1
|
Kumari G, Gerasimova T, Du H, De S, Wood WH, Becker KG, Sen R. Misregulation of the IgH Locus in Thymocytes. Front Immunol 2018; 9:2426. [PMID: 30483245 PMCID: PMC6244664 DOI: 10.3389/fimmu.2018.02426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022] Open
Abstract
Functional antigen receptor genes are assembled by somatic rearrangements that are largely lymphocyte lineage specific. The immunoglobulin heavy chain (IgH) gene locus is unique amongst the seven antigen receptor loci in undergoing partial gene rearrangements in the wrong lineage. Here we demonstrate that breakdown of lineage-specificity is associated with inappropriate activation of the Eμ enhancer during T cell development by a different constellation of transcription factors than those used in developing B cells. This is reflected in reduced enhancer-induced epigenetic changes, eRNAs, formation of the RAG1/2-rich recombination center, attenuated chromatin looping and markedly different utilization of DH gene segments in CD4+CD8+ (DP) thymocytes. Additionally, CTCF-dependent VH locus compaction is disrupted in DP cells despite comparable transcription factor binding in both lineages. These observations identify multiple mechanisms that contribute to lineage-specific antigen receptor gene assembly.
Collapse
Affiliation(s)
- Gita Kumari
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Tatiana Gerasimova
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Hansen Du
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - William H Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| |
Collapse
|
2
|
Recaldin T, Fear DJ. Transcription factors regulating B cell fate in the germinal centre. Clin Exp Immunol 2015; 183:65-75. [PMID: 26352785 DOI: 10.1111/cei.12702] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 12/27/2022] Open
Abstract
Diversification of the antibody repertoire is essential for the normal operation of the vertebrate adaptive immune system. Following antigen encounter, B cells are activated, proliferate rapidly and undergo two diversification events; somatic hypermutation (followed by selection), which enhances the affinity of the antibody for its cognate antigen, and class-switch recombination, which alters the effector functions of the antibody to adapt the response to the challenge faced. B cells must then differentiate into antibody-secreting plasma cells or long-lived memory B cells. These activities take place in specialized immunological environments called germinal centres, usually located in the secondary lymphoid organs. To complete the germinal centre activities successfully, a B cell adopts a transcriptional programme that allows it to migrate to specific sites within the germinal centre, proliferate, modify its DNA recombination and repair pathways, alter its apoptotic potential and finally undergo terminal differentiation. To co-ordinate these processes, B cells employ a number of 'master regulator' transcription factors which mediate wholesale transcriptomic changes. These master transcription factors are mutually antagonistic and form a complex regulatory network to maintain distinct gene expression programs. Within this network, multiple points of positive and negative feedback ensure the expression of the 'master regulators', augmented by a number of 'secondary' factors that reinforce these networks and sense the progress of the immune response. In this review we will discuss the different activities B cells must undertake to mount a successful T cell-dependent immune response and describe how a regulatory network of transcription factors controls these processes.
Collapse
Affiliation(s)
- T Recaldin
- Division of Asthma, Allergy and Lung Biology, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - D J Fear
- Division of Asthma, Allergy and Lung Biology, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| |
Collapse
|
3
|
Selimyan R, Gerstein RM, Ivanova I, Precht P, Subrahmanyam R, Perlot T, Alt FW, Sen R. Localized DNA demethylation at recombination intermediates during immunoglobulin heavy chain gene assembly. PLoS Biol 2013; 11:e1001475. [PMID: 23382652 PMCID: PMC3558432 DOI: 10.1371/journal.pbio.1001475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/14/2012] [Indexed: 12/23/2022] Open
Abstract
The dynamics of DNA methylation during the complex genomic rearrangement of antigen receptor genes in developing B lymphocytes reveal localized demethylation of the first recombination product that may serve as a mark necessary for the second step of rearrangement. Multiple epigenetic marks have been proposed to contribute to the regulation of antigen receptor gene assembly via V(D)J recombination. Here we provide a comprehensive view of DNA methylation at the immunoglobulin heavy chain (IgH) gene locus prior to and during V(D)J recombination. DNA methylation did not correlate with the histone modification state on unrearranged alleles, indicating that these epigenetic marks were regulated independently. Instead, pockets of tissue-specific demethylation were restricted to DNase I hypersensitive sites within this locus. Though unrearranged diversity (DH) and joining (JH) gene segments were methylated, DJH junctions created after the first recombination step were largely demethylated in pro-, pre-, and mature B cells. Junctional demethylation was highly localized, B-lineage-specific, and required an intact tissue-specific enhancer, Eμ. We propose that demethylation occurs after the first recombination step and may mark the junction for secondary recombination. DNA methylation at CpG dinucleotides is implicated in the regulation of gene expression in mammals. However, the regulation of DNA methylation itself is less clear despite recent advances in identifying enzymes that add or remove methyl groups. We have investigated the dynamics of DNA methylation during genome rearrangements that assemble antigen receptor genes in developing B lymphocytes to determine whether methylation status correlates with rearrangement potential. Two recombination events generate immunoglobulin heavy chain (IgH) genes. The first step brings together diversity (DH) and joining (JH) gene segments to produce DJH junctions. We show that both gene segments are methylated prior to rearrangement, whereas the DJH product is demethylated. DJH junctional demethylation is tissue-specific and requires an enhancer, Eμ, located within the IgH locus. The latter observations indicate that localized demethylation of the DJH junction occurs after the first recombination step and thus does not guide this first step of IgH gene assembly. Our working hypothesis is that recombination induces demethylation of recombinant product and may mark the junction for the second step of IgH rearrangement, juxtaposition of variable (VH) gene segments to rearranged DJH products to produce fully recombined V(D)J alleles.
Collapse
Affiliation(s)
- Roza Selimyan
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Rachel M. Gerstein
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Irina Ivanova
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Patricia Precht
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ramesh Subrahmanyam
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Thomas Perlot
- The Howard Hughes Medical Institute, The Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frederick W. Alt
- The Howard Hughes Medical Institute, The Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Signaling proteins and transcription factors in normal and malignant early B cell development. BONE MARROW RESEARCH 2011; 2011:502751. [PMID: 22046564 PMCID: PMC3200079 DOI: 10.1155/2011/502751] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/08/2011] [Indexed: 11/18/2022]
Abstract
B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates.
Collapse
|
5
|
He T, Hong SY, Huang L, Xue W, Yu Z, Kwon H, Kirk M, Ding SJ, Su K, Zhang Z. Histone acetyltransferase p300 acetylates Pax5 and strongly enhances Pax5-mediated transcriptional activity. J Biol Chem 2011; 286:14137-45. [PMID: 21357426 DOI: 10.1074/jbc.m110.176289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pax5/B cell lineage specific activator protein (BSAP) is a B lineage-specific regulator that controls the B lineage-specific gene expression program and immunoglobulin gene V(H) to DJ(H) recombination. Despite extensive studies on its multiple functions, little is known about how the activity of Pax5 is regulated. Here, we show that co-expression of histone acetyltransferase E1A binding protein p300 dramatically enhances Pax5-mediated transcriptional activation. The p300-mediated enhancement is dependent on its intrinsic histone acetyltransferase activity. Moreover, p300 interacts with the C terminus of Pax5 and acetylates multiple lysine residues within the paired box DNA binding domain of Pax5. Mutations of lysine residues 67 and 87/89 to alanine within Pax5 abolish p300-mediated enhancement of Pax5-induced Luc-CD19 reporter expression in HEK293 cells and prevent Pax5 to activate endogenous Cd19 and Blnk expression in Pax5(-/-) murine pro B cells. These results uncover a novel level of regulation of Pax5 function by p300-mediated acetylation.
Collapse
Affiliation(s)
- Ti He
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Medvedovic J, Ebert A, Tagoh H, Busslinger M. Pax5: a master regulator of B cell development and leukemogenesis. Adv Immunol 2011; 111:179-206. [PMID: 21970955 DOI: 10.1016/b978-0-12-385991-4.00005-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The B cell lineage of the hematopoietic system is responsible for the generation of high-affinity antibodies, which provide humoral immunity for protection against foreign pathogens. B cell commitment and development depend on many transcription factors including Pax5. Here, we review the different functions of Pax5 in regulating various aspects of B lymphopoiesis. At B cell commitment, Pax5 restricts the developmental potential of lymphoid progenitors to the B cell pathway by repressing B-lineage-inappropriate genes, while it simultaneously promotes B cell development by activating B-lymphoid-specific genes. Pax5 thereby controls gene transcription by recruiting chromatin-remodeling, histone-modifying, and basal transcription factor complexes to its target genes. Moreover, Pax5 contributes to the diversity of the antibody repertoire by controlling V(H)-DJ(H) recombination by inducing contraction of the immunoglobulin heavy-chain locus in pro-B cells, which is likely mediated by PAIR elements in the 5' region of the V(H) gene cluster. Importantly, all mature B cell types depend on Pax5 for their differentiation and function. Pax5 thus controls the identity of B lymphocytes throughout B cell development. Consequently, conditional loss of Pax5 allows mature B cells from peripheral lymphoid organs to develop into functional T cells in the thymus via dedifferentiation to uncommitted progenitors in the bone marrow. Pax5 has also been implicated in human B cell malignancies because it can function as a haploinsufficient tumor suppressor or oncogenic translocation fusion protein in B cell precursor acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Jasna Medvedovic
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | | | | | | |
Collapse
|
7
|
Abstract
Perhaps no process has provided more insight into the fine manipulation of locus accessibility than antigen receptor rearrangement. V(D)J recombination is carried out by the lymphoid-specific recombination-activating (RAG 1 and 2) proteins and the non-homologous end joining machinery; yet, it occurs only at specific loci (or portions of loci) during specific developmental stages. This spatiotemporal restriction of recombination is achieved through precise alterations in locus accessibility. In this article, we discuss the work of our laboratory in elucidating how nuclear sublocalization, chromosome conformation, and locus interactions contribute to regulating this complex process. We also discuss what is known about how key factors in B-cell development (such as the ubiquitously expressed helix loop helix protein E2A, the B-cell specific transcription factors EBF1 and Pax5, and the interleukin-7 cytokine signaling pathway) exert their effects through changes in nuclear dynamics.
Collapse
Affiliation(s)
- Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
8
|
Subrahmanyam R, Sen R. RAGs' eye view of the immunoglobulin heavy chain gene locus. Semin Immunol 2010; 22:337-45. [PMID: 20864355 DOI: 10.1016/j.smim.2010.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
The immunoglobulin heavy chain (IgH) gene locus is activated at a precise stage of B lymphocyte development to undergo gene rearrangements that assemble the functional gene. In this review we summarize our current understanding of the chromatin state of the IgH as it appears just prior to the initiation of V(D)J recombination, and the implications of this structure for regulation of recombination. We also examine the role of the intron enhancer, Eμ, in establishing the pre-rearrangement chromatin structure. The emerging picture shows that the IgH locus consists of independently regulated domains, each of which requires multiple levels of epigenetic changes to reach the fully activated state.
Collapse
Affiliation(s)
- Ramesh Subrahmanyam
- Gene Regulation Section, Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Room 06C214, Baltimore, MD 21224, United States
| | | |
Collapse
|
9
|
Johnson K, Reddy KL, Singh H. Molecular pathways and mechanisms regulating the recombination of immunoglobulin genes during B-lymphocyte development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:133-47. [PMID: 19731807 DOI: 10.1007/978-1-4419-0296-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hallmark of B-cell development is the ordered recombination of immunoglobulin (Ig) genes. Recently, considerable progress has been achieved in assembling gene regulatory networks comprised of signaling components and transcription factors that regulate B-cell development. In this chapter we synthesize experimental evidence to explain how such signaling pathways and transcription factors can orchestrate the ordered recombination of immunoglobulin (Ig) genes. Recombination of antigen-receptor loci is regulated both by the developmentally controlled expression of the Rag1 and Rag2 genes and the accessibility of particular loci and their gene segments to recombination. A new framework has emerged that invokes nuclear compartmentalization, large-scale chromatin dynamics and localized changes in chromatin structure in regulating the accessibility of Ig loci at specific stages of B-cell development. We review this emergent framework and discuss new experimental approaches that will be needed to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Kristen Johnson
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
10
|
Bates JG, Cado D, Nolla H, Schlissel MS. Chromosomal position of a VH gene segment determines its activation and inactivation as a substrate for V(D)J recombination. ACTA ACUST UNITED AC 2007; 204:3247-56. [PMID: 18056289 PMCID: PMC2150984 DOI: 10.1084/jem.20071787] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Complete IgHC gene rearrangement occurs only in B cells in a stage-specific and ordered manner. We used gene targeting to reposition a distal V(H) gene segment to a region just 5' of the D(H) gene cluster and found its activation to be highly dependent on the chromosomal domain within which it resides. The targeted V(H) gene segment rearranged at a higher frequency than its endogenous counterpart, its rearrangement was no longer ordered, and its ability to be silenced by allelic exclusion was lost. Additionally, the targeted V(H) gene segment lost lineage specificity, as VDJ(H) rearrangement was observed in thymocytes. These data suggest that locus contraction, mimicked by proximal targeting, can override any regulation imposed by DNA sequences immediately surrounding V(H) gene segments.
Collapse
Affiliation(s)
- Jamie Geier Bates
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
11
|
Lapter S, Livnat I, Faerman A, Zipori D. Structure and implied functions of truncated B-cell receptor mRNAs in early embryo and adult mesenchymal stem cells: Cdelta replaces Cmu in mu heavy chain-deficient mice. Stem Cells 2006; 25:761-70. [PMID: 17124007 DOI: 10.1634/stemcells.2006-0582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stem cells exhibit a promiscuous gene expression pattern. We show herein that the early embryo and adult MSCs express B-cell receptor component mRNAs. To examine possible bearings of these genes on the expressing cells, we studied immunoglobulin mu chain-deficient mice. Pregnant mu chain-deficient females were found to produce a higher percentage of defective morulae compared with control females. Structure analysis indicated that the mu mRNA species found in embryos and in mesenchyme consist of the constant region of the mu heavy chain that encodes a recombinant 50-kDa protein. In situ hybridization localized the constant mu gene expression to loose mesenchymal tissues within the day-12.5 embryo proper and the yolk sac. In early embryo and in adult mesenchyme from mu-deficient mice, delta replaced mu chain, implying a possible requirement of these alternative molecules for embryo development and mesenchymal functions. Indeed, overexpression of the mesenchymal-truncated mu heavy chain in 293T cells resulted in specific subcellular localization and in G(1) growth arrest. The lack of such occurrence following overexpression of a complete, rearranged form of mu chain suggests that the mesenchymal version of this mRNA may possess unique functions.
Collapse
Affiliation(s)
- Smadar Lapter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
12
|
Roessler S, Györy I, Imhof S, Spivakov M, Williams RR, Busslinger M, Fisher AG, Grosschedl R. Distinct promoters mediate the regulation of Ebf1 gene expression by interleukin-7 and Pax5. Mol Cell Biol 2006; 27:579-94. [PMID: 17101802 PMCID: PMC1800812 DOI: 10.1128/mcb.01192-06] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early differentiation of B lymphocytes requires the function of multiple transcription factors that regulate the specification and commitment of the lineage. Loss- and gain-of-function experiments have provided important insight into the transcriptional control of B lymphopoiesis, whereby E2A was suggested to act upstream of EBF1 and Pax5 downstream of EBF1. However, this simple hierarchy cannot account for all observations, and our understanding of a presumed regulatory network, in which transcription factors and signaling pathways operate, is limited. Here, we show that the expression of the Ebf1 gene involves two promoters that are differentially regulated and generate distinct protein isoforms. We find that interleukin-7 signaling, E2A, and EBF1 activate the distal Ebf1 promoter, whereas Pax5, together with Ets1 and Pu.1, regulates the stronger proximal promoter. In the absence of Pax5, the function of the proximal Ebf1 promoter and accumulation of EBF1 protein are impaired and the replication timing and subcellular localization of the Ebf1 locus are altered. Taken together, these data suggest that the regulation of Ebf1 via distinct promoters allows for the generation of several feedback loops and the coordination of multiple determinants of B lymphopoiesis in a regulatory network.
Collapse
Affiliation(s)
- Stephanie Roessler
- Max Planck Institute of Immunobiology, Department of Cellular and Molecular Immunology, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hodawadekar S, Yu D, Cozma D, Freedman B, Sunyer O, Atchison ML, Thomas-Tikhonenko A. B-Lymphoma cells with epigenetic silencing of Pax5 trans-differentiate into macrophages, but not other hematopoietic lineages. Exp Cell Res 2006; 313:331-40. [PMID: 17098231 PMCID: PMC1839943 DOI: 10.1016/j.yexcr.2006.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 10/07/2006] [Accepted: 10/16/2006] [Indexed: 01/08/2023]
Abstract
In mice, zygotic or pro-B-cell-specific knock-out of the Pax5 gene allows differentiation of pro-B-cells into all hematopoietic lineages. We previously generated and characterized a murine B-cell lymphoma, dubbed Myc5, whose cells spontaneously lose Pax5 expression when cultured in vitro, but regain it when re-injected into syngeneic mice. In cultured Myc5 cells, the loss of Pax5 correlates with the acquisition of myeloid markers, such as CD11b and F4/80. Here, we sought to determine whether these cells are truly B-macrophage-restricted or, like Pax5-null progenitors, can give rise to additional hematopoietic lineages. In vitro differentiation assays with various cytokines showed that Myc5 cells do not differentiate into NK cells, dendritic cells, neutrophils, or osteoclasts. At the same time, in the presence of macrophage colony-stimulating factor (M-CSF), they readily phagocytose latex beads and provide T-cell help. Both phenomena are indicative of the bona fide macrophage phenotype. Conversely, enforced Pax5 re-expression in macrophage-like Myc5 cells led to down-regulation of the M-CSF receptor and re-acquisition of some B-cell surface markers (e.g., CD79a) and lineage-specific transcription factors (e.g., IRF4 and Blimp). Retrovirally encoded Pax5 also restored expression of several master B-cell differentiation proteins, such as the IL-7 receptor and transcription factor E2A. In contrast, levels of EBF were unaffected by Pax5 suggesting that EBF acts exclusively upstream of Pax5 and might contribute to Pax5 expression. Indeed, transduction with an EBF-encoding retrovirus partly reactivated endogenous Pax5. Our data reveal the complex relationship between B-cell-specific transcription factors and suggest the existence of numerous feedback mechanisms.
Collapse
Affiliation(s)
- Suchita Hodawadekar
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Duonan Yu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Diana Cozma
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Bruce Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Michael L. Atchison
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
| | - Andrei Thomas-Tikhonenko
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6051
- * Corresponding Author: , Tel: (215) 573-5138, Fax: (215) 746-0380
| |
Collapse
|
14
|
Abstract
Paired box protein 5 (Pax5) is essential for early B cell commitment as well as for B cell development, and continuous expression of Pax5 is required throughout the B cell lineage to maintain the functional identity of B cells. During B cell activation, Pax5 is downregulated before terminal differentiation into antibody-secreting plasma cells, and enforced expression of Pax5 prevents plasmacytic development. Recently, loss of Pax5 was shown to result in the substantial transition to a plasma cell state, demonstrating a functionally significant role for Pax5 in the regulation of terminal B cell differentiation. Here we elucidate the current understanding about the function of Pax5 as a key inhibitor of plasma cell differentiation.
Collapse
Affiliation(s)
- K-P Nera
- Turku Graduate School of Biomedical Sciences, Department of Medical Microbiology, University of Turku, Kiinamyllynkatu 13, 20500 Turku, Finland.
| | | |
Collapse
|
15
|
Abstract
In recent years, investigators have made great progress in delineating developmental pathways of several lymphoid and myeloid lineages and in identifying transcription factors that establish and maintain their fate. However, the developmental branching points between these two large cell compartments are still controversial, and little is known about how their diversification is induced. Here, we give an overview of determinants that play a role at lymphoid-myeloid junctures, in particular transcription factors and cytokine receptors. Experiments showing that myeloid lineages can be reversibly reprogrammed into one another by transcription factor network perturbations are used to highlight key principles of lineage commitment. We also discuss experiments showing that lymphoid-to-myeloid but not myeloid-to-lymphoid conversions can be induced by the enforced expression of a single transcription factor. We close by proposing that this asymmetry is related to a higher complexity of transcription factor networks in lymphoid cells compared with myeloid cells, and we suggest that this feature must be considered when searching for mechanisms by which hematopoietic stem cells become committed to lymphoid lineages.
Collapse
Affiliation(s)
- Catherine V Laiosa
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
16
|
Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 2006; 24:541-70. [PMID: 16551259 DOI: 10.1146/annurev.immunol.23.021704.115830] [Citation(s) in RCA: 410] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
V(D)J recombination assembles antigen receptor variable region genes from component germline variable (V), diversity (D), and joining (J) gene segments. For B cells, such rearrangements lead to the production of immunoglobulin (Ig) proteins composed of heavy and light chains. V(D)J is tightly controlled at the Ig heavy chain locus (IgH) at several different levels, including cell-type specificity, intra- and interlocus ordering, and allelic exclusion. Such controls are mediated at the level of gene segment accessibility to V(D)J recombinase activity. Although much has been learned, many long-standing questions regarding the regulation of IgH locus rearrangements remain to be elucidated. In this review, we summarize advances that have been made in understanding how V(D)J recombination at the IgH locus is controlled and discuss important areas for future investigation.
Collapse
Affiliation(s)
- David Jung
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
17
|
Sen R, Oltz E. Genetic and epigenetic regulation of IgH gene assembly. Curr Opin Immunol 2006; 18:237-42. [PMID: 16616470 DOI: 10.1016/j.coi.2006.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/27/2006] [Indexed: 12/19/2022]
Abstract
Precursor B cells assemble a diverse repertoire of immunoglobulin (Ig) genes by the process of V(D)J recombination. Assembly of IgH genes is regulated in a tissue- and stage-specific manner via the activation and then the inactivation of distinct regions within the one megabase IgH locus. Recent studies have shown that regional control is achieved using a combination of genetic and epigenetic strategies, which modulate chromatin accessibility to V(D)J recombinase, relocate IgH loci within the nucleus, and promote changes in locus conformation that alter the spatial proximity of target gene segments. Orchestration of these regulatory processes is crucial for the generation of a functional B cell repertoire.
Collapse
Affiliation(s)
- Ranjan Sen
- Laboratory of Cellular and Molecular Biology, National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
18
|
Zhang Z, Espinoza CR, Yu Z, Stephan R, He T, Williams GS, Burrows PD, Hagman J, Feeney AJ, Cooper MD. Transcription factor Pax5 (BSAP) transactivates the RAG-mediated V(H)-to-DJ(H) rearrangement of immunoglobulin genes. Nat Immunol 2006; 7:616-24. [PMID: 16680144 DOI: 10.1038/ni1339] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 03/27/2006] [Indexed: 11/09/2022]
Abstract
Immunoglobulin rearrangement from variable heavy chain (V(H)) to diversity (D)-joining heavy chain (J(H)), which occurs exclusively in B lineage cells, is impaired in mice deficient for the B lineage-specific transcription factor Pax5. Conversely, ectopic Pax5 expression in thymocytes promotes the rearrangement of D(H)-proximal V(H)7183 genes. In exploring the mechanism for Pax5 regulation of V(H)-to-DJ(H) recombination, we have identified multiple Pax5 binding sites in the coding regions of human and mouse V(H) gene segments. Pax5 bound to those sites in vitro and occupied V(H) genes in early human and mouse B lineage cells. Moreover, Pax5 interacted with the recombination-activating gene 1 (RAG1)-RAG2 complex to enhance RAG-mediated V(H) recombination signal sequence cleavage and recombination of a V(H) gene substrate. These findings indicate a direct activating function for Pax5 in RAG-mediated immunoglobulin V(H)-to-DJ(H) recombination.
Collapse
Affiliation(s)
- Zhixin Zhang
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nera KP, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P, Koskela K, Buerstedde JM, Lassila O. Loss of Pax5 promotes plasma cell differentiation. Immunity 2006; 24:283-93. [PMID: 16546097 DOI: 10.1016/j.immuni.2006.02.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 01/26/2006] [Accepted: 02/01/2006] [Indexed: 01/06/2023]
Abstract
Pax5 is indispensable for the commitment of early lymphoid progenitors to the B cell lineage as well as for the development of B cells. To better understand the functional importance of Pax5 at the later stages of B cell differentiation, we established a Pax5-deficient DT40 B cell line. The Pax5(-/-) cells exhibited slower growth, decreased surface IgM expression, and total loss of B cell receptor signaling. Moreover, the expression of the plasma cell-characteristic transcription factors Blimp-1 and XBP-1 were significantly upregulated and the expression of Bcl-6 diminished in the Pax5(-/-) cells, and this alteration was normalized by restored Pax5 expression. The Pax5-deficient cells further manifested substantially elevated secretion of IgM into the supernatant, another characteristic of plasma cells. These results indicate that downregulation of Pax5 function promotes the plasma cell differentiation of B cells.
Collapse
Affiliation(s)
- Kalle-Pekka Nera
- Turku Graduate School of Biomedical Sciences, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ohtani M, Miyadai T, Hiroishi S. Identification of genes encoding critical factors regulating B-cell terminal differentiation in torafugu (Takifugu rubripes). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:109-14. [DOI: 10.1016/j.cbd.2005.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 10/08/2005] [Accepted: 10/09/2005] [Indexed: 11/25/2022]
|
21
|
Spicuglia S, Franchini DM, Ferrier P. Regulation of V(D)J recombination. Curr Opin Immunol 2006; 18:158-63. [PMID: 16459067 DOI: 10.1016/j.coi.2006.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/24/2006] [Indexed: 12/15/2022]
Abstract
Adaptive immunity is intimately linked to the expression of antigen-specific immunoglobulin and T cell receptor genes and their recombination assembly from germline V, D and J gene segments. This developmentally regulated process relies on the activity of the Rag1-Rag2 recombinase, on accessibility of target gene segments and on monoallelic gene activation. Recent studies have revealed new mechanisms that, along with recombinase activity and locus accessibility, are likely to contribute to the control of V(D)J recombination, including target-site bias by the recombinase, RNA processing and chromosome positioning.
Collapse
Affiliation(s)
- Salvatore Spicuglia
- Centre d'Immunologie de Marseille-Luminy (CIML), Institut National de la Santé et de la Recherche Médicale (INSERM), 13288 Marseille Cedex 9, France
| | | | | |
Collapse
|
22
|
Abstract
Progenitor B lymphocytes that successfully assemble a heavy chain gene encoding an immunoglobulin capable of pairing with surrogate light chain proteins trigger their own further differentiation by signaling via the pre-BCR complex. The pre-BCR signals several rounds of proliferation and, in this expanded population, directs a complex, B cell-specific set of epigenetic changes resulting in allelic exclusion of the heavy chain locus and activation of the light chain loci for V(D)J recombination.
Collapse
Affiliation(s)
- Jamie K Geier
- UC-Berkeley, Department of Molecular & Cell Biology, Division of Immunology, 439 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
23
|
Abstract
Mammals contend with a universe of evolving pathogens by generating an enormous diversity of antigen receptors during lymphocyte development. Precursor B and T cells assemble functional immunoglobulin (Ig) and T cell receptor (TCR) genes via recombination of numerous variable (V), diversity (D), and joining (J) gene segments. Although this combinatorial process generates significant diversity, genetic reorganization is inherently dangerous. Thus, V(D)J recombination must be tightly regulated to ensure proper lymphocyte development and avoid chromosomal translocations that cause lymphoid tumors. Each genomic rearrangement is mediated by a common V(D)J recombinase that recognizes sequences flanking all antigen receptor gene segments. The specificity of V(D)J recombination is due, in large part, to changes in the accessibility of chromatin at target gene segments, which either permits or restricts access to recombinase. The chromatin configuration of antigen receptor loci is governed by the concerted action of enhancers and promoters, which function as accessibility control elements (ACEs). In general, ACEs act as conduits for transcription factors, which in turn recruit enzymes that covalently modify or remodel nucleosomes. These ACE-mediated alterations are critical for activation of gene segment transcription and for opening chromatin associated with recombinase target sequences. In this chapter, we describe advances in understanding the mechanisms that control V(D)J recombination at the level of chromatin accessibility. The discussion will focus on cis-acting regulation by ACEs, the nuclear factors that control ACE function, and the epigenetic modifications that establish recombinase accessibility.
Collapse
Affiliation(s)
- Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
24
|
Goetz CA, Harmon IR, O'Neil JJ, Burchill MA, Johanns TM, Farrar MA. Restricted STAT5 activation dictates appropriate thymic B versus T cell lineage commitment. THE JOURNAL OF IMMUNOLOGY 2005; 174:7753-63. [PMID: 15944278 DOI: 10.4049/jimmunol.174.12.7753] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular mechanisms regulating lymphocyte lineage commitment remain poorly characterized. To explore the role of the IL7R in this process, we generated transgenic mice that express a constitutively active form of STAT5 (STAT5b-CA), a key downstream IL7R effector, throughout lymphocyte development. STAT5b-CA mice exhibit a 40-fold increase in pro-B cells in the thymus. As documented by BrdU labeling studies, this increase is not due to enhanced B cell proliferation. Thymic pro-B cells in STAT5b-CA mice show a modest increase in cell survival ( approximately 4-fold), which correlates with bcl-x(L) expression. However, bcl-x(L) transgenic mice do not show increases in thymic B cell numbers. Thus, STAT5-dependent bcl-x(L) up-regulation and enhanced B cell survival are not sufficient to drive the thymic B cell development observed in STAT5b-CA mice. Importantly, thymic pro-B cells in STAT5b-CA mice are derived from early T cell progenitors (ETPs), suggesting that STAT5 acts by altering ETP lineage commitment. Supporting this hypothesis, STAT5 binds to the pax5 promoter in ETPs from STAT5b-CA mice and induces pax5, a master regulator of B cell development. Conversely, STAT5b-CA mice exhibit a decrease in the DN1b subset of ETPs, demonstrating that STAT5 activation inhibits early T cell differentiation or lineage commitment. On the basis of these findings, we propose that the observed expression of the IL-7R on common lymphoid progenitors, but not ETPs, results in differential STAT5 signaling within these distinct progenitor populations and thus helps ensure appropriate development of B cells and T cells in the bone marrow and thymic environments, respectively.
Collapse
Affiliation(s)
- Christine A Goetz
- Center for Immunology, Cancer Center, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
25
|
Bertolino E, Reddy K, Medina KL, Parganas E, Ihle J, Singh H. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat Immunol 2005; 6:836-43. [PMID: 16025120 DOI: 10.1038/ni1226] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 06/08/2005] [Indexed: 01/04/2023]
Abstract
Rearrangement of immunoglobulin heavy-chain variable (V(H)) gene segments has been suggested to be regulated by interleukin 7 signaling in pro-B cells. However, the genetic evidence for this recombination pathway has been challenged. Furthermore, no molecular components that directly control V(H) gene rearrangement have been elucidated. Using mice deficient in the interleukin 7-activated transcription factor STAT5, we demonstrate here that STAT5 regulated germline transcription, histone acetylation and DNA recombination of distal V(H) gene segments. STAT5 associated with V(H) gene segments in vivo and was recruited as a coactivator with the transcription factor Oct-1. STAT5 did not affect the nuclear repositioning or compaction of the immunoglobulin heavy-chain locus. Therefore, STAT5 functions at a distinct step in regulating distal V(H) recombination in relation to the transcription factor Pax5 and histone methyltransferase Ezh2.
Collapse
Affiliation(s)
- Eric Bertolino
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
26
|
Johnson K, Shapiro-Shelef M, Tunyaplin C, Calame K. Regulatory events in early and late B-cell differentiation. Mol Immunol 2005; 42:749-61. [PMID: 15829263 DOI: 10.1016/j.molimm.2004.06.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 06/18/2004] [Indexed: 01/29/2023]
Abstract
We are studying transcriptional control of critical developmental decision points in B lymphocytes. Commitment to the B-lymphocyte lineage is dependent on the transcriptional regulator Pax5 and committed B lymphocytes represent the first developmental stage when V(H)-to-DJ recombination occurs in the immunoglobulin (Ig) heavy chain locus. We summarize our recent studies showing that methylation of histone H3 lysine 9, a heterochromatic chromatin modification, is present in the Ig V(H) region in hematopoietic progenitors and in non-B lineage hematopoietic cells. Pax5 is both necessary and sufficient to remove this heterochromatic mark in B cells. Using genetically altered mice, we have shown that terminal differentiation of B cells to memory and Ig-secreting plasma cells depends on the transcriptional repressor Blimp-1. Recent studies demonstrating a requirement for Blimp-1 in the formation of pre-plasma memory B cells, Ig-secreting plasma cells as well as preliminary data suggesting a requirement for Blimp-1 in the maintenance of long-lived plasma cells are summarized. We also summarize our recent studies on the regulation of Blimp-1, showing direct repression by Bcl-6 and providing evidence for activation by NF-kappaB following toll-like receptor signaling.
Collapse
Affiliation(s)
- Kristen Johnson
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
27
|
Johnson K, Pflugh DL, Yu D, Hesslein DGT, Lin KI, Bothwell ALM, Thomas-Tikhonenko A, Schatz DG, Calame K. B cell-specific loss of histone 3 lysine 9 methylation in the V(H) locus depends on Pax5. Nat Immunol 2004; 5:853-61. [PMID: 15258579 PMCID: PMC1635547 DOI: 10.1038/ni1099] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 06/23/2004] [Indexed: 12/28/2022]
Abstract
Immunoglobulin heavy chain rearrangement (V(H)-to-DJ(H)) occurs only in B cells, suggesting it is inhibited in other lineages. Here we found that in the mouse V(H) locus, methylation of lysine 9 on histone H3 (H3-K9), a mark of inactive chromatin, was present in non-B lineage cells but was absent in B cells. As others have shown that H3-K9 methylation can inhibit V(D)J recombination on engineered substrates, our data support the idea that H3-K9 methylation inhibits endogenous V(H)-to-DJ(H) recombination. We also show that Pax5, a transcription factor required for B cell commitment, is necessary and sufficient for the removal of H3-K9 methylation in the V(H) locus and provide evidence that one function of Pax5 is to remove this inhibitory modification by a mechanism of histone exchange, thus allowing B cell-specific V(H)-to-DJ(H) recombination.
Collapse
Affiliation(s)
- Kristen Johnson
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|