1
|
Di Guardo G. Central Nervous System Disorders of Marine Mammals: Models for Human Disease? Pathogens 2024; 13:684. [PMID: 39204284 PMCID: PMC11357396 DOI: 10.3390/pathogens13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
This article deals with Central Nervous System (CNS) disorders of marine mammals as putative neuropathology and neuropathogenesis models for their human and, to some extent, their animal "counterparts" in a dual "One Health" and "Translational Medicine" perspective. Within this challenging context, special emphasis is placed upon Alzheimer's disease (AD), provided that AD-like pathological changes have been reported in the brain tissue of stranded cetacean specimens belonging to different Odontocete species. Further examples of potential comparative pathology interest are represented by viral infections and, in particular, by "Subacute Sclerosing Panencephalitis" (SSPE), a rare neurologic sequela in patients infected with Measles virus (MeV). Indeed, Cetacean morbillivirus (CeMV)-infected striped dolphins (Stenella coeruleoalba) may also develop a "brain-only" form of CeMV infection, sharing neuropathological similarities with SSPE. Within this framework, the global threat of the A(H5N1) avian influenza virus is another major concern issue, with a severe meningoencephalitis occurring in affected pinnipeds and cetaceans, similarly to what is seen in human beings. Finally, the role of Brucella ceti-infected, neurobrucellosis-affected cetaceans as putative neuropathology and neuropathogenesis models for their human disease counterparts is also analyzed and discussed. Notwithstanding the above, much more work is needed before drawing the conclusion marine mammal CNS disorders mirror their human "analogues".
Collapse
Affiliation(s)
- Giovanni Di Guardo
- Former Professor of General Pathology and Veterinary Pathophysiology, Veterinary Medical Faculty, University of Teramo, Località Piano d'Accio, 64100 Teramo, Italy
| |
Collapse
|
2
|
Joshi K, Mazumdar V, Nandi BR, Radhakrishnan GK. Brucella targets the host ubiquitin-specific protease, Usp8, through the effector protein, TcpB, for facilitating infection of macrophages. Infect Immun 2024; 92:e0028923. [PMID: 38174929 PMCID: PMC10863413 DOI: 10.1128/iai.00289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/12/2023] [Indexed: 01/05/2024] Open
Abstract
Brucella species are Gram-negative intracellular bacterial pathogens that cause the worldwide zoonotic disease brucellosis. Brucella can infect many mammals, including humans and domestic and wild animals. Brucella manipulates various host cellular processes to invade and multiply in professional and non-professional phagocytic cells. However, the host targets and their modulation by Brucella to facilitate the infection process remain obscure. Here, we report that the host ubiquitin-specific protease, USP8, negatively regulates the invasion of Brucella into macrophages through the plasma membrane receptor, CXCR4. Upon silencing or chemical inhibition of USP8, the membrane localization of the CXCR4 receptor was enriched, which augmented the invasion of Brucella into macrophages. Activation of USP8 through chemical inhibition of 14-3-3 protein affected the invasion of Brucella into macrophages. Brucella suppressed the expression of Usp8 at its early stage of infection in the infected macrophages. Furthermore, we found that only live Brucella could negatively regulate the expression of Usp8, suggesting the role of secreted effector protein of Brucella in modulating the gene expression. Subsequent studies revealed that the Brucella effector protein, TIR-domain containing protein from Brucella, TcpB, plays a significant role in downregulating the expression of Usp8 by targeting the cyclic-AMP response element-binding protein pathway. Treatment of mice with USP8 inhibitor resulted in enhanced survival of B. melitensis, whereas mice treated with CXCR4 or 14-3-3 antagonists showed a diminished bacterial load. Our experimental data demonstrate a novel role of Usp8 in the host defense against microbial intrusion. The present study provides insights into the microbial subversion of host defenses, and this information may ultimately help to develop novel therapeutic interventions for infectious diseases.
Collapse
Affiliation(s)
- Kiranmai Joshi
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Varadendra Mazumdar
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Binita Roy Nandi
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Girish K. Radhakrishnan
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| |
Collapse
|
3
|
Wang C, Yang X, Zhou J, Liu X, Yang Y, Li X. Perforation of the terminal ileum caused by brucellosis: A case report. Clin Case Rep 2024; 12:e8496. [PMID: 38344359 PMCID: PMC10853052 DOI: 10.1002/ccr3.8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 10/28/2024] Open
Abstract
Brucellosis, caused by gram-negative coccobacilli of the genus Brucella, is a zoonotic disease with bone and joint complications being common. However, acute abdomen with intestinal perforation is rare. We present a case of a 69-year-old man diagnosed with acute diffuse peritonitis and intestinal perforation due to Brucella infection. Surgical intervention revealed ileocecal perforation with wheel spoke-like necrosis. The patient underwent partial resection, ileum closure, and ileostomy. Positive blood culture and Brucella agglutination confirmed the diagnosis. Targeted tetracycline and aminoglycoside treatment led to recovery.
Collapse
Affiliation(s)
- Chun Wang
- General SurgeryNingxia People's Hospital (The third Affiliated Hospital of Ningxia Medical University)Yinchuan CityChina
| | - Xiaoran Yang
- General SurgeryNingxia People's Hospital (The third Affiliated Hospital of Ningxia Medical University)Yinchuan CityChina
| | - Jia Zhou
- General SurgeryNingxia People's Hospital (The third Affiliated Hospital of Ningxia Medical University)Yinchuan CityChina
| | - Xu Liu
- General SurgeryNingxia People's Hospital (The third Affiliated Hospital of Ningxia Medical University)Yinchuan CityChina
| | - Yong Yang
- General SurgeryNingxia People's Hospital (The third Affiliated Hospital of Ningxia Medical University)Yinchuan CityChina
| | - Xuzhao Li
- General SurgeryNingxia People's Hospital (The third Affiliated Hospital of Ningxia Medical University)Yinchuan CityChina
| |
Collapse
|
4
|
Leisi EV, Moiseenko AV, Kudryavtseva SS, Pozdyshev DV, Muronetz VI, Kurochkina LP. Bacteriophage-encoded chaperonins stimulate prion protein fibrillation in an ATP-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140965. [PMID: 37739110 DOI: 10.1016/j.bbapap.2023.140965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The pathogenesis of the various prion diseases is based on the conformational conversion of the prion protein from its physiological cellular form to the insoluble scrapie isoform. Several chaperones, including the Hsp60 family of group I chaperonins, are known to contribute to this transformation, but data on their effects are scarce and conflicting. In this work, two GroEL-like phage chaperonins, the single-ring OBP and the double-ring EL, were found to stimulate monomeric prion protein fibrillation in an ATP-dependent manner. The resulting fibrils were characterised by thioflavin T fluorescence, electron microscopy, proteinase K digestion assay and other methods. In the presence of ATP, chaperonins were found to promote the conversion of prion protein monomers into short amyloid fibrils with their further aggregation into less toxic large clusters. Fibrils generated with the assistance of phage chaperonins differ in morphology and properties from those formed spontaneously from monomeric prion in the presence of denaturants at acidic pH.
Collapse
Affiliation(s)
- Evgeniia V Leisi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991 Moscow, Russia
| | - Andrey V Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, 119991 Moscow, Russia
| | - Sofia S Kudryavtseva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991 Moscow, Russia
| | - Denis V Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991 Moscow, Russia
| | - Vladimir I Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991 Moscow, Russia; Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991 Moscow, Russia.
| |
Collapse
|
5
|
Hop HT, Huy TXN, Lee HJ, Kim S. Intracellular growth of Brucella is mediated by Dps-dependent activation of ferritinophagy. EMBO Rep 2023; 24:e55376. [PMID: 37503678 PMCID: PMC10481649 DOI: 10.15252/embr.202255376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Bacteria of the genus Brucella cause brucellosis, one of the world's most common zoonotic diseases. A major contributor to Brucella's virulence is the ability to circumvent host immune defense mechanisms. Here, we find that the DNA-binding protein Dps from Brucella is secreted within the macrophage cytosol, modulating host iron homeostasis and mediating intracellular growth of Brucella. In addition to dampening iron-dependent production of reactive oxygen species (ROS), a key immune effector required for immediate bacterial clearance, cytosolic Dps mediates ferritinophagy activation to elevate intracellular free-iron levels, thereby promoting Brucella growth and inducing host cell necrosis. Inactivation of the ferritinophagy pathway by Ncoa4 gene knockout significantly inhibits intracellular growth of Brucella and host cell death. Our study uncovers an unconventional role of bacterial Dps, identifying a crucial virulence mechanism used by Brucella to adapt to the harsh environment inside macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- University Center for Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | | | - Hu Jang Lee
- College of Veterinary MedicineGyeongsang National UniversityJinjuKorea
| | - Suk Kim
- College of Veterinary MedicineGyeongsang National UniversityJinjuKorea
| |
Collapse
|
6
|
Zhan Y, Zhao CS, Qu X, Xiao Z, Deng C, Li Y. Identification of a novel amphioxus leucine-rich repeat receptor involved in phagocytosis reveals a role for Slit2-N-type LRR in bacterial elimination. J Biol Chem 2023; 299:104689. [PMID: 37044216 DOI: 10.1016/j.jbc.2023.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
The basal chordate amphioxus is a model for tracing the origin and evolution of vertebrate immunity. To explore the evolution of immunoreceptor signaling pathways, we searched the associated receptors of the amphioxus B. belcheri (Bb) homolog of immunoreceptor signaling adaptor protein Grb2. Mass-spectrum analysis of BbGrb2 immunoprecipitates from B. belcheri intestine lysates revealed a folate receptor (FR) domain- and leucine-rich repeat (LRR)-containing protein (FrLRR). Sequence and structural analysis showed that FrLRR is a membrane protein with a predicted curved solenoid structure. The N-terminal Fr domain contains very few folate-binding sites; the following LRR region is a Slit2-type LRR, and a GPI-anchored site was predicted at the C-terminus. RT-PCR analysis showed FrLRR is a transcription-mediated fusion gene of BbFR-like and BbSlit2-N-like genes. Genomic DNA structure analysis implied the B. belcheri FrLRR gene locus and the corresponding locus in B. floridae might be generated by exon shuffling of a Slit2-N-like gene into an FR gene. RT-qPCR, immunostaining and immunoblot results showed that FrLRR was primarily distributed in B. belcheri intestinal tissue. We further demonstrated that FrLRR localized to the cell membrane and lysosomes. Functionally, FrLRR mediated and promoted bacteria-binding and phagocytosis, and FrLRR antibody blocking or Grb2 knockdown inhibited FrLRR-mediated phagocytosis. Interestingly, we found that human Slit2-N (hSlit2-N) also mediated direct bacteria-binding and phagocytosis which was inhibited by Slit2-N antibody blocking or Grb2 knockdown. Together, these results indicate FrLRR and hSlit2-N may function as phagocytotic-receptors to promote phagocytosis through Grb2, implying the Slit2-N-type-LRR-containing proteins play a role in bacterial binding and elimination.
Collapse
Affiliation(s)
- Yanli Zhan
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chen-Si Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuemei Qu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhihui Xiao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chong Deng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Guo X, Zeng H, Li M, Xiao Y, Gu G, Song Z, Shuai X, Guo J, Huang Q, Zhou B, Chu Y, Jiao H. The mechanism of chronic intracellular infection with Brucella spp. Front Cell Infect Microbiol 2023; 13:1129172. [PMID: 37143745 PMCID: PMC10151771 DOI: 10.3389/fcimb.2023.1129172] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Globally, brucellosis is a widespread zoonotic disease. It is prevalent in more than 170 countries and regions. It mostly damages an animal's reproductive system and causes extreme economic losses to the animal husbandry industry. Once inside cells, Brucella resides in a vacuole, designated the BCV, which interacts with components of the endocytic and secretory pathways to ensure bacterial survival. Numerous studies conducted recently have revealed that Brucella's ability to cause a chronic infection depends on how it interacts with the host. This paper describes the immune system, apoptosis, and metabolic control of host cells as part of the mechanism of Brucella survival in host cells. Brucella contributes to both the body's non-specific and specific immunity during chronic infection, and it can aid in its survival by causing the body's immune system to become suppressed. In addition, Brucella regulates apoptosis to avoid being detected by the host immune system. The BvrR/BvrS, VjbR, BlxR, and BPE123 proteins enable Brucella to fine-tune its metabolism while also ensuring its survival and replication and improving its ability to adapt to the intracellular environment.
Collapse
Affiliation(s)
- Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| |
Collapse
|
8
|
Yan L, Yang Y, Ma X, Wei L, Wan X, Zhang Z, Ding J, Peng J, Liu G, Gou H, Wang C, Zhang X. Effect of Two Different Drug-Resistant Staphylococcus aureus Strains on the Physiological Properties of MAC-T Cells and Their Transcriptome Analysis. Front Vet Sci 2022; 9:818928. [PMID: 35812882 PMCID: PMC9263607 DOI: 10.3389/fvets.2022.818928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the main pathogens causing mastitis in dairy cows. The current work mainly focuses on the pathway of apoptosis induction in MAC-T cells caused by S. aureus infection or other factors. However, the physiological characteristics of S. aureus infected MAC-T cells and the resulting mRNA expression profile remain unknown particularly in the case of diverse drug resistant strains. Methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains were used to infect MAC-T cells to investigate this issue. The adhesion, invasion and apoptosis ability of MRSA-infected group and MSSA-infected group was assessed over time (2, 4, 6, 8, and 12 h). After 8 h, the RNA sequencing was conducted on the MRSA-infected and the MSSA-infected with uninfected MAC-T cells as controls. The results showed that the adhesion and invasion ability of MRSA-infected and MSSA-infected to MAC-T cells increased and then decreased with infection time, peaking at 8 h. The adhesion and invasion rates of the MSSA-infected were substantially lower than those of the MRSA-infected, and the invasion rate of the MSSA-infected group was nearly non-existent. Then the apoptosis rate of MAC-T cells increased as the infection time increased. The transcriptome analysis revealed 549 differentially expressed mRNAs and 390 differentially expressed mRNAs in MRSA-infected and MSSA-infected MAC-T cells, respectively, compared to the uninfected MAC-T cells. According to GO analysis, these differentially expressed genes were involved in immune response, inflammation, apoptosis, and other processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the following pathways were linked to adhesion, invasion inflammation and apoptosis, including AMPK, FOXO, HIF-1, IL-17, JAK-STAT, MAPK, mTOR, NF-κB, p53, PI3K-Akt, TNF, Toll-like receptor, Rap1, RAS, prion disease, the bacterial invasion of epithelial cells pathway. We found 86 DEGs from 41 KEGG-enriched pathways associated with adhesion, invasion, apoptosis, and inflammation, all of which were implicated in MAC-T cells resistance to MRSA and MSSA infection. This study offers helpful data toward understanding the effect of different drug-resistant S. aureus on dairy cow mammary epithelial cells and aid in the prevention of mastitis in the dairy industry.
Collapse
Affiliation(s)
- Lijiao Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Xiaojun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | | | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jucai Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guo Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Chuan Wang
| | - Xiaoli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Xiaoli Zhang
| |
Collapse
|
9
|
Mazumdar V, Joshi K, Nandi BR, Namani S, Gupta VK, Radhakrishnan G. Host F-Box Protein 22 Enhances the Uptake of Brucella by Macrophages and Drives a Sustained Release of Proinflammatory Cytokines through Degradation of the Anti-Inflammatory Effector Proteins of Brucella. Infect Immun 2022; 90:e0006022. [PMID: 35420446 PMCID: PMC9119127 DOI: 10.1128/iai.00060-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Brucella species are intracellular bacterial pathogens, causing the worldwide zoonotic disease brucellosis. Brucella invades professional and nonprofessional phagocytic cells, followed by resisting intracellular killing and establishing a replication permissive niche. Brucella also modulates the innate and adaptive immune responses of the host for its chronic persistence. The complex intracellular cycle of Brucella depends in a major way on multiple host factors, but limited information is available on host and bacterial proteins that play an essential role in the invasion, intracellular replication, and modulation of host immune responses. By employing a small interfering RNA (siRNA) screening, we identified a role for the host protein FBXO22 in the Brucella-macrophage interaction. FBXO22 is the key element in the SCF E3 ubiquitination complex, where it determines the substrate specificity for ubiquitination and degradation of various host proteins. Downregulation of FBXO22 by siRNA or the CRISPR-Cas9 system resulted in diminished uptake of Brucella into macrophages, which was dependent on NF-κB-mediated regulation of phagocytic receptors. FBXO22 expression was upregulated in Brucella-infected macrophages, which resulted in induction of phagocytic receptors and enhanced production of proinflammatory cytokines through NF-κB. Furthermore, we found that FBXO22 recruits the effector proteins of Brucella, including the anti-inflammatory proteins TcpB and OMP25, for degradation through the SCF complex. We did not observe any role for another F-box-containing protein of the SCF complex, β-TrCP, in the Brucella-macrophage interaction. Our findings unravel novel functions of FBXO22 in host-pathogen interaction and its contribution to pathogenesis of infectious diseases.
Collapse
Affiliation(s)
- Varadendra Mazumdar
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Kiranmai Joshi
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Binita Roy Nandi
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Swapna Namani
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Vivek Kumar Gupta
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, India
| | - Girish Radhakrishnan
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| |
Collapse
|
10
|
Cellular Prion Protein Expression in the Brain Tissue from Brucella ceti-Infected Striped Dolphins (Stenella coeruleoalba). Animals (Basel) 2022; 12:ani12101304. [PMID: 35625150 PMCID: PMC9137499 DOI: 10.3390/ani12101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Brucella ceti, a zoonotic bacterial pathogen, is known to exhibit a strong neurotropism and neuropathogenicity for striped dolphins (Stenella coeruleoalba), often leading to their stranding and death. Given the lack of information on B. ceti infection’s neuropathogenesis, we investigated, for the first time, cellular prion protein (PrPc) expression in the brain tissue from B. ceti-infected, neurobrucellosis-affected striped dolphins. Our study was inspired by previous work, reporting PrPc as the host cell receptor for B. abortus on the surface of murine macrophages. Immunohistochemistry (IHC) and Western blot (WB) analyses were carried out on brain tissues from 12 striped dolphins found stranded along the coasts of Italy (11 specimens) and the Canary Islands (one individual), five of which served as negative controls. While PrPc IHC yielded inconclusive results, WB analyses showed a clear-cut PrPc expression, albeit of different intensity, in the brain tissue of all the herein investigated, B. ceti-infected and neurobrucellosis-affected individuals. In this respect, the aforementioned PrPc expression patterns could be influenced by a number of intrinsic host-related factors, as well as by several extrinsic factors including simultaneously occurring neuropathies and/or coinfections by other neurotropic pathogens. Additionally, an upregulation of PrPc mRNA in the brain tissue of striped dolphins could be also hypothesized during the different stages of B. ceti infection, in a similar fashion to what is already shown in murine bone marrow cells challenged with Escherichia coli. In conclusion, much more work is needed in order to properly assess the role of PrPc, if any, as a host cell receptor for B. ceti in striped dolphins. Abstract Brucella ceti, a zoonotic pathogen of major concern to cetacean health and conservation, is responsible for severe meningo-encephalitic/myelitic lesions in striped dolphins (Stenella coeruleoalba), often leading to their stranding and death. This study investigated, for the first time, the cellular prion protein (PrPc) expression in the brain tissue from B. ceti-infected, neurobrucellosis-affected striped dolphins. Seven B. ceti-infected, neurobrucellosis-affected striped dolphins, found stranded along the Italian coastline (6) and in the Canary Islands (1), were investigated, along with five B. ceti-uninfected striped dolphins from the coast of Italy, carrying no brain lesions, which served as negative controls. Western Blot (WB) and immunohistochemistry (IHC) with an anti-PrP murine monoclonal antibody were carried out on the brain parenchyma of these dolphins. While PrPc IHC yielded inconclusive results, a clear-cut PrPc expression of different intensity was found by means of WB analyses in the brain tissue of all the seven herein investigated, B. ceti-infected and neurobrucellosis-affected cetacean specimens, with two dolphins stranded along the Italian coastline and one dolphin beached in Canary Islands also exhibiting a statistically significant increase in cerebral PrPc expression as compared to the five Brucella spp.-negative control specimens. The significantly increased PrPc expression found in three out of seven B. ceti-infected, neurobrucellosis-affected striped dolphins does not allow us to draw any firm conclusion(s) about the putative role of PrPc as a host cell receptor for B. ceti. Should this be the case, an upregulation of PrPc mRNA in the brain tissue of neurobrucellosis-affected striped dolphins could be hypothesized during the different stages of B. ceti infection, as previously shown in murine bone marrow cells challenged with Escherichia coli. Noteworthy, the inflammatory infiltrates seen in the brain and in the cervico-thoracic spinal cord segments from the herein investigated, B. ceti-infected and neurobrucellosis-affected striped dolphins were densely populated by macrophage/histiocyte cells, often harboring Brucella spp. antigen in their cytoplasm, similarly to what was reported in macrophages from mice experimentally challenged with B. abortus. Notwithstanding the above, much more work is needed in order to properly assess the role of PrPc, if any, as a host cell receptor for B. ceti in striped dolphins.
Collapse
|
11
|
Jiao H, Zhou Z, Li B, Xiao Y, Li M, Zeng H, Guo X, Gu G. The Mechanism of Facultative Intracellular Parasitism of Brucella. Int J Mol Sci 2021; 22:ijms22073673. [PMID: 33916050 PMCID: PMC8036852 DOI: 10.3390/ijms22073673] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease characterized by abortion and reproductive dysfunction in pregnant animals. Although the mortality rate of Brucellosis is low, it is harmful to human health, and also seriously affects the development of animal husbandry, tourism and international trade. Brucellosis is caused by Brucella, which is a facultative intracellular parasitic bacteria. It mainly forms Brucella-containing vacuoles (BCV) in the host cell to avoid the combination with lysosome (Lys), so as to avoid the elimination of it by the host immune system. Brucella not only has the ability to resist the phagocytic bactericidal effect, but also can make the host cells form a microenvironment which is conducive to its survival, reproduction and replication, and survive in the host cells for a long time, which eventually leads to the formation of chronic persistent infection. Brucella can proliferate and replicate in cells, evade host immune response and induce persistent infection, which are difficult problems in the treatment and prevention of Brucellosis. Therefore, the paper provides a preliminary overview of the facultative intracellular parasitic and immune escape mechanisms of Brucella, which provides a theoretical basis for the later study on the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Correspondence:
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| |
Collapse
|
12
|
Abstract
In sheep, scrapie is a fatal neurologic disease that is caused by a misfolded protein called a prion (designated PrPSc). The normal cellular prion protein (PrPC) is encoded by an endogenous gene, PRNP, that is present in high concentrations within the CNS. Although a broad range of functions has been described for PrPC, its entire range of functions has yet to be fully elucidated. Accumulation of PrPSc results in neurodegeneration. The PRNP gene has several naturally occurring polymorphisms, and there is a strong correlation between scrapie susceptibility and PRNP genotype. The cornerstone of scrapie eradication programs is the selection of scrapie-resistant genotypes to eliminate classical scrapie. Transmission of classical scrapie in sheep occurs during the prenatal and periparturient periods when lambs are highly susceptible. Initially, the scrapie agent is disseminated throughout the lymphoid system and into the CNS. Shedding of the scrapie agent occurs before the onset of clinical signs. In contrast to classical scrapie, atypical scrapie is believed to be a spontaneous disease that occurs in isolated instances in older animals within a flock. The agent that causes atypical scrapie is not considered to be naturally transmissible. Transmission of the scrapie agent to species other than sheep, including deer, has been experimentally demonstrated as has the transmission of nonscrapie prion agents to sheep. The purpose of this review is to outline the current methods for diagnosing scrapie in sheep and the techniques used for studying the pathogenesis and host range of the scrapie agent. Also discussed is the US scrapie eradication program including recent updates.
Collapse
|
13
|
Zhang B, Shen P, Yin X, Dai Y, Ding M, Cui L. Expression and functions of cellular prion proteins in immunocytes. Scand J Immunol 2019; 91:e12854. [PMID: 31785109 DOI: 10.1111/sji.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
Prion diseases are fatal neurodegenerative processes caused by the accumulation of the pathological prion protein, PrPSc . While pathological lesions are limited to the central nervous system (CNS), disease-specific proteins accumulate and replicate in secondary lymphoid organs prior to neuroinvasion, and their replication there depends on the abundance of cellular prion protein (PrPC ). PrPC is expressed in both central and peripheral lymphoid tissues, and up- or downregulates innate and adaptive immune responses. In addition to prion diseases, PrPC is also immunologically involved in other neurological disorders and infectious diseases, including Alzheimer's disease and human immunodeficiency virus infection. Herein, we summarize the expression and functions of PrPC in various immunocytes, as well as its immunological and pathological roles in neurodegeneration and infection.
Collapse
Affiliation(s)
- Baizhuo Zhang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Pingping Shen
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanyuan Dai
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Mingxuan Ding
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
14
|
Kanaya T, Williams IR, Ohno H. Intestinal M cells: Tireless samplers of enteric microbiota. Traffic 2019; 21:34-44. [DOI: 10.1111/tra.12707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Takashi Kanaya
- Department of PathologyEmory University School of Medicine Atlanta Georgia
| | - Ifor R. Williams
- Laboratory for Intestinal EcosystemRIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - Hiroshi Ohno
- Department of PathologyEmory University School of Medicine Atlanta Georgia
| |
Collapse
|
15
|
Kobayashi N, Takahashi D, Takano S, Kimura S, Hase K. The Roles of Peyer's Patches and Microfold Cells in the Gut Immune System: Relevance to Autoimmune Diseases. Front Immunol 2019; 10:2345. [PMID: 31649668 PMCID: PMC6794464 DOI: 10.3389/fimmu.2019.02345] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Microfold (M) cells are located in the epithelium covering mucosa-associated lymphoid tissues, such as the Peyer's patches (PPs) of the small intestine. M cells actively transport luminal antigens to the underlying lymphoid follicles to initiate an immune response. The molecular machinery of M-cell differentiation and function has been vigorously investigated over the last decade. Studies have shed light on the role of M cells in the mucosal immune system and have revealed that antigen uptake by M cells contributes to not only mucosal but also systemic immune responses. However, M-cell studies usually focus on infectious diseases; the contribution of M cells to autoimmune diseases has remained largely unexplored. Accumulating evidence suggests that dysbiosis of the intestinal microbiota is implicated in multiple systemic diseases, including autoimmune diseases. This implies that the uptake of microorganisms by M cells in PPs may play a role in the pathogenesis of autoimmune diseases. We provide an outline of the current understanding of M-cell biology and subsequently discuss the potential contribution of M cells and PPs to the induction of systemic autoimmunity, beyond the mucosal immune response.
Collapse
Affiliation(s)
- Nobuhide Kobayashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.,Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shunsuke Takano
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
16
|
Ramírez-González EA, Moreno-Lafont MC, Méndez-Tenorio A, Cancino-Díaz ME, Estrada-García I, López-Santiago R. Prediction of Structure and Molecular Interaction with DNA of BvrR, a Virulence-Associated Regulatory Protein of Brucella. Molecules 2019; 24:E3137. [PMID: 31470504 PMCID: PMC6749498 DOI: 10.3390/molecules24173137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/10/2019] [Accepted: 08/23/2019] [Indexed: 11/28/2022] Open
Abstract
Brucellosis, also known as "undulant fever" is a zoonotic disease caused by Brucella, which is a facultative intracellular bacterium. Despite efforts to eradicate this disease, infection in uncontrolled domestic animals persists in several countries and therefore transmission to humans is common. Brucella evasion of the innate immune system depends on its ability to evade the mechanisms of intracellular death in phagocytic cells. The BvrR-BvrS two-component system allows the bacterium to detect adverse conditions in the environment. The BvrS protein has been associated with genes of virulence factors, metabolism, and membrane transport. In this study, we predicted the DNA sequence recognized by BvrR with Gibbs Recursive Sampling and identified the three-dimensional structure of BvrR using I-TASSER suite, and the interaction mechanism between BvrR and DNA with Protein-DNA docking and molecular dynamics (MD) simulation. Based on the Gibbs recursive Sampling analysis, we found the motif AAHTGC (H represents A, C, and T nucleotides) as a possible sequence recognized by BvrR. The docking and EMD simulation results showed that C-terminal effector domain of BvrR protein is likely to interact with AAHTGC sequence. In conclusion, we predicted the structure, recognition motif, and interaction of BvrR with DNA.
Collapse
Affiliation(s)
- Edgar A Ramírez-González
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Martha C Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Mario E Cancino-Díaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Rubén López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| |
Collapse
|
17
|
López-Santiago R, Sánchez-Argáez AB, De Alba-Núñez LG, Baltierra-Uribe SL, Moreno-Lafont MC. Immune Response to Mucosal Brucella Infection. Front Immunol 2019; 10:1759. [PMID: 31481953 PMCID: PMC6710357 DOI: 10.3389/fimmu.2019.01759] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/11/2019] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is one of the most prevalent bacterial zoonosis of worldwide distribution. The disease is caused by Brucella spp., facultative intracellular pathogens. Brucellosis in animals results in abortion of fetuses, while in humans, it frequently manifests flu-like symptoms and a typical undulant fever, being osteoarthritis a common complication of the chronic infection. The two most common ways to acquire the infection in humans are through the ingestion of contaminated dairy products or by inhalation of contaminated aerosols. Brucella spp. enter the body mainly through the gastrointestinal and respiratory mucosa; however, most studies of immune response to Brucella spp. are performed analyzing models of systemic immunity. It is necessary to better understand the mucosal immune response induced by Brucella infection since this is the main entry site for the bacterium. In this review, some virulence factors and the mechanisms needed for pathogen invasion and persistence are discussed. Furthermore, some aspects of local immune responses induced during Brucella infection will be reviewed. With this knowledge, better vaccines can be designed focused on inducing protective mucosal immune response.
Collapse
Affiliation(s)
- Rubén López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ana Beatriz Sánchez-Argáez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liliana Gabriela De Alba-Núñez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Martha Cecilia Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
18
|
Amjadi O, Rafiei A, Mardani M, Zafari P, Zarifian A. A review of the immunopathogenesis of Brucellosis. Infect Dis (Lond) 2019; 51:321-333. [PMID: 30773082 DOI: 10.1080/23744235.2019.1568545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Brucellosis, caused by the intracellular pathogens Brucella, is one of the major zoonotic infections. Considering the economic burden, its prevalence has been a health concern especially in endemic regions. Brucella is able to survive and replicate within host cells by expressing different virulence factors and using various strategies to avoid the host's immune response. This leads to progression of the disease from an acute phase to chronic brucellosis. Exploration of genetic variations has confirmed the expected influence of gene polymorphisms on susceptibility and resistance to brucellosis of humans. Since there is no approved human vaccine and treatment is uncertain with risk of relapse, it is important to increase knowledge about pathogenesis, diagnosis and treatment of brucellosis in order to manage and control this infection, especially in endemic regions.
Collapse
Affiliation(s)
- Omolbanin Amjadi
- a Student Research Committee, Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Alireza Rafiei
- b Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Masoud Mardani
- c Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parisa Zafari
- a Student Research Committee, Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran.,b Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Ahmadreza Zarifian
- d Infectious Disease Research Group, Student Research Committee, Medical School , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
19
|
Di Guardo G, Centelleghe C, Mazzariol S. Cetacean Host-Pathogen Interaction(s): Critical Knowledge Gaps. Front Immunol 2018; 9:2815. [PMID: 30546370 PMCID: PMC6279917 DOI: 10.3389/fimmu.2018.02815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| |
Collapse
|
20
|
Hop HT, Arayan LT, Huy TXN, Reyes AWB, Baek EJ, Min W, Lee HJ, Rhee MH, Watanabe K, Chang HH, Kim S. Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages. Cell Microbiol 2017; 20. [PMID: 29168343 DOI: 10.1111/cmi.12813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/19/2023]
Abstract
Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti-inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2-induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro-inflammatory brucellacidal activity in murine macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | - Eun Jin Baek
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
21
|
Rossetti CA, Drake KL, Lawhon SD, Nunes JS, Gull T, Khare S, Adams LG. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions. Front Microbiol 2017; 8:1275. [PMID: 28798726 PMCID: PMC5529337 DOI: 10.3389/fmicb.2017.01275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly" pathway and the cell components "bacterial-type flagellum hook" and "bacterial-type flagellum" were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein-protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein-protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches toward revealing a clearer understanding of new virulence factors and mechanisms influencing the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Jairo S Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Leslie G Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
22
|
Di Guardo G. Commentary: A bacterial global regulator forms a prion. Front Microbiol 2017; 8:620. [PMID: 28443085 PMCID: PMC5386967 DOI: 10.3389/fmicb.2017.00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/27/2017] [Indexed: 12/01/2022] Open
|
23
|
Ohno H. Intestinal M cells. J Biochem 2015; 159:151-60. [PMID: 26634447 DOI: 10.1093/jb/mvv121] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/27/2015] [Indexed: 11/13/2022] Open
Abstract
We have an enormous number of commensal bacteria in our intestine, moreover, the foods that we ingest and the water we drink is sometimes contaminated with pathogenic microorganisms. The intestinal epithelium is always exposed to such microbes, friend or foe, so to contain them our gut is equipped with specialized gut-associated lymphoid tissue (GALT), literally the largest peripheral lymphoid tissue in the body. GALT is the intestinal immune inductive site composed of lymphoid follicles such as Peyer's patches. M cells are a subset of intestinal epithelial cells (IECs) residing in the region of the epithelium covering GALT lymphoid follicles. Although the vast majority of IEC function to absorb nutrients from the intestine, M cells are highly specialized to take up intestinal microbial antigens and deliver them to GALT for efficient mucosal as well as systemic immune responses. I will discuss recent advances in our understanding of the molecular mechanisms of M-cell differentiation and functions.
Collapse
Affiliation(s)
- Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
24
|
Di Guardo G, Mazzariol S. Commentary: Advancement of Knowledge of Brucella Over the Past 50 Years. Front Vet Sci 2015; 2:27. [PMID: 26664956 PMCID: PMC4672196 DOI: 10.3389/fvets.2015.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/17/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova , Legnaro , Italy
| |
Collapse
|
25
|
de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1505-17. [PMID: 25892682 DOI: 10.1016/j.ajpath.2015.03.003] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 01/18/2023]
Abstract
This review of Brucella-host interactions and immunobiology discusses recent discoveries as the basis for pathogenesis-informed rationales to prevent or treat brucellosis. Brucella spp., as animal pathogens, cause human brucellosis, a zoonosis that results in worldwide economic losses, human morbidity, and poverty. Although Brucella spp. infect humans as an incidental host, 500,000 new human infections occur annually, and no patient-friendly treatments or approved human vaccines are reported. Brucellae display strong tissue tropism for lymphoreticular and reproductive systems with an intracellular lifestyle that limits exposure to innate and adaptive immune responses, sequesters the organism from the effects of antibiotics, and drives clinical disease manifestations and pathology. Stealthy brucellae exploit strategies to establish infection, including i) evasion of intracellular destruction by restricting fusion of type IV secretion system-dependent Brucella-containing vacuoles with lysosomal compartments, ii) inhibition of apoptosis of infected mononuclear cells, and iii) prevention of dendritic cell maturation, antigen presentation, and activation of naive T cells, pathogenesis lessons that may be informative for other intracellular pathogens. Data sets of next-generation sequences of Brucella and host time-series global expression fused with proteomics and metabolomics data from in vitro and in vivo experiments now inform interactive cellular pathways and gene regulatory networks enabling full-scale systems biology analysis. The newly identified effector proteins of Brucella may represent targets for improved, safer brucellosis vaccines and therapeutics.
Collapse
Affiliation(s)
- Paul de Figueiredo
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas; Norman Borlaug Center, Texas A&M University, College Station, Texas; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas
| | - Allison Rice-Ficht
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Carlos A Rossetti
- Institute of Pathobiology, CICVyA-CNIA, National Institute of Animal Agriculture Technology (INTA), Buenos Aires, Argentina
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas.
| |
Collapse
|
26
|
Sakudo A, Onodera T. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP. Front Cell Dev Biol 2015; 2:75. [PMID: 25642423 PMCID: PMC4295555 DOI: 10.3389/fcell.2014.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp (-/-)) mice. So far, six types of Prnp (-/-) mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp (-/-) cell lines established from Prnp (-/-) mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp (-/-) cell lines and summarize currently available Prnp (-/-) cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, Faculty of Medicine, School of Health Sciences, University of the Ryukyus Nishihara, Japan
| | - Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
27
|
Microplate Agglutination Test for Canine Brucellosis Using Recombinant Antigen-Coated Beads. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:348529. [PMID: 27355048 PMCID: PMC4897435 DOI: 10.1155/2014/348529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/04/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022]
Abstract
Brucella canis, a facultative intracellular pathogen, is the causative agent of canine brucellosis. The diagnosis of canine brucellosis is based on bacteriological examination and serological methods, including agglutination and gel diffusion tests. In this study, four recombinant antigens, heat shock protein 60, rhizopine-binding protein, Cu-Zn superoxide dismutase, and hypothetical protein (Ag 4), were constructed. These antigens were coated on latex beads and their usefulness in the serological diagnosis of canine brucellosis was examined. All recombinant antigens showed specific reaction with sera from B. canis-infected dogs in Western blotting. In a microplate agglutination test, mixing sera from B. canis-infected dogs, but not sera from B. canis-free dogs, with single or multiple antigens-coated latex beads produced clear agglutination. Moreover, the antigen-coated latex beads did not show nonspecific agglutination in hemolyzed serum samples. A survey of canine serum samples conducted by the microplate agglutination test using single antigen-coated latex beads showed that this method would be useful in the serological diagnosis of canine brucellosis. Further investigations using more serum samples are required to confirm the usefulness of our method.
Collapse
|
28
|
Characterization and protective property of Brucella abortus cydC and looP mutants. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1573-80. [PMID: 25253663 DOI: 10.1128/cvi.00164-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response.
Collapse
|
29
|
Wang M, Zhao D, Yang Y, Liu J, Wang J, Yin X, Yang L, Zhou X. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages. PLoS One 2014; 9:e102785. [PMID: 25058617 PMCID: PMC4109954 DOI: 10.1371/journal.pone.0102785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrPC in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrPC in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrPC promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrPC suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrPC as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Yang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin Liu
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin Wang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaomin Yin
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Lee JJ, Lim JJ, Kim DG, Simborio HL, Kim DH, Reyes AWB, Min W, Lee HJ, Kim DH, Chang HH, Kim S. Characterization of culture supernatant proteins from Brucella abortus and its protection effects against murine brucellosis. Comp Immunol Microbiol Infect Dis 2014; 37:221-8. [PMID: 25016407 DOI: 10.1016/j.cimid.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/13/2014] [Accepted: 06/05/2014] [Indexed: 01/18/2023]
Abstract
In this study, we characterized the secreted proteins of Brucella abortus into the enriched media under the bacterial laboratory growth condition and investigated the pathogenic importance of culture supernatant (CS) proteins to B. abortus infection. CS proteins from stationary phase were concentrated and analyzed using 2D electrophoresis. In MALDI TOF/TOF analysis, more than 27 proteins including CuZn SOD, Dps, Tat, OMPs, Adh, LivF, Tuf, SucC, GroEL and DnaK were identified. Cytotoxic effects of CS proteins were found to increase in a dose-dependent manner in RAW 264.7 cells. Upon B. abortus challenge into phagocytes, however, CS proteins pre-treated cells exhibited lower bacterial uptake and intracellular replication compared to untreated cells. Immunization with CS proteins induced a strong humoral and cell mediated immune responses and exhibited significant higher degree of protection against virulence of B. abortus infection compared to mice immunized with Brucella broth protein (BBP). Taken together, these results indicate that B. abortus secreted a number of soluble immunogenic proteins under laboratory culture condition, which can promote antibody production resulted in enhancing host defense against to subsequently bacterial infection. Moreover, further analysis of CS proteins may help to understand the pathogenic mechanism of B. abortus infection and host-pathogen interaction.
Collapse
Affiliation(s)
- Jin Ju Lee
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 430-757, Republic of Korea; College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Ju Lim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dae Geun Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hannah Leah Simborio
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong Hyeok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | - WonGi Min
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hu Jang Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong Hee Kim
- School of Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
31
|
Affiliation(s)
- Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille University; Marseille, France; CNRS UMR7280; Marseille, France; INSERM U1104; Marseille, France
| |
Collapse
|
32
|
Ben-Tekaya H, Gorvel JP, Dehio C. Bartonella and Brucella--weapons and strategies for stealth attack. Cold Spring Harb Perspect Med 2013; 3:3/8/a010231. [PMID: 23906880 DOI: 10.1101/cshperspect.a010231] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host's immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies.
Collapse
Affiliation(s)
- Houchaima Ben-Tekaya
- Focal Area Infection Biology, Biozentrum, University of Basel, 4052 Basel, Switzerland
| | | | | |
Collapse
|
33
|
Erdogan S, Duzguner V, Kucukgul A, Aslantas O. Silencing of PrP C (prion protein) expression does not affect Brucella melitensis infection in human derived microglia cells. Res Vet Sci 2013; 95:368-73. [PMID: 23820446 DOI: 10.1016/j.rvsc.2013.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/18/2023]
Abstract
Cellular prion proteins (PrP(C)) are mainly expressed in the central nervous system where they have antioxidant effects and a role in the endocytosis of bacteria within cells. These proteins also have some crucial biological functions including roles in neurotransmission, signal transduction and programmed cell death. However, the role of prion proteins in neuronal Brucella infection, specifically in the interaction of the pathogen and the host cell is controversial. In the present study, the silencing of PrP(C) mRNA by small interfering RNA (siRNA) transfection was investigated in human microglia cells infected with Brucella melitensis. More than 70% of prion proteins were down-regulated in microglia by siRNA transfection and this caused a slight decrease in the cellular viability of the control cells. Silencing of PrP(C) suppressed the antioxidant systems, though it led to an up-regulation of pro-inflammatory cytokines such as IL-12 and TNF-α as demonstrated by qRT-PCR analysis. B. melitensis infection of prion protein-silenced cells led to increase host viability, but had no effect on bacterial phagocytosis. According to the present study, there is no significant effect of prion proteins on phagocytosis and intracellular killing of B. melitensis in microglia cells.
Collapse
Affiliation(s)
- Suat Erdogan
- Zirve University, Emine-Bahaeddin Nakiboglu Medical School, Department of Medical Biochemistry, Gaziantep, Turkey.
| | | | | | | |
Collapse
|
34
|
Physiological levels of glucose induce membrane vesicle secretion and affect the lipid and protein composition of Yersinia pestis cell surfaces. Appl Environ Microbiol 2013; 79:4509-14. [PMID: 23686263 DOI: 10.1128/aem.00675-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis grown with physiologic glucose increased cell autoaggregation and deposition of extracellular material, including membrane vesicles. Membranes were characterized, and glucose had significant effects on protein, lipid, and carbohydrate profiles. These effects were independent of temperature and the biofilm-related locus pgm and were not observed in Yersinia pseudotuberculosis.
Collapse
|
35
|
Henderson B, Fares MA, Lund PA. Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 2013; 88:955-87. [DOI: 10.1111/brv.12037] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 02/20/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Brian Henderson
- Department of Microbial Diseases, UCL-Eastman Dental Institute; University College London; London WC1X 8LD U.K
| | - Mario A. Fares
- Department of Genetics; University of Dublin, Trinity College Dublin; Dublin 2 Ireland
- Department of Abiotic Stress; Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas (CSIC-UPV); Valencia 46022 Spain
| | - Peter A. Lund
- School of Biosciences; University of Birmingham; Birmingham B15 2TT U.K
| |
Collapse
|
36
|
Ding T, Zhou X, Kouadir M, Shi F, Yang Y, Liu J, Wang M, Yin X, Yang L, Zhao D. Cellular Prion Protein Participates in the Regulation of Inflammatory Response and Apoptosis in BV2 Microglia During Infection with Mycobacterium bovis. J Mol Neurosci 2013; 51:118-26. [DOI: 10.1007/s12031-013-9962-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
37
|
Kobayashi A, Donaldson DS, Kanaya T, Fukuda S, Baillie JK, Freeman TC, Ohno H, Williams IR, Mabbott NA. Identification of novel genes selectively expressed in the follicle-associated epithelium from the meta-analysis of transcriptomics data from multiple mouse cell and tissue populations. DNA Res 2012; 19:407-22. [PMID: 22991451 PMCID: PMC3473373 DOI: 10.1093/dnares/dss022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/16/2012] [Indexed: 01/09/2023] Open
Abstract
The follicle-associated epithelium (FAE) overlying the Peyer's patches and the microfold cells (M cells) within it are important sites of antigen transcytosis across the intestinal epithelium. Using a meta-analysis approach, we identified a transcriptional signature that distinguished the FAE from a large collection of mouse cells and tissues. A co-expressed cluster of 21 FAE-specific genes was identified, and the analysis of the transcription factor binding site motifs in their promoter regions indicated that these genes shared an underlying transcriptional programme. This cluster contained known FAE- (Anxa10, Ccl20, Psg18 and Ubd) and M-cell-specific (Gp2) genes, suggesting that the others were novel FAE-specific genes. Some of these novel candidate genes were expressed highly by the FAE and M cells (Calcb, Ces3b, Clca2 and Gjb2), and others only by the FAE (Ascl2, Cftr, Fgf15, Gpr133, Kcna1, Kcnj15, Mycl1, Pgap1 and Rps6kl). We also identified a subset of novel FAE-related genes that were induced in the intestinal epithelium after receptor activator of nuclear factor (NF)-κB ligand stimulation. These included Mfge8 which was specific to FAE enterocytes. This study provides new insight into the FAE transcriptome. Further characterization of the candidate genes identified here will aid the identification of novel regulators of cell function in the FAE.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - David S. Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Takashi Kanaya
- Research Center for Allergy and Immunology (RCAI), RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Shinji Fukuda
- Research Center for Allergy and Immunology (RCAI), RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - J. Kenneth Baillie
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tom C. Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Hiroshi Ohno
- Research Center for Allergy and Immunology (RCAI), RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Ifor R. Williams
- Department of Pathology, Emory University School of Medicine, Whitehead Bldg. 105D, 615 Michael St., Atlanta, GA 30322, USA
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
38
|
Mabbott NA. Prion pathogenesis and secondary lymphoid organs (SLO): tracking the SLO spread of prions to the brain. Prion 2012; 6:322-33. [PMID: 22895090 PMCID: PMC3609058 DOI: 10.4161/pri.20676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Midlothian, UK.
| |
Collapse
|
39
|
Identification of genes contributing to the intracellular replication of Brucella abortus within HeLa and RAW 264.7 cells. Vet Microbiol 2012; 158:322-8. [DOI: 10.1016/j.vetmic.2012.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 02/07/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022]
|
40
|
Nakato G, Hase K, Suzuki M, Kimura M, Ato M, Hanazato M, Tobiume M, Horiuchi M, Atarashi R, Nishida N, Watarai M, Imaoka K, Ohno H. Cutting Edge: Brucella abortus exploits a cellular prion protein on intestinal M cells as an invasive receptor. THE JOURNAL OF IMMUNOLOGY 2012; 189:1540-4. [PMID: 22772447 DOI: 10.4049/jimmunol.1103332] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brucella abortus is a Gram-negative bacterium causing brucellosis. Although B. abortus is known to infect via the oral route, the entry site in the gastrointestinal tract has been unclear. We found that B. abortus was selectively internalized by microfold cells (M cells), a subset of epithelial cells specialized for mucosal Ag uptake. During this process, colocalization of cellular prion protein (PrP(C)) and B. abortus was evident on the apical surface as well as in subapical vacuolar structures in M cells. Internalization of B. abortus by M cells of PrP(C)-deficient (Prnp(-/-)) mice was greatly reduced compared with that in wild-type mice. Furthermore, an oral infection study revealed that translocation of B. abortus into the Peyer's patch was significantly lower in Prnp(-/-) than in wild-type mice. These observations suggest that orally infected B. abortus invades the host through M cells by using PrP(C) on the apical surface of M cells as an uptake receptor.
Collapse
Affiliation(s)
- Gaku Nakato
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Immunodetection of the recombinant GroEL by the Nanobody NbBruc02. World J Microbiol Biotechnol 2012; 28:2987-95. [DOI: 10.1007/s11274-012-1109-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/12/2012] [Indexed: 02/03/2023]
|
42
|
Abbady A, Al-Daoude A, Al-Mariri A, Zarkawi M, Muyldermans S. Chaperonin GroEL a Brucella immunodominant antigen identified using Nanobody and MALDI-TOF-MS technologies. Vet Immunol Immunopathol 2012; 146:254-63. [DOI: 10.1016/j.vetimm.2012.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 02/02/2023]
|
43
|
Bastian FO, Elzer PH, Wu X. Spiroplasma spp. biofilm formation is instrumental for their role in the pathogenesis of plant, insect and animal diseases. Exp Mol Pathol 2012; 93:116-28. [PMID: 22552100 DOI: 10.1016/j.yexmp.2012.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 03/20/2012] [Accepted: 04/11/2012] [Indexed: 01/25/2023]
Abstract
Spiroplasma spp. are important phyto and insect pathogens, and candidate causal agent/s of transmissible spongiform encephalopathies (TSE) in man and animals. These filterable wall-less bacteria are widely distributed in nature with an unspecified environmental reservoir. In this study we showed by scanning electron microscopy that spiroplasma form biofilm on an assortment of hard surfaces including mica, nickel and stainless steel. Spiroplasma were stuck to the surfaces by fibrillar threads consistent with curli fibers (an amyloid protein found in bacterial biofilms). After a lengthy time in cultures (6 weeks), spiroplasma in biofilm bound to mica disks lost their spiral shapes and formed coccoid forms interconnected by long (>2 μm) branched membranous nanotubules, therein representing direct conjugate connections between the cells. The affinity of spiroplasma biofilms for mica and nickel, and the membrane communications suggest that soil could be a reservoir for these bacteria. The persistence of clay bound spiroplasma in soil could serve as the mechanism of lateral spread of TSEs by ingestion of soil by ruminants. Spiroplasma binding to stainless steel wire supports bacterial contamination of surgical instruments following surgery on dementia patients as a mechanism of iatrogenic transmission of TSEs, especially with resistance of spiroplasma in biofilms to drying or exposure to 50% glutaraldehyde. The discovery of biofilm formation by spiroplasma addresses questions regarding environmental persistence of these organisms in nature and suggests novel mechanisms of intercellular communication and transmission.
Collapse
Affiliation(s)
- Frank O Bastian
- Department of Veterinary Science, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
44
|
von Bargen K, Gorvel JP, Salcedo SP. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev 2012; 36:533-62. [PMID: 22373010 DOI: 10.1111/j.1574-6976.2012.00334.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/10/2012] [Accepted: 02/16/2012] [Indexed: 01/18/2023] Open
Abstract
Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.
Collapse
Affiliation(s)
- Kristine von Bargen
- Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
| | | | | |
Collapse
|
45
|
Abstract
Many prion diseases are orally acquired. Our data show that after oral exposure, early prion replication upon follicular dendritic cells (FDC) in Peyer's patches is obligatory for the efficient spread of disease to the brain (termed neuroinvasion). For prions to replicate on FDC within Peyer's patches after ingestion of a contaminated meal, they must first cross the gut epithelium. However, the mechanism through which prions are conveyed into Peyer's patches is uncertain. Within the follicle-associated epithelium overlying Peyer's patches are microfold cells (M cells), unique epithelial cells specialized for the transcytosis of particles. We show that following M cell-depletion, early prion accumulation upon FDC in Peyer's patches is blocked. Furthermore, in the absence of M cells at the time of oral exposure, neuroinvasion and disease development are likewise blocked. These data suggest M cells are important sites of prion uptake from the gut lumen into Peyer's patches.
Collapse
|
46
|
Garduño RA, Chong A, Nasrallah GK, Allan DS. The Legionella pneumophila Chaperonin - An Unusual Multifunctional Protein in Unusual Locations. Front Microbiol 2011; 2:122. [PMID: 21713066 PMCID: PMC3114179 DOI: 10.3389/fmicb.2011.00122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 05/17/2011] [Indexed: 11/21/2022] Open
Abstract
The Legionella pneumophila chaperonin, high temperature protein B (HtpB), was discovered as a highly immunogenic antigen, only a few years after the identification of L. pneumophila as the causative agent of Legionnaires’ disease. As its counterparts in other bacterial pathogens, HtpB did not initially receive further attention, particularly because research was focused on a few model chaperonins that were used to demonstrate that chaperonins are essential stress proteins, present in all cellular forms of life and involved in helping other proteins to fold. However, chaperonins have recently attracted increasing interest, particularly after several reports confirmed their multifunctional nature and the presence of multiple chaperonin genes in numerous bacterial species. It is now accepted that bacterial chaperonins are capable of playing a variety of protein folding-independent roles. HtpB is clearly a multifunctional chaperonin that according to its location in the bacterial cell, or in the L. pneumophila-infected cell, plays different roles. HtpB exposed on the bacterial cell surface can act as an invasion factor for non-phagocytic cells, whereas the HtpB released in the host cell can act as an effector capable of altering organelle trafficking, the organization of actin microfilaments and cell signaling pathways. The road to discover the multifunctional nature of HtpB has been exciting and here we provide a historical perspective of the key findings linked to such discovery, as well as a summary of the experimental work (old and new) performed in our laboratory. Our current understanding has led us to propose that HtpB is an ancient protein that L. pneumophila uses as a key molecular tool important to the intracellular establishment of this fascinating pathogen.
Collapse
Affiliation(s)
- Rafael A Garduño
- Department of Microbiology and Immunology, Dalhousie University Halifax, NS, Canada
| | | | | | | |
Collapse
|
47
|
Bastian FO, Boudreaux CM, Hagius SD, Bulgin MS, Sorensen-Melson SJ, Enright FM, Elzer PH. Spiroplasma found in the eyes of scrapie affected sheep. Vet Ophthalmol 2011; 14:10-7. [DOI: 10.1111/j.1463-5224.2010.00833.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Henderson B, Martin A. Bacterial Moonlighting Proteins and Bacterial Virulence. Curr Top Microbiol Immunol 2011; 358:155-213. [DOI: 10.1007/82_2011_188] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Ohno H, Hase K. Glycoprotein 2 (GP2): grabbing the FimH bacteria into M cells for mucosal immunity. Gut Microbes 2010; 1:407-10. [PMID: 21468225 PMCID: PMC3056108 DOI: 10.4161/gmic.1.6.14078] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/21/2010] [Accepted: 10/29/2010] [Indexed: 02/03/2023] Open
Abstract
Membranous (M) cells are specialized epithelial antigen-transporting cells scattered in the follicle-associated epithelium covering the gut lymphoid follicles such as Peyer's patches. Although the importance of M cells as a main portal for luminal antigens has long been recognized, molecular mechanisms for M-cell antigen uptake has remained largely elusive. We have recently found that glycoprotein 2 (GP2) is exclusively expressed on M cells among intestinal epithelial cells and serves as an uptake receptor for a subset of commensal and pathogenic bacteria. GP2 interacts with FimH, a major component of the type 1 pilus on the outer membrane of a subset of gram-negative enterobacilli such as E. coli and Salmonella enterica. Furthermore, GP2-FimH interaction is necessary for efficient uptake of FimH(+) bacteria by M cells and subsequent bacteria-specific mucosal immune responses. Pancreatic GP2 may also be involved in innate immunity by 'opsonization' of FimH(+) bacteria to facilitate their egestion in feces as well as translocation across the intestinal epithelium.
Collapse
|
50
|
Nakato G, Fukuda S, Hase K, Goitsuka R, Cooper MD, Ohno H. New approach for m-cell-specific molecules screening by comprehensive transcriptome analysis. DNA Res 2009; 16:227-35. [PMID: 19675110 PMCID: PMC2725790 DOI: 10.1093/dnares/dsp013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A minor population of M cells within the follicle-associated epithelium (FAE) of intestinal Peyer's patches (PPs) serves as a major portal for entry of exogenous antigens. Characterization of the mammalian M cells, including identification of M-cell surface molecules used for bacterial uptake, has been hampered by their relative rarity. In contrast, M cells constitute virtually all of the FAE cells in the avian bursa of Fabricius. We therefore performed comparative gene expression profiling of chicken and murine FAE to identify commonly expressed genes by M cells in both species. The comprehensive transcriptome analysis revealed that 28 genes were commonly up-regulated in FAE from both species. In situ hybridization revealed that annexin A10 (Anxa10) mRNA was scattered in FAE, and co-localized with Ulex europaeus agglutinin-1 binding to M cells. Whole-mount immunostaining also revealed that cellular prion protein (PrPC) was expressed on the luminal side of the apical plasma membrane of M cells, and co-localized with grycoprotein 2 that recognizes only M cells in murine PP. Our findings identify new M-cell-specific molecules through using comprehensive transcriptome analysis. These conserved molecules in M cells of mice and chickens may play essential roles in M-cell function and/or differentiation.
Collapse
Affiliation(s)
- Gaku Nakato
- International Graduate School of Arts and Sciences, Yokohama City University, Kanagawa 230-0045, Japan
| | | | | | | | | | | |
Collapse
|