1
|
Liu B, Liu Z, Jiang T, Gu X, Yin X, Cai Z, Zou X, Dai L, Zhang B. Univariable and multivariable Mendelian randomization study identified the key role of gut microbiota in immunotherapeutic toxicity. Eur J Med Res 2024; 29:161. [PMID: 38475836 PMCID: PMC10929167 DOI: 10.1186/s40001-024-01741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND In cancer patients receiving immune checkpoint inhibitors (ICIs), there is emerging evidence suggesting a correlation between gut microbiota and immune-related adverse events (irAEs). However, the exact roles of gut microbiota and the causal associations are yet to be clarified. METHODS To investigate this, we first conducted a univariable bi-directional two-sample Mendelian randomization (MR) analysis. Instrumental variables (IVs) for gut microbiota were retrieved from the MiBioGen consortium (18,340 participants). GWAS summary data for irAEs were gathered from an ICIs-treated cohort with 1,751 cancer patients. Various MR analysis methods, including inverse variance weighted (IVW), MR PRESSO, maximum likelihood (ML), weighted median, weighted mode, and cML-MA-BIC, were used. Furthermore, multivariable MR (MVMR) analysis was performed to account for possible influencing instrumental variables. RESULTS Our analysis identified fourteen gut bacterial taxa that were causally associated with irAEs. Notably, Lachnospiraceae was strongly associated with an increased risk of both high-grade and all-grade irAEs, even after accounting for the effect of BMI in the MVMR analysis. Akkermansia, Verrucomicrobiaceae, and Anaerostipes were found to exert protective roles in high-grade irAEs. However, Ruminiclostridium6, Coprococcus3, Collinsella, and Eubacterium (fissicatena group) were associated with a higher risk of developing high-grade irAEs. RuminococcaceaeUCG004, and DefluviitaleaceaeUCG011 were protective against all-grade irAEs, whereas Porphyromonadaceae, Roseburia, Eubacterium (brachy group), and Peptococcus were associated with an increased risk of all-grade irAEs. CONCLUSIONS Our analysis highlights a strong causal association between Lachnospiraceae and irAEs, along with some other gut microbial taxa. These findings provide potential modifiable targets for managing irAEs and warrant further investigation.
Collapse
Affiliation(s)
- Baike Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianxiang Jiang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiangshuai Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaonan Yin
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhaolun Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaoqiao Zou
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Bo Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Identifying the culprits in neurological autoimmune diseases. J Transl Autoimmun 2019; 2:100015. [PMID: 32743503 PMCID: PMC7388404 DOI: 10.1016/j.jtauto.2019.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
The target organ of neurological autoimmune diseases (NADs) is the central or peripheral nervous system. Multiple sclerosis (MS) is the most common NAD, whereas Guillain-Barré syndrome (GBS), myasthenia gravis (MG), and neuromyelitis optica (NMO) are less common NADs, but the incidence of these diseases has increased exponentially in the last few years. The identification of a specific culprit in NADs is challenging since a myriad of triggering factors interplay with each other to cause an autoimmune response. Among the factors that have been associated with NADs are genetic susceptibility, epigenetic mechanisms, and environmental factors such as infection, microbiota, vitamins, etc. This review focuses on the most studied culprits as well as the mechanisms used by these to trigger NADs. Neurological autoimmune diseases are caused by a complex interaction between genes, environmental factors, and epigenetic deregulation. Infectious agents can cause an autoimmune reaction to myelin epitopes through molecular mimicry and/or bystander activation. Gut microbiota dysbiosis contributes to neurological autoimmune diseases. Smoking increases the risk of NADs through inflammatory signaling pathways, oxidative stress, and Th17 differentiation. Deficiency in vitamin D favors NAD development through direct damage to the central and peripheral nervous system.
Collapse
|
4
|
Alzheimer's disease might depend on enabling pathogens which do not necessarily cross the blood-brain barrier. Med Hypotheses 2019; 125:129-136. [PMID: 30902141 DOI: 10.1016/j.mehy.2019.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/20/2019] [Indexed: 01/04/2023]
Abstract
The development of Alzheimer's Disease (AD) might reflect, in its acquired aspects, a cooperative pathogenesis whereby infectious enablers which do not necessarily cross the blood-brain barrier augment the invasive properties of a less virulent organism, thus enabling it to infect the brain. An example interaction is described which involves Chlamydia species, Human papillomavirus (HPV), microbiota, and yeast, where yeast is a pathogen of low virulence which crosses the blood-brain barrier. The cooperative pathogenesis begins at the mucosal epithelium. Infection by Chlamydia, HPV, or dysbiosis of commensal bacteria disrupts the integrity of the mucosal epithelium, thereby allowing colonizing yeast to penetrate the epithelial barrier and enter into the bloodstream. Chlamydia and enabling commensals promote insulin resistance, which provides yeast with glucose and also sets the stage for accumulation of amyloid beta protein (ABP). Meanwhile, HPV-induced and hyperglycemia-induced immunological changes enable the spread of newly invasive yeast to the brain, where the release of inflammatory cytokines in response to yeast promotes production of ABP. Chlamydia also cross reacts with Candida species, which may stimulate further brain inflammation in response to Candida and may augment production of ABP thereby The yeast's less virulent origins, coupled with immune modulation by enablers, might explain why AD as a model of infectious encephalitis is always slow and insidious rather than occasionally febrile, accompanied by seizures, or marked by signs of meningeal inflammation.
Collapse
|
5
|
Cossu D, Yokoyama K, Hattori N. Bacteria-Host Interactions in Multiple Sclerosis. Front Microbiol 2018; 9:2966. [PMID: 30564215 PMCID: PMC6288311 DOI: 10.3389/fmicb.2018.02966] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is caused by a complex interaction of genetic and environmental factors. Numerous causative factors have been identified that play a role in MS, including exposure to bacteria. Mycobacteria, Chlamydia pneumoniae, Helicobacter pylori, and other bacteria have been proposed as risk factors for MS with different mechanisms of action. Conversely, some pathogens may have a protective effect on its etiology. In terms of acquired immunity, molecular mimicry has been hypothesized as the mechanism by which bacterial structures such as DNA, the cell wall, and intracytoplasmic components can activate autoreactive T cells or produce autoantibodies in certain host genetic backgrounds of susceptible individuals. In innate immunity, Toll-like receptors play an essential role in combating invading bacteria, and their activation leads to the release of cytokines or chemokines that mediate effective adaptive immune responses. These receptors may also be involved in central nervous system autoimmunity, and their contribution depends on the infection site and on the pathogen. We have reviewed the current knowledge of the influence of bacteria on MS development, emphasizing the potential mechanisms of action by which bacteria affect MS initiation and/or progression.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
6
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PS, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95:100-123. [DOI: 10.1016/j.jaut.2018.10.012] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
|
7
|
Mohseni Moghadam Z, Mahmoodzadeh Hosseini H, Amin M, Behzadi E, Imani Fooladi AA. Microbial metabolite effects on TLR to develop autoimmune diseases. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1469512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Zeinab Mohseni Moghadam
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Mardiguian S, Ladds E, Turner R, Shepherd H, Campbell SJ, Anthony DC. The contribution of the acute phase response to the pathogenesis of relapse in chronic-relapsing experimental autoimmune encephalitis models of multiple sclerosis. J Neuroinflammation 2017; 14:196. [PMID: 28964257 PMCID: PMC5622564 DOI: 10.1186/s12974-017-0969-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/21/2017] [Indexed: 12/29/2022] Open
Abstract
Background Increased relapse rates in multiple sclerosis (MS) as a consequence of peripheral immune system activation, owing to infection for example, have been widely reported, but the mechanism remains unclear. Acute brain injury models can be exacerbated by augmenting the hepatic acute phase response (APR). Here, we explored the contribution of the hepatic APR to relapse in two rodent models of MS. Methods Mice with MOG-CFA-induced chronic relapsing experimental autoimmune encephalitis (CR-EAE) were killed before, during and after the first phase of disease, and the brain and liver chemokine, cytokine and acute phase protein (APP) mRNA expression profile was determined. During remission, the APR was reactivated with an intraperitoneal lipopolysaccharide (LPS) and clinical score was monitored throughout. To explore the downstream mediators, CXCL-1, which is induced as part of the APR, was injected into animals with a focal, cytokine/MOG-induced EAE lesion (fEAE) and the cellularity of the lesions was assessed. Results Compared to CFA control, in a rodent CR-EAE model, an hepatic APR preceded clinical signs and central cytokine production in the initial phase of disease. Compared to administration in naïve animals, an LPS challenge during the asymptomatic remission phase of CR-EAE rodents provoked relapse and resulted in the increased and extended expression of specific peripheral hepatic chemokines. CXCL-1 and several other APPs were markedly elevated. A single intravenous administration of the highly induced chemokine, CXCL-1, was found to be sufficient to reactivate the lesions by increasing microglial activation and the recruitment of T cells in fEAE lesions. Conclusions The APR plays a contributing role to the pathology seen in models of chronic brain injury and in translating the effects of peripheral immune system stimulation secondary to trauma or infection into central pathology and behavioural signs. Further elucidation of the exact mechanisms in this process will inform development of more effective, selective therapies in MS that, by suppressing the hepatic chemokine response, may prevent relapse.
Collapse
Affiliation(s)
- Silvy Mardiguian
- Department of Pharmacology, University of Oxford, Oxford, OX1 4QT, UK
| | - Emma Ladds
- Department of Pharmacology, University of Oxford, Oxford, OX1 4QT, UK.,Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | - Roberta Turner
- Department of Pharmacology, University of Oxford, Oxford, OX1 4QT, UK
| | - Hazel Shepherd
- Department of Pharmacology, University of Oxford, Oxford, OX1 4QT, UK
| | - Sandra J Campbell
- Department of Pharmacology, University of Oxford, Oxford, OX1 4QT, UK
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Oxford, OX1 4QT, UK.
| |
Collapse
|
9
|
Murta V, Ferrari C. Peripheral Inflammation and Demyelinating Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 949:263-285. [PMID: 27714694 DOI: 10.1007/978-3-319-40764-7_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent decades, several neurodegenerative diseases have been shown to be exacerbated by systemic inflammatory processes. There is a wide range of literature that demonstrates a clear but complex relationship between the central nervous system (CNS) and the immunological system, both under naïve or pathological conditions. In diseased brains, peripheral inflammation can transform "primed" microglia into an "active" state, which can trigger stronger pathological responses. Demyelinating diseases are a group of neurodegenerative diseases characterized by inflammatory lesions associated with demyelination, which in turn induces axonal damage, neurodegeneration, and progressive loss of function. Among them, the most important are multiple sclerosis (MS) and neuromyelitis optica (NMO). In this review, we will analyze the effect of specific peripheral inflammatory stimuli in the progression of demyelinating diseases and discuss their animal models. In most cases, peripheral immune stimuli are exacerbating.
Collapse
Affiliation(s)
- Verónica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Ferrari
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Bioinformatics evaluation of the possibility of heat shock proteins as autoantigens in multiple sclerosis based on molecular mimicry hypothesis. J Neuroimmunol 2016; 295-296:100-21. [PMID: 27235356 DOI: 10.1016/j.jneuroim.2016.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/19/2016] [Accepted: 03/29/2016] [Indexed: 01/22/2023]
Abstract
Molecular mimicry is the explanatory link between the heat shock proteins (HSPs) of infectious agents and triggering multiple sclerosis. Considering that there are many similarities between self- and bacterial-HSPs, the goal was to investigate a panel of 60- and 70kDa HSPs from a variety of bacteria in order to predict the role of each microorganism in triggering or progression of the disease under the molecular mimicry hypothesis. By clarifying the peptides meeting criteria for cross-reactivity and elucidating the role of each microorganism in MS pathogenesis, it would be easier to suggest more effective treatment and preventive strategies for this disease.
Collapse
|
11
|
Abstract
Chlamydia pneumoniae, an obligate intracellular bacterial pathogen, has long been investigated as a potential developmental or exacerbating factor in various pathologies. Its unique lifestyle and ability to disseminate throughout the host while persisting in relative safety from the immune response has placed this obligate intracellular pathogen in the crosshairs as a potentially mitigating factor in chronic inflammatory diseases. Many animal model and human correlative studies have been performed to confirm or deny a role for C. pneumoniae infection in these disorders. In some cases, antibiotic clinical trials were conducted to prove a link between bacterial infections and atherosclerosis. In this review, we detail the latest information regarding the potential role that C. pneumoniae infection may have in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rebecca A Porritt
- Division of Pediatric Infectious Diseases and Immunology, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Timothy R Crother
- Division of Pediatric Infectious Diseases and Immunology, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
12
|
Reiss CS. Virus-Induced Demyelination: The Case for Virus(es) in Multiple Sclerosis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7122906 DOI: 10.1007/978-3-319-33189-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple Sclerosis (MS) is the most common demyelinating disease of man with over 400,000 cases in the United States and over 2.5 million cases worldwide. There are over 64,000 citations in Pubmed dating back as far as 1887. Much has been learned over the past 129 years with a recent burst in therapeutic options (mostly anti-inflammatory) with newer medications in development that are neuroprotective and/or neuroreparative. However, with all these advancements the cause of MS remains elusive. There is a clear interplay of genetic, immunologic, and environmental factors that influences both the development and progression of this disorder. This chapter will give a brief overview of the history and pathogenesis of MS with attention to how host immune responses in genetically susceptible individuals contribute to the MS disease process. In addition, we will explore the role of infectious agents in MS as potential “triggers” of disease. Models of virus-induced demyelination will be discussed, with an emphasis on the recent interest in human herpesviruses and the role they may play in MS disease pathogenesis. Although we remain circumspect as to the role of any microbial pathogen in MS, we suggest that only through well-controlled serological, cellular immune, molecular, and animal studies we will be able to identify candidate agents. Ultimately, clinical interventional trials that either target a specific pathogen or class of pathogens will be required to make definitive links between the suspected agent and MS.
Collapse
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
13
|
Abstract
Chlamydia and antibodies to them were detected by serological, molecular biological, and culture methods in the sera and cerebrospinal fluid of patients with multiple sclerosis and in the reference groups of subjects without neurological diseases. Correlations between the agent presence in the biological fluids of patients and clinical characteristics of the disease were analyzed. C. pneumoniae were more incident in the biological liquids of patients with multiple sclerosis than in healthy volunteers. On the other hand, the incidence of the agent in the patients was not high and its presence did not correlate with the clinical manifestations. C. trachomatis was equally rare in the patients and volunteers. The studies indicated the existence of a group of patients infected by C. pneumoniae in the cohort of patients with multiple sclerosis, but the impact of this agent for the disease course remains unclear.
Collapse
|
14
|
Kumar P, Friebe K, Schallhorn R, Moinfar Z, Nau R, Bähr M, Schütze S, Hein K. Systemic Escherichia coli infection does not influence clinical symptoms and neurodegeneration in experimental autoimmune encephalomyelitis. BMC Neurosci 2015; 16:36. [PMID: 26088203 PMCID: PMC4472157 DOI: 10.1186/s12868-015-0172-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/03/2015] [Indexed: 01/13/2023] Open
Abstract
Background Systemic infections can influence the course of multiple sclerosis (MS), especially by driving recurrent acute episodes. The question whether the infection enhances tissue damage is of great clinical importance and cannot easily be assessed in clinical trials. Here, we investigated the effects of a systemic infection with Escherichia coli, a Gram-negative bacterium frequently causing urinary tract infections, on the clinical course as well as on neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Methods Rats were immunized with myelin oligodendrocyte glycoprotein (MOG1–125) and challenged intraperitoneally with live E. coli K1 in the preclinical or in the clinical phase of the disease. To ensure the survival of animals, antibiotic treatment with ceftriaxone was initiated 36 h after the infection and continued for 3 consecutive days. Results Systemic infection with E. coli did not influence the onset of clinical EAE symptoms or disease severity. Analysis of the optic nerve and retinal ganglion cells revealed no significant changes in the extent of inflammatory infiltrates, demyelination and neurodegeneration after E. coli infection. Conclusions We could not confirm the detrimental effect of lipopolysaccharide-induced systemic inflammation, a model frequently used to mimic the bacterial infection, previously observed in animal models of MS. Our results indicate that the effect of an acute E. coli infection on the course of MS is less pronounced than suspected and underline the need for adequate models to test the role of systemic infections in the pathogenesis of MS.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Katharina Friebe
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Rieka Schallhorn
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Zahra Moinfar
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Mathias Bähr
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Katharina Hein
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| |
Collapse
|
15
|
Kumar P, Kretzschmar B, Herold S, Nau R, Kreutzfeldt M, Schütze S, Bähr M, Hein K. Beneficial effect of chronic Staphylococcus aureus infection in a model of multiple sclerosis is mediated through the secretion of extracellular adherence protein. J Neuroinflammation 2015; 12:22. [PMID: 25644616 PMCID: PMC4322648 DOI: 10.1186/s12974-015-0241-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/10/2015] [Indexed: 12/15/2022] Open
Abstract
Background Bacterial infections have been assumed to worsen multiple sclerosis (MS) disease symptoms and to lead to increased neurodegeneration. However, the underlying biological mechanisms for these effects are complex and poorly understood. Here, we assessed the disease-modulating effects of chronic infection with Staphylococcus aureus, a common human pathogen, on the clinical course and the extent of neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Methods To conduct this study, we established a persistent chronic infection in female brown Norway rats by inoculating Staphylococcus aureus (S. aureus) bacteria in a subcutaneously implanted tissue cages. Results In this study, we observed that the introduction of a localized S. aureus infection during the subclinical phase of EAE induced a chronic systemic inflammatory response, consisting of increased T- and B-cell counts and systemic production of proinflammatory cytokines. Unexpectedly, the S. aureus infection completely prevented the development of clinical EAE, and markedly reduced inflammatory infiltration and demyelination of the optic nerve, while it increased the number of surviving retinal neurons. Using a S. aureus strain that lacked the extracellular adherence protein (Eap), we determined that the extracellular adherence protein is at least partially responsible for the inhibitory effect of S. aureus infection on autoimmune inflammation of the central nervous system. Conclusions Our results demonstrate for the first time that chronic infection with S. aureus has a beneficial effect on EAE, indicating a dual role of infection in the pathogenesis of MS. We also showed that secretion of Eap by S. aureus plays a major role in preventing autoimmune inflammation of the CNS. Moreover, we identified Eap as a factor responsible for this protective effect.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| | - Benedikt Kretzschmar
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| | - Sabine Herold
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| | - Roland Nau
- Institute of Neuropathology, University Medicine Goettingen, Goettingen, 37075, Germany.
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Centre Médical Universitaire 1, Rue Michel-Servet 1211, Geneva 4, Switzerland.
| | - Sandra Schütze
- Institute of Neuropathology, University Medicine Goettingen, Goettingen, 37075, Germany.
| | - Mathias Bähr
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| | - Katharina Hein
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| |
Collapse
|
16
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disease of the central nervous system (CNS). Although the etiology of MS is unknown, genetic and environmental factors play a role. Infectious pathogens are the likely environmental factors involved in the development of MS. Pathogens associated with the development or exacerbation of MS include bacteria, such as Mycoplasma pneumoniae and Chlamydia pneumoniae, the Staphylococcus aureus-produced enterotoxins that function as superantigens, viruses of the herpes virus (Epstein-Barr virus and human herpesvirus 6) and human endogenous retrovirus (HERV) families and the protozoa Acanthamoeba castellanii. Evidence, from studies with humans and animal models, supporting the association of these various pathogens with the development and/or exacerbation of MS will be discussed along with the potential mechanisms including molecular mimicry, epitope spreading and bystander activation. In contrast, infection with certain parasites such as helminthes (Schistosoma mansoni, Fasciola hepatica, Hymenolepis nana, Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercolaris, Enterobius vermicularis) appears to protect against the development or exacerbation of MS. Evidence supporting the ability of parasitic infections to protect against disease will be discussed along with a brief summary of a recent Phase I clinical trial testing the ability of Trichuris suis ova treatment to improve the clinical course of MS. A complex interaction between the CNS (including the blood-brain barrier), multiple infections with various infectious agents (occurring in the periphery or within the CNS), and the immune response to those various infections may have to be deciphered before the etiology of MS can be fully understood.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine , Salt Lake City, UT , USAxs
| | | | | |
Collapse
|
17
|
Murta V, Ferrari CC. Influence of Peripheral inflammation on the progression of multiple sclerosis: Evidence from the clinic and experimental animal models. Mol Cell Neurosci 2013; 53:6-13. [DOI: 10.1016/j.mcn.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 12/21/2022] Open
|
18
|
Sriram S. Role of glial cells in innate immunity and their role in CNS demyelination. J Neuroimmunol 2011; 239:13-20. [PMID: 21907419 DOI: 10.1016/j.jneuroim.2011.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/09/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
The adaptive and innate arms of the immune system are the two pillars of host defense against environmental pathogens. Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS which is considered to be autoimmune and is thought to result from breakdown in the usual checks and balances of the adaptive immune response. The major pathological outcome of the disease is "the MS plaque" a unique feature of CNS demyelination characterized by the destruction of oligodendrocytes with loss of myelin and underlying axons. The MS plaque is not seen in other inflammatory disorders of the CNS. The prevailing opinion suggests that MS is mediated by the activation of an adaptive immune response which targets neural antigens. Currently, the role of an innate immune in the development of the lesions in MS has remained unclear. We explore the potential cellular elements of the innate immune system and in particular glial cells, which are likely candidates in inducing the specific pathological picture that is evident in MS. Activated microglia and the release of molecules which are detrimental to oligodendrocyte have been suggested as mechanisms by which innate immunity causes demyelination in MS. However a microglia/macrophage centric model does not explain the specificity of lesion development in MS. We propose that activation pathways of receptors of the innate immune system present on oligodendrocytes and astrocytes rather than microglia are central to the pathogenesis of demyelination seen in MS.
Collapse
Affiliation(s)
- Subramaniam Sriram
- Department of Neurology, Multiple Sclerosis Research Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA.
| |
Collapse
|
19
|
Hammond CJ, Hallock LR, Howanski RJ, Appelt DM, Little CS, Balin BJ. Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain. BMC Neurosci 2010; 11:121. [PMID: 20863379 PMCID: PMC2949767 DOI: 10.1186/1471-2202-11-121] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 09/23/2010] [Indexed: 01/08/2023] Open
Abstract
Background Sporadic late-onset Alzheimer's disease (AD) appears to evolve from an interplay between genetic and environmental factors. One environmental factor that continues to be of great interest is that of Chlamydia pneumoniae infection and its association with late-onset disease. Detection of this organism in clinical and autopsy samples has proved challenging using a variety of molecular and histological techniques. Our current investigation utilized immunohistochemistry with a battery of commercially available anti-C. pneumoniae antibodies to determine whether C. pneumoniae was present in areas typically associated with AD neuropathology from 5 AD and 5 non-AD control brains. Results Immunoreactivity for C. pneumoniae antigens was observed both intracellularly in neurons, neuroglia, endothelial cells, and peri-endothelial cells, and extracellularly in the frontal and temporal cortices of the AD brain with multiple C. pneumoniae-specific antibodies. This immunoreactivity was seen in regions of amyloid deposition as revealed by immunolabeling with two different anti-beta amyloid antibodies. Thioflavin S staining, overlaid with C. pneumoniae immunolabeling, demonstrated no direct co-localization of the organism and amyloid plaques. Further, the specificity of C. pneumoniae labeling of AD brain sections was demonstrated using C. pneumoniae antibodies pre-absorbed against amyloid β 1-40 and 1-42 peptides. Conclusions Anti-C. pneumoniae antibodies, obtained commercially, identified both typical intracellular and atypical extracellular C. pneumoniae antigens in frontal and temporal cortices of the AD brain. C. pneumoniae, amyloid deposits, and neurofibrillary tangles were present in the same regions of the brain in apposition to one another. Although additional studies are required to conclusively characterize the nature of Chlamydial immunoreactivity in the AD brain, these results further implicate C. pneumoniae infection with the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Christine J Hammond
- Pathology/Microbiology/Immunology and Forensic Medicine Department, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Beck J, Urnovitz HB, Saresella M, Caputo D, Clerici M, Mitchell WM, Schütz E. Serum DNA motifs predict disease and clinical status in multiple sclerosis. J Mol Diagn 2010; 12:312-9. [PMID: 20228264 DOI: 10.2353/jmoldx.2010.090170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Using recently available mass sequencing and assembly technologies, we have been able to identify and quantify unique cell-free DNA motifs in the blood of patients with multiple sclerosis (MS). The most common MS clinical syndrome, relapsing-remitting MS (RRMS), is accompanied by a unique fingerprint of both inter- and intragenic cell-free circulating nucleic acids as specific DNA sequences that provide significant clinical sensitivity and specificity. Coding genes that are differentially represented in MS serum encode cytoskeletal proteins, brain-expressed regulators of growth, and receptors involved in nervous system signal transduction. Although coding genes distinguish RRMS and its clinical activity, several repeat sequences, such as the L1M family of LINE elements, are consistently different in all MS patients and clinical status versus the normal database. These data demonstrate that DNA motifs observed in serum are characteristic of RRMS and disease activity and are promising as a clinical tool in monitoring patient responses to treatment modalities.
Collapse
|
21
|
Serres S, Anthony DC, Jiang Y, Broom KA, Campbell SJ, Tyler DJ, van Kasteren SI, Davis BG, Sibson NR. Systemic inflammatory response reactivates immune-mediated lesions in rat brain. J Neurosci 2009; 29:4820-8. [PMID: 19369550 PMCID: PMC6665347 DOI: 10.1523/jneurosci.0406-09.2009] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 01/05/2023] Open
Abstract
The potential association between microbial infection and reactivation of a multiple sclerosis (MS) lesion is an important issue that remains unresolved, primarily because of the absence of suitable animal models and imaging techniques. Here, we have evaluated this question in an empirical manner using immunohistochemistry and magnetic resonance imaging (MRI), before and after the induction of a systemic inflammatory response in two distinct models of MS. In a pattern-II-type focal myelin oligodendrocyte glycoprotein-experimental autoimmune encephalomyelitis model, systemic endotoxin injection caused an increase in regional cerebral blood volume (rCBV) around the lesion site after 6 h, together with a reduction in the magnetization transfer ratio of the lesioned corpus callosum. These changes were followed by an increase in the diffusion of tissue water within the lesion 24 h after endotoxin challenge and new leukocyte recruitment as revealed both immunohistochemically and by MRI tracking of ultrasmall superparamagnetic iron oxide-labeled macrophages. Importantly, we detected in vivo expression of E- and P-selectin in quiescent lesions by MRI-detectable glyconanoparticles conjugated to sialyl Lewis(X). This finding may explain, at least in part, the ability of quiescent MS lesions to rapidly reinitiate the cell recruitment processes. In a pattern-I-type delayed-type hypersensitivity response model, a similar effect of endotoxin challenge on rCBV was observed, together with delayed breakdown of the blood-brain barrier, showing that systemic infection can alter the pathogenesis of MS-like lesions regardless of lesion etiology. These findings will have important implications for the management and monitoring of individuals with MS.
Collapse
Affiliation(s)
- Sébastien Serres
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal pathology. The exact causes of MS are unknown, but environmental factors including pathogens are believed to contribute to the development of disease. Toll-like receptors (TLRs) are a family of receptors important in pathogen recognition and host defense. TLRs are expressed by a variety of peripheral immune cells as well as resident cells of the CNS. Studies indicate that TLRs play a significant role in modulating MS, as well as experimental autoimmune encephalomyelitis (EAE), an animal model of MS. This review will discuss the current understanding of the role of TLRs in modulating EAE and MS.
Collapse
Affiliation(s)
- Michael K Racke
- Department of Neurology, The Ohio State University Medical Center, 1654 Upham Drive, 445 Means Hall, Columbus, OH 43210, USA
| | | |
Collapse
|
23
|
Abstract
Chlamydiae are important intracellular bacterial pathogens of vertebrates. In the last years, novel members of this group have been discovered: Parachlamydia acanthamoebae and Simkania negevensis seems to be emerging respiratory human pathogens, while Waddlia chondrophila might be a new agent of bovine abortion. Various species have been showed to infect also the herpetofauna and fishes, and some novel chlamydiae are endosymbionts of arthropods. In addition, molecular studies evidenced a huge diversity of chlamydiae from both environmental and clinical samples, most of such a diversity could be formed by novel lineages of chlamydiae. Experimental studies showed that free-living amoebae may support multiplication of various chlamydiae, then could play an important role as reservoir/vector of chlamydial infections. Here we reviewed literature data concerning chlamydial infections, with a particular emphasis on the novely described chlamydial organisms.
Collapse
Affiliation(s)
- Daniele Corsaro
- Retrovirology Laboratory, Centre Hospitalier de Luxembourg, Luxembourg
| | | |
Collapse
|
24
|
Sanchez-Ruiz M, Wilden L, Müller W, Stenzel W, Brunn A, Miletic H, Schlüter D, Deckert M. Molecular mimicry between neurons and an intracerebral pathogen induces a CD8 T cell-mediated autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2008; 180:8421-33. [PMID: 18523310 DOI: 10.4049/jimmunol.180.12.8421] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify basic mechanisms of how infections may induce a neuron-specific autoimmune response, we generated mice expressing OVA as neuronal autoantigen under control of the neuron-specific enolase promoter (NSE-OVA mice). Intracerebral, but not systemic, infection with attenuated Listeria monocytogenes-secreting OVA induced an atactic-paretic neurological syndrome in NSE-OVA mice after bacterial clearance from the brain, whereas wild-type mice remained healthy. Immunization with attenuated Listeria monocytogenes-secreting OVA before intracerebral infection strongly increased the number of intracerebral OVA-specific CD8 T cells aggravating neurological disease. T cell depletion and adoptive transfer experiments identified CD8 T cells as decisive mediators of the autoimmune disease. Importantly, NSE-OVA mice having received OVA-specific TCR transgenic CD8 T cells developed an accelerated, more severe, and extended neurological disease. Adoptively transferred pathogenic CD8 T cells specifically homed to OVA-expressing MHC class I(+) neurons and, corresponding to the clinical symptoms, approximately 30% of neurons in the anterior horn of the spinal cord became apoptotic. Thus, molecular mimicry between a pathogen and neurons can induce a CD8 T cell-mediated neurological disease, with its severity being influenced by the frequency of specific CD8 T cells, and its induction, but not its symptomatic phase, requiring the intracerebral presence of the pathogen.
Collapse
|
25
|
Parratt J, Tavendale R, O'Riordan J, Parratt D, Swingler R. Chlamydia pneumoniae-specific serum immune complexes in patients with multiple sclerosis. Mult Scler 2008; 14:292-9. [DOI: 10.1177/1352458507083188] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The significance of Chlamydia pneumoniae infection in patients with multiple sclerosis (MS) is unclear. We determined the frequency of serum C. pneumoniae-specific immune complexes in patients with MS, neurological (OND) and healthy controls in a blinded, cross-sectional study. C. pneumoniae immune complexes were detected in 24% (38/156) of MS patients, 16% (11/69) of OND and 15% (77/499) of healthy controls. The odds ratio for all MS patients was 3.95 (95% CI: 2.15 to 7.24; P < 0.0001) accounting for the covariates: sex, age, socio-economic status and area of residence. The odds ratio for recently diagnosed MS patients was 4.33 (95% CI: 1.76 to 10.64; P = 0.001). Systemic C. pneumoniae infection is more frequent in MS patients than the healthy population and occurs early in the course of the disease. Multiple Sclerosis 2007; 14: 292—299. http://msj.sagepub.com
Collapse
Affiliation(s)
- John Parratt
- Department of Neurology, University of Sydney, Blackburn Building, Camperdown, Sydney, NSW 2006, Australia,
| | - Roger Tavendale
- Department of Cardiovascular Epidemiology, University of Dundee, Dundee, UK
| | | | - David Parratt
- Department of Microbiology, Tayside University Hospitals, Dundee, UK
| | - Robert Swingler
- Department of Neurology, Tayside University Hospitals, Dundee, UK
| |
Collapse
|
26
|
Tauber SC, Nau R, Gerber J. Systemic infections in multiple sclerosis and experimental autoimmune encephalomyelitis. Arch Physiol Biochem 2007; 113:124-30. [PMID: 17922308 DOI: 10.1080/13813450701531227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). It has been suggested that viral and bacterial infections contribute to the pathogenesis of MS. This review will give an overview about the influence of viral and bacterial infections on MS and experimental autoimmune encephalomyelitis (EAE). It will focus on bacterial infections and will also emphasise therapeutic consequences such as the impact of antibiotic treatment on the course of EAE. In summary, a growing body of evidence suggests that systemic infections are a risk factor for the initiation of autoimmune processes including the induction of acute events in MS. Experimental and clinical data strongly suggest early treatment of bacterial infections in MS patients to avoid aggravation and relapse.
Collapse
Affiliation(s)
- Simone C Tauber
- Department of Neurology, Georg-August-University, Göttingen, Germany
| | | | | |
Collapse
|
27
|
Stratton CW, Wheldon DB. Multiple sclerosis: an infectious syndrome involving Chlamydophila pneumoniae. Trends Microbiol 2006; 14:474-9. [PMID: 16996738 DOI: 10.1016/j.tim.2006.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/08/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
The concept of autoimmune myelinopathy as the primary pathology in multiple sclerosis (MS) is problematic. Vasculitis is seen in the MS brain, both within lesions and in adjacent normal-appearing white matter. The first observation in acute relapse is the sudden, orderly death of oligodendrocytes; inflammatory removal of unsupported myelin seems to be a secondary process. An alternative explanation for these findings is that oligodendrocyte infection might trigger an inflammatory response. Many pathogens, including Chlamydophila (Chlamydia) pneumoniae, have been associated with MS. MS might be an infectious syndrome in which C. pneumoniae has a role in a subset of patients. Mechanisms by which such a cryptic infection could engender relapsing-remitting and, ultimately, progressive disease patterns are discussed.
Collapse
Affiliation(s)
- Charles W Stratton
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
28
|
Herrmann I, Kellert M, Schmidt H, Mildner A, Hanisch UK, Brück W, Prinz M, Nau R. Streptococcus pneumoniae Infection aggravates experimental autoimmune encephalomyelitis via Toll-like receptor 2. Infect Immun 2006; 74:4841-8. [PMID: 16861672 PMCID: PMC1539614 DOI: 10.1128/iai.00026-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The course of autoimmune inflammatory diseases of the central nervous system (CNS) can be influenced by infections. Here we assessed the disease-modulating effects of the most frequent respiratory pathogen Streptococcus pneumonia on the course of experimental autoimmune encephalomyelitis (EAE). Mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG(35-55)) peptide, challenged intraperitoneally with live S. pneumoniae type 3, and then treated with ceftriaxone. EAE was monitored by a clinical score for 35 days after immunization. EAE was unaltered in mice infected with S. pneumoniae 2 days before and 21 days after the first MOG(35-55) injection but was more severe in animals infected 7 days after the first MOG(35-55) injection. The antigen-driven systemic T-cell response was unaltered, and the intraspinal Th1 cytokine mRNA concentrations at the peak of disease were unchanged. The composition of CNS-infiltrating cells and subsequent tissue destruction were only slightly increased after S. pneumoniae infection. In contrast, the serum levels of tumor necrosis factor alpha and interleukin-6 and spinal interleukin-6 levels were elevated, and the expression of major histocompatibility complex class II molecules, CD80, and CD86 on splenic dendritic cells were enhanced early after infection. Serum cytokine concentrations were not elevated, and EAE was not aggravated by S. pneumoniae infection in Toll-like receptor 2 (TLR2)-deficient mice. In conclusion, infection with S. pneumoniae worsens EAE probably by elevation of proinflammatory cytokines and activation of dendritic cells in the systemic circulation via TLR2 and cross talk through the blood-brain barrier.
Collapse
Affiliation(s)
- Isabel Herrmann
- Department of Neurology, Georg August University, Robert-Koch-Str. 40, D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu HY, Deng AM, Zhang J, Zhou Y, Yao DK, Tu XQ, Fan LY, Zhong RQ. Correlation of Chlamydia pneumoniae infection with primary biliary cirrhosis. World J Gastroenterol 2005; 11:4108-10. [PMID: 15996040 PMCID: PMC4502111 DOI: 10.3748/wjg.v11.i26.4108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the association between Chlamydia pneumoniae (Cpn) infection and primary biliary cirrhosis (PBC).
METHODS: Cpn IgG and IgM were determined by enzyme-linked immunosorbent assay (ELISA) in 41 well-established PBC patients and two race-matched control groups (post-hepatitis cirrhosis, n = 70; healthy controls, n = 57).
RESULTS: The mean level and seroprevalence of Cpn IgG in PBC group and post-hepatitis cirrhosis (PHC) group were significantly higher than those in healthy controls (46.8 ± 43.4 RU/mL, 49.5 ± 45.2 RU/mL vs 28.3 ± 32.7 RU/mL; 68.3%, 71.4%, 42.1%, respectively; P < 0.05). There was a remarkably elevated seroprevalence of Cpn IgM in patients with PBC (22.0%) compared to the PHC and healthy control (HC) groups. For the PBC patients versus the HCs, the odds ratios (ORs) of the presence of Cpn IgG and IgM were 2.7 (95% CI 0.9-6.1) and 5.1 (95% CI 1.4-18.5), respectively. Though there was no correlation in the level of Cpn IgG with total IgG in sera of patients with PBC (r = -0.857, P = 0.344 > 0.05), Cpn IgM was related with the abnormally high concentrations of total IgM in PBC group.
CONCLUSION: The results of this study do not support the hypothesis that infection with Chlamydia pneumoniae may be a triggering agent or even a causative agent in PBC, but suggest that Chlamydia pneumoniae infection probably contributes to the high level of IgM present in most patients with PBC.
Collapse
Affiliation(s)
- Hai-Ying Liu
- Clinical Laboratory, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010, Guangdong Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Reports of infection with certain chronic persistent microbes (herpesviruses or Chlamydiae) in human autoimmune diseases are consistent with the hypothesis that these microbes are reactivated in the setting of immunodeficiency and often target the site of autoimmune inflammation. New experimental animal models demonstrate the principle. A herpesvirus or Chlamydia species can be used to infect mice with induced transient autoimmune diseases. This results in increased disease severity and even relapse. The evidence suggests that the organisms are specifically imported to the inflammatory sites and cause further tissue destruction, especially when the host is immunosuppressed. We review the evidence for the amplification of autoimmune inflammatory disease by microbial infection, which may be a general mechanism applicable to many human diseases. We suggest that patients with autoimmune disorders receiving immunosuppressing drugs should benefit from preventive antiviral therapy.
Collapse
Affiliation(s)
- David N Posnett
- Immunology Program, Graduate School of Medical Sciences, Weill Medical College, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
31
|
Buljevac D, Verkooyen RP, Jacobs BC, Hop W, van der Zwaan LA, van Doorn PA, Hintzen RQ. Chlamydia pneumoniae and the risk for exacerbation in multiple sclerosis patients. Ann Neurol 2004; 54:828-31. [PMID: 14681894 DOI: 10.1002/ana.10759] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this prospective study of 73 relapsing remitting multiple sclerosis patients followed up for a mean of 1.7 years, the relation was tested between serologically defined Chlamydia pneumoniae (CP) infection periods and exacerbation rate. Episodes of serologically defined CP infections were observed in a subgroup, and these episodes were associated with increased risk for exacerbation. CP polymerase chain reaction was positive in most of the CP seropositive patients. No correlation was found between the anti-CP antibody increase and titers of control antibodies.
Collapse
Affiliation(s)
- Dragan Buljevac
- Department of Neurology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Soldan SS, Jacobson S. Infection and Multiple Sclerosis. INFECTION AND AUTOIMMUNITY 2004. [PMCID: PMC7152275 DOI: 10.1016/b978-044451271-0.50044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Abstract
Chlamydia pneumoniae is a common respiratory pathogen that is now being incriminated in a number of chronic diseases. The ability of C. pneumoniae to infect and persist in macrophages makes it a likely candidate to disseminate in a number of different tissues, including those of the central nervous system. This review addresses the potential and the underlying mechanisms by which C. pneumoniae infections can play a role in such diverse neurological diseases as multiple sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Charles W Stratton
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|