocalizing with CD3. TCR synapses dissociated, and phosphorylated phospholipase C (PLC)-gamma1, Vav1, and extracellular signal-regulated kinase 1/2 (ERK1/2) were reduced 90 minutes after stimulation. Gene array studies documented that the inhibition of late signaling events by KIR2DL2 affected transcriptional gene activation. We propose that KIRs on memory T cells operate to uncouple effector functions by modifying the transcriptional profile while leaving granule exocytosis unabated.
Collapse
Affiliation(s)
- Gabriella Henel
- Kathleen B. and Mason I Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sant AJ, Chaves FA, Jenks SA, Richards KA, Menges P, Weaver JM, Lazarski CA. The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Immunol Rev 2005; 207:261-78. [PMID: 16181342 DOI: 10.1111/j.0105-2896.2005.00307.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunodominance refers to the restricted antigen specificity of T cells detected in the immune response after immunization with complex antigens. Despite the presence of many potential peptide epitopes within these immunogens, the elicited T-cell response apparently focuses on a very limited number of peptides. Over the last two decades, a number of distinct explanations have been put forth to explain this very restricted specificity of T cells, many of which suggest that endosomal antigen processing restricts the array of peptides available to recruit CD4 T cells. In this review, we present evidence from our laboratory that suggest that immunodominance in CD4 T-cell responses is primarily due to an intrinsic property of the peptide:class II complexes. The intrinsic kinetic stability of peptide:class II complexes controls DM editing within the antigen-presenting cells and thus the initial epitope density on priming dendritic cells. Additionally, we hypothesize that peptides that possess high kinetic stability interactions with class II molecules display persistence at the cell surface over time and will more efficiently promote T-cell signaling and differentiation than competing, lower-stability peptides contained within the antigen. We discuss this model in the context of the existing data in the field of immunodominance.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Salek-Ardakani S, Croft M. Regulation of CD4 T cell memory by OX40 (CD134). Vaccine 2005; 24:872-83. [PMID: 16176850 DOI: 10.1016/j.vaccine.2005.07.108] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/20/2005] [Indexed: 11/30/2022]
Abstract
CD4 memory T cells play a critical role in protection against repeated exposure to infectious agents such as viruses, bacteria, and helminth parasites, yet can also contribute to the aberrant immune responses associated with autoimmune and allergic reactions. Understanding the mechanisms that control effective memory responses has important ramifications for vaccine design and in the management of adverse immune reactions. Recent advances in studies of T cell memory have implicated the tumor-necrosis-factor receptor (TNFR) family member, OX40 (CD134), as a key co-stimulatory molecule involved in the regulation of CD4 memory T cells. In this review we discuss these new developments in the context of past research and current models for the generation, persistence, and re-activation of memory T cells.
Collapse
Affiliation(s)
- Shahram Salek-Ardakani
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | |
Collapse
|
33
|
Obst R, van Santen HM, Mathis D, Benoist C. Antigen persistence is required throughout the expansion phase of a CD4(+) T cell response. ACTA ACUST UNITED AC 2005; 201:1555-65. [PMID: 15897273 PMCID: PMC2212918 DOI: 10.1084/jem.20042521] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
For CD8(+) T cells, a relatively short antigen pulse seems sufficient for antigen-presenting cells to drive clonal expansion and differentiation. It is unknown whether the requirement for antigen is similarly ephemeral for CD4(+) T cells. To study the dependence of a CD4(+) T cell response on antigen persistence in a quantitatively and temporally controlled manner in vivo, we engineered a mouse line expressing a major histocompatibility complex class II-restricted epitope in dendritic cells under the control of a tetracycline-inducible promoter. Experiments tracking the proliferation of CD4(+) T cells exposed to their cognate antigen in various amounts for different time periods revealed that the division of such cells was contingent on the presence of antigen throughout their expansion phase, even in the presence of an inflammatory stimulus. This previously unrecognized feature of a CD4(+) T cell response contrasts with the proliferative behavior of CD8(+) T cells that has been documented, and it implies that the two T cell subsets might require different strategies for efficient vaccination.
Collapse
Affiliation(s)
- Reinhard Obst
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
34
|
Schrum AG, Palmer E, Turka LA. Distinct temporal programming of naive CD4+ T cells for cell division versus TCR-dependent death susceptibility by antigen-presenting macrophages. Eur J Immunol 2005; 35:449-59. [PMID: 15682456 PMCID: PMC1868565 DOI: 10.1002/eji.200425635] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Naive T cells become programmed for clonal expansion and contraction during the early hours of antigenic signaling. Recent studies support an 'autopilot' model, wherein the commitment to proliferate and the magnitude of the proliferative response are simultaneously determined during a single, brief period of antigen exposure. Here, we have examined whether the proliferation of naive CD4+ T cells must occur on 'autopilot', or whether extended periods of antigenic signaling can impact primary proliferative responses to antigen-presenting macrophages (macrophage APC). We found that a single exposure to antigen (18 h) simultaneously committed T cells to (1) up-regulate surface TCR above the level expressed on naive T cells, (2) undergo minimal cell division, and (3) acquire susceptibility to TCR-dependent activation-induced cell death. However, continued antigenic signaling between 18 and 72 h was required to amplify the number of daughter cells derived from the already committed T cells. Thus, a discrete commitment time was followed by a 'tuning' period, where extended antigenic signaling determined the volume of the proliferative response. We conclude that T cell commitment to full clonal expansion versus TCR-dependent death susceptibility represent two separate programming events whose timing can be segregated by macrophage APC.
Collapse
Affiliation(s)
- Adam G Schrum
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Basel, Switzerland.
| | | | | |
Collapse
|
35
|
Jacobelli J, Andres PG, Boisvert J, Krummel MF. New views of the immunological synapse: variations in assembly and function. Curr Opin Immunol 2005; 16:345-52. [PMID: 15134784 DOI: 10.1016/j.coi.2004.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The interaction of T cells with antigen-presenting cells results in the formation of a contact face, termed the immunological synapse. The prototypical dynamics of this process are well established and involve cessation of crawling, a highly fluid 'immature' synapse phase during which signaling is initiated, and ultimately the formation of a 'mature' synapse characterized by centralized and peripheral supramolecular activating complexes. Ongoing research is directed towards defining how these supramolecular assemblies are formed and, more importantly, to what end. With regard to the former, progress has been made in defining the order in which various molecules are recruited to signaling centers in prototypical settings. With regard to the latter, however, the issue now appears more complex, as both developmental changes in T cells and variations in the environment appear to modulate features of mature synapse development. Although many details of the immunological synapse have been established, emerging evidence suggests a great variability in the ultimate form of these contacts and their effects on T-cell functions.
Collapse
Affiliation(s)
- Jordan Jacobelli
- Department of Pathology, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0511, USA.
| | | | | | | |
Collapse
|
36
|
Duthoit CT, Mekala DJ, Alli RS, Geiger TL. Uncoupling of IL-2 Signaling from Cell Cycle Progression in Naive CD4+ T Cells by Regulatory CD4+CD25+ T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2004; 174:155-63. [PMID: 15611237 DOI: 10.4049/jimmunol.174.1.155] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prior reports have shown that CD4(+)CD25(+) regulatory T cells suppress naive T cell responses by inhibiting IL-2 production. In this report, using an Ag-specific TCR transgenic system, we show that naive T cells stimulated with cognate Ag in the presence of preactivated CD4(+)CD25(+) T cells also become refractory to the mitogenic effects of IL-2. T cells stimulated in the presence of regulatory T cells up-regulated high affinity IL-2R, but failed to produce IL-2, express cyclins or c-Myc, or exit G(0)-G(1). Exogenous IL-2 failed to break the mitotic block, demonstrating that the IL-2 production failure was not wholly responsible for the proliferation defect. This IL-2 unresponsiveness did not require the continuous presence of CD4(+)CD25(+) regulatory T cells. The majority of responder T cells reisolated after coculture with regulatory cells failed to proliferate in response to IL-2, but were not anergic and proliferated in response to Ag. The mitotic block was also dissociated from the antiapoptotic effects of IL-2, because IL-2 still promoted the survival of T cells that had been cocultured with CD4(+)CD25(+) T cells. IL-2-induced STAT5 phosphorylation in the cocultured responder cells was intact, implying that the effects of the regulatory cells were downstream of receptor activation. Our results therefore show that T cell activation in the presence of CD4(+)CD25(+) regulatory T cells can induce an alternative stimulation program characterized by up-regulation of high affinity IL-2R, but a failure to produce IL-2, and uncoupling of the mitogenic and antiapoptotic effects of IL-2.
Collapse
Affiliation(s)
- Christine T Duthoit
- Department of Pathology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
37
|
Catron DM, Itano AA, Pape KA, Mueller DL, Jenkins MK. Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity 2004; 21:341-7. [PMID: 15357945 DOI: 10.1016/j.immuni.2004.08.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 01/13/2023]
Abstract
Recently, static and dynamic imaging methods have produced the first glimpses of the interactions between antigen-specific T cells and peptide-MHC-bearing antigen-presenting cells in the lymph nodes. Using data from these experiments, we produced a numerically, spatially, and temporally scaled simulation of the first 50 hr of the primary T cell-dependent immune response. The simulation highlights how lymph node structure facilitates antigen presentation to rare, naive, antigen-specific CD4+ T cells.
Collapse
Affiliation(s)
- Drew M Catron
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | | | | | |
Collapse
|
38
|
Hess K, Yang Y, Golech S, Sharov A, Becker KG, Weng NP. Kinetic assessment of general gene expression changes during human naive CD4+ T cell activation. Int Immunol 2004; 16:1711-21. [PMID: 15492022 DOI: 10.1093/intimm/dxh172] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consequence of naive CD4+ T cell activation is the differentiation and generation of effector cells. How the engagement of T cell receptors and co-stimulatory receptors leads to profound differential changes is not fully understood. To assess the transcription changes during T cell activation, we developed human T cell specific cDNA microarray gene filters and examined the gene expression profiles in human naive CD4+ T cells for 10 continuous time points during the first 24 h after anti-CD3 plus anti-CD28 (anti-CD3/CD28) stimulation. We report here a global and kinetic analysis of gene expression changes during naive CD4+ T cell activation and identify 196 genes having expression levels that significantly changed after activation. Based on the temporal change, there are 15 genes that changed between 0-1 h (early), 25 genes between 2-8 h (middle) and 156 genes between 16-24 h (late) after stimulation. Further analyses of the functions of those genes indicate their roles in maintenance of resting status, activation, adhesion/migration, cell cycle progression and cytokine production. However, a significant majority of these genes are novel to T cells and their functions in T cell activation require further study. Together, these results present a kinetic view of the gene expression changes of naive CD4+ T cells in response to T cell receptor-mediated activation for the first time, and provide a basis in understanding how the complex network of gene expression regulation is programmed during CD4+ T cell activation.
Collapse
Affiliation(s)
- Krista Hess
- Laboratory of Immunology, National Institutes on Aging, National Institute of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
39
|
Marwali MR, MacLeod MA, Muzia DN, Takei F. Lipid rafts mediate association of LFA-1 and CD3 and formation of the immunological synapse of CTL. THE JOURNAL OF IMMUNOLOGY 2004; 173:2960-7. [PMID: 15322154 DOI: 10.4049/jimmunol.173.5.2960] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipid rafts accumulate in the immunological synapse formed by an organized assembly of the TCR/CD3, LFA-1, and signaling molecules. However, the precise role of lipid rafts in the formation of the immunological synapse is unclear. In this study, we show that LFA-1 on CTL is constitutively active and mediates Ag-independent binding of CTL to target cells expressing its ligands. LFA-1 and CD3 on CTL, but not resting T cells, colocalize in lipid rafts. Binding of LFA-1 on CTL to targets initiates the formation of the immunological synapse, which is formed by LFA-1, CD3, and ganglioside GM1 distributed in the periphery of the cell contact site and cholesterol is more widely distributed. The formation of this synapse is Ag independent, but the recognition of Ag by the TCR induces accumulation of tyrosine phosphorylated proteins in the synapse as well as redistribution of the microtubule organization center toward the cell contact site. Our results suggest that LFA-1 recruits lipid rafts and the TCR/CD3 to the synapse, and facilitates efficient and rapid activation of CTL.
Collapse
|
40
|
Gutzmer R, Li W, Sutterwala S, Lemos MP, Elizalde JI, Urtishak SL, Behrens EM, Rivers PM, Schlienger K, Laufer TM, Eck SL, Marks MS. A tumor-associated glycoprotein that blocks MHC class II-dependent antigen presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:1023-32. [PMID: 15240690 DOI: 10.4049/jimmunol.173.2.1023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumors evade immune surveillance despite the frequent expression of tumor-associated Ags (TAA). Tumor cells escape recognition by CD8(+) T cells through several mechanisms, including down-regulation of MHC class I molecules and associated Ag-processing machinery. However, although it is well accepted that optimal anti-tumor immune responses require tumor-reactive CD4(+) T cells, few studies have addressed how tumor cells evade CD4(+) T cell recognition. In this study, we show that a common TAA, GA733-2, and its murine orthologue, mouse epithelial glycoprotein (mEGP), function in blocking MHC class II-restricted Ag presentation by dendritic cells. GA733-2 is a common TAA that is expressed normally at low levels by some epithelial tissues and a subset of dendritic cells, but at high levels on colon, breast, lung, and some nonepithelial tumors. We show that ectopic expression of mEGP or GA733-2, respectively, in dendritic cells derived from murine bone marrow or human monocytes results in a dose-dependent inability to stimulate proliferation of Ag-specific or alloreactive CD4(+) T cells. Dendritic cells exposed to cell debris from tumors expressing mEGP are similarly compromised. Furthermore, mice immunized with dendritic cells expressing mEGP from a recombinant adenovirus vector exhibited a muted anti-adenovirus immune response. The inhibitory effect of mEGP was not due to down-regulation of functional MHC class II molecules or active suppression of T cells, and did not extend to T cell responses to superantigen. These results demonstrate a novel mechanism by which tumors may evade CD4(+) T cell-dependent immune responses through expression of a TAA.
Collapse
Affiliation(s)
- Ralf Gutzmer
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wong P, Pamer EG. Disparate in vitro and in vivo requirements for IL-2 during antigen-independent CD8 T cell expansion. THE JOURNAL OF IMMUNOLOGY 2004; 172:2171-6. [PMID: 14764683 DOI: 10.4049/jimmunol.172.4.2171] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transient TCR stimulation induces multiple rounds of CD8 T cell division without further requirement for Ag. The mechanism driving Ag-independent proliferation, however, remains unclear. In this study, we show that the initial duration of TCR stimulation positively correlates with the number of divisions that CD8 T cells subsequently undergo. We find that increased periods of Ag stimulation result in enhanced CD25 up-regulation and greater IL-2 production by CD8 T cells. Depletion of IL-2 from T cell cultures with specific Abs dramatically impairs programmed proliferation. Consistent with this result, IL-2-deficient T cells undergo markedly attenuated Ag-independent proliferation in vitro. Although IL-2 production by stimulated CD8 T cells appears to be essential for in vitro proliferation, upon transfer into recipient mice, IL-2-deficient CD8 T cells undergo extensive proliferation in vivo after transient stimulation. Furthermore, the extent of in vivo proliferation correlates with the duration of in vitro Ag stimulation. These results indicate that the requirements for autocrine IL-2 production by CD8 T cells differs between in vitro and in vivo conditions and suggests that factors in addition to IL-2 can support Ag-independent CD8 T cell proliferation.
Collapse
Affiliation(s)
- Phillip Wong
- Department of Medicine, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
42
|
Duthoit CT, Nguyen P, Geiger TL. Antigen Nonspecific Suppression of T Cell Responses by Activated Stimulation-Refractory CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:2238-46. [PMID: 14764692 DOI: 10.4049/jimmunol.172.4.2238] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Several classes of anergic T cells are capable of suppressing naive T cell proliferation and thereby limiting immune responses. Activated T cells, although not anergic, are transiently refractory to restimulation with Ag. We examine in this study whether activated refractory murine T cells can also suppress naive T cell responses. We find that they can, and that they exhibit many of the suppressive properties of anergic T cells. The activated cells strongly diminish Ag-mediated T cell proliferation, an activity that correlates with their refractory period. Suppression is independent of APC numbers and requires cell contact or proximity. Naive T cells stimulated in the presence of activated refractory cells up-regulate CD25 and CD69, but fail to produce IL-2. The addition of IL-2 to culture medium, however, does not prevent the suppression, which is therefore not solely due to the absence of this growth factor. Persistence of the suppressor cells is also not essential. T cells stimulated in their presence and then isolated from them and cultured do not divide. The suppressive cells, however, do not confer a refractory or anergic state on the target T lymphocytes, which can fully respond to antigenic stimulation if removed from the suppressors. Our results therefore provide evidence that activated T cells act as transient suppressor cells, severely constraining bystander T cell stimulation and thereby restricting their response. These results have potentially broad implications for the development and regulation of immune responses.
Collapse
Affiliation(s)
- Christine T Duthoit
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
43
|
Schrum AG, Turka LA, Palmer E. Surface T-cell antigen receptor expression and availability for long-term antigenic signaling. Immunol Rev 2003; 196:7-24. [PMID: 14617194 DOI: 10.1046/j.1600-065x.2003.00083.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is important to understand how T-cell antigen receptor (TCR) engagement and signaling are regulated throughout an immune response. This review examines the dynamics of surface TCR expression and signaling capacity during thymic and effector T-cell development. Although the TCR can undergo vast changes in surface expression, T cells remain capable of sustaining TCR engagement for long periods of time. This may be achieved by a combination of mechanisms that involve (a) controlling the quantity of surface TCR available for ligand interaction and (b) controlling the quality of surface TCR expression during T-cell activation. TCR signaling itself appears to be one of the main quantitative modulators of surface TCR expression, and it can cause both downregulation and upregulation at different times of T-cell activation. Recent studies indicate that the degree of upregulation is tunable by the strength of antigenic stimulation. There is evidence that qualitatively distinct forms of the TCR exist, and their potential role in sustained antigenic signaling is also discussed. A goal of future studies will be to better characterize these modulations in surface TCR expression and to clarify their impact on the regulation of immune responses.
Collapse
Affiliation(s)
- Adam G Schrum
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | | | | |
Collapse
|
44
|
Affiliation(s)
- Johannes B Huppa
- The Howard Hughes Medical Institute and The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
45
|
Lee KH, Dinner AR, Tu C, Campi G, Raychaudhuri S, Varma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen PM, Dustin ML, Chakraborty AK, Shaw AS. The Immunological Synapse Balances T Cell Receptor Signaling and Degradation. Science 2003; 302:1218-22. [PMID: 14512504 DOI: 10.1126/science.1086507] [Citation(s) in RCA: 432] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The immunological synapse is a specialized cell-cell junction between T cell and antigen-presenting cell surfaces. It is characterized by a central cluster of antigen receptors, a ring of integrin family adhesion molecules, and temporal stability over hours. The role of this specific organization in signaling for T cell activation has been controversial. We use in vitro and in silico experiments to determine that the immunological synapse acts as a type of adaptive controller that both boosts T cell receptor triggering and attenuates strong signals.
Collapse
Affiliation(s)
- Kyeong-Hee Lee
- Department of Pathology and Immunology, Washington University School of Medicine, Box 8118, 660 South Euclid, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huppa JB, Gleimer M, Sumen C, Davis MM. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat Immunol 2003; 4:749-55. [PMID: 12858171 DOI: 10.1038/ni951] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Accepted: 06/03/2003] [Indexed: 01/25/2023]
Abstract
Although signals through the T cell receptor (TCR) are essential for the initiation of T helper cell activation, it is unclear what function such signals have during the prolonged T cell-antigen-presenting cell contact. Here we simultaneously tracked TCR-CD3 complex and phosphoinositide 3-kinase activity in single T cells using three-dimensional video microscopy. Despite rapid internalization of most of the TCR-CD3, TCR-dependent signaling was still evident up to 10 h after conjugate formation. Blocking this interaction caused dissolution of the synapse and proportional reductions in interleukin 2 production and cellular proliferation. Thus TCR signaling persists for hours, has a cumulative effect and is necessary for the maintenance of the immunological synapse.
Collapse
Affiliation(s)
- Johannes B Huppa
- Stanford University School of Medicine, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, Beckman Center B221, 279 Campus Drive, Stanford, California 94305, USA
| | | | | | | |
Collapse
|